

FIPS 140-2 Non-Proprietary Security Policy

Document Revision: 1.2

H/W version: MZWLR1T9HBJR-00AD9, MZWLR3T8HBLS-00AD9,

MZWLR7T6HALA-00AD9, MZWLR1T6HBJR-00AD9, MZWLR3T2HBLS-00AD9, MZWLR6T4HALA-00AD9, MZWLR12THALA-00AD9

F/W version: MPK92D3Q, MPK95D3Q, MPK96D3Q and MPK98D3Q

Revision History

Author(s)	Version	Updates
Seungjae Lee	1.0	Initial Version
Seungjae Lee	1.1	Minor changes as updated module version
Minhyup Park	1.2	Minor changes as updated module version

Table of Contents

1.	Introduction	
	1.1. Hardware and Physical Cryptographic Boundary	
	1.2. Firmware and Logical Cryptographic Boundary	
2.	. Acronym	
3.	B. Security Level Specification	
4.		
	4.1. Approved algorithms	
	4.2. Critical Security Parameters	
	4.3. Public Security Parameters	11
5.	•	
6.	•	
	6.1. Roles	
	6.2. Authentication	12
	6.3. Services	
	6.3.1. Authenticated Services	
	6.3.2. Unauthenticated Services	
7.		
8.		
9.		
10.		
	10.1. Secure Installation	
	10.2. Operational description of Module	
	10.3. Power-on Self-Tests	

Page 3 of 23

1. Introduction

Samsung Electronics Co., Ltd. ("Samsung") NVMe TCG Opal SSC SEDs PM1733/PM1735 Series, herein after referred to as a "cryptographic module" or "module", SSD (Solid State Drive), satisfies all applicable FIPS 140-2 Security Level 2 requirements, supporting TCG Opal SSC based SED (Self-Encrypting Drive) features, designed to protect unauthorized access to the user data stored in its NAND Flash memories. The built-in AES HW engines in the cryptographic module's controller provide on-the-fly encryption and decryption of the user data without performance loss. The SED's nature also provides instantaneous sanitization of the user data via cryptographic erase.

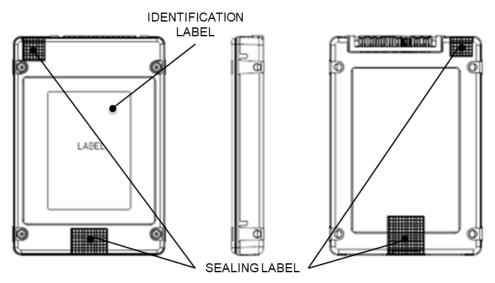

Module Name	Hardware Version	Firmware Version	Drive Capacity
	MZWLR1T9HBJR-00AD9		1.92TB
Samsung NVMe TCG Opal SSC SEDs	MZWLR3T8HBLS-00AD9		3.84TB
PM1733 Series	MZWLR7T6HALA-00AD9	MPK92D3Q,	7.68TB
	MZWLR15THALA-00AD9	MPK95D3Q,	15.36TB
	MZWLR1T6HBJR-00AD9	MPK96D3Q	1.6TB
Samsung NVMe TCG Opal SSC SEDs	MZWLR3T2HBLS-00AD9	MPK98D3Q	3.2TB
PM1735 Series	MZWLR6T4HALA-00AD9		6.4TB
	MZWLR12THALA-00AD9		12.8TB

Exhibit 1 – Versions of Samsung NVMe TCG Opal SSC SEDs PM1733/PM1735 Series.

1.1. Hardware and Physical Cryptographic Boundary

The following photographs show the cryptographic module's top and bottom views. The multiple-chip standalone cryptographic module consists of hardware and firmware components that are all enclosed in two aluminum alloy cases, which serve as the cryptographic boundary of the module. The top and bottom cases are assembled by screws and the tamper-evident labels are applied for the detection of any opening of the cases. No security relevant component can be seen within the visible spectrum through the opaque enclosure.

New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into this module is out of the scope of this validation and requires a separate FIPS 140-2 validation.

<u>Exhibit 2</u> – Specification of the Samsung NVMe TCG Opal SSC SEDs PM1733/PM1735 Series Cryptographic Boundary (From top to bottom, side).

1.2. Firmware and Logical Cryptographic Boundary

The PM1733/PM1735 series use a single chip controller with a NVMe interface on the system side and Samsung NAND flash internally. The following figure depicts the Module operational environment.

