

ISC Cryptographic Development Kit (CDK)

FIPS 140-3 Non-Proprietary Security Policy

Software Version: 8.1.2.3

Document Version: 4.1.8

Issue Date: March 14, 2025

Authors: Michael J. Markowitz, Roger S. Schlafly, Jonathan C. Schulze-Hewett

Abstract: This document is a non-proprietary FIPS 140-3 Security Policy for ISC’s Cryptographic

Development Kit (CDK). It applies to CDK Version 8.1.2.3 and to all subsequent versions until otherwise

indicated in new editions. It describes how the CDK meets the security requirements of FIPS 140-3 and

how to run the CDK in the Approved mode. This policy was prepared as part of the FIPS 140-3 Level 1

validation of the module.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 2

Notices

Unless expressly indicated to the contrary, all trade secret, copyright, patent, and trademark rights are

reserved. Contact ISC for licensing information. Use of the CDK is subject to the terms of your license

agreement with ISC.

© Copyright 2002-2025 Information Security Corporation. All rights reserved.

This document may be freely reproduced and distributed in its entirety without modification.

Page 3 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Document History

Version Date Change Author
1.0.12 2002-05-22 First submitted version Michael Markowitz

2.0.0 2003-02-04 Tweaks to language per lab Jonathan Schulze-Hewett

3.0.0 2003-03-17 Added methods available to CO and Users Jonathan Schulze-Hewett

3.1.0 2003-03-21 Tweaks to language per lab Jonathan Schulze-Hewett

3.4.0 2003-04-30 Added HMAC-SHA-1 to CO/User table, removed CTR from
the list of modes for EES

Jonathan Schulze-Hewett

3.5.0 2003-05-01 Revisions Michael Markowitz

3.6.0 2003-05-07 Revised footer explaining CTR mode applicability Michael Markowitz

3.7.0 2003-05-12 Added second footer explaining CTR mode applicability or
lack thereof

Jonathan Schulze-Hewett

3.8.0 2003-06-04 Added footer explaining DES variants Jonathan Schulze-Hewett

3.9.0 2003-07-25 Revisions Jonathan Schulze-Hewett

3.10.0 2003-08-25 Final 140-1 document Michael Markowitz

4.0.0 2016-02-23 Updated for CDK 8/FIPS 140-2 Jonathan Schulze-Hewett

4.0.1 2016-04-08 Revisions as per lab comments Michael Markowitz,
Jonathan Schulze-Hewett

4.0.2 2016-05-23 Revisions as per lab comments Jonathan Schulze-Hewett

4.0.3 2016-06-23 Revisions as per lab comments Jonathan Schulze-Hewett

4.0.4 2016-08-09 Revisions as per lab comments Jonathan Schulze-Hewett

4.0.5 2016-09-09 Revisions as per lab comments Jonathan Schulze-Hewett

4.0.6 2016-09-13 Changed RSA self-test from PCT to KAT
Updated the filename of the CDK DLL
Revisions as per lab comments

Jonathan Schulze-Hewett

4.0.7 2016-09-30 Modified the algorithm tables to comply with CMVP’s
October 2016 requirements

Jonathan Schulze-Hewett

4.0.8 2016-10-28 Moved HMAC-SHA-3 into approved from table 4 to table 3
and Revisions as per lab comments

Jonathan Schulze-Hewett

4.0.9 2016-12-16 Moved Skipjack (EES) into non-approved table per lab
comments.

Jonathan Schulze-Hewett

4.0.10 2017-03-27 Revisions per lab comments Jonathan Schulze-Hewett

4.0.11 2017-03-28 Revisions per lab comments Jonathan Schulze-Hewett

4.0.12 2017-04-18 Revisions per lab comments Jonathan Schulze-Hewett

4.0.13 2017-06-06 AES-GCM clarifications Jonathan Schulze-Hewett

4.0.14 2017-10-13 AES-GCM clarifications Jonathan Schulze-Hewett

4.0.15 2018-06-01 Updated for 1SUB version change Jonathan Schulze-Hewett

4.1.0 2022-02-21 Updated for CDK 8.1 Jonathan Schulze-Hewett

4.1.1 2022-05-23 Updated based on SP 800-140Br2 guidance Jonathan Schulze-Hewett

4.1.2 2023-02-07 Updated based on additional functionality introduced in 8.1 Jonathan Schulze-Hewett

4.1.3 2024-01-31 Updated based on lab feedback Jonathan Schulze-Hewett

4.1.4 2024-02-28 Updated based on lab feedback Jonathan Schulze-Hewett

4.1.5 2024-08-05 Updated for KAS-IFC-SSC CAST version change Jonathan Schulze-Hewett

4.1.6 2024-11-15 Updated based on lab feedback Jonathan Schulze-Hewett

4.1.7 2025-03-03 Updated based on lab feedback Jonathan Schulze-Hewett

4.1.8 2025-03-14 Updated based on lab feedback Jonathan Schulze-Hewett

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 4

References

Reference Full Specification Name
[ANS X9.30 Part 1] Public Key Cryptography Using Irreversible Algorithms – Part 1: The Digital Signature Algorithm

(DSA)

[ANS X9.30 Part 2] Public Key Cryptography Using Irreversible Algorithms – Part 2: The Secure Hash Algorithm (SHA-1)

[ANS X9.31] Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)

[FIPS 46-3] Data Encryption Standard (DES) (withdrawn)

[FIPS 81] DES Modes of Operation (withdrawn)

[FIPS 140-3] Security Requirements for Cryptographic modules, March 22, 2019

[FIPS 180-4] Secure Hash Standard (SHS)

[FIPS 185] Escrowed Encryption Standard (obsolete)

[FIPS 186-4] Digital Signature Standard

[FIPS 197] Advanced Encryption Standard

[FIPS 198-1] The Keyed-Hash Message Authentication Code (HMAC)

[FIPS 202] SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

[IEEE P1619-2007] Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices

[ISO/IEC 10118-
3:1998]

Information technology – Security techniques – Hash-functions – Part 3: Dedicated hash-functions

[ISO/IEC 19790:2012] Information technology – Security techniques – Security requirements for cryptographic modules

[RFC 2437] PKCS #1: RSA Cryptography Specifications, Version 2.0

[RFC 2104] HMAC: Keyed-Hashing for Message Authentication

[RFC 3447] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1

[RFC 3610] Counter with CBC-MAC (CCM)

[RFC 4493] The AES-CMAC Algorithm

[SP 800-20] Modes of Operation Validation System for the Triple Data Encryption Algorithm (TMOVS):
Requirements and Procedures (withdrawn)

[SP 800-38A] Recommendation for Block Cipher Modes of Operation: Methods and Techniques

[SP 800-38B] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication

[SP 800-38C] Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality

[SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

[SP 800-38E] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
Storage Devices

[SP 800-56A R3] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

[SP 800-67 R2] Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher

[SP 800-89] Recommendation for Obtaining Assurances for Digital Signature Applications

[SP 800-90A R1] Recommendation for Random Number Generation Using Deterministic Random Bit Generators

[SP 800-90B] Recommendation for the Entropy Sources Used for Random Bit Generation

[SP 800-107 R1] Recommendation for Applications Using Approved Hash Algorithms

[SP 800-131A R2] Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key
Lengths

[SP 800-133 R2] Recommendation for Cryptographic Key Generation

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://csrc.nist.gov/csrc/media/publications/fips/185/archive/1994-02-09/documents/fips185.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://standards.ieee.org/findstds/standard/1619-2007.html
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2104.txt
https://www.ietf.org/rfc/rfc3447.txt
https://www.ietf.org/rfc/rfc3610.txt
https://tools.ietf.org/html/rfc4493
http://csrc.nist.gov/publications/nistpubs/800-20/800-20.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/nist.sp.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
http://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf

Page 5 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Table of Contents

1. General ...6
1.1 Overview ..6
1.2 Security Levels ...7
1.3 References ...8

2. Cryptographic Module Specification ..9
2.1 Module Description and Overview ..9
2.2 Cryptographic Algorithms ..9
2.3 CDK Modes and Approval Indicators..19
2.4 Cryptographic Boundary ..20

3. Cryptographic Module Interfaces ... 22

4. Roles, Services, and Authentication ... 23

5. Software/Firmware Security .. 28

6. Operational Environment .. 29
6.1 Platform Availability ...29

7. Physical Security ... 29

8. Non-Invasive Security .. 29

9. Sensitive Security Parameters Management .. 29
9.1 Storage Areas ...30
9.2 SSP Input-Output Methods ..30
9.3 SSP Zeroization Methods ...30
9.4 SSPs ..30
9.5 Entropy Sources ...34
9.6 RNGs and Output ...34
9.7 Key Distribution ...34

10. Self-Tests .. 35
10.1 Pre-Operational Tests ...36
10.2 Conditional Self-Tests ...37

11. Life-Cycle Assurance .. 39
11.1 Finite State Model ..39
11.2 Delivery and Operation and Guidance Documents..39

12. Mitigation of Other Attacks ... 39

13. Acronyms ... 40

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 6

1. General

1.1 Overview

Information Security Corporation’s Cryptographic Development Kit (CDK) Version 8.1.2.3 is a software

module. The software module is a shared library that contains cryptographic primitives that are

cryptographic software building blocks which may be used by application developers to build security-

enhanced features into their own applications. The CDK provides public-key algorithms, as well as

symmetric ciphers, hashing functions, and related cryptographic and PKI operations.

The CDK was designed and implemented to meet FIPS 140-3 level 1 security requirements.

1.1.1 Document Organization

ISC’s submission for FIPS 140-3 validation includes this security policy document and:

• Vendor evidence (Entropy statement, Testing statement, Crypto Officer’s Guide, Cryptographic Key

Management Document, Evaluator’s Guide, and the CDK User’s Guide),

• Finite state machine model diagram and explanation,

• Proprietary source code and build configurations for various target platforms.

Page 7 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

1.2 Security Levels

The following table lists the validation level met by the CDK for each area in FIPS 140-3. The CDK meets

the requirements for an overall FIPS 140-3 level 1 validation.

