
 Red Hat Enterprise Linux 8 NSS Cryptographic Module

version rhel8.20201215

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.3

Last Update: 2022-10-19

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Table of Contents
1. Cryptographic Module Specification... 4

1.1. Description of the Module... 4
1.2. Description of the Approved Modes..5
1.3. Cryptographic Boundary... 12

1.3.1. Hardware Block Diagram.. 13
1.3.1. Hardware Block Diagram.. 13
1.3.2. Software Block Diagram... 14
1.3.2. Software Block Diagram... 14

2. Cryptographic Module Ports and Interfaces..15
2.1. PKCS #11... 15
2.2. Inhibition of Data Output... 15
2.3. Disconnecting the Output Data Path from the Key Processes..16

3. Roles, Services and Authentication.. 17
3.1. Roles.. 17
3.2. Role Assumption... 17
3.3. Strength of Authentication Mechanism...17
3.4. Multiple Concurrent Operators.. 18
3.5. Services.. 18

3.5.1. Calling Convention of API Functions...18
3.5.1. Calling Convention of API Functions...18
3.5.2. API Functions.. 18
3.5.2. API Functions.. 18

4. Physical Security.. 27
5. Operational Environment.. 28

5.1 Applicability.. 28
5.2 Policy... 28

6. Cryptographic Key Management.. 29
6.1. Random Number Generation..32
6.2. Key/CSP Storage.. 33
6.3. Key Establishment.. 33
6.4. Key/CSP Zeroization... 34
6.5. Key Derivation.. 34

7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)...35
7.1 Statement of compliance... 35

8. Self-Tests.. 36
8.1. Power-Up Tests.. 36
8.2. Conditional Tests.. 38

9. Guidance.. 39
9.1. Crypto Officer Guidance... 39

9.1.1. FIPS module installation instructions..39
9.1.1. FIPS module installation instructions..39
9.1.2. Access to Audit Data...40
9.1.2. Access to Audit