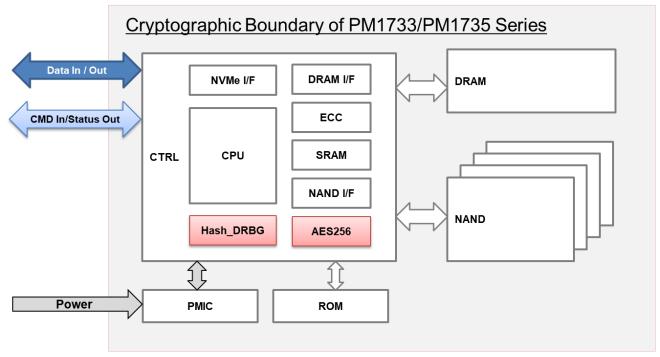


Exhibit 3 – Block Diagram for Samsung NVMe TCG Opal SSC SEDs PM1733/PM1735 Series.

2. Acronym

Acronym	Description
CTRL	Eagle Controller (SAMSUNG Eagle NVMe SSD Controller)
NVMe I/F	Non-Volatile Memory Express Interface
CPU	Central Processing Unit (ARM-based)
DRAM I/F	Dynamic Random Access Memory Interface
ECC	Error Correcting Code
SRAM	Static Random Access Memory
NAND I/F	NAND Flash Interface
PMIC	Power Management Integrated Circuit
ROM	Read-only Memory
DRAM	Dynamic Random Access Memory
NAND	NAND Flash Memory
LBA	Logical Block Address
MEK	Media Encryption Key
MSID	Manufactured SID(Security Identifier)

Exhibit 4 – Acronym and Descriptions for Samsung NVMe TCG Opal SSC SEDs PM1733/PM1735 Series.

3. Security Level Specification

Security Requirements Area	Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	3
Self-tests	2
Design Assurance	2
Mitigation of Other Attacks	N/A

<u>Exhibit 5</u> – *Security Level Table*

4. Cryptographic Functionality

4.1. Approved algorithms

The cryptographic module supports the following Approved algorithms for secure data storage:

CAVP Cert.	Algorithm	Standard	Mode / Method	Key Lengths, Curves or Moduli	Use
C1271	AES	FIPS 197 SP 800-38E	XTS	256-bit	Data Encryption / Decryption *Note1
Vendor Affirmed	CKG	SP 800-133			MEK Generation
C1292	DRBG	SP 800-90A Revision 1	Hash_ DRBG (SHA-256)		Deterministic Random Bit Generation
A940	RSA	FIPS 186-4	SigVer	PSS-3072	Digital Signature Verification
C1272	SHS	FIPS 180-4	SHA-256		Message Digest
N/A	ENT (P)	SP 800-90B	N/A	N/A	Non-deterministic Random Number Generator (only used for generating seed materials for the DRBG). Provides a minimum of 256 bits of entropy for DRBG seed.

Exhibit 6 - Samsung NVMe TCG Opal SSC SEDs PM1733/PM1735 Series Approved Algorithms.

Note1: AES-ECB is the pre-requisite for AES-XTS; AES-ECB alone is NOT supported by the cryptographic module in FIPS Mode.

Note2: This module supports AES-XTS which is only approved for storage applications.

4.2. Critical Security Parameters

The cryptographic module contains the following Keys and CSPs:

CSPs	Generation, Storage and Zeroization Methods
DRBG Internal State*Note3	Generation: SP 800-90A HASH_DRBG (SHA-256)
	Storage: Plaintext in TCM
	Zeroization: via "Initialization", "Erase an LBA Range's Data" and
	"Zeroize" service
DRBG Seed	Generation: ENT (P)
	Storage: Plaintext in DRAM
	Zeroization: via "Initialization", "Erase an LBA Range's Data", and
	"Zeroize" service
DRBG Entropy Input String	Generation: ENT (P)
	Storage: Plaintext in DRAM
	Zeroization: via "Initialization", "Erase an LBA Range's Data", and
	"Zeroize" service
CO Password	Generation: N/A
	Storage: Plaintext in Flash Memory and used in SRAM
	Zeroization: via "Initialization", and "Zeroize" service
User Password	Generation: N/A
	Storage: Plaintext in Flash Memory and used in SRAM
	Zeroization: via "Initialization" service, and "Zeroize" service
MEK	Generation: SP 800-90A HASH_DRBG (SHA-256)
	As per SP 800-133 Section 6.1, key generation is performed as per
	the "Direct Generation: of Symmetric Keys" which is an Approved
	key generation method
	Key Type: AES-XTS 256
	Storage: Plaintext in Flash Memory and used in SRAM
	Zeroization: via "Initialization", "Lock an LBA Range" and "Zeroize" service
5 1 11 11 7 650	

Exhibit 7 – CSPs and details on Generation, Storage and Zeroization Methods.