ISO/IEC 24759
Section 6.

[Number Below]
FIPS 140-3 Section Title Security Level

1 General 1

2 Cryptographic Module Specification 1

3 Cryptographic Module Interfaces 1

4 Roles, Services, and Authentication 1

5 Software/Firmware Security 1

6 Operational Environment 1

7 Physical Security N/A

8 Non-Invasive Security N/A

9 Sensitive Security Parameter Management 1

10 Self-Tests 1

11 Life-Cycle Assurance 1

12 Mitigation of Other Attacks N/A

Table 1 ꟷ Security Levels

The “Physical Security” section is not applicable as the module is a software only, level 1, module. The

“Non-Invasive Security” and “Mitigation of Other Attacks” sections are not relevant as the CDK is a

software module and does not implement any countermeasures towards special attacks.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 8

1.3 References

Federal Information Processing Standards Publication (FIPS PUB) 140-3, Security Requirements for

Cryptographic Modules, details U.S. Government requirements for cryptographic modules. Below are

hyperlinks to websites containing more information on NIST cryptographic programs, FIPS 140-3, and the

CDK.

NIST Cryptographic Module Validation

Program (CMVP)

https://csrc.nist.gov/projects/cryptographic-module-validation-

program

FIPS 140-3 Security Requirements https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

ISC CDK https://infoseccorp.com/cdks.html

NIST Validation Lists for Cryptographic

Standards – this site contains the technical

implementations of the algorithms that

have been validated to conform to the NIST

approved algorithm standards

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-

program/validation-search

https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://infoseccorp.com/cdks.html
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/validation-search
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/validation-search

Page 9 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

2. Cryptographic Module Specification

2.1 Module Description and Overview

The CDK cryptographic module is a multi-chip standalone software module running on a standalone

general-purpose computing platform. The CDK provides cryptographic services to applications through a

C++ language Application Program Interface (API). The “cryptographic boundary” is defined as the binary

shared link library (cdkc8123Sx64.dll or libcdkc.so.81.2.3).

The CDK was tested on the following operational environments on the general-purpose computer (GPC)

platforms shown in Table 2. These are the TOEPP (Tested Operational Environment’s Physical Perimeter)

of the module.

Operating System Hardware Platform Processor PAA/Acceleration
1 Windows 10 64-bit Dell Inspiron 15

Intel(R) Core(TM) i7-11390H (Tiger Lake) AES-NI

2 Windows 10 64-bit Dell Inspiron 15

Intel(R) Core(TM) i7-11390H (Tiger Lake) None

3 CentOS 7.7 64-bit Dell Inspiron 15

Intel(R) Core(TM) i7-11390H (Tiger Lake) AES-NI

4 CentOS 7.7 64-bit Dell Inspiron 15

Intel(R) Core(TM) i7-11390H (Tiger Lake) None

5 Raspberry Pi OS 32-bit Raspberry Pi 4 Model B Broadcom BCM2711 None

6 Raspberry Pi OS 64-bit Raspberry Pi 4 Model B Broadcom BCM2835 None

Table 2 ꟷ Tested Operational Environments

There are no Vendor Affirmed Operational Environments at this time.

2.2 Cryptographic Algorithms

The CDK supports a wide variety of cryptographic algorithms and can be configured to run in an

Approved mode or a Non-Approved mode. The keys and CSPs used for cryptographic operations are not

shared between the modes of operation. Whenever possible, all Approved algorithms designed for a

particular cryptographic function (such as encryption, message and entity authentication, hashing, etc.)

are provided.

2.2.1 Algorithms and Parameters Allowed in the Approved mode

2.2.1.1 Approved Algorithms

The Approved cryptographic algorithms implemented in the CDK and the corresponding NIST standards

(or alternate standards referenced by NIST) are listed in Table 3 along with CAVP certificate numbers.

When the CDK is run in the Approved mode, only algorithms in Table 3, Table 4, and Table 5 can be used.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 10

CAVP
Cert

Algorithm and
Standard

Mode/Method
Description / Key Size(s) /

Key Strength(s)
Use / Function

A5798 AES-CBC

[FIPS 197,
SP 800-38A]

CBC Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption/
Decryption

A5798 AES-CCM

[FIPS 197,
SP 800-38C]

CCM Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption /
Decryption

A5798 AES-CFB128

[FIPS 197,
SP 800-38A]

CFB128 Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption /
Decryption

A5798 AES-CFB8

[FIPS 197,
SP 800-38A]

CFB8 Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption /
Decryption

A5798 AES-CMAC

[FIPS 197,
SP 800-38B]

CMAC Direction: Generation,
Verification
Key Length: 128, 192, 256

Message
Authentication

A5798 AES-CTR

[FIPS 197,
SP 800-38A]

CTR Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption /
Decryption

A5798 AES-ECB

[FIPS 197,
SP 800-38A]

ECB Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption /
Decryption

A5798 AES-GCM

[FIPS 197,
SP 800-38D]

GCM1 Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption /
Decryption

A5798 AES-KW

[FIPS 197,
SP 800-38F]

KW Direction: Decrypt, Encrypt
Cipher: Cipher, Inverse
Key Length: 128, 192, 256

Key Wrapping /
Unwrapping

A5798 AES-KWP

[FIPS 197,
SP 800-38F]

KWP Direction: Decrypt, Encrypt
Cipher: Cipher, Inverse
Key Length: 128, 192, 256

Key Wrapping /
Unwrapping

A5798 AES-OFB

[FIPS 197,
SP 800-38A]

OFB Direction: Decrypt, Encrypt
Key Length: 128, 192, 256

Data Encryption /
Decryption

A5798 AES-XTS Testing
Revision 2.0

[FIPS 197,
SP 800-38E]

XTS2 Direction: Decrypt, Encrypt
Key Length: 128, 256

Data Encryption /
Decryption

A5798 Conditioning
Component AES-
CBC-MAC

[SP800-90B]

CBC-MAC Key Length: 128, 192, 256 Conditioning

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408

Page 11 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

1 Internal IV generation only. The AES-GCM IV is generated internally randomly (scenario 2) or as a counter

(scenario 1) per IG C.H.

2 Only Approved for Storage Applications.

A5798 cSHAKE-128

[SP 800-185]

cSHAKE-128 Message Length: 0-65536
Increment 8
Output Length: 16-65536
Increment 8

Extendable Output
Function

A5798 cSHAKE-256

[SP 800-185]

cSHAKE-128 Message Length: 0-65536
Increment 8
Output Length: 16-65536
Increment 8

Extendable Output
Function

A5798 DSA SigVer
[FIPS186-4]

FIPS 186-4 Capabilities: L: 1024 N: 160, L:
2048 N: 224, L: 2048 N: 256, L:
3072 N: 256
Hash Algorithm: SHA-1, SHA2-
224, SHA2-256, SHA2-384,
SHA2-512, SHA2-512/224,
SHA2-512/256

Signature
Verification

A5798 Deterministic
ECDSA SigGen
[FIPS186-5]

FIPS 186-5 Curve: B-233, B-283, B-409, B-
571, K-233, K-283, K-409, K-571,
P-224, P-256, P-384, P-521
Hash Algorithm: SHA2-224,
SHA2-256, SHA2-384, SHA2-512,
SHA2-512/224, SHA2-512/256,
SHA3-224, SHA3-256, SHA3-384,
SHA3-512

Signature
Generation

A5798 ECDSA KeyGen
[FIPS186-4]

Secret Generation Mode: Testing
Candidates

Curve: B-233, B-283, B-409, B-
571, K-233, K-283, K-409, K-571,
P-224, P-256, P-384, P-521

Key Pair
Generation

A5798 ECDSA KeyVer
[FIPS186-4]

FIPS 186-4 Curve: B-163, B-233, B-283, B-
409, B-571, K-163, K-233, K-283,
K-409, K-571, P-192, P-224, P-
256, P-384, P-521

Key Pair
Verification

A5798 ECDSA SigGen
[FIPS186-4]

FIPS 186-4 Curve: B-233, B-283, B-409, B-
571, K-233, K-283, K-409, K-571,
P-224, P-256, P-384, P-521
Hash Algorithm: SHA2-224,
SHA2-256, SHA2-384, SHA2-512,
SHA2-512/224, SHA2-512/256,
SHA3-224, SHA3-256, SHA3-384,
SHA3-512

Signature
Generation

A5798 ECDSA SigVer
[FIPS186-4]

FIPS 186-4 Curve: B-163, B-233, B-283, B-
409, B-571, K-163, K-233, K-283,
K-409, K-571, P-192, P-224, P-
256, P-384, P-521
Hash Algorithm: SHA-1, SHA2-
224, SHA2-256, SHA2-384,
SHA2-512, SHA2-512/224,
SHA2-512/256, SHA3-224,
SHA3-256, SHA3-384, SHA3-512

Signature
Verification

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 12

3 SSP establishment methodology provides between 112 and 256-bits of encryption strength.

A5798 HMAC DRBG

[SP 800-90A]

Mode: SHA2-256, SHA2-512 Entropy Input: 256-131072
Increment 8

Deterministic
Random Bit
Generation

A5798 HMAC-SHA-1

[FIPS 198-1]

HMAC-SHA-1 Key Length: 112-524288
Increment 8
MAC: 32-160

Message
Authentication

A5798 HMAC-SHA2-224

[FIPS 198-1]

HMAC-SHA2-224 Key Length: 112-524288
Increment 8
MAC: 32-224

Message
Authentication

A5798 HMAC-SHA2-256

[FIPS 198-1]

HMAC-SHA2-256 Key Length: 112-524288
Increment 8
MAC: 32-256

Message
Authentication

A5798 HMAC-SHA2-384

[FIPS 198-1]

HMAC-SHA2-384 Key Length: 112-524288
Increment 8
MAC: 32-384

Message
Authentication

A5798 HMAC-SHA2-512

[FIPS 198-1]

HMAC-SHA2-512 Key Length: 112-524288
Increment 8
MAC: 32-512

Message
Authentication

A5798 HMAC-SHA2-
512/224

[FIPS 198-1]

