
Security Policy

11.02.21
RSA BSAFE® Crypto-J JSAFE and JCE
Software Module 6.2.5 Security Policy Level 1

This document is a non-proprietary security policy for the RSA BSAFE Crypto-J
JSAFE and JCE Software Module 6.2.5 (Crypto-J JSAFE and JCE Software Module)
security software.

This document may be freely reproduced and distributed whole and intact including
the copyright notice.

Contents:
Preface .. 2

References .. 2

Terminology ... 2

Document Organization ... 3

1 The Cryptographic Module ... 4

1.1 Introduction ... 4

1.2 Module Characteristics ... 4

1.3 Module Interfaces .. 9

1.4 Roles and Services ... 10

1.5 Cryptographic Key Management ... 20

1.6 Cryptographic Algorithms ... 23

1.7 Self-tests ... 27

2 Secure Operation of the Module .. 29

2.1 Module Configuration .. 29

2.2 Security Roles, Services and Authentication Operation 29

2.3 Crypto User Guidance .. 30

2.4 Crypto Officer Guidance ... 39

2.5 Operating the Cryptographic Module .. 39

3 Acronyms .. 40
July 2019 Copyright © 2021 Dell Inc. or its subsidiaries. All rights reserved. 1

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Preface

This document is a non-proprietary security policy for the Crypto-J JSAFE and JCE
Software Module from RSA Security LLC, a Dell Technologies company (RSA).

This security policy describes how the Crypto-J JSAFE and JCE Software Module
meets the overall Level 1 security requirements of FIPS 140-2, and how to securely
operate it.

Federal Information Processing Standards Publication 140-2 - Security Requirements
for Cryptographic Modules details the U.S. Government requirements for
cryptographic modules. More information about the FIPS 140-2 standard and
validation program is available on the NIST website.

References

This document deals only with operations and capabilities of the Crypto-J JSAFE and
JCE Software Module in the technical terms of a FIPS 140-2 cryptographic module
security policy. More information about Crypto-J JSAFE and JCE Software Module
and the entire RSA product line is available at:

• RSA Security Solutions, for Information on the full line of RSA products and
services

• RSA Link > RSA BSAFE for product overviews, technical information, and
answers to sales-related questions.

Terminology

In this document, the term Crypto-J JSAFE and JCE Software Module denotes the
Crypto-J JSAFE and JCE FIPS 140-2 validated Cryptographic Module for Overall
Security Level 1 with Level 3 Design Assurance.

The Crypto-J JSAFE and JCE Software Module is also referred to as:

• The Cryptographic Module

• The Java Crypto Module (JCM)

• The module.
2 Preface

http://csrc.nist.gov/index.html
https://www.rsa.com/en-us
https://community.rsa.com/community/products/bsafe

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Document Organization

This document explains the Crypto-J JSAFE and JCE Software Module features and
functionality relevant to FIPS 140-2, and contains the following sections:

• This section, Preface provides an overview and introduction to the Security
Policy.

• The Cryptographic Module, describes the module and how it meets the FIPS
140-2 Security Level 1 requirements.

• Secure Operation of the Module, addresses the required configuration for the FIPS
140-2 mode of operation.

• Acronyms, lists the definitions for the acronyms used in this document.

With the exception of the Non-Proprietary RSA BSAFE Crypto-J JSAFE and JCE
Software Module Security Policy documents, the FIPS 140-2 Security Level 1
validation submission documentation is proprietary to Dell Inc. and is releasable only
under appropriate non-disclosure agreements. For access to the documentation, please
contact RSA.
Preface 3

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1 The Cryptographic Module

This section provides an overview of the module, and contains the following topics:

• Introduction

• Module Characteristics

• Module Interfaces

• Roles and Services

• Cryptographic Key Management

• Cryptographic Algorithms

• Self-tests.

1.1 Introduction

More than a billion copies of the RSA BSAFE technology are embedded in today's
most popular software applications and hardware devices. Encompassing one of the
most widely-used and rich set of cryptographic algorithms as well as secure
communications protocols, RSA BSAFE software is a set of complementary security
products relied on by developers and manufacturers worldwide.

The RSA BSAFE Crypto-J software library relies on the JCM library. It includes a
wide range of data encryption and signing algorithms, including AES, Triple-DES, the
RSA Public Key Cryptosystem, the Elliptic Curve Cryptosystem, DSA, and the
SHA-1, SHA-2 and SHA-3 message digest routines. Its software libraries, sample
code and complete standards-based implementation enable near-universal
interoperability for your networked and e-business applications.

1.2 Module Characteristics

The JCM is classified as a FIPS 140-2 multi-chip standalone module. As such, the
JCM is tested on particular operating systems and computer platforms. The
cryptographic boundary includes the JCM running on selected platforms that are
running selected operating systems.

The JCM is validated for FIPS 140-2 Security Level 1 requirements.
4 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
The following table lists the certification levels sought for the JCM for each section of
the FIPS 140-2 specification.

The JCM is packaged in a Java Archive (JAR) file containing all the code for the
module.

The JCM API of the module is provided in the jcmFIPS-6.2.5.jar and
jcmandroidfips-6.2.5.jar files.

1.2.1 Laboratory Validated Operating Environments

For FIPS 140-2 validation, the JCM is tested by an accredited FIPS 140-2 testing
laboratory on the following operating environments:

• Google® ART™ 8.0 on Google Android™ 8.0 ARM® v8 (64-bit) running on
Samsung™ Galaxy S9™ with a Qualcomm® Snapdragon™ 845 processor

• Oracle® JRE 8.0 on Microsoft® Windows Server® 2016 (64-bit) running on
Dell™ PowerEdge™ T130 with an Intel® Xeon® E3 processor

• OpenJDK 8.0 on CentOS 7.6 (64-bit) running on Dell PowerEdge R710 with an
Intel Xeon E5 processor.

Table 1 Certification Levels

Section of the FIPS 140-2 Specification Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks 1

Overall 1
The Cryptographic Module 5

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.2.2 Affirmation of Compliance for other Operating
Environments

Affirmation of compliance is defined in Section G.5, “Maintaining Validation
Compliance of Software or Firmware Cryptographic Modules,” in Implementation
Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program.
Compliance is maintained in all operational environments for which the binary
executable remains unchanged. Specifically, RSA affirms compliance for the
following operational environments:

• Apple®

– Mac OS® X 10.8+

• x86 (32-bit) Apple JDK 8.0

• x86_64 (64-bit) Apple JDK 8.0.

• Canonical™

– Ubuntu™ 16.04 Server

• x86 (32-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0, 11.0.

• Dell™

– PowerProtect™ Data Domain™ OS on

• x86_64 (64-bit), Oracle JDK 8.0.

• Google

– Android 4.4.x

• ARM v7 (32-bit)

• x86 (32-bit).

– Android 5.x

• ARM v7 (32-bit)

• x86 (32-bit).

– Android 6.x

• ARM v7 (32-bit)

• ARM v8 (32-bit)

• ARM v8 (64-bit)

• x86 (32-bit).

– Android 7.x

• ARM v7 (32-bit)

• ARM v8 (32-bit)

• ARM v8 (64-bit)

• x86 (32-bit).
6 The Cryptographic Module

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
– Android 8.x

• ARM v7 (32-bit)

• ARM v8 (32-bit)

• ARM v8 (64-bit)

• x86 (32-bit).

– Android 9.0

• ARM v8-A (64-bit).

• HPE

– HP-UX 11.31

• Itanium® 2 (32-bit) HP JDK 8.0

• Itanium 2 (64-bit) HP JDK 8.0.

• IBM

– AIX® 7.1

• PowerPC® (32-bit) IBM JDK 8.0

• PowerPC (64-bit) IBM JDK 8.0.

– AIX 7.2

• PowerPC (32-bit) IBM JDK 8.0

• PowerPC (64-bit) IBM JDK 8.0.

• Linux®

– CentOS 6.10

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0, 11.0

– CentOS 7.6 and any subsequent 7.x releases made available with the same
capabilities

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0, 11.0.

– Red Hat® Enterprise Linux 7.6 and any subsequent 7.x releases made
available with the same capabilities

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0, 11.0.