Note3: The values of V and C are the "secret values" of the internal state.

NOTE4: In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) as per SP 800-133 (Vendor Affirmed). The resulting generated symmetric key is the unmodified output from SP 800-90A DRBG.

Page 10 of 23

4.3. Public Security Parameters

Public Keys	Generation, Storage and Zeroization Methods
FW Verification Key	Generation: N/A
(RSA Public Key)	Key Type: RSA 3072-PSS
	Storage: Plaintext in Flash Memory and used in TCM Zeroization: N/A

Exhibit 8 – Public Keys and details on Generation, Storage and Zeroization Methods

5. Physical Ports and Logical Interfaces

Physical Port	Logical Interface
NVMe Connector	Data Input/output
	Control Input
	Status Output
	Power Input

<u>Exhibit 9</u> – Specification of the Samsung NVMe TCG Opal SSC SEDs PM1733/PM1735 Series Cryptographic Module Physical Ports and Logical Interfaces.

6. Roles, Services and Authentication

6.1. Roles

The following table defines the roles, type of authentication, and associated authenticated data types supported by the cryptographic module:

Role	Authentication Data
CO Role	Password
User Role	Password
FW Loader	RSA

Exhibit 10 – Roles and Required Identification and Authentication (FIPS 140-2 Table C1).

6.2. Authentication

Password Authentication

The authentication mechanism allows a minimum 6-byte length or longer (32-byte) Password, where each byte can be any of 0x00 to 0xFF, for every Cryptographic Officer and User role supported by the module, which means a single random attempt can succeed with the probability of $1/2^{48}$ or lower.

To mitigate against brute force attacks, the module is configured with Try Limit and Persistence settings during manufacturing. TryLimit is defined as a counter, which keeps track of the number of unsuccessful authentication attempts. And, the Persistence setting determines whether the TryLimit count persists through a power-cycle (i.e. Persistence enabled – TryLimit count continues regardless of power-cycle) or not (i.e. Persistence disabled – resets TryLimit back to default).

The module is shipped from manufacturing with TryLimit set to 5, with Persistence disabled. Since each password authentication attempt takes at least 1ms and it takes at least 4 seconds to be ready after power-on, the number of attempts possible in a minute is maximum 75 attempts ((60000ms == (1ms * 5 attempts + 4000ms) * 14 times + (1ms * 5 attempts) + 3925).

Therefore, the probability of multiple random attempts to succeed in one minute is $75 / 2^{48}$, which is much less than the FIPS 140-2 requirement 1/100,000.

RSA Signature Verification

The authentication mechanism for FW Loader role is RSA PSS-3072 with SHA256 digital signature verification, which means a single random attempt, can succeed with the probability of $1/2^{128}$.

Each RSA Signature Verification authentication attempt takes at least 60ms. So the number of attempts for on minute cannot exceed 1000 ((60*1000)/60). Therefore, the probability of multiple random attempts to succeed in on minute is $1000/2^{128}$, Which is much less than the FIPS 140-2 requirement 1/100,000.

Authentication Mechanism	Strength of Mechanism
Password (Min: 6 bytes, Max: 32 bytes) Authentication	 Probability of 1/2⁴⁸ in a single random attempt Probability of 75/2⁴⁸ in multiple random attempts in a minute
RSA Signature Verification	 Probability of 1/2¹²⁸ in a single random attempt Probability of 1000/2¹²⁸ in multiple random attempts in a minute

Exhibit 11 - Strengths of Authentication Mechanisms (FIPS 140-2 Table C2).

Page 14 of 23

6.3. Services

6.3.1. Authenticated Services

The following table lists roles, services, cryptographic keys, CSPs and Public Keys and the types of access that are available to each of the authorized roles via the corresponding services:

* Type(s) of Access indicated using "O" marker.