HMAC-SHA2-512/224 Key Length: 112-524288
Increment 8
MAC: 32-224

Message
Authentication

A5798 HMAC-SHA2-
512/256

[FIPS 198-1]

HMAC-SHA2-512/256 Key Length: 112-524288
Increment 8
MAC: 32-256

Message
Authentication

A5798 HMAC-SHA3-224

[FIPS 198-1]

HMAC-SHA3-224 Key Length: 112-524288
Increment 8
MAC: 32-224

Message
Authentication

A5798 HMAC-SHA3-256

[FIPS 198-1]

HMAC-SHA3-256 Key Length: 112-524288
Increment 8
MAC: 32-256

Message
Authentication

A5798 HMAC-SHA3-384

[FIPS 198-1]

HMAC-SHA3-384 Key Length: 112-524288
Increment 8
MAC: 32-384

Message
Authentication

A5798 HMAC-SHA3-512

[FIPS 198-1]

HMAC-SHA3-512 Key Length: 112-524288
Increment 8
MAC: 32-512

Message
Authentication

A5798 KAS-ECC-SSC3

[SP800-56Ar3]

ephemeralUnified, onePassDh,
staticUnified

Domain Parameter Generation
Methods: B-233, B-283, B-409,
B-571, K-233, K-283, K-409, K-
571, P-224, P-256, P-384, P-521

Key Agreement

A5798 KAS-IFC-SSC3

[SP 800-56Br2]

KAS1 Modulo: 2048, 3072, 4096,
6144, 8192

Key Agreement

A5798 KDA HKDF

[SP800-56Cr2]

HMAC Algorithm: SHA-1, SHA2-
224, SHA2-256, SHA2-384,
SHA2-512, SHA2-512/224,
SHA2-512/256, SHA3-224,
SHA3-256, SHA3-384, SHA3-512

Shared Secret Length: 224-1024
Increment 8

Key Derivation

A5798 KDA OneStep

Auxiliary Function Name: SHA3-
512

Shared Secret Length: 224-1024
Increment 8

Key Derivation

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408

Page 13 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

[SP800-56Cr2]

A5798 KDF ANS 9.63
(CVL)

[SP 800-135r1]

Hash Algorithm: SHA2-224,
SHA2-256, SHA2-384, SHA2-512

Field Size: 224, 571 Key Derivation

No part of the ANS
9.63 protocol,
other than the KDF,
has been tested by
the CAVP and
CMVP.

A5798 KDF IKEv1
(CVL)

[SP 800-135r1]

Authentication Method: Digital
Signature, Pre-shared Key, Public
Key Encryption
Hash Algorithm: SHA-1, SHA2-
224, SHA2-256, SHA2-384,
SHA2-512

Diffie-Hellman Shared Secret
Length: 224-8192 Increment 8

Key Derivation

No part of the
IKEv1 protocol,
other than the KDF,
has been tested by
the CAVP and
CMVP.

A5798 KDF IKEv2
(CVL)

[SP 800-135r1]

Hash Algorithm: SHA-1, SHA2-
224, SHA2-256, SHA2-384,
SHA2-512

Diffie-Hellman Shared Secret
Length: 224-8192 Increment 8

Key Derivation

No part of the
IKEv2 protocol,
other than the KDF,
has been tested by
the CAVP and
CMVP.

A5798 KDF SNMP
(CVL)

[SP 800-135r1]

Engine ID:
12345678912345678900,
abcdef0123456789abcdef12345
67890

Password Length: 64, 8192 Key Derivation

No part of the
SNMP protocol,
other than the KDF,
has been tested by
the CAVP and
CMVP.

A5798 KDF SSH
(CVL)

[SP 800-135r1]

Hash Algorithm: SHA-1, SHA2-
224, SHA2-256, SHA2-384,
SHA2-512

Cipher: AES-128, AES-192, AES-
256, TDES

Key Derivation

No part of the SSH
protocol, other
than the KDF, has
been tested by the
CAVP and CMVP.

A5798 KDF TLS
(CVL)

[SP 800-135r1]

TLS Version: v1.0/1.1 Hash Algorithm: SHA2-256,
SHA2-384, SHA2-512

Key Derivation

No part of the TLS
1.0/1.1 protocol,
other than the KDF,
has been tested by
the CAVP and
CMVP.

A5798 KDF TLS
(CVL)

[SP 800-135r1]

TLS Version: 1.2 Hash Algorithm: SHA2-256,
SHA2-384, SHA2-512

Key Derivation

No part of the TLS
1.2 protocol, other
than the KDF, has
been tested by the
CAVP and CMVP.

A5798 KDF TPM
(CVL)

TPM 1.2 HMAC with SHA-1 Key Derivation

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 14

4 SSP establishment methodology provides between 112 and 256-bits of encryption strength.

5 The module implements PBKDF in a manner that is compliant with option 1a from SP 800-132, section 5.4. With

the minimum password length of 8 characters, the probability of randomly guessing this parameter is 1 in 256^8.

The module supports a variable iteration count as low as 1, but based on SP 800-132, section 5.2 a minimum of

1,000 is recommended. Keys derived from passwords, as shown in SP 800-132, may only be used in storage

applications.

6 Modulo sizes 6144 and 8192 are supported but have not been CAVP tested.

7 Legacy usage only. These legacy algorithms can only be used on data that was generated prior to the Legacy Date specified in

FIPS 140-3 IG C.M.

[SP 800-135r1]

No part of the TPM
1.2 protocol, other
than the KDF, has
been tested by the
CAVP and CMVP.

A5798 KMAC-128

[SP 800-185]

Message Length: 0-65536
Increment 8; MAC Length: 32-
65536 Increment 8

Key Data Length: 128-524288
Increment 8

XOF

A5798 KMAC-256

[SP 800-185]

Message Length: 0-65536
Increment 8; MAC Length: 32-
65536 Increment 8

Key Data Length: 128-524288
Increment 8

XOF

A5798 KTS-IFC4

[SP 800-56Br2]

KTS-OAEP-basic Modulo: 2048, 3072, 4096,
6144, 8192

OAEP

A5798 ParallelHash-128

[SP 800-185]

Message Length: 0-65536
Increment 8

Output Length: 16-65536
Increment 8

XOF

A5798 ParallelHash-256

[SP 800-185]

Message Length: 0-65536
Increment 8

Output Length: 16-65536
Increment 8

XOF

A5798 PBKDF5

[SP 800-132]

HMAC Algorithm: SHA-1, SHA2-
224, SHA2-256, SHA2-384,
SHA2-512, SHA2-512/224,
SHA2-512/256, SHA3-224,
SHA3-256, SHA3-384, SHA3-512

Password Length: 8-128
Increment 8

Key Derivation

A5798 RSA KeyGen
[FIPS186-4]

Key Generation Mode: B.3.3
Primality Tests: Table C.2

Modulo: 2048, 3072, 4096,
6144, 81926

Key Pair
Generation

A5798 RSA SigGen
[FIPS186-4]

Signature Type: ANSI X9.31,
PKCS 1.5, PKCSPSS

Modulo: 2048, 3072, 4096,
6144, 81926

Digital Signature
Generation

A5798 RSA SigVer
[FIPS186-4]

Signature Type: ANSI X9.31,
PKCS 1.5, PKCSPSS

Modulo: 10247[Legacy], 2048,
3072, 4096, 6144, 81926

Digital Signature
Verification

A5798 RSA Signature
Primitive
(CVL)

RSA Signature Primitive Private Key Format: standard
Public Exponent Mode: random

Digital Signature
Generation

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408

Page 15 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

[FIPS 186-5, RFC
3447]

A5798 SHA-1
[FIPS 180-4]

Function: SHA1

Message Length: 0-65536
Increment 8; Large Message
Sizes: 1gigabytes

Message Digest

A5798 SHA2-224
[FIPS 180-4]

Function: SHA2 Message Length: 0-65536
Increment 8; Large Message
Sizes: 1gigabytes

Message Digest

A5798 SHA2-256
[FIPS 180-4]

Function: SHA2 Message Length: 0-65536
Increment 8; Large Message
Sizes: 1gigabytes

Message Digest

A5798 SHA2-384
[FIPS 180-4]

Function: SHA2 Message Length: 0-65536
Increment 8; Large Message
Sizes: 1gigabytes

Message Digest

A5798 SHA2-512
[FIPS 180-4]

Function: SHA2 Message Length: 0-65536
Increment 8; Large Message
Sizes: 1gigabytes

Message Digest

A5798 SHA2-512/224
[FIPS 180-4]

Function: SHA2 Message Length: 0-65536
Increment 8; Large Message
Sizes: 1gigabytes

Message Digest

A5798 SHA2-512/256
[FIPS 180-4]

Function: SHA2 Message Length: 0-65536
Increment 8; Large Message
Sizes: 1gigabytes

Message Digest

A5798 SHA3-224
[FIPS 202]

Function: SHA3 Message Length: 0-65536
Increment 8

Message Digest

A5798 SHA3-256
[FIPS 202]

Function: SHA3 Message Length: 0-65536
Increment 8

Message Digest

A5798 SHA3-384
[FIPS 202]

Function: SHA3 Message Length: 0-65536
Increment 8

Message Digest

A5798 SHA3-512
[FIPS 202]

Function: SHA3 Message Length: 0-65536
Increment 8

Message Digest

A5798 SHAKE-128
[FIPS 202]

SHAKE-128 Output Length: 16-65536
Increment 8

XOF

A5798 SHAKE-256
[FIPS 202]

SHAKE-256 Output Length: 16-65536
Increment 8

XOF

A5798 TDES-CBC

[SP 800-38A,
SP 800-67r2]

CBC Keying Option: 1, 27[Legacy]
Direction: Decrypt

Data Decryption

A5798 TDES-CFB64

[SP 800-38A,
SP 800-67r2]

CFB64 Keying Option: 1, 27[Legacy]
Direction: Decrypt

Data Decryption

A5798 TDES-CFB8

[SP 800-38A,
SP 800-67r2]

CFB8 Keying Option: 1, 27[Legacy]
Direction: Decrypt

Data Decryption

A5798 TDES-CTR

[SP 800-38A,
SP 800-67r2]

CTR Keying Option: 1, 27[Legacy]
Direction: Decrypt
Incremental Counter

Data Decryption

A5798 TDES-ECB

[SP 800-38A,
SP 800-67r2]

ECB Keying Option: 1, 27[Legacy]
Direction: Decrypt

Data Decryption

A5798 TDES-OFB

[SP 800-38A,

OFB Keying Option: 1, 27[Legacy]
Direction: Decrypt

Data Decryption

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 16

Table 3 - Approved Algorithms

The CDK provides the Approved methods in Table 4 for which there are no algorithm tests, but whose

use is nevertheless allowed in the Approved mode. The proper implementation and functionality of

these mechanisms is “Vendor Affirmed.”