– SUSE Software Solutions® SUSE® Linux Enterprise Server 12 SP1, SP2,
SP3, SP4, SP5 and any subsequent service packs made available with the
same capabilities

• x86_64 (64-bit) IBM JDK 8.0, OpenJDK 8u, Oracle JDK 8.0, 11.0.

– SUSE Software Solutions SUSE Linux Enterprise Server 15 SP2 and any
subsequent service packs made available with the same capabilities

• x86_64 (64-bit) OpenJDK 8, 11
The Cryptographic Module 7

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
• Microsoft

– Windows 7 Enterprise SP1

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0.

– Windows 8.1 Enterprise

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0.

– Windows 10 Enterprise

• x86 _64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0.

– Windows Server 2008 SP2

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0.

– Windows Server 2012

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0.

– Windows Server 2012 R2

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0.

– Windows Server 2016

• x86_64 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0.

• Oracle

– Solaris® 10

• SPARC® v9 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0

• x86_64 (64-bit) Oracle JDK 8.0.

– Solaris 11

• SPARC v9 (64-bit) IBM JDK 8.0, Oracle JDK 8.0, 11.0

• x86_64 (64-bit) Oracle JDK 8.0, 11.0.

• The FreeBSD® Foundation

– FreeBSD 11.x

• x86_64 (64-bit) OpenJDK 8u.

Note: The Cryptographic Module Validation Program (CMVP) makes no
statement as to the correct operation of the module or the security strengths of
the generated keys when the specific operational environment is not listed on
the validation certificate.
8 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.3 Module Interfaces

As a multi-chip standalone module, the physical interface to the JCM consists of a
keyboard, mouse, monitor, serial ports and network adapters.

The underlying logical interface to the module is the API, documented in the relevant
API Javadoc. The module provides the following four logical interfaces that have
been designed within the module where input and output are indicated from the
perspective of the module:

• Control In - the invocation of all methods, the function and API names

• Data In - input arguments to all constructors and methods specifying input
parameters

• Data Out - modified input arguments, those passed by reference, and return values
for all constructors and methods modifying input arguments and returning values

• Status Out - information returned by the methods and any exceptions thrown by
constructors and methods.

This is shown in the following diagram.

Figure 1 JCM Logical Diagram

Physical Boundary

Cryptographic Module
FIPS class files within the JCM jar

Java Virtual Machine (JVM)

Operating System (OS)

Hardware

Cryptographic Boundary

Software

Hardware

Runs on JVM

Run on OS

Runs on Hardware

Provides service for OS

Provides services for
JVM

Provides services for
Module

Application

Data In Data Out Control In Status Out
The Cryptographic Module 9

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.4 Roles and Services

The JCM is designed to meet all FIPS 140-2 Level 1 requirements, implementing both
a Crypto Officer role and a Crypto User role. As allowed by FIPS 140-2, the JCM
does not require user identification or authentication for these roles.

1.4.1 Crypto Officer Role

The Crypto Officer is responsible for installing and loading the module. Once the
module has been installed and is operational, an operator can assume the Crypto
Officer Role by constructing a com.rsa.crypto.FIPS140Context object by invoking the
ModuleConfig.getFIPS140Context(int mode, int role) method with a role argument of
com.rsa.crypto.FIPS140Context.ROLE_CRYPTO_OFFICER.

The Services section provides a list of services available to the Crypto Officer Role.

1.4.2 Crypto User Role

An operator can assume the Crypto User Role by constructing a
com.rsa.crypto.FIPS140Context object by invoking the
ModuleConfig.getFIPS140Context(int mode, int role) method with a role argument of
com.rsa.crypto.FIPS140Context.ROLE_USER.

The Services section provides a list of services available to the Crypto User Role.
10 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.4.3 Services

The JCM provides services which are available for both FIPS 140-2 and non-FIPS
140-2 usage. For a list of FIPS 140-2 approved and FIPS 140-2 allowed algorithms,
see Table 5.

The following table lists the un-authenticated services provided by the JCM which
may be used by either Role, in either the FIPS or non-FIPS mode, in terms of the
module interface. For each interface, lists of algorithms that are allowed and not
allowed when operating the module in a FIPS 140-2 compliant way are specified.

Table 2 Services Available to the Crypto User and Crypto Officer Roles

Services Available to the Crypto User and Crypto Officer Roles

Encryption/Decryption:

SymmCipher clearSensitiveData
clone
doFinal
getAlg
getAlgorithmParams
getBlockSize
getCryptoModule

getFeedbackSize
getMaxInputLen
getOutputSize
init
isIVRequired
reInit
update

Algorithms allowed for FIPS 140-2 usage

AES (CBC, CCM, CFB, CTR, ECB, GCM, OFB, XTS)

Triple-DES (CBC, CFB, ECB, OFB)

PBE (PKCS #5 V2 - Approved for key storage)

Algorithms not allowed for FIPS 140-2 usage

AES (BPS, CBC_CS1, CBC_CS2, CBC_CS3)

Triple-DES (CBC_CS1, CBC_CS2, CBC_CS3)

ChaCha20

ChaCha20/Poly1305

DES

DESX

RC2®

RC4®

RC5®

PBE (PKCS #12, PKCS #5, SSLCPBE)
The Cryptographic Module 11

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Encryption/Decryption: (continued)

Cipher clearSensitiveData
clone
doFinal
getAlg
getAlgorithmParams
getBlockSize

getCryptoModule
getMaxInputLen
getOutputSize
init
reInit
update

Algorithms allowed for FIPS 140-2 usage

RSA (Allowed for key transport, provides 112 or 128 bits of
encryption strength)

SP 800-38F KW (AE, AD, provides between 128 and 256 bits
of encryption strength)

SP 800-38F KWP (AE, AD, provides between 128 and 256 bits
of encryption strength)

RSA-KEM-KWS (When used with approved KDF and Key
Wrap algorithms)

Algorithms not allowed for FIPS 140-2 usage

ECIES

Signature Generation/Verification:

Signature clearSensitiveData
clone
getAlg
getCryptoModule
getSignatureSize
initSign

initVerify
reInit
sign
update
verify

Algorithms allowed for FIPS 140-2 usage

RSA X9.31, PKCS #1 V.1.5, RSASSA-PSS

DSA

ECDSA

Algorithms not allowed for FIPS 140-2 usage

None

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
12 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
MAC Generation/Verification:

MAC clearSensitiveData
clone
getAlg
getCryptoModule
getMacLength

init
mac
reset
update
verify

Algorithms allowed for FIPS 140-2 usage

CMAC

HMAC (when used with an approved Message Digest algorithm)

Algorithms not allowed for FIPS 140-2 usage

HMAC-MD5

PBHMAC (PKCS #12, PKIX)

Poly1305

Digest Generation:

MessageDigest clearSensitiveData
clone
digest
getAlg

getCryptoModule
getDigestSize
reset
update

Algorithms allowed for FIPS 140-2 usage

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

SHA-512/224

SHA-512/256

SHA3-224

SHA3-256

SHA3-384

SHA3-512

SHAKE128

SHAKE256

Algorithms not allowed for FIPS 140-2 usage

MD2

MD5 (Allowed in FIPS mode only for use in TLS)

RIPEMD160

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 13

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Parameters:

AlgInputParams clone
get

getCryptoModule
set

AlgorithmParams getCryptoModule

DHParams getCounter
getCryptoModule
getG
getJ

getMaxExponentLen
getP
getQ
getSeed

DomainParams getCryptoModule

DSAParams getCounter
getCryptoModule
getDigestAlg
getG

getP
getQ
getSeed

ECParams getA
getB
getBase
getBaseDigest
getBaseSeed
getCofactor
getCryptoModule
getCurveName

getDigest
getFieldMidTerms
getFieldPrime
getFieldSize
getFieldType
getOrder
getSeed
getVersion

ECPoint clearSensitiveData
getEncoded

getX
getY

PQGParams getCryptoModule
getG

getP
getQ

Parameter Generation:

AlgParamGenerator generate
getCryptoModule
initGen

initVerify
verify

Algorithms allowed for FIPS 140-2 usage

DSA

Diffie-Hellman (DH)

Algorithms not allowed for FIPS 140-2 usage

None

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
14 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Key Establishment:

KeyAgreement clearSensitiveData
clone
doPhase
getAlg

getCryptoModule
getSecret
init

Algorithms allowed for FIPS 140-2 usage

Diffie-Hellman (primitives only, provides 112 bits or 128 bits of
encryption strength)

EC Diffie-Hellman (primitives only, provides between 112 bits
and 256 bits of encryption strength)

Algorithms not allowed for FIPS 140-2 usage

None

KeyConfirmation clearSensitiveData
computeMacTag

verifyMacTag

Algorithms allowed for FIPS 140-2 usage

Diffie-Hellman (primitives only, provides 112 bits or 128 bits of
encryption strength)

EC Diffie-Hellman (primitives only, provides between 112 bits
and 256 bits of encryption strength)

Algorithms not allowed for FIPS 140-2 usage

None

Key Generation:

KeyGenerator clearSensitiveData
generate

getCryptoModule
initialize

Algorithms allowed for FIPS 140-2 usage

AES Triple-DES

Algorithms not allowed for FIPS 140-2 usage

DES

DESX

Shamir Secret Sharing

RC2

RC4

RC5

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 15

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Key Generation: (continued)

KeyPairGenerator clearSensitiveData
clone
generate

getCryptoModule
initialize

Algorithms allowed for FIPS 140-2 usage

EC

DSA

Diffie-Hellman

RSA

Algorithms not allowed for FIPS 140-2 usage

RSA Keypair Generation MultiPrime

Keys:

DHPrivateKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getX
isValid

DHPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getY
isValid

DSAPrivateKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getX
isValid

DSAPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getY
isValid

ECPrivateKey clearSensitiveData
clone
getAlg
getCryptoModule

getD
getParams
isValid

ECPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getParams
getPublicPoint
isValid

Key clearSensitiveData
clone

getAlg
getCryptoModule

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
16 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Keys: (continued)

KeyBuilder newDHParams
newDHPrivateKey
newDHPublicKey
newDSAParams
newDSAPrivateKey
newDSAPublicKey
newECParams
newECPrivateKey

newECPublicKey
newPasswordKey
newPQGParams
newRSAPrivateKey
newRSAPublicKey
newSecretKey
recoverShamirSecretKey

KeyPair clearSensitiveData
clone
getAlgorithm

getPrivate
getPublic

PasswordKey clearSensitiveData
clone
getAlg

getCryptoModule
getKeyData
getPassword

PrivateKey clearSensitiveData
clone
getAlg

getCryptoModule
isValid

PublicKey clearSensitiveData
clone
getAlg

getCryptoModule
isValid

RSAPrivateKey clearSensitiveData
clone
getAlg
getCoeff
getCryptoModule
getD
getE
getExpP

getExpQ
getN
getOtherMultiPrimeInfo
getP
getQ
hasCRTInfo
isMultiprime
isValid

RSAPublicKey clearSensitiveData
clone
getAlg
getCryptoModule

getE
getN
isValid

SecretKey clearSensitiveData
getAlg

getCryptoModule
getKeyData

SharedSecretKey clearSensitiveData
clone
getAlg

getCryptoModule
getKeyData
getSharedParams

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 17

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Key Derivation:

KDF clearSensitiveData
clone

generate
getCryptoModule

Algorithms allowed for FIPS 140-2 usage

HKDF

KDFTLS10 (For use with TLS versions 1.0 and 1.1)

KDFTLS12 (For use with TLS version 1.2)

PBKDF2 (Approved for key storage)

Single-step KDF

Algorithms not allowed for FIPS 140-2 usage

PKCS #5 KDF

PKCS #12 KDF

scrypt

Random Number Generation:

SecureRandom autoseed
clearSensitiveData
getCryptoModule
newInstance
nextBytes

selfTest
setAlgorithmParams
setOperationalParameters
setSeed

Algorithms allowed for FIPS 140-2 usage

CTR DRBG

Hash DRBG

HMAC DRBG

Algorithms not allowed for FIPS 140-2 usage

FIPS 186-2 PRNG (Change Notice General)

Other Services:

BigNum getBitLength toOctetString

CryptoModule getDeviceType
getKeyBuilder
getModuleOperations
newAlgInputParams
newAlgParamGenerator
newAsymmetricCipher
newKDF
newKeyAgreement

newKeyGenerator
newKeyPairGenerator
newKeyWrapCipher
newMAC
newMessageDigest
newSecureRandom
newSignature
newSymmetricCipher

JCMCloneable clone

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
18 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
For more information on each function, see the relevant API Javadoc.

Other Services: (continued)

ModuleConfig getEntropySource
getFIPS140Context
getSecurityLevel
getVersionDouble
getVersionInfo

getVersionString

initFIPS140RolePINs
isFIPS140Compliant
newCryptoModule
runSelfTests
setEntropySource

ModuleLoader load

ModuleOperations perform

PasswordKey clearSensitiveData
clone
getAlg

getCryptoModule
getKeyData
getPassword

SelfTestEvent getTestId getTestName

SelfTestEventListener failed
finished

passed
started

SensitiveData clearSensitiveData

Table 2 Services Available to the Crypto User and Crypto Officer Roles (continued)

Services Available to the Crypto User and Crypto Officer Roles
The Cryptographic Module 19

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.5 Cryptographic Key Management

Cryptographic key management is concerned with generating and storing keys,
protecting keys during use, zeroizing keys when they are no longer required and
managing access to keys.

1.5.1 Key Generation

The module supports the generation of the DSA, RSA, and Diffie-Hellman (DH) and
ECC public and private keys. In the FIPS-Approved mode, RSA keys can only be
generated using the Approved 186-4 RSA key generation method.

The module also employs a FIPS-Approved AES Counter-mode DRBG
(AES-128-CTR DRBG) for generating asymmetric and symmetric keys used in
algorithms such as AES, Triple-DES, RSA, DSA, DH and ECC.

1.5.2 Key Protection

All key data resides in internally allocated data structures and can only be output using
the JCM API. The operating system and the JRE safeguards memory and process
space from unauthorized access.

1.5.3 Key Zeroization

The module stores all its keys and Critical Security Parameters (CSPs) in volatile
memory. Users can ensure CSPs are properly zeroized by making use of the
<object>.clearSensitiveData() method. All of the module’s keys and CSPs are
zeroizable. The module operator must zeroize all keys before switching from an
approved FIPS 140-2 mode to non-FIPS 140-2 approved mode.
For more information about clearing CSPs, see the relevant API Javadoc.

1.5.4 Key Storage

The JCM does not provide long-term cryptographic key storage. Storage of keys is the
responsibility of the JCM user. The Crypto User and Crypto Officer roles have equal
and complete access to all keys and CSPs.

The following table shows how the storage of keys and CSPs are handled.

Table 3 Key and CSP Storage

Item Storage

AES keys In volatile memory only (plaintext)

Triple-DES keys In volatile memory only (plaintext)

HMAC with SHA-1, SHA-2 and SHA-3 keys In volatile memory only (plaintext)

CMAC keys In volatile memory only (plaintext)
20 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
ECC private keys/public key In volatile memory only (plaintext)

ECDH Shared Secret In volatile memory only (plaintext)

DH Shared Secret In volatile memory only (plaintext)

Diffie-Hellman private key/public key In volatile memory only (plaintext)

RSA private key/public key In volatile memory only (plaintext)

DSA private key/public key In volatile memory only (plaintext)

CTR DRBG Entropy In volatile memory only (plaintext)

CTR DRBG V Value In volatile memory only (plaintext)

CTR DRBG Key In volatile memory only (plaintext)

CTR DRBG init_seed In volatile memory only (plaintext)

Hash DRBG Entropy In volatile memory only (plaintext)

Hash DRBG V Value In volatile memory only (plaintext)

Hash DRBG C In volatile memory only (plaintext)

Hash DRBG init_seed In volatile memory only (plaintext)

HMAC DRBG Entropy In volatile memory only (plaintext)

HMAC DRBG V Value In volatile memory only (plaintext)

HMAC DRBG Key In volatile memory only (plaintext)

HMAC DRBG init_seed In volatile memory only (plaintext)

TLS Pre-Master Secret In volatile memory only (plaintext)

TLS Master Secret In volatile memory only (plaintext)

TLS Session Keys In volatile memory only (plaintext)

Katstatus In volatile memory and on disk
(protected with HMAC SHA256)

Table 3 Key and CSP Storage (continued)

Item Storage
The Cryptographic Module 21

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.5.5 Key Access

An authorized operator of the module has access to all key data created during JCM
operation. The User and Officer roles have equal and complete access to all keys.

The following table lists the different services provided by the module with the type
of access to keys or CSPs.

Table 4 Key and CSP Access

Service Key or CSP Type of Access

Asymmetric
encryption and decryption

Asymmetric keys (RSA) Read/Execute

Encryption and decryption Symmetric keys (AES, Triple-DES) Read/Execute

Digital signature and
verification

Asymmetric keys (DSA, ECDSA, RSA) Read/Execute

Hashing None N/A

MAC HMAC keys
CMAC keys

Read/Execute

Random number generation CTR DRBG entropy, V, key, init_seed
Hash DRBG entropy, V, C, init_seed
HMAC DRBG entropy, V, key, init_seed

Read/Write/Execute

Key derivation HKDF keys

Single-step KDF keys
TLS Pre-Master Secret
TLS Master Secret
TLS Session keys

Read/Execute

Key establishment Asymmetric keys (DH, ECDH) Read/Execute

Key generation Symmetric keys (AES, Triple-DES)
Asymmetric keys
(DH, DSA, ECDSA, ECDH, RSA)
MAC keys (HMAC, CMAC)

Write

Self-test Hard-coded keys,
(AES, Triple-DES, RSA, DSA, ECDSA,
HMAC, CMAC, HKDF)
Hard-coded entropy, strength, and seed
(HMAC DRBG, HASH DRBG, CTR DRBG)

Read/Execute

Show status None N/A

Zeroization All Read/Write
22 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.6 Cryptographic Algorithms

The JCM offers a wide range of cryptographic algorithms. This section describes the
algorithms that can be used when operating the module in a FIPS 140-2 compliant
manner.

1.6.1 FIPS 140-2-approved Algorithms

The following table lists the FIPS 140-2 approved and FIPS 140-2 allowed algorithms
that can be used when operating the module in a FIPS 140-2 compliant way.

Table 5 JCM FIPS 140-2 Approved Algorithms

Algorithm Type Algorithm Standard
Validation
Certificate

Asymmetric
Cipher

RSADP (RSA decryption primitive) component
Modulus sizes: 2048 and 30721 bits

SP 800-56B
Rev. 2

C662

Key Agreement
Primitives

KASECC_(ECCCDH) Primitive Component Test SP 800-56A C662

FFC2, ECC3 Component
[dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow,
dhStatic, (Cofactor) Full Unified Model, (Cofactor)
Ephemeral Unified Model, (Cofactor) One-Pass Unified
Model, (Cofactor) One-Pass Diffie-Hellman, (Cofactor)
Static Unified Model]

SP 800-56A C1762

Key Derivation HMAC-based Extract-and-Expand KDF (HKDF):
• SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

SP 800-56C Vendor affirmed

Single-Step KDF:
• SHA-224, SHA-256, SHA-384, SHA-512,

SHA-512/224 and SHA-512/256

SP 800-56C Vendor affirmed

Key Based KDF (KBKDF), using pseudo-random functions:
• HMAC-based Feedback Mode, with:

– SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

SP 800-108 C662

Password-based Key Derivation Function 2 (PBKDF2) SP 800-132 Vendor Affirmed
(Approved in FIPS
mode for key
storage4)

KDFTLS105 SP 800-135 rev1 C662

KDFTLS125 with SHA-256, SHA-384, SHA-512

Key Wrap AES in KW and KWP modes with 128, 192, and 256-bit key
sizes

SP 800-38F C662

Key Generation Cryptographic Key Generation (CKG) SP 800-133 Vendor affirmed

Message
Authentication
Code

CMAC (using AES) SP 800-38B C662

HMAC6 FIPS 198-1 C662
The Cryptographic Module 23

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
Message Digest SHA:

• SHA-17, SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256

FIPS 180-4 C662

 SHA-3:
• SHA3-224, SHA3-256, SHA3-384, SHA3-512,

SHAKE1288, SHAKE2568

FIPS 202 C662

Random Bit
Generator

CTR DRBG
AES-CTR mode with 128, 192, and 256-bit key sizes

SP 800-90A rev1 C662

Hash DRBG
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256

HMAC DRBG
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256

Signature6 RSA X9.31, PKCS #1 V.1.5, RSASSA-PSS
(2048 and 3072 bit key sizes)

FIPS 186-4 C662

DSA (2048 and 3072 bit key sizes)

 ECDSA (224 to 571 bit key sizes)

Symmetric
Cipher

AES in CBC, CFB, CTR, ECB, OFB modes
(128, 192, 256 bit key sizes)

SP 800-38A C662

AES in CCM modes (128, 192, 256 bit key sizes) SP 800-38C

AES in GCM (128, 192, 256 bit key sizes) SP 800-38D

AES in XTS mode (128, 256 bit key sizes)9 SP 800-38E

Triple-DES10 (CBC, CFB, ECB, OFB) SP 800-67 and
SP 800-38A

C662

1A 3072-bit modulus is not tested by the CAVP but is allowed for RSA key transport according to IG D.9.
2FFC with Domain parameter-size sets: L=2048, N=224; L=2048, N=256
3ECC with Curves: P-224, P-256, P-384, P-521.
4The module implements PBKDF2 as the PBKDF algorithm as defined in SP 800-132. This can be used in FIPS mode when used with a

FIPS-approved Symmetric Cipher and Message Digest algorithm. For information on how to use PBKDF, see For PBKDF:
5The TLS 1.0/1.1 and 1.2 KDF, documented in SP 800-135, are allowed only when the conditions detailed in the Crypto User Guidance are
satisfied.

6When used with a FIPS-approved Message Digest algorithm.
7SHA-1 is allowed for use in the TLS protocol but no longer allowed to be used in digital signature generation.
8The SHAKE algorithms can be used only as standalone message digest algorithms.
9AES in XTS mode shall be used only for cryptographic protection of data on storage devices.
10For information on the restrictions applicable to the use of two-key Triple-DES, see Triple-DES:

Table 5 JCM FIPS 140-2 Approved Algorithms (continued)

Algorithm Type Algorithm Standard
Validation
Certificate
24 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.6.2 FIPS 140-2 Allowed Algorithms

The following is a list of the FIPS 140-2 allowed algorithms.

• Diffie-Hellman
CVL Certs. #C662 and #C1762, key agreement; key establishment methodology
provides 112 or 128 bits of encryption strength.

• EC Diffie-Hellman
CVL Certs. #C662 and #C1762, key agreement; key establishment methodology
provides between 112 and 256 bits of encryption strength.

• MD5
Allowed as part of an approved key transport scheme, for example, TLS 1.0,
where no security is provided by the MD5 algorithm.
Allowed in the FIPS140-2 approved mode of operation for a purpose that is not
security relevant or is redundant to an approved cryptographic algorithm.
See section 4.2.1 of SP 800-135 Rev. 1 and IG 1.23.

• RSA

– CVL Cert. #C662, key wrapping using a PKCS#1-v1.5 padding scheme; key
establishment methodology provides 112 or 128 bits of encryption strength.
RSA decryption is only permitted to be used to decrypt keys and is not
permitted to decrypt data.

– SP 800-56B compliant key encapsulation only, no Key Transport Scheme
support:
KTS-OAEP, KTS-OAEP-Party_V-confirmation, KTS-KEM-KWS,
KTS-KEM-KWS-Party_V-confirmation. Modulus size at least 2048 bits long.
The Cryptographic Module 25

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.6.3 Non-FIPS 140-2 Allowed Algorithms

The following s a list of all other available algorithms in the JCM that are not allowed
for FIPS 140-2 usage. These algorithms must not be used when operating the module
in a FIPS 140-2 compliant way.

• AES in BPS mode for FPE

• AES in CBC_CS1, CBC_CS2 or CBC_CS3 mode for CTS

• ChaCha20/Poly1305 AEAD cipher

• ChaCha20 cipher

• DES

• DESX

• ECIES

• FIPS 186-2 PRNG (Change Notice General)

• HMAC-MD5

• MD2

• PKCS #5 KDF

• PKCS #12 KDF

• Poly1305 MAC

• RC2 block cipher

• RC4 stream cipher

• RC5 block cipher

• RSA Keypair Generation MultiPrime (2 or 3 primes)

• RSA X9.31, PKCS #1 V.1.5, RSASSA-PSS Signature Generation FIPS 186-2
(4096 bit key size)

• RIPEMD160

• scrypt

• Shamir Secret Sharing

• Triple-DES in CBC_CS1, CBC_CS2 or CBC_CS3 mode for CTS.
26 The Cryptographic Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
1.7 Self-tests

The module performs power-up and conditional self-tests to ensure proper operation.

If the power-up self-test fails, the module is disabled and throws a SecurityException.
The module cannot be used within the current JVM.
If the conditional self-test fails, the module throws a SecurityException and aborts the
operation. A conditional self-test failure does NOT disable the module.

1.7.1 Power-up Self-tests

Power-up self-tests are executed automatically when the module is loaded into
memory. The power-up self-tests include the FIPS 140-2 required Software Integrity
Test and a set of Cryptographic Algorithms tests. The Software Integrity Test is
comprised of an HMAC-SHA1 verification of the files listed in fips140/module.files.

The following Cryptographic Algorithm tests are implemented in the module:

• AES Decrypt KAT

• AES Encrypt KAT

• AES/CCM Decrypt KAT

• AES/CCM Encrypt KAT

• AES/GCM Decrypt KAT

• AES/GCM Encrypt KAT

• CMAC KAT

• CTR DRBG KAT

• Diffie-Hellman KAT

• DSA Sign/Verify Test

• EC Diffie-Hellman KAT

• ECDSA Sign/Verify Test

• Hash DRBG KAT

• HKDF KAT

• HMAC DRBG KAT

• KDFTLS10 KAT

• KDFTLS12 SHA-256 KAT

• RSA Signature Generation KAT

• RSA Signature Verification KAT

• SHA3-512 KAT

• SHA-512 KAT

• SHAKE256 KAT

• Triple-DES Decrypt KAT

• Triple-DES Encrypt KAT.
The Cryptographic Module 27

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
By default, all Cryptographic Algorithm tests are run at power-up. However, if
configured to do so, the module will run all of the power-up self-tests when first
loaded in an operational environment, and run only the Software Integrity Test on
subsequent restarts.

1.7.2 Conditional Self-tests

The module performs two conditional self-tests:

• Pair-wise Consistency Tests each time the module generates a DSA, DH, RSA or
EC public/private key pair.

• Continuous RNG (CRNG) Test each time the module produces random data, as
per the FIPS 140-2 standard. The CRNG test is performed on all approved and
non-approved PRNGs (HMAC DRBG, HASH DRBG, CTR DRBG, FIPS186
PRNG, non-approved entropy source).

1.7.3 Mitigation of Other Attacks

RSA, EC, DSA and DH key operations implement blinding by default. Blinding is a
reversible way of modifying the input data, so as to make the operations immune to
timing attacks. Blinding has no effect on the algorithm other than to mitigate attacks
on the algorithm.

RSA, EC, DSA and DH blinding is implemented through blinding modes, for which
the following options are available:

• Blinding mode off

• Blinding mode with no update, where the blinding value is squared for each
operation.

For other types of timing attacks the module implements time invariant comparisons
and operations, for example, PKCS #1 unpadding, HMAC verify, and RSA verify.

RSA signing operations implement a verification step after private key operations.
This verification step, which has no effect on the signature algorithm, is in place to
prevent potential faults in optimized Chinese Remainder Theorem (CRT)
implementations. For more information, see Modulus Fault Attacks Against
RSA-CRT Signatures.
28 The Cryptographic Module

https://eprint.iacr.org/2011/388
https://eprint.iacr.org/2011/388

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
2 Secure Operation of the Module

The following guidance must be followed in order to operate the module in a
FIPS 140-2 mode of operation, in conformance with FIPS 140-2 requirements.

Note: The module operates as a Validated Cryptographic Module only when
the rules for secure operation are followed.

2.1 Module Configuration

To operate the module in compliance with FIPS 140-2 Level 1 requirements, the
module must be loaded using the following method:

com.rsa.crypto.jcm.ModuleLoader.load()

The ModuleLoader.load() method extracts arguments from the
com.rsa.cryptoj.jcm.JavaModuleProperties class, which is created using the
com.rsa.cryptoj.jcm.CryptoJModulePropertiesFactory class.

The following arguments are extracted:

– The module jar file.

– The security level, specified as the constant ModuleConfig.LEVEL_1.
This should have a value of 1.

– An optional SelfTestEventListener to use for logging power-up self-test events.

– An optional java.util.concurrent.ExecutorService used for running the
power-up self-tests.

– An optional File for reading and writing the status of the algorithm power-up
self-tests.

Using the specified securityLevel ensures that the module is loaded for use in a
FIPS 140-2 Level 1 compliant way.

Once the load method has been successfully called, the module is operational.

2.2 Security Roles, Services and Authentication Operation

To assume a role once the module is operational, construct a FIPS140Context object
for the desired role using the FIPS140Context.getFIPS140Context(int mode, int role)
method. This object can then be used to perform cryptographic operations using the
module.

The mode argument must be the value FIPS140Context.MODE_FIPS140.

To retrieve the current JCM FIPS 140-2 mode, call FIPS140Context.getMode().
Secure Operation of the Module 29

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
The available role values are the constants
FIPS140Context.ROLE_CRYPTO_OFFICER and FIPS140Context.ROLE_USER.

No role authentication is required for operation of the module in Security Level 1
mode. When in Security Level 1 mode, invocation of methods which are particular to
Security Level 2 Roles, Services and Authentication will result in an error.

2.3 Crypto User Guidance

This section provides guidance to the module user to ensure that the module is used in
a FIPS 140-2 compliant way.

Section 2.3.1 provides algorithm-specific guidance. The requirements listed in this
section are not enforced by the module and must be ensured by the module user.

Section 2.3.2 provides guidance on obtaining assurances for Digital Signature
Applications.

Section 2.3.3 provides guidance on obtaining assurances for Key Agreement
Applications.

Section 2.3.4 provides guidance on obtaining assurances for Key Transport
Applications.

Section 2.3.5 provides guidance on the entropy requirements for secure key
generation.

Section 2.3.6 provides information about the minimum length of passwords.

Section 2.3.7 provides general crypto user guidance.

2.3.1 Crypto User Guidance on Algorithms

• The Crypto User must only use algorithms approved for use in a FIPS 140-2 mode
of operation, as listed in Table 5.

• Only FIPS 140-2 Approved DRBGs may be used for generation of keys
(asymmetric and symmetric).

• When using an approved DRBG, the number of bytes of seed key input must be
equivalent to or greater than the security strength of the keys the caller wishes to
generate. For example, a 256-bit or higher seed key input when generating 256-bit
AES keys.

• When using an Approved DRBG to generate keys or DSA parameters, the
requested DRBG must have a security strength at least as great as the security
strength of the key being generated. That means that an Approved DRBG with an
appropriate strength must be used. For more information on requesting the DRBG
security strength, see the relevant API Javadoc.

• Since the module does not modify the output of an Approved DRBG, any
generated symmetric keys or seed values are created directly from the output of
the Approved DRBG.

• FIPS 186-2 RNG is not to be used in an approved FIPS 140-2 mode of operation.
30 Secure Operation of the Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
• In case the power to the module is lost and then restored, the key used for the AES
GCM encryption/decryption shall be re-distributed.

• When generating key pairs using the KeyPairGenerator object, the
generate(boolean pairwiseConsistency) method must not be invoked with an
argument of false. Use of the no-argument generate() method is recommended.

• When using GCM feedback mode for AES symmetric encryption, the
authentication tag length and authenticated data length may be specified as input
parameters, but the full IV must not be specified. It must be generated depending
on whether the AES-GCM cipher provided by the module is being used as the
cipher implementation in the TLS protocol or for symmetric encryption purposes
other than TLS.

• The AES-GCM cipher, when used for symmetric encryption purposes other than
TLS, must use an IV in one of the two possible ways, to comply with
SP 800-38D:

– allow the module to generate the IV deterministically by not supplying any IV
parameters during cipher initialization. The generated 96-bit (12-byte) IV
consists of a 32-bit fixed field followed by a 64-bit invocation field where

• the fixed field bytes are derived from the module name, version
information and memory address of a Java class within the module

• the invocation field is a 64-bit counter that is initialized, on module
startup, to a value consisting of the 42 bits of current time, as milliseconds
since Epoch, followed by 22 bits of zero. This counter value is
incremented by one each time a new IV is requested. By using the current
time to prefix the counter start value, in the event of module restart, the
counter will be ahead of any previous module states, ensuring that IV
values cannot be reused. The module user must ensure the system time is
valid to prevent repetition of IVs.

– generate at least 12 bytes of IV using an Approved DRBG, and input the IV to
the cipher at initialization time using the RAW_IV parameter.

• The AES-GCM cipher used for the TLS protocol as the cipher implementation
complies with SP 800-52 and is compatible with RFC 5288 with the following
conditions:

– The IV is configured as follows:

• The four-byte salt derived from the TLS handshake process is input using
the parameter PARTIAL_IV during cipher initialization. This is used as
the first four bytes of IV. This 32-bit part of the IV is also referred to as
the nonce value in FIPS 140-2 IG A.5 and is positioned in the name field
of the IV as required in FIPS 140-2 IG A.5 Scenario 3.

• The remaining eight bytes of IV, referred to as nonce_explicit in RFC
5288, are generated deterministically by the module using the 64-bit
counter used for the invocation field described above.
Secure Operation of the Module 31

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
• When the 64-bit counter exhausts the maximum number of possible
values for a given session key, the module will throw a SecurityException.
Whichever party, the client or the server, that encounters this condition
must trigger a handshake to establish a new encryption key.

– The TLS session is aborted if the keys for the client and server negotiated in
the handshake process, client_write_key and server_write_key, are identical.

• For RSASSA-PSS: If nLen is 1024 bits, and the output length of the approved
hash function output block is 512 bits, then the length of the salt (sLen) shall be
0<=sLen<=hLen - 2
Otherwise, the length of the salt shall be 0 <=sLen<=hLen where hLen is the length
of the hash function output block (in bytes or octets).

• EC key pairs must have named curve domain parameters from the set of
NIST-recommended named curves: P-224, P-256, P-384, P-521, B-233, B-283,
B-409, B-571, K-233, K-283, K-409, and K-571. Named curves P192, B163, and
K163 are allowed for legacy-use. The domain parameters can be specified by
name or can be explicitly defined.

• EC Diffie-Hellman primitives must use curve domain parameters from the set of
NIST recommended named curves listed above. The domain parameters can be
specified by name, or can be explicitly defined. Using the NIST-recommended
curves, the computed Diffie-Hellman shared secret provides between 112 bits and
256 bits of security.

• When using DSA key pair generation and signature generation or DH key pair
generation and key agreement, the domain parameters must have prime P length
(PRIME_LEN) and subprime Q length (SUBPRIME_LEN) within the set of
acceptable pair sets (PRIME_LEN, SUBPRIME_LEN): (2048, 224), (2048, 256) or
(3072, 256).

• When generating DSA and DH domain parameters, generation shall comply with
FIPS 186-4 by specifying the algorithm string “DSA” when creating the
AlgParameterGenerator object. Additionally:

– The PRIME_LEN and SUBPRIME_LEN must be from a set of acceptable pair
set as stated above.

– The digest algorithm parameter shall be selected from the set: SHA224,
SHA256, SHA384, SHA512. The digest algorithm shall be selected such that
the output length is at least as large as the subprime length. That is:

• For subprime 224, all four algorithms may be used.

• For subprime 256, only SHA256, SHA384, SHA512 may be used.

• For RSA digital signature generation, an Approved DRBG must be used.

• RSA keys used for signing shall not be used for any other purpose other than
digital signatures.

• When generating RSA key pairs for signatures or key transport, generation shall
comply with the following:

– the KEY_TYPE parameter must be omitted or have a value of 0.

– the KEY_BITS parameter must have value 2048 or 3072.
32 Secure Operation of the Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
– the SECURITY_STRENGTH parameter may be input. Acceptable values are:

• 112, when used for KEY_BITS of 2048.

• 128, when used for KEY_BITS of 3072.

– the PUB_EXP value must be an odd number and have a minimum value of
0x10001 (65537).

• The length of an RSA key pair for digital signature generation and verification
must be 2048 or 3072 bits. For digital signature verification, 1024 bits is allowed
for legacy-use. RSA keys shall have a public exponent of at least 65537.

• SHA1 is disallowed for the generation of digital signatures.

• The key length for an HMAC generation or verification must be equal to or
greater than 112 bits. For HMAC verification, a key length greater than or equal to
80 and less than 112 is allowed for legacy-use.

Note: JCE MAC APIs do not distinguish between generate and verify,
therefore a key length check is not explicitly performed in JCE.

• KDFs:

– For Single-step KDF:

• A FIPS 140-2 approved hash function must be used.

– For HKDF:

• A FIPS 140-2 approved HMAC must be used.

• The extracted key-derivation key must be used solely for the single
key-expansion step. For more information see SP 800-56C Rev.1

• The derived key must be used only as a secret key.

• The derived key shall not be used as a key stream for a stream cipher.

• When selecting an HMAC hash, the output block size must be equal to or
greater than the desired security strength of the derived key.

– For TLS 1.0, 1.1 and 1.2 Key Derivation:

The TLS 1.0 and 1.1 KDF is allowed only when the following conditions are
satisfied:

• The KDF is performed in the context of the TLS protocol

• SHA-1 and HMAC are as specified in FIPS 180-4 and FIPS 198-1,
respectively.

The TLS 1.2 KDF, is allowed only when the following conditions are
satisfied:

• The KDF is performed in the context of the TLS protocol

• HMAC is as specified in FIPS 198-1

• P_HASH uses either SHA-256, SHA-384 or SHA-512.

For more information, see SP 800-135 Rev. 1.
Secure Operation of the Module 33

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr1.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
The TLS protocols have not been tested by the CAVP and CMVP.

– For PBKDF:

• Keys generated using PBKDF shall only be used in data storage
applications.

• The length of the randomly-generated portion of the salt shall be at least
16 bytes. For more information see nist-sp800-132.pdf.

• The iteration count shall be selected as large as possible, a minimum of
10,000 iterations is recommended.

• The minimum password length depends on the character set chosen.

For examples, see Information on Minimum Password Length.

• The maximum key length is (232 -1)*b, where b is the digest size of the
hash function.

• The key derived using PBKDF can be used as referred to in SP 800-132,
Section 5.4, option 1 and 2.

• Triple-DES:

– For two-key Triple-DES:

• The use of two-key Triple-DES for encryption is disallowed.

• Decryption using two-key Triple-DES is allowed for legacy-use.

The user should determine the risk of accepting the decrypted information
when processing more than 220 blocks of data encrypted using two-key
Triple-DES.

For more information about the use of two-key Triple-DES, see NIST Special
Publication 800-131A revision 1 Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths.

– For three-key Triple-DES:

• The use of three-key Triple-DES is approved.

• The user is responsible for ensuring the same Triple-DES key has a limit
of:

• 220 64-bit data block encryptions when keys are generated as part of
one of the recognized IETF protocols.

• 216 64-bit data block encryptions otherwise.

For more information about the use of three-key Triple-DES, see
NIST Special Publication 800-67 revision 2: Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher.
34 Secure Operation of the Module

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-131ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
2.3.2 Crypto User Guidance on Obtaining Assurances for
Digital Signature Applications

The module provides support for the FIPS 186-4 standard for digital signatures. The
following gives an overview of the assurances required by FIPS 186-4. NIST Special
Publication 800-89: “Recommendation for Obtaining Assurances for Digital
Signature Applications” provides the methods to obtain these assurances.

The following tables describe the FIPS 186-4 requirements for signatories and
verifiers and the corresponding module capabilities and recommendations.

Table 6 Signatory Requirements

FIPS 186-4 Requirement Module Capabilities and Recommendations

Obtain appropriate DSA and
ECDSA parameters when
using DSA or ECDSA.

The generation of DSA parameters is in accordance with the
FIPS 186-4 standard for the generation of probable primes.
For ECDSA, use the NIST recommended curves as defined
in section 2.3.1.

Obtain assurance of the
validity of those parameters.

The module provides APIs to validate DSA parameters for
probable primes as described in FIPS 186-4.
For ECDSA, use the NIST recommended curves as defined
in section 2.3.1. For the JCM API,
AlgParamGenerator.verify()

Obtain a digital signature key
pair that is generated as
specified for the appropriate
digital signature algorithm.

The module generates the digital signature key pair
according to the required standards.
Choose a FIPS-Approved DRBG like HMAC DRBG to
generate the key pair.

Obtain assurance of the
validity of the public key.

The module provides APIs to explicitly validate the public
key according to SP 800-89. For the JCM API,
PublicKey.isValid(SecureRandom secureRandom)

Obtain assurance that the
signatory actually possesses
the associated private key.

The module verifies the signature created using the private
key, but all other assurances are outside the scope of the
module.

Table 7 Verifier Requirements

FIPS 186-4 Requirement Module Capabilities and Recommendations

Obtain assurance of the
signatory’s claimed identity.

The module verifies the signature created using the private
key, but all other assurances are outside the scope of the
module.

Obtain assurance of the
validity of the domain
parameters for DSA and
ECDSA.

The module provides APIs to validate DSA parameters for
probable primes as described in FIPS 186-4.
For the JCM API, AlgParamGenerator.verify()
For ECDSA, use the NIST recommended curves as defined
in section 2.3.1.
Secure Operation of the Module 35

https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
https://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
2.3.3 Crypto User Guidance on Obtaining Assurances for
Key Agreement Applications

The module provides support for the NIST SP800.56A recommendations for key
agreement. NIST Special Publication 800-56A: “Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography” describes the
requirements for obtaining these assurances.

The following table describes the SP 800-56A recommendations for key
establishment and the corresponding module capabilities and recommendations, as the
module only supports the primitives and underlying functions of SP 800-56A, not the
full scheme.

Obtain assurance of the
validity of the public key.

The module provides APIs to explicitly validate the public
key according to SP 800-89. For the JCM API,
PublicKey.isValid(SecureRandom secureRandom)

Obtain assurance that the
claimed signatory actually
possessed the private key that
was used to generate the
digital signature at the time
that the signature was
generated.

Outside the scope of the module.

Table 8 Key Establishment Recommendations

NIST SP 800-56A
Recommendations

Module Capabilities and Recommendations

Obtain appropriate FFC and
ECC domain parameters.

The generation of FFC parameters is in accordance with the
FIPS 186-4 standard for the generation of probable primes.
For ECC, use the NIST recommended curves as defined in
section 2.3.1.

Obtain assurance of the
validity of those domain
parameters.

The module provides APIs to validate FFC parameters for
probable primes as described in FIPS 186-4.
For ECC, use the NIST recommended curves as defined in
section 2.3.1. For the JCM API, AlgParamGenerator.verify()

Obtain a key establishment
key pair that is generated as
specified for the appropriate
algorithm.

The module generates the digital signature key pair according
to the required standards.
Choose a FIPS-Approved DRBG like HMAC DRBG to
generate the key pair.

Owner assurance of the
validity of the public key.

The module provides APIs to explicitly validate the public
key according to SP 800-89. For the JCM API,
PublicKey.isValid(SecureRandom secureRandom)

Table 7 Verifier Requirements (continued)

FIPS 186-4 Requirement Module Capabilities and Recommendations
36 Secure Operation of the Module

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56ar.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56ar.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-56ar.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
2.3.4 Crypto User Guidance on Obtaining Assurances for
Key Transport Applications

The module provides support for the NIST SP800.56B recommendations for key
transport. NIST Special Publication 800-56B Revision 1: “Recommendation for
Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography”
describes the requirements for obtaining these assurances.

The following table describes the SP 800-56B recommendations for key transport and
the corresponding module capabilities and recommendations, as the module only
supports the primitives and underlying functions of SP 800-56B, not the full scheme.

Owner assurance of the
validity of the private key.

The module provides APIs to explicitly validate the private
key according to SP 800-56A. For the JCM API,
PrivateKey.isValid()

Owner assurance of pairwise
consistency

The module provides an API to explicitly validate the keypair
according to the pairwise consistency requirements in SP
800.56A. For the JCM API, KeyPair.validate(SecureRandom)

Table 9 Key Transport Recommendations

NIST SP 800-56B
Recommendations

Module Capabilities and Recommendations

Assurance of Key-Pair
Validity

The module provides APIs to explicitly validate an RSA Key
Pair according to SP 800.56B. The JCM API available is:
KeyPair.validate(AlgInputParams, SecureRandom). The parameters
object can be supplied with SECURITY_STRENGTH and
KEY_BITS inputs.
This API performs both a pairwise consistency test and a key
pair validation according to “rsakpv1-crt” and “crt_pkv”
methods.

Assurance of Public Key
Validity

The module provides APIs to explicitly validate the RSA
public key according to SP 800.56B and SP 800-89.
The JCM API available is: KeyPair.validate(AlgorithmParams,
SecureRandom)

Assurance of Possession of
Private Key

The module supports Key Confirmation for providing
assurance of possession of a private key in a key transport
scheme. The JCM API available is: KeyConfirmation.

Table 8 Key Establishment Recommendations (continued)

NIST SP 800-56A
Recommendations

Module Capabilities and Recommendations
Secure Operation of the Module 37

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
2.3.5 Crypto User Guidance on Key Generation and Entropy

No assurance is given for the minimum strength of generated keys. The JCM provides
the HMAC DRBG, CTR DRBG and Hash DRBG implementations for key generation.

When generating secure keys, the DRBG used in key generation must be seeded with
a number of bits of entropy that is equal to or greater than the security strength of the
key being generated. The entropy supplied to the DRBG is referred to as the DRBG
security strength which represents the minimum amount of entropy that should be
provided to the DRBG prior to the key generation operation.

The following table lists each of the keys that can be generated by the JCM, with the
key sizes available, security strengths for each key size and the security strength
required to initialize the DRBG.

2.3.6 Information on Minimum Password Length

Minimum Password Length:

The minimum length (L) of a password generated using a cryptographically secure
random password generator to provide a search space of S entries depends on the size
(N) of the character set:

L= log2S/log2N

The following table provides examples for a password used by PBKDF2:

S = 4.32 x 1020

Table 10 Generated Key Sizes and Strength

Key Type Key Size Security Strength
Required DRBG
Security Strength

AES Key 128, 192, 256 128, 192, 256 128, 192, 256

Triple-DES 3-Key 192 112 112

RSA Key Pair 2048, 3072 112, 128 112, 128

DSA Key Pair 2048, 3072 112, 128 112, 128

EC Key Pair 224, 256, 384, 521 112, 128, 192, 256 112, 128, 192, 256

Character Set N L

Case sensitive (a-z, A-Z) 52 13

Case sensitive alpha numeric 62 12

All ASCII printable characters except space 94 11
38 Secure Operation of the Module

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
2.3.7 General Crypto User Guidance

JCM users should take care to zeroize CSPs when they are no longer needed. For more
information on clearing sensitive data, see section 1.5.3 and the relevant API Javadoc.

2.4 Crypto Officer Guidance

The Crypto Officer is responsible for installing the module. Installation instructions
are provided in the RSA BSAFE Crypto-J Installation Guide.

The Crypto Officer is responsible for loading the module, as specified in section 2.1
Module Configuration.

2.5 Operating the Cryptographic Module

Both FIPS and non-FIPS algorithms are available to the operator. In order to operate
the module in the FIPS-Approved mode, all rules and guidance provided in Secure
Operation of the Module must be followed by the module operator. The module does
not enforce the FIPS 140-2 mode of operation.
Secure Operation of the Module 39

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
3 Acronyms

The following table lists the acronyms used with the JCM and their definitions.

Table 11 Acronyms used with the JCM

Acronym Definition

3DES Refer to Triple-DES

AD Authenticated Decryption. A function that decrypts purported ciphertext
and verifies the authenticity and integrity of the data.

AE Authenticated Encryption. A block cipher mode of operation which
provides a means for the authenticated decryption function to verify the
authenticity and integrity of the data.

AEAD Authenticated Encryption with Associated Data.

AES Advanced Encryption Standard. A fast block cipher with a 128-bit block,
and keys of lengths 128, 192 and 256 bits. This will replace DES as the
US symmetric encryption standard.

API Application Programming Interface.

Attack Either a successful or unsuccessful attempt at breaking part or all of a
crypto-system. Attack types include an algebraic attack, birthday attack,
brute force attack, chosen ciphertext attack, chosen plaintext attack,
differential cryptanalysis, known plaintext attack, linear cryptanalysis,
middleperson attack and timing attack.

BPS BPS is a format preserving encryption mode.
BPS stands for Brier, Peyrin and Stern, the inventors of this mode.

CBC Cipher Block Chaining. A mode of encryption in which each ciphertext
depends upon all previous ciphertexts. Changing the IV alters the
ciphertext produced by successive encryptions of an identical plaintext.

CFB Cipher Feedback. A mode of encryption that produces a stream of
ciphertext bits rather than a succession of blocks. In other respects, it has
similar properties to the CBC mode of operation.

ChaCha20 A member of the ChaCha family of stream ciphers built on a
pseudo-random function, based on add-rotate-xor operations: 32-bit
addition, bitwise addition (XOR) and rotation operations.

ChaCha20 is standardized in RFC 7539.

ChaCha20/
Poly1305

A combination of the ChaCha20 and Poly1305 algorithms to provide an
AEAD algorithm. This is standardized in RFC 7539.

CKG Cryptographic Key Generation.

CMAC Cipher-based Message Authentication Code. A block cipher-based MAC
algorithm.
40 Acronyms

https://tools.ietf.org/html/rfc7539

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
CRNG Continuous Random Number Generation.

CSP Critical Security Parameters.

CTR Counter mode of encryption, which turns a block cipher into a stream
cipher. It generates the next keystream block by encrypting successive
values of a counter.

CTS Cipher Text Stealing. A mode of encryption which enables block ciphers
to be used to process data not evenly divisible into blocks, without the
length of the ciphertext increasing.

DES Data Encryption Standard. A symmetric encryption algorithm which uses
a 56-bit key with eight parity bits.

DH,
Diffie-Hellman

The Diffie-Hellman asymmetric key exchange algorithm. There are many
variants, but typically two entities exchange some public information (for
example, public keys or random values) and combines them with their
own private keys to generate a shared session key. As private keys are not
transmitted, eavesdroppers are not privy to all of the information that
composes the session key.

DPK Data Protection Key.

DRBG Deterministic Random Bit Generator.

DSA Digital Signature Algorithm. An asymmetric algorithm for creating
digital signatures.

EC Elliptic Curve.

ECB Electronic Code Book. A mode of encryption in which identical
plaintexts are encrypted to identical ciphertexts, given the same key.

ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

ECDHC Elliptic Curve Cryptography Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

Encryption The transformation of plaintext into an apparently less readable form
(called ciphertext) through a mathematical process. The ciphertext may
be read by anyone who has the key that decrypts (undoes the encryption)
the ciphertext.

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards.

Table 11 Acronyms used with the JCM (continued)

Acronym Definition
Acronyms 41

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
FPE Format Preserving Encryption.

HKDF HMAC-based Extract-and-Expand Key Derivation Function.

HMAC Keyed-Hashing for Message Authentication Code.

IV Initialization Vector. Used as a seed value for an encryption operation.

JCE Java Cryptography Extension.

JVM Java Virtual Machine.

KAT Known Answer Test.

KDF Key Derivation Function. Derives one or more secret keys from a secret
value, such as a master key, using a pseudo-random function.

Key A string of bits used in cryptography, allowing people to encrypt and
decrypt data. Can be used to perform other mathematical operations as
well. Given a cipher, a key determines the mapping of the plaintext to the
ciphertext. Various types of keys include: distributed key, private key,
public key, secret key, session key, shared key, subkey, symmetric key,
and weak key.

KW AES Key Wrap.

KWP AES Key Wrap with Padding.

MAC Message Authentication Code.

MD5 A secure hash algorithm created by Ron Rivest. MD5 hashes an
arbitrary-length input into a 16-byte digest.

NIST National Institute of Standards and Technology. A division of the US
Department of Commerce (formerly known as the NBS) which produces
security and cryptography-related standards.

OFB Output Feedback. A mode of encryption in which the cipher is decoupled
from its ciphertext.

OS Operating System.

PBE Password-Based Encryption.

PBKDF Password-Based Key Derivation Function.

PBKDF2 A method of password-based key derivation, originally defined in
RFC 2988, which applies a MAC algorithm to derive the key. In RFC
2988 the PRF used by PBKDF2 is specified as SHA-1. SP 800-132
approves PBKDF2 where the PRF may be any FIPS approved hash
function. In this document PBKDF2 represents the expanded
specification provided in SP 800-132.

Table 11 Acronyms used with the JCM (continued)

Acronym Definition
42 Acronyms

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
PC Personal Computer.

Poly1305 A cryptographic MAC standardized in RFC 7539.

private key The secret key in public key cryptography. Primarily used for decryption
but also used for encryption with digital signatures.

PRNG Pseudo-random Number Generator.

RC2 Block cipher developed by Ron Rivest as an alternative to the DES. It has
a block size of 64 bits and a variable key size. It is a legacy cipher and
RC5 should be used in preference.

RC4 Symmetric algorithm designed by Ron Rivest using variable length keys
(usually 40 bit or 128 bit).

RC5 Block cipher designed by Ron Rivest. It is parameterizable in its word
size, key length and number of rounds. Typical use involves a block size
of 64 bits, a key size of 128 bits and either 16 or 20 iterations of its round
function.

RNG Random Number Generator.

RSA Public key (asymmetric) algorithm providing the ability to encrypt data
and create and verify digital signatures. RSA stands for Rivest, Shamir,
and Adleman, the developers of the RSA public key crypto-system.

SHA Secure Hash Algorithm. An algorithm which creates a hash value for
each possible input. SHA takes an arbitrary input which is hashed into a
160-bit digest.

SHA-1 A revision to SHA to correct a weakness. It produces 160-bit digests.
SHA-1 takes an arbitrary input which is hashed into a 20-byte digest.

SHA-2 The NIST-mandated successor to SHA-1, to complement the Advanced
Encryption Standard. It is a family of hash algorithms (SHA-256,
SHA-384 and SHA-512) which produce digests of 256, 384 and 512 bits
respectively.

SHA-3 A family of hash algorithms which includes SHA3-224, SHA3-256,
SHA3-384 and SHA3-512. It also includes the extendable-output
functions SHAKE128 and SHAKE256. SHA-3 is an alternative to
SHA-2, as no significant attacks on SHA-2 are currently known.

Shamir Secret
Sharing

A form of secret sharing where a secret is divided into parts, and each
participant is given a unique part. Some or all of the parts are needed to
reconstruct the secret. This is also known as a (k,n) threshold scheme
where any k of the n parts are sufficient to reconstruct the original secret.

Table 11 Acronyms used with the JCM (continued)

Acronym Definition
Acronyms 43

https://tools.ietf.org/html/rfc7539

RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
TDES Refer to Triple-DES.

TLS Transport Layer Security.

Triple-DES A symmetric encryption algorithm which uses either two or three DES
keys. The two key variant of the algorithm provides 80 bits of security
strength while the three key variant provides 112 bits of security strength.

Table 11 Acronyms used with the JCM (continued)

Acronym Definition
44 Acronyms

	RSA BSAFE Crypto-J JSAFE and JCE Software Module 6.2.5 Security Policy Level 1
	Preface
	References
	Terminology
	Document Organization

	1 The Cryptographic Module
	1.1 Introduction
	1.2 Module Characteristics
	1.3 Module Interfaces
	1.4 Roles and Services
	1.5 Cryptographic Key Management
	1.6 Cryptographic Algorithms
	1.7 Self-tests

	2 Secure Operation of the Module
	2.1 Module Configuration
	2.2 Security Roles, Services and Authentication Operation
	2.3 Crypto User Guidance
	2.4 Crypto Officer Guidance
	2.5 Operating the Cryptographic Module

	3 Acronyms