* R: READ; W: WRITE; G: GENERATE; Z: ZEROIZE

Role	Service	Cryptographic Keys,	Security	Тур	Type(s) of Access			
Kole	Service	CSPs and Public Keys	Function	R	W	G	Ζ	
		DRBG Internal State	Hash_ DRBG	0		0	0	
		DRBG Seed	(SHA-256)	0		0	0	
	Initialization	DRBG Entropy Input String		0		0	0	
		CO Password			0		0	
		MEK				0	0	
	Drive Extended Status	N/A	N/A		N,	/A		
	Admin/User		N/A					
	Authority	N/A			N,	/A		
Cryptographic	Enable/Disable							
Officer	Lock an LBA Range	MEK	N/A				0	
Officer	Unlock an LBA	MEK	AES-XTS					
	Range			0				
	Configure an LBA	N/A	N/A	N/A				
	Range	·		IV/ C				
		DRBG Internal State	Hash_ DRBG	0		0	0	
	Erase an LBA	DRBG Seed	(SHA-256)	0		0	0	
	Range's Data	DRBG Entropy Input String	_	0		0	0	
		MEK				0	0	
	Change the	CO Password	N/A					
	Password.	eo i assword			0		0	
	Unlock an LBA	MEK	AES-XTS					
	Range			0				
User	Set User Password	User Password			0			
	Lock an LBA Range	MEK	N/A				0	
	Configure an LBA	N/A	N/A		N	N/A		
	Range	14/1						
FW Loader	Update the	FW Verification Key	RSA SigVer,	0				
	firmware	. It termedicting	SHA-256					

<u>Exhibit 12</u> – Services Authorized for Roles, Access Rights within Services (FIPS 140-2 Table C3, Table C4).

Page 15 of 23

6.3.2. Unauthenticated Services

The following table lists the unauthenticated services:

^{*} R: READ; W: WRITE; G: GENERATE; Z: ZEROIZE

Unauthenticated	Cryptographic Keys & CSPs	Security	Type(s) of Access			
Service		Function	R	W	G	Z
Zeroize	DRBG Internal State	Hash_DRBG				0
	DRBG Seed	(SHA-256)				0
	DRBG Entropy Input String					0
	CO Password					0
	User Password					0
	MEK					0
	DRBG Internal State	Hash_	0		0	0
Get Random Number	DRBG Seed	DRBG	0		0	0
Number	DRBG Entropy Input String	(SHA-256)	0		0	0
IO Command	N.A	N/A		N,	/A	
Get MSID	N/A	N/A		N,	/A	
Show Status	N/A	N/A	N/A			
Self-test	N/A	N/A	N/A			

Exhibit 13 – Unauthenticated Service, Cryptographic Keys & CSPs and Type(s) of Access.

^{*} Type(s) of Access indicated using "O" marker.

7. Physical security policy

The following physical security mechanisms are implemented in a cryptographic module:

- The Module consists of production-grade components enclosed in an aluminum alloy enclosure, which is opaque within the visible spectrum. The top panel of the enclosure can be removed by unscrewing screws. However, the module is sealed with tamper-evident labels in accordance with FIPS 140-2 Level 2 Physical Security requirements so that tampering is easily detected when the top and bottom cases are detached.
- 2 tamper-evident labels are applied over both top and bottom cases of the module at the factory. The tamper-evident labels are not removed and reapplied without tamper evidence.
- The tamper-evident labels are applied by Samsung at Manufacturing.

The following table summarizes the actions required by the Cryptographic Officer Role to ensure that physical security is maintained:

Physical Security Mechanisms	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Production grade cases	As often as feasible	Inspect the entire perimeter for cracks, gouges, lack of screw(s) and other signs of tampering. Remove from service if tampering found.
Tamper-evident Sealing Labels		Inspect the sealing labels for scratches, gouges, cuts and other signs of tampering. Remove from service if tampering found.

Exhibit 14 – Inspection/Testing of Physical Security Mechanisms (FIPS 140-2 Table C5)

Exhibit 15 - Tamper Evident Label Placement

Exhibit 16 - Example of Signs of Tamper

NOTE 5: Samsung Electronics Co., Ltd has excluded the following components as per AS01.09:

Items	BOM Code	Applicable to Hardware Version(s)
Resistor	2007-000972	MZWLR1T9HBJR-00AD9
Capacitor	2203-006841	MZWLR3T8HBLS-00AD9
Capacitor	2203-009659	MZWLR7T6HALA-00AD9
Clock IC	1205-005956	MZWLR15THALA-00AD9
		MZWLR1T6HBJR-00AD9
		MZWLR3T2HBLS-00AD9
		MZWLR6T4HALA-00AD9
		MZWLR12THALA-00AD9

The components do not process any CSPs, Plaintext data, or other information that if misused could lead to compromise.