Algorithm Caveat Use/Function

CKG

Vendor Affirmed Cryptographic Key Generation

SP 800-67r2]

A5798 TLS v1.2 KDF
RFC7627

[SP 800-135r1]

TLS v1.2 KDF RFC7627 Hash Algorithm: SHA2-256,
SHA2-384, SHA2-512

Key Derivation

No part of the TLS
1.2 protocol, other
than the KDF, has
been tested by the
CAVP and CMVP.

A5798 TLS v1.3 KDF

[SP 800-135r1,
RFC8446]

TLS v1.3 KDF HMAC Algorithm: SHA2-256,
SHA2-384

KDF Running Modes: DHE, PSK,
PSK-DHE

Key Derivation

No part of the TLS
1.3 protocol, other
than the KDF, has
been tested by the
CAVP and CMVP.

A5798 TupleHash-128

[SP 800-185]

Message Length: 0-65536
Increment 8

Output Length: 16-65536
Increment 8

XOF

A5798 TupleHash-256

[SP 800-185]

Message Length: 0-65536
Increment 8

Output Length: 16-65536
Increment 8

XOF

Security Function Implementations (SFIs)

AES-KW

A5798

KTS

[SP 800-38F]

SP 800-38F. KTS (key wrapping
and unwrapping) per IG D.G.

128, 192, and 256-bit keys
provide between 128 and 256
bits of encryption strength

Key Wrap/Unwrap

AES-KWP

A5798

KTS

[SP 800-38F]

SP 800-38F. KTS (key wrapping
and unwrapping) per IG D.G.

128, 192, and 256-bit keys
provide between 128 and 256
bits of encryption strength

Key Wrap/Unwrap

KTS-IFC

A5798

KTS

[SP 800-56Brev2]

SP 800-56Brev2. KTS-IFC (key
encapsulation and un-
encapsulation) per IG D.G.

2048, 3072, 4096, 6144, and
8192-bit modulus providing
112, 128, 152, 176, or 200 bits
of encryption strength

Key
Encapsulation/Un-
encapsulation

Entropy Source

E21 ESV

[SP 800-90B]

Non-Physical, Non-IID Entropy Input obtained by DRBG
is 48 bytes.
Nonce obtained by DRBG is 16
bytes.

Due to conditioning, the output
from this entropy source is
expected to contain full entropy.

Seeding the
Module’s DRBG

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=38408

Page 17 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

[SP 800-133 rev2] SP 800- 133rev2 (Section 4, 5.1, 6.1,
and 6.3) and IG D.H.

Unmodified output DRBG used for
generation of symmetric keys and
seeds for asymmetric keys.

DRBGs are instantiated to 256 bits of
security strength

Table 4 - Vendor Affirmed Algorithms

The module uses the unmodified output of the approved DRBG for the generation of symmetric keys and

seeds for asymmetric keys.

2.2.1.2 SP 800-56Arev3 Assurances

As required per SP 800-56Arev3, the CDK conditionally performs the necessary checks when generating,

importing, or using domain parameters and keys according to sections 5.5.2, 5.6.2, and/or 5.6.3 of the

special publication.

2.2.1.3 HMAC Usage

If HMAC is used for the protection of data, the operator must ensure that a key length of at least 112 bits

minimum is used.

2.2.1.4 AES-GCM Notes

2.2.1.4.1 IV Construction

In the Approved mode only internal 96-bit IV generation is allowed. The CDK supports both SP800-38D

Section 8.1 and 8.2 for internal IV generation and therefore complies with both Scenario 1 and Scenario

2 of IG C.H.

2.2.1.4.1.1 TLS – Section 8.1 SP800-38D, Scenario 1 IG C.H

The CDK does not implement the TLS protocol. The CDK implements cryptographic operations that can

be used to implement the TLS protocol. The CDK’s AES GCM TLS internal IV generation is in compliance

with TLS 1.2 per RFC 5288, TLS 1.3 per RFC 8446, and in support of the GCM cipher suites listed in SP800-

52rev2. For TLS 1.2 the AES GCM IV is generated internally using a deterministic counter as the

nonce_explicit value and takes as input a 16-bit salt. For TLS 1.3 the AES GCM IV is generated internally

by XOR’ing an internally maintained counter with the 12-byte IV. In each case, the resulting IV is exactly

96-bits in length.

2.2.1.4.1.2 Random – Section 8.2 SP800-38D, Scenario 2 IG C.H

The CDK implements random internal IV generation that uses the module’s Approved DRBG. The seed

used by the CDK’s DRBG is provided by the CDK’s jitter entropy component. The IV is exactly 96-bits in

length.

2.2.1.4.2 Power Loss

In the event that module power is lost and restored, the application using the CDK must ensure that any

of its AES-GCM keys used for encryption are re-established or re-generated.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 18

2.2.1.4.3 Limits

The CDK enforces the following limits on the number of encryption operations that can be performed

with GCM:

- TLS IV 64-bit Deterministic Counter with 16-bit salt – if the counter exceeds 264 the CDK returns a

CDK_INVALID_IV error with value 1064.

- Random IV – if the number of AES operations exceeds 232-1 the CDK returns

CDK_INPUT_LENGTH_ERR error with value 1151.

2.2.2 Non-Approved Algorithms Allowed in the Approved Mode of Operation

The CDK does not support any non-approved algorithms that are allowed in the Approved mode.

2.2.3 Non-Approved-mode Algorithms

When run in the Approved mode the following additional algorithms, modes, and sizes are allowed to be

used internally with No Security Claimed. Note these algorithms are not accessible through the CDK’s API

and calling applications are unable to use them.

Algorithm Caveat Use/Function
MD5 Only allowed as the PRF in TLS v1.0 and v1.1 per IG

2.4.A
SP 800-135rev1 Section 4.2.1 describes the use of
MD5 in conjunction with SHA-1 in the key derivation
function, concluding that the TLS 1.0/1.1 KDF may be
used within the context of the TLS protocol (with
provisions for validation of the companion approved
functions, SHA-1 and HMAC).

This use of MD5 does not conflict with the security of
the approved security functions

Table 5 - Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security
Claimed

When run in the Non-Approved mode all the algorithms, modes, and sizes described above are available

as well as the following additional algorithms, modes, and sizes which are not allowed to be used in the

Approved mode.

Algorithm/Function Use/Function
AES Encryption/decryption using the CFB64 mode

AES GCM Encryption using external IV generation by calling init() or initExt();
Encryption/decryption using XPN by calling initXPN()

AES GCM SIV Encrypt/decrypting using the AES GCM SIV mode

ANSI x9.63 KDF,
TLS 1.3 KDF

Key derivation – using SHA-1 or SHA-3

ChaCha20 Encryption/decryption

DES Encryption/decryption using the DES, DESX, or DES40 variants

Diffie-Hellman Key establishment [512-1024 bits]
Key generation [512-1024 bits]

DRBG HMAC-SHA-1, HMAC-SHA2-224, HMAC-SHA2-384, HMAC-SHA2-512/256, HMAC-SHA3-224,
HMAC-SHA3-384

DSA Digital signature generation [512-1024 bits]
Key generation [512-1024-bits]

Page 19 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Elliptic Curve Diffie-
Hellman

Key establishment using keys whose size is less than 224-bits
Key generation of keys with size less than 224-bits
Any use of non-NIST approved curves (including Montgomery Curves)
(Non-compliant less than 112 bits of encryption strength)

ECDSA Digital signature generation using keys whose size is less than 224-bits or SHA-1
Key generation of keys with size less than 224-bits
Any use of non-NIST approved curves (secp112r1, secp112r2, secp128r1, secp128r2, secp160k1,
secp160r1, secp160r2, brainpoolP160r1, brainpoolP160t1, brainpoolP192r1, brainpoolP192t1,
brainpoolP224r1, brainpoolP224t1, brainpoolP256r1. brainpoolP256t1, brainpoolP320r1,
brainpoolP320t1, brainpoolP384r1, brainpoolP384t1, brainpoolP512r1, brainpoolP512t1,
numsp256d1, numsp384d1, numsp512d1, frp256v1, sm2p256v1, gostRFC7091, gostParamSetA,
gostParamSetB, curve22519, ed448, oakley1, oakley2, ipsec3, ipsec4

EDDSA Digital signature generation using Edwards curves (Ed25519, Ed448)

PBKDF Key derivation using key lengths less than 112 bits or salt lengths less than 128 bits

RSA Digital signature generation using keys whose size is less than 2048-bits or SHA-1
Key generation of keys with size less than 2048-bits
Key wrapping using PKCS #1 v1.5 padding
Key wrapping using keys whose size is less than 2048-bits
(Non-compliant less than 112 bits of encryption strength)

SHA-0 Hashing – any use (API input 0 to the SHA constructor)

SHS Hashing – using ISC’s incorrect, non-compliant, versions of SHA2-256, SHA2-384, SHA2-512, or
SHA2-224 corresponding to API input 12, 13, 15, or 17 to the SHA2 constructor

Skipjack Encryption/decryption

Triple-DES Encryption/decryption using 1-key (API input key length of 64-bits)
Encryption using 2-key (API input key length of 128-bits)
Encryption/decryption using the CFB32 mode
Encryption using 3-key (API input key length of 192-bits)

Table 6 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

2.3 CDK Modes and Approval Indicators

2.3.1 Running the CDK in the Approved mode

When the CDK is run in the Approved mode, only FIPS 140-3 approved algorithms are allowed to be

used. The CDK will error if a non-approved algorithm is used.

In order to operate in the Approved mode, the CO must ensure that applications loaded by the operating

system call the “Configure” service (enableFIPS() method) at startup.

The CO may use the “Show Status” service (isFIPS()method) in their application to determine whether

or not the CDK is operating in the Approved mode. The CO’s application must provide an indication of

the mode of operation by either calling the “Show Status” service (isFIPS()function) and outputting a

custom message, or by outputting the output of the “Show Status” service (StrVersion()method).

2.3.2 Running the CDK in the Non-Approved Mode

If the “Configure” service (enableFIPS() function) is not called, the CDK will operate in the Non-

Approved mode. The “Show Status” service (isFIPS()function) will return false to indicate that the CDK

is not operating in the Approved mode. The output of the “Show Status” service

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 20

(StrVersion()function) will not include the statement that the module is operating in the Approved

mode.

2.3.3 Running the CDK in Degraded Mode

The CDK does not support a degraded mode of operation.

2.3.4 Approval Indicators

As noted above, the isFIPS() function will return true or false to indicate whether or not the CDK is

operating in the Approved mode and only allowing approved algorithms to be used. Additionally, in the

Approved or Non-Approved mode individual algorithms can be queried:

• by calling the isFIPS() member method, if the algorithm is represented by a C++ class

• by calling isHashFIPS() or isKDFFIPS() with appropriate inputs

2.4 Cryptographic Boundary

The following diagram (Figure 1) illustrates the TOEPP and the relationship between a typical software

application (such as the supplied CDK test program), the ISC CDK, the computer’s operating system, the

system’s BIOS, and the physical general-purpose computer (GPC) on which it all executes. The

cryptographic boundary is the ISC CDK shared library itself as shown inside of the red dashed lines

labels cryptographic boundary.

Page 21 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Application

ISC CDK
.dll or .so

Operating
System

BIOS

TOEPP

GPC

Cryptographic Boundary

Figure 1 ꟷ Cryptographic Boundary

The following diagram (Figure 2) is a block diagram displaying the most important components of the

CDK software. (Certain dependencies between the various components are suppressed for simplicity.)

self-tests
strings,

utilities

CDK API

(data and control I/O, error handling)

message

digests

symmetric

ciphers
public key

algorithms

groups, rings,

fields, curves

high-precision

arithmetic

DRBG

Figure 2 ꟷ Important Components of the CDK

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 22

3. Cryptographic Module Interfaces

As a FIPS 140-3 multi-chip standalone module, the CDK has a physical power interface and physical input

and output data paths, which are the computer system’s standard input/output ports and power

interface. The input/output ports on the computer are used for connecting external devices such as

monitors and keyboards however these devices are outside the cryptographic boundary of the CDK. The

CDK does not support a control output interface.

The CDK software is written in C++; its logical interfaces are the application program interfaces (API)

defined by C++ classes and global methods. The calling program inputs control and data to the CDK

through the input fields of the API and receives output data and/or status information through the

output parameters of the API. Vendor documentation describes what output indicates an error and what

output constitutes successful completion of the operation.

A “show status” service is provided by the static Algorithm::isErrorState(), isFIPS(), and

StrVersion() methods which may be called at any time to determine if the CDK is in the hard error

state and whether or not the CDK is operating in the Approved mode. If the CDK enters the hard error

state, an error code is returned through the API interface, and no data output is returned.

Methods performing key generation do not output intermediate key values. Methods performing key

zeroization only return status output describing success or failure of the operation.

Below is a table that maps the logical interfaces to the physical interfaces, with the exclusion of the

Control Output interface and Power Interface which the module does not support:

Physical Port Logical Interface Data that passes over port/interface
Standard Input Port
(e.g. Keyboard)

Data Input Data passed to the API calls to be used by the Module

Standard Output
Port (e.g. Monitor)

Data Output Data returned from API calls, generated by the Module

N/A Control Input API calls

Standard Output
Port (e.g. Monitor)

Status Output C++ exceptions, the Algorithm::isErrorState() function, the isFIPS() function,
and the StrVersion() function

Table 7 – Ports and Interfaces

Page 23 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

4. Roles, Services, and Authentication

The CDK module supports one role: “Crypto-Officer” (CO). The CO is the human being who configures an

application that uses services provided by the CDK.

The CDK provides no maintenance access interface and therefore does not support a Maintenance role.

FIPS 140-3 Level 1 cryptographic modules are not required to employ authentication as a means of

controlling access to the module. Such authentication mechanisms are not supported by the CDK for the

CO role. No other roles are supported.

The CO configures the computer system, operating system, and the application using services provided

by the CDK to operate in a secure Approved mode, if that is desired (this may include configuring the

system on which the application is installed as part of the installation process). Additional conditions for

meeting FIPS 140-3 requirements are provided in a separate document: Crypto Officer’s Guide.

Self-test services are described in Section 9 of this document.

Bypass services are not provided.

Tables 8, 9 and 10 provide details on the services available to each role, and each role’s access rights with

respect to those services.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 24

Role Service Input Output

CO Configure Configuration Parameters Status

CO Integrity Self-Test None Status

CO Perform Self-Tests None Status

CO Show Status None Status

CO Zeroize Key Status

CO Symmetric Key Generation using
DRBG

Key Size Key, Status

CO Random Number Generation Size Value, Status

CO Asymmetric Key Generation Key Type, Size Key, Status

CO Symmetric Encrypt/Decrypt Key, Data Ciphertext, Status

CO Symmetric Digest Key, Data Digest Value,
Status

CO Message Digest Data Digest Value,
Status

CO Keyed Hash Key, Data Digest Value,
Status

CO Key Agreement Keys Shared Secret,
Status

CO Key Transport Keys Ciphertext, Status

CO Digital Signature Key, Digest Value, Digest Type

Signature, Status

CO Signature Verification Key, Signature, Message Status

CO Extendable Output Function Data Extended Output
Value, Status

CO Key Derivation Key, Shared Secret, Password, Data Key, Status

Table 8 - Roles, Service Commands, Input and Output

Service Description
Approved
Security

Functions

Keys and/or
SSPs

Roles
Access rights

to Keys
and/or SSPs

Indicator

Configure Initialize and configure
module

All algorithms
and modes

All SSPs CO R, W 0 upon
Success

Integrity Self-Test Check module
integrity

HMAC-SHA2-256

#A5798

HMAC Integrity
Key

CO None 0 upon
Success

Page 25 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Perform Self-Tests Check module
algorithm correctness

See Section 10
for algorithms
tested.

None CO None 0 upon
Success

Show Status Return codes and/or
strings8

None None CO None 0 upon
Success

Zeroize Erase key or critical
security parameter

None All SSPs CO Z 0 upon
Success

Symmetric Key
Generation using
DRBG

Generate a random
key

Conditioning
Component AES-
CBC-MAC, AES-
CCM, AES-
CFB128, AES-
CFB8, AES-CMAC,
AES-CTR, AES-
ECB, AES-GCM,
AES-OFB, AES-XTS
Testing Revision
2.0, CKG, HMAC
DRBG, HMAC-
SHA2-256,
HMAC-SHA2-512,
TDES-CBC, TDES-
CFB64, TDES-
CFB8, TDES-CTR,
TDES-ECB, TDES-
OFB, ESV

#A5798

AES GCM IV,
AES GCM Key,
AES Key, AES
XTS Key, DRBG
Key Value,
DRBG Seed,
DRBG ‘V’ Value,
Entropy Input
String, MAC Key,
Triple-DES Key

CO G, R, E 0 upon
Success

Random Number
Generation

Generate a random
number

HMAC DRBG, ESV

#A5798

DRBG Key
Value, DRBG
Seed, DRBG ‘V’
Value, Entropy
Input String

CO E 0 upon
Success

Asymmetric Key
Generation

Generate an
asymmetric public and
private key

CKG, DSA
PQGGen
[FIPS186-4], DSA
PQGVer [FIPS186-
4], ECDSA
KeyGen [FIPS186-
4], ECDSA KeyVer
[FIPS186-4],
HMAC DRBG, RSA
KeyGen [FIPS186-
4], ESV

#A5798

DRBG Key
Value, DRBG
Seed, DRBG ‘V’
Value, DSA
Public Key, ECC
DH Private Key,
ECC DH Public
Key, ECDSA
Private Key,
ECDSA Public
Key, RSA
Signature
Private Key, RSA
Signature Public
Key

CO G, R, E 0 upon
Success

Symmetric
Encrypt/Decrypt

Encrypt/decrypt data
using a symmetric
algorithm

AES-CBC, AES-
CCM, AES-
CFB128, AES-

AES GCM IV,
AES GCM Key,
AES Key, AES

CO E 0 upon
Success

8 The Show Status service also satisfies the “Show Module Version Information” Service.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 26

CFB8, AES-CTR,
AES-ECB, AES-
GCM, AES-OFB,
AES-XTS Testing
Revision 2.0,
TDES-CBC, TDES-
CFB64, TDES-
CFB8, TDES-CTR,
TDES-ECB, TDES-
OFB

#A5798

XTS Key, Triple-
DES Key

Symmetric Digest Digest data Conditioning
Component AES-
CBC-MAC, AES-
CMAC

#A5798

AES MAC Key CO E 0 upon
Success

Message Digest Digest data ParallelHash-128,
ParallelHash-256,
SHA-1, SHA2-224,
SHA2-256, SHA2-
384, SHA2-512,
SHA2-512/224,
SHA2-512/256,
SHA3-224, SHA3-
256, SHA3-384,
SHA3-512,
TupleHash-128,
TupleHash-256

#A5798

None CO None 0 upon
Success

Keyed Hash Digest data HMAC-SHA-1,
HMAC-SHA2-224,
HMAC-SHA2-256,
HMAC-SHA2-384,
HMAC-SHA2-512,
HMAC-SHA2-
512/224, HMAC-
SHA2-512/256,
HMAC-SHA3-224,
HMAC-SHA3-256,
HMAC-SHA3-384,
HMAC-SHA3-512,
KMAC-128,
KMAC-256

#A5798

MAC Key CO E 0 upon
Success

Key Agreement Derive a shared key KAS-ECC-SSC,
KAS-IFC-SSC

#A5798

ECC DH Private
Key, ECC DH
Public Key,
Shared Secret
value

CO G, R, E 0 upon
Success

Key Transport Encrypt a data
encryption key with a
key encryption key

AES-KW, AES-
KWP, KTS-IFC

#A5798

AES Key Wrap
key, RSA Key
Wrap Private
Key, RSA Key
Wrap Public Key

CO R, E 0 upon
Success

Page 27 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Digital Signature Create a digital
signature

ECDSA SigGen
[FIPS186-4],
Deterministic
ECDSA SigGen
[FIPS186-5], RSA
SigGen [FIPS186-
4], RSA Signature
Primitive
(CVL)

#A5798

ECDSA Private
Key, RSA
Signature
Private Key

CO E 0 upon
Success

Signature Verification Verify a digital
signature

DSA SigVer
[FIPS186-4],
ECDSA SigVer
[FIPS186-4], RSA
SigVer [FIPS186-
4]

#A5798

DSA Public Key,
ECDSA Public
Key, RSA
Signature Public
Key

CO E 0 upon
Success

Extendable Output
Function

Extend bit strings to
any desired length

cSHAKE-128,
cSHAKE-256,
SHAKE-128,
SHAKE-256,
ParallelHash-128,
ParallelHash-256

#A5798

None CO None 0 upon
Success

Key Derivation Derive a key KDA HKDF, KDA
OneStep, KDF
ANS 9.63 (CVL),
KDF IKEv1 (CVL),
KDF IKEv2 (CVL),
KDF SNMP (CVL),
KDF SSH (CVL),
KDF TLS9 (CVL),
KDF TPM (CVL),
PBKDF, TLS v1.2
KDF RFC7627, TLS
v1.3 KDF

#A5798

Shared Secret
value, Password

CO G, R, E 0 upon
Success

Table 9 - Approved Services

9 MD5 (No Security Claimed) is only used for TLS 1.0/1.1 KDF.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 28

Service Description Algorithms Accessed Roles Indicator

Symmetric Key
Generation using
DRBG

Generate a random key
for usage in a non-
Approved algorithm

DRBG CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Random Number
Generation

Generate a random
number

DRBG (with HMAC-SHA-1, HMAC-
SHA2-224, HMAC-SHA2-384,
HMAC-SHA2-512/256, HMAC-
SHA3-224, HMAC-SHA3-384)

CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Asymmetric Key
Generation

Generate an asymmetric
public and private key
for usage in a non-
Approved algorithm

DRBG CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Symmetric
Encrypt/Decrypt

Encrypt/decrypt data
using a symmetric
algorithm

AES (CFB64, GCM with external IV,
XPN, GCM SIV), ChaCha20, DES,
DESX, DES40, Skipjack, Triple-DES
(encryption, 2-key encryption /
decryption, or CFB32 mode)

CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Message Digest Digest data SHA-0, or using ISC’s incorrect,
non-compliant, versions of SHA2-
256, SHA2-384, SHA2-512, or
SHA2-224 corresponding to API
input 12, 13, 15, or 17 to the SHA2
constructor

CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Key Agreement Derive a shared key Diffie-Hellman, Elliptic Curve
Diffie-Hellman (using non-NIST
approved curves, or sizes less than
224 bits)

CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Key Transport Encrypt a data
encryption key with a
key encryption key

RSA key wrapping using PKCS #1
v1.5 padding as shown in section
8.1 of RFC 2313, or a modulus size
that is less than 2048-bits

CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Digital Signature Create a digital signature DSA signature generation, ECDSA
(using non-NIST approved curves,
or sizes less than 224 bits or SHA-
1), EdDSA, RSA using a modulus
size less than 2048-bits or SHA-1

CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Key Derivation Derive a key ANSI x9.63 KDF using SHA-1 or
SHA-3, TLS 1.3 KDF using SHA-1 or
SHA-3, PBKDF using key lengths
less than 112 bits or salt lengths
less than 128 bits

CO 0 upon Success (when in
the Non-Approved mode)

CDK_OP_UNSUPPORTED in
the Approved mode

Table 10 - Non-Approved Services

5. Software/Firmware Security

The CDK integrity is checked on startup using HMAC-SHA2-256 as described in section Pre-Operational

Tests. The integrity check can be initiated on demand using the mechanisms specified in section On-

Page 29 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Demand Self-Tests. The module executable is provided in the compiled form described in section

Platform Availability below.

6. Operational Environment

The CDK is a software module that operates in a modifiable operational environment running on a

general-purpose computer. The CDK is a single shared library.

Within the tested environments user processes are segregated into their own process space. Processes

are logically separated from all other processes by the operating system and underlying hardware. As the

module exists within the process space of the calling application, acting in the Crypto Officer role, and no

other process can access the same instance of the module, the module operates in single user mode.

6.1 Platform Availability

The CDK software was designed for use on a variety of operating systems and hardware platforms. For

FIPS 140-3 validation purposes, operational testing was performed on the tested platforms listed in

section 2.1.

The CDK software is provided as compiled code in the form of shared link libraries that can be run on

Microsoft Windows (CDKC8123S.DLL) and Linux (libcdkc.so.81.2.3) operating systems. There are no

security rules, settings, or restrictions to the configuration of the operational environment.

The module’s application programming interface (API), which provides access to the supported

cryptographic primitives, consists of a set of C++ classes as documented in ‘cdk_fips.h’, the other header

files referenced therein, and related documentation. For FIPS 140-3 validation, the CDK was loaded by

multiple test applications (one for each algorithm family) and executed on each of the supported

platforms.

7. Physical Security

The module is a software-only module and the physical security requirements of FIPS 140-3 level 1 do

not apply.

8. Non-Invasive Security

Non-invasive security is Non Applicable as there are currently no requirements in SP 800-140F.

9. Sensitive Security Parameters Management

The CDK uses, creates, and/or manages:

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 30

• symmetric keys (for use with a symmetric cipher or keyed hash functions), and

• asymmetric key pairs (for digital signatures and key transport/agreement protocols based on

public key schemes)

9.1 Storage Areas

The CDK is a low-level cryptographic toolkit and does not provide any key storage. As detailed in section

Pre-Operational Tests, a single, special purpose, integrity key is hard coded in the module in plaintext

form and is used to verify the integrity of the module.

9.2 SSP Input-Output Methods

The CDK does not manage any manually distributed cryptographic keys, either entry or output, external

to the cryptographic boundary. However, the logical C++ API exposed by the CDK provides methods for

loading and unloading symmetric keys and public/private key pairs in electronic form for manual10 key

distribution by the application.

9.3 SSP Zeroization Methods

An instantiated CDK object may contain a cryptographic key during its lifetime. Such keys are available to

the user for manipulation, but when the object is released, its memory and all keys in it are cleared.

Under normal operations all internal memory allocated by the CDK for temporary key storage is zeroized

when the object owning that memory is destroyed. The CO is responsible for ensuring that CDK objects

are destroyed properly (i.e., the application must allow the C++ destructors to be called by properly

exiting the application or by deleting all heap allocated CDK objects before application termination). To

zeroize the special purpose integrity key embedded in the CDK in plaintext form, the CDK shared library

must be securely erased from the hard disk.

9.4 SSPs

Listed in Table 11 are the keys and SSPs used by the module in the Approved mode.

Key/SSP
Name/

Type
Strength

Security
Function and
Cert. Number

Gener-
ation

Import/
Export

Establish-
ment

Storage Zeroization
Use & related

keys

AES Key
(CSP)

Between
128 and
256

AES-CBC, AES-
CCM, AES-
CFB128, AES-
CFB8, AES-CTR,
AES-ECB,

DRBG Import/expo
rt via API
(plaintext)

Agreement,
Transport,
Generation,
Entry,
Derivation

Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

AES
encrypt/decrypt
key

10 IG 9.5.A MD/EE - CM Software to/from App via TOEPP Path

Page 31 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

AES-OFB,
Conditioning
Component
AES-CBC-MAC

#A5798

AES MAC
Key (CSP)

Between
128 and
256

AES-CMAC

#A5798

DRBG Import/expo
rt via API
(plaintext)

Agreement,
Transport,
Generation,
Entry,
Derivation

Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

AES CMAC
generate/verify
key

AES GCM
IV11 (PSP)

96
(random)
or 8-1024
(counter)

AES-GCM

#A5798

Internally
using a
counter or
random
value

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

AES GCM
initialization
vector

AES GCM
Key (CSP)

Between
128 and
256

AES-GCM

#A5798

DRBG Import/expo
rt via API
(plaintext)

Agreement,
Transport,
Generation,
Entry,
Derivation

Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

AES GCM
encrypt/decrypt
/generate/verify
key

AES Key
Wrap key
(CSP)

Between
128 and
256

AES-KW,
AES-KWP

#A5798

DRBG Import/expo
rt via API
(plaintext)

Agreement,
Transport,
Generation,
Entry,
Derivation

Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

AES
encrypt/decrypt
key

AES XTS
Key (CSP)

128 or
256

AES-XTS
Testing
Revision 2.0

#A5798

DRBG Import/expo
rt via API
(plaintext)

Agreement,
Transport,
Generation,
Entry,
Derivation

Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

AES XTS
encrypt/decrypt
key

DSA Public
Key (PSP)

112 or
128

DSA SigVer
[FIPS186-4]

#A5798

N/A Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

DSA signature
verification
public key

ECC DH
Private
Key (CSP)

Between
112 - 256

KAS-ECC-SSC

#A5798

Internally
using the
DRBG

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

ECC DH private
key agreement
key

ECC DH
Public Key
(PSP)

Between
112 - 256

KAS-ECC-SSC

#A5798

Internally
computed
based on
the private
key

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

ECC DH public
key agreement
key

ECDSA
Private
Key (CSP)

Between
112 - 256

ECDSA SigGen,
Deterministic
ECDSA SigGen
[FIPS186-4],

Internally
using the
DRBG

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

ECDSA signature
generation
private key

11 The AES-GCM IV is generated internally randomly or as a counter per IG C.H. In the former case the IV is exactly

96-bits. In the latter case the IV may be 8- to 1024-bits in length.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 32

ECDSA KeyGen
[FIPS186-4]

#A5798

ECDSA
Public Key
(PSP)

Between
112 - 256

ECDSA SigVer,
ECDSA KeyVer
[FIPS186-4],
ECDSA SigVer
[FIPS186-4]

#A5798

Internally
computed
based on
the private
key

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

ECDSA signature
generation
public key

MAC Key
(CSP)

112
minimum

HMAC-SHA-1,
HMAC-SHA2-
224, HMAC-
SHA2-256,
HMAC-SHA2-
384, HMAC-
SHA2-512,
HMAC-SHA2-
512/224,
HMAC-SHA2-
512/256,
HMAC-SHA3-
224, HMAC-
SHA3-256,
HMAC-SHA3-
384, HMAC-
SHA3-512,
KMAC-128,
KMAC-256

#A5798

DRBG Import/expo
rt via API
(plaintext)

Agreement,
Transport,
Generation,
Entry,
Derivation

Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Keyed hash key

HMAC
Integrity
Key (Non-
SSP)

192 HMAC-SHA2-
256

#A5798

N/A None None Plaintext on
Disk
(embedded
in the
shared
library)

Explicit
zeroization
when securely
erasing the
CDK library
from disk

Keyed hash key
to verify the
integrity of the
module at
startup and on
demand

RSA Key
Wrap
Private
Key (CSP)

Between
112 and
192

KAS-IFC-SSC,
KTS-IFC, RSA
KeyGen
[FIPS186-4]

#A5798

Internally
using the
DRBG

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Private
component of
an RSA key pair

RSA Key
Wrap
Public Key
(PSP)

Between
112 and
192

KAS-IFC-SSC,
KTS-IFC

#A5798

Internally
computed
based on
the private
key

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Public
component of
an RSA key pair

RSA
Signature
Private
Key (CSP)

Between
112 and
192

RSA SigGen
[FIPS186-4],
RSA Signature
Primitive

#A5798

Internally
using the
DRBG

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Private
component of
an RSA key pair

RSA
Signature

Between
112 and
192

RSA SigVer
[FIPS186-4],

Internally
computed
based on

Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is

Public
component of
an RSA key pair

Page 33 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

Public Key
(PSP)

RSA Signature
Primitive

#A5798

the private
key

deallocated or
reboot

Triple-DES
Key (CSP)

112 TDES-CBC,
TDES-CFB64,
TDES-CFB8,
TDES-CTR,
TDES-ECB,
TDES-OFB

#A5798

DRBG Import/expo
rt via API
(plaintext)

Agreement,
Transport,
Generation,
Entry,
Derivation

Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Triple-DES (3-
Key) decrypt key
for legacy use
only

Triple-DES (2-
Key) decrypt key
for legacy use
only

DRBG ‘V’
Value
(CSP)

128 HMAC DRBG,
ESV

#A5798

Internally
using
entropy
input

None None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

DRBG internal
state values

DRBG Key
Value
(CSP)

256 HMAC DRBG,
ESV

#A5798

Internally
using
entropy
input

None None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

DRBG internal
state values

DRBG
Seed (CSP)

384 HMAC DRBG,
ESV

#A5798

Internally
using
entropy
input

None None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Entropy input
(length is
platform
dependent but
always greater
than 256-bits)

Entropy
Input
String
(CSP)

384 HMAC DRBG,
ESV

#A5798

Entropy as
per
SP 800-90B

None None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Entropy input
string
coming from the
entropy source.

Input length =
384 bits

Shared
Secret
Value
(CSP)

Between
112 - 256

KDA HKDF, KDA
OneStep, KDF
ANS 9.63, KDF
IKEv1, KDF
IKEv2, KDF
SNMP,
KDF SSH, KDF
TLS, TLS v1.2
KDF RFC7627,
TLS v1.3 KDF,
KDF TPM

#A5798

N/A Import/expo
rt via API
(plaintext)

Agreement Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Shared secret
values from key
agreement

Password
(CSP)

8 - 128 PBKDF

#A5798

N/A Import/expo
rt via API
(plaintext)

None Plaintext in
RAM

Implicit
zeroization
when object is
deallocated or
reboot

Passwords used
in PBKDF

Table 11 – SSPs

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 34

9.5 Entropy Sources

The CDK includes a non-physical entropy source within the module boundary which complies with SP

800-90B and has been validated using the guidance set out in the FIPS 140-3 Implementation Guidance.

Entropy Source
Minimum number of bits of

entropy
Details

ISC CDK Jitter Entropy Component 384-bits obtained per request The ISC CDK incorporates the Jitter Entropy source for
seeding for the DRBG. The underlying noise source is
expected to be able to provide at least 1 bit of entropy per
64-bit sample. Due to the sampling rate and conditioning
applied, the entropy source provides 1 bit of entropy per
each bit of conditioned output.

Table 12 - Non-Deterministic Random Number Generation Specification

9.6 RNGs and Output

The CDK generates keys for the approved and vendor affirmed algorithms listed in section Algorithms

and Parameters Allowed in the Approved mode. The CDK also generates Non-Approved keys for

algorithms listed in section Non-Approved Algorithms Allowed in the Approved Mode of Operation

The CDK does not support any non-approved algorithms that are allowed in the Approved mode.

Non-Approved-mode Algorithms The CDK can generate symmetric keys (for a symmetric cipher or keyed

hash function) using its DRBG. To generate key pairs, the public key generation methods use the CDK’s

random number generator. The calling application is responsible for maintaining the SSPs that it

establishes using the module, inclusive of assuring that SSPs established while operating in the Approved

mode are not shared or used in the Non-Approved mode (and vice versa).

9.7 Key Distribution

The CDK doesn’t perform key distribution. The CDK has basic cryptographic functions which can be used

by developers to build key distribution capabilities into their applications. The key distribution

techniques available for use include RSA Key Establishment, ECC Diffie-Hellman Key Agreement, and AES

key wrapping.

Page 35 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

10. Self-Tests

The CDK performs self-tests to ensure that it is functioning properly. If the message digest value

computed over the CDK does not match the embedded expected value, or if an algorithm KAT fails, then

the module enters the hard error state and no further cryptographic operations are possible. To recover

from the hard error state, the application using the CDK’s services must be restarted.

The CDK returns non-zero error codes from its API to indicate failure. Most error codes are output when

the CDK transitions through the soft error state (which is immediately and automatically cleared), but

there are two special error codes that the CDK returns to indicate it has entered the hard error state. The

CDK returns CDK_ERROR_STATE with value 1470 from its interfaces when it is in the hard error state for

any reason other than a pairwise key test failure. The CDK returns CDK_KEYPAIR_INCONSISTENT with value

1234 when a pairwise key test fails during an on-demand self-test and the CDK enters the hard error

state. Additionally, a static function, Algorithm::isErrorState(),may be called to determine if the CDK is

in the hard error state. Table 13 contains details on the error states.

Name Description Conditions
Recovery

Method
Indicator

Soft
Error

This transitional
state represents
non-critical
errors, such as
invalid input to a
function in the
library.

Function returns one of:
CDK_FAILED
CDK_INTERNAL_ERR
CDK_CALLBACK_FAILED
CDK_INVALID_PTR
CDK_INVALID_CTX
CDK_INVALID_DATA
CDK_INVALID_DATA_LENGTH
CDK_INVALID_KEY
CDK_INVALID_KEY_PTR
CDK_INVALID_KEY_LENGTH
CDK_INVALID_SIGNATURE
CDK_INVALID_DIGEST
CDK_INVALID_DIGEST_ALG
CDK_INVALID_ALG
CDK_INVALID_MODE
CDK_INVALID_PADDING
CDK_INVALID_IV_SIZE
CDK_INVALID_IV
CDK_INVALID_KEY_SIZE
CDK_INVALID_ROUNDS
CDK_INVALID_PARAM_LENGTH
CDK_INVALID_KEYTYPE
CDK_INVALID_KEYUSAGE
CDK_INVALID_ITERATION_COUNT
CDK_INVALID_SALT
CDK_INVALID_RANDOM
CDK_INVALID_SEED
CDK_INVALID_ALG_PARAMS
CDK_INVALID_PUB_EXPONENT
CDK_INVALID_TAG
CDK_INVALID_TYPE
CDK_INPUT_LENGTH_ERR
CDK_INPUT_DATA_ERR
CDK_OP_UNSUPPORTED

Automatic as
the CDK returns
to the
operational
state
immediately
after returning
the error code

Function call returns a non-
zero value as listed in
Conditions column

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 36

CDK_OP_FAILED
CDK_PRVKEY_CANNOT_FIND
CDK_KEYGEN_FAILED
CDK_PUBKEY_CANNOT_FIND
CDK_KEY_INVALID
CDK_KEY_INVALID_USAGE
CDK_KEY_INVALID_KDF
CDK_KEY_INVALID_PARTYID
CDK_MODE_UNSUPPORTED
CDK_KEY_LENGTH_UNSUPPORTED
CDK_NO_KEY
CDK_OPERATION_NOT_INITALIZED
CDK_RESEED_REQUIRED
CDK_NO_ENTROPY
CDK_INVALID_BLOCK_SIZE
CDK_PARSE_ERROR
CDK_INVALID_KEY_TOO_MANY_PRIMES
CDK_UNKNOWN_OID

Hard
Error

This state
represents
critical errors
such as failure of
the CDK’s
pseudo-random
number
generator or
failure of an on-
demand self-test.

Pre-operational test failure
Conditional self-test failure
NIST SP 800-90A Health Tests failure
Pair-wise self-test failure
SP 800-90B Health Tests failure
IG C.I XTS-AES Test failure
On-demand self-test failure

Restart the
application
using the CDK’s
services

Algorithm::isErrorState()
returns true, function call
returns CDK_ERROR_STATE,
or function call returns
CDK_KEYPAIR_INCONSISTENT

Table 13 – Error States

10.1 Pre-Operational Tests

When the CDK module is loaded from disk by the operating system, it executes a pre-operational

software integrity test as well as conditional cryptographic algorithm self-tests. Basic self-test and library

verification is performed at library load by using a C++ static constructor to call the self-test and integrity

test methods in Table 14 – Self-Tests. The conditional tests include known answer tests (KATs) or pair-

wise consistency tests (PCTs) for each of the Approved algorithms in the CDK (see Section 2.2.1). Table 14

– Pre-Operational Self-Tests also lists those algorithms whose cryptographic algorithm self-test is run on

first use as opposed to at module start.

The integrity test operates by calculating a 256-bit HMAC (HMAC-SHA2-256) over the module and

comparing it to an expected value embedded (along with the key) in the module itself at the factory.

These tests are performed at startup regardless of whether the module is put into the Approved mode. If

the software integrity test fails or if any self-test fails, the module displays a message on the output

interface, enters the error state, and inhibits all cryptographic services. The integrity test executes after

the HMAC KATs on which it relies. On all platforms but Microsoft Windows, the integrity test is

performed over the entire module binary except for the seventy-two (72) byte MAC field. On Microsoft

Windows, the integrity test is performed over the entire module binary except for the seventy-two (72)

byte MAC field and the Windows PE header IMAGE_DIRECTORY_ENTRY_SECURITY field that contains (or

Page 37 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

will contain) a digital signature and certificate applied by Microsoft tooling post the population of the

MAC integrity field.

Algorithm Type Description

HMAC-SHA2-256 CAST Known Answer Test done prior to the Software Integrity Test as per IG 10.2.A

HMAC-SHA2-256 SW Integrity Software integrity test using HMAC-SHA2-256 for CDK

Table 14 – Pre-Operational Self-Tests

10.2 Conditional Self-Tests

Conditional self-tests are performed when certain specific conditions arise within the CDK. The

conditional self-tests are described in the following paragraphs.

If any conditional self-test fails, the module displays a message on the output interface, enters the error

state, and inhibits all cryptographic services.

Interruption of the module’s operation results in the module terminating and causes the module to be

unloaded from memory. This most likely occurs when the application using the module terminates.

When the application using the module is started again, the module is loaded in the initial state, the

start-up self-tests will run, the integrity test will run, and any conditional test states (i.e., counters) will be

reset.

Algorithm Type Description

AES-CBC CAST Encrypt and Decrypt; Key Size: 128

AES CCM CAST Encrypt and Decrypt; Key Size: 128

AES CMAC CAST Generate; Key Size: 128

AES GCM CAST Encrypt and Decrypt; Key Size: 128

AES XTS CAST Encrypt and Decrypt AES-256

AES-ECB CAST Encrypt and Decrypt; Key Size: 128

Deterministic
ECDSA

CAST Sign and Verify using P-256, SHA2-256

HMAC DRBG CAST SHA2-256/512; (with and without PR)

DRBG Health Tests CAST Instantiate/generate/reseed health checks

DSA CAST Verify using 2048-bit key, SHA2-256

ECC CDH CAST Primitive “Z” computation using two P-256 keys

ECDSA CAST Sign and verify using P-256, SHA2-256, Sign and verify using B-233, SHA2-256

HKDF CAST SHA2-256

HMAC CAST One KAT each: SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA3-224,
SHA3-256, SHA3-384, SHA3-512 (also covers SHA-1, SHA-2, and SHA-3 algorithms)

IKEv1 KDF CAST SHA2-256

IKEv2 KDF CAST SHA2-256

KAS-IFC-SSC CAST RSASVE.GENERATE and RSASVE.RECOVER using 2048-bit key

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 38

KDA OneStep
SP800-56Cr2

CAST SHA2-256

KDF ANSI X9.63 CAST SHA2-256

PBKDF CAST SHA2-256

RSA CAST Sign and verify using 2048-bit key, SHA2-256, PKCS#1v1.5

SHA-3 CAST One KAT each: SHAKE-128/256, cSHAKE-128/256, KMAC-256, TupleHash-128, and
ParallelHash-128

SNMP KDF CAST Password Length: 64 and 8192

SSH KDF CAST SHA2-256

TLS 1.1 KDF CAST SHA2-256, SHA2-384, and SHA2-512

TLS 1.2 KDF CAST SHA2-256, SHA2-384, and SHA2-512

TLS 1.3 KDF CAST SHA2-256

TPM KDFs CAST SHA2-256

Triple-DES CAST 2-key Triple-DES decrypt-only and 3-key Triple-DES decrypt-only

Table 15 – Conditional Self-Tests

10.2.1 Random Number Tests

10.2.1.1 NIST SP 800-90A Health Tests

The DRBG KAT detailed in Table 14 – Pre-Operational Self-Tests exercises the DRBG’s instantiate, reseed,

and generate functions and covers the required health tests specified in SP 800-90A, Section 11.3.

SP 800-90A, Section 11.3 also requires that the generate function be tested at reasonable intervals. In

the CDK, the self-test interval for calls to the generate function is 32,768 and was chosen arbitrarily:

every 32,768th call to the generate function causes the DRBG to run its self-tests again.

10.2.2 Pair-Wise Self-Tests

All ECDSA public/private key pairs are automatically tested for pair-wise consistency upon generation by

generating a signature and verifying the signature for an embedded message.

All Elliptic Curve Diffie-Hellman public/private key pairs are automatically tested for pair-wise consistency

upon generation by computing a shared secret, deriving the key, and encrypting a message and then

decrypting the message.

All RSA key pairs are automatically tested for pair-wise consistency upon generation by generating a

signature and verifying the signature over, and by encrypting and decrypting, an embedded message.

Algorithm Type Description

ECDSA PCT Key-Pair Generation and Key Import

RSA PCT Key-Pair Generation and Key Import

KAS-ECC PCT Key-Pair Generation and Key Import

Table 16 – Pair-Wise Consistency Tests

Page 39 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

10.2.3 SP 800-90B Health Tests

As required by SP800-90B the CDK’s jitter entropy component implements a continuous Repetition

Count Test and a continuous Adaptive Proportion Test. If either test fails, entropy cannot be obtained,

the operation is aborted, and the CDK enters the error state.

10.2.4 IG C.I XTS-AES Test

As required per IG C.I, when the XTS-AES object is initialized by an operator the CDK ensures that the key

and tweak values are not identical. If they are identical, the CDK returns error code 1038,

CDK_INVALID_KEY from its API.

10.2.5 On-Demand Self-Tests

As documented in the Crypto Officer’s Guide and the User’s Guide, the CO may, on-demand, invoke any

of the self-tests listed in Table 14 – Pre-Operational Self-Tests to ensure the integrity of specific

algorithms by configuring their application to call the desired self-test function in the API (e.g.,

ISC_CDK::Test_SHA256()). There is also a master test function (ISC_CDK::SelfTest()) that the CO may call

to run all self and integrity tests.

11. Life-Cycle Assurance

11.1 Finite State Model

The CDK was designed around a Finite State Model (FSM) that is detailed in a proprietary document

submitted with this security policy.

11.2 Delivery and Operation and Guidance Documents

The ISC CDK is delivered to the CO as a compressed file archive (zip or tar) electronically or on physical

media for each target platform with the version and platform indicated in the package name.

• cdk8.1.Y.X.win.x86_64.zip

• cdk8.1.Y.Z.lin.x64.tgz

The ISC CDK is delivered in binary form as a pre-compiled shared library. The deliverables also include C-

header files, crypto officer’s guide, and FIPS 140-3 security policy.

When a CO receives the module, in .zip or .tgz form, they should extract the contents on to the

computer in a folder of their choice and then follow the user’s guide to integrate it into applications. The

CO is responsible for installing the ISC CDK on systems as part of their own application’s installation.

12. Mitigation of Other Attacks

The CDK has not been designed to mitigate any specific attacks. The CDK does not employ any mitigation

techniques against non-invasive attacks.

CDK 8.1.2.3 Security Policy © 2002-2025 Information Security Corporation. Page 40

13. Acronyms

Acronym Meaning

AES Advanced Encryption Standard

ANSI American National Standards Institute

API Application Programming Interface

CBC Cipher Block Chaining

CCM Counter with CBC-Message Authentication Code

CAST Cryptographic Algorithm Self-Test

PCT Pair-Wise Consistency Test

CMAC Cipher-based Message Authentication Code

CO Crypto Officer

CDK Cryptographic Development Kit

CSP Critical Security Parameter

DES Data Encryption Standard

DH Diffie-Hellman

DHE Diffie Hellman Key Exchange

DRGB Deterministic Random Bit Generator

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EES Escrowed Encryption Standard (also known as Skipjack)

FSM Finite State Machine

FIPS Federal Information Processing Standard

GCM Galois/Counter Mode

HMAC Keyed Hash Message Authentication Code

ISC Information Security Corporation

IV Initialization Vector

KAT Known Answer Test

KDF Key Derivation Function

MAC Message Authentication Code

NIST National Institute of Standards and Technology

OS Operating System

PC Personal Computer

PCT Pair-wise Consistency Test

PKV Public Key Verification

RAM Random Access Memory

RBG Random Bit Generator

rDSA RSA Digital Signature Algorithm

RSA Rivest Shamir Adleman

Page 41 © 2002-2025 Information Security Corporation CDK 8.1.2.3 Security Policy

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SIV Synthetic Initialization Vector

SP Special Publication

SSP Sensitive Security Parameter

TOEPP Tested Operational Environment’s Physical Perimeter

XEX Xor-encrypt-xor

XTS XEX-based tweaked-codebook mode with ciphertext stealing