Page 18 of 23

SAMSUNG ELECTRONICS

8. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

The cryptographic module conforms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B.

Page 19 of 23

9. Mitigation of Other Attacks Policy

The cryptographic module has not been designed to mitigate any specific attacks beyond the scope of FIPS 140-2.

Other	Mitigation	Specific
Attacks	Mechanism	Limitations
N/A	N/A	N/A

Exhibit 17 - Mitigation of Other Attacks (FIPS 140-2 Table C6)

10. Security rules

The following specifies the security rules under which the cryptographic module shall operate in accordance with FIPS 140-2:

- The cryptographic module operates always in FIPS Mode once shipped from the vendor's manufacturing site.
- The steps necessary for the secure installation, initialization and start-up of the cryptographic module as per FIPS 140-2 VE10.03.01 are as follows:

10.1. Secure Installation

- [Step1] User should examine the tamper evidence
 - Inspect the entire perimeter for cracks, gouges, lack of screw(s) and other signs of tampering including the tamper evident sealing label.
 - If there is any sign of tampering, do not use the product and contact Samsung.
- [Step2] Identify the firmware version in the device
 - Confirm that the firmware version is equivalent to the version(s) listed in this document via NVM express Identify Controller command.
- [Step3] Take the drive's ownership
 - Disable Admin SP's Admin1 authority
 - Change SID's PIN by setting a new PIN
 - Activate the Locking SP by using the Activate method.
 - Change LockingSP Admin1~4's PIN by setting a new PIN.
 - Configure the Locking Global Range by setting ReadLockEnabled and WriteLockEnabled columns to True.
 - Don't change LockOnReset column in Locking Table so that the drive always gets locked after a power cycle
- [Step4] Periodically examine the tamper evidence
 - If there is any sign of tampering, stop using the product to avoid a potential security hazard or information leakage.

10.2. Operational description of Module

- The cryptographic module shall maintain logical separation of data input, data output, control input, status output, and power.
- The cryptographic module shall not output CSPs in any form.
- The cryptographic module shall use the Approved DRBG for generating all cryptographic keys.
- The cryptographic module shall enforce role-based authentication for security relevant services.
- The cryptographic module shall enforce a limited operational environment by the secure firmware load test using RSA PSS-3072 with SHA-256.
- The cryptographic module shall provide a production-grade, opaque, and tamper-evident cryptographic boundary.
- The Cryptographic module enters the error state upon failure of Self-tests. most commands except for supported command from the Host (General Purpose Computer (GPC) outside the cryptographic boundary) are rejected in the error state and the IO command returns Namespace Not Ready (SC=0x82, SCT=0x0), the other commands return Internal Error (SC=0x6, SCT=0x0) defined in NVMe specification via the status output. Cryptographic services and data output are explicitly inhibited when in the error state. When module fails FW Integrity checks performed by Mask ROM, the module will fail to boot; module will not service any requests or provide any status output (module hangs).
- The cryptographic module satisfies the requirements of FIPS 140-2 IG A.9 (i.e. key 1 ≠ key 2)
- The module generates at a minimum 256 bits of entropy for use in key generation.

10.3. Power-on Self-Tests

Algorithm	Test
AES ECB	Encrypt KAT and Decrypt KAT for AES-256-ECB at power-on
AES XTS	Encrypt KAT and Decrypt KAT for AES-256-XTS at power-on
SHS	KAT for SHA-256 at power-on
RSA	RSA PSS-3072 SHA-256 Signature Verification KAT at power-on
DRBG	Instantiate, Generate, Reseed KATs for Hash_DRBG (SHA-256)
	at power-on in Section 11.3 Health Test of SP 800-90A

Exhibit 18 – Power-on Self-tests.

• F/W integrity check

- F/W integrity check is performed by using 428-bit error detection code at power-on
- Firmware integrity check is also performed using RSA PSS-3072 SHA-256 signature verification at power-on

Conditional Self-tests

Pairwise consistency: N/A

Bypass Test: N/A

Manual key entry test: N/A

F/W load test

: F/W load test is performed by using RSA algorithm with PSS-3072 and SHA-256

Continuous random number generator test on Approved DRBG

Health test

The cryptographic module has performed the below 2 types of tests described in SP800-90B

- Start-up test is performed for Entropy Source after power on reset.
- Continuous test is performed for Entropy Source while the module is operating. The Repetition Count test and the Adaptive Proportion test are included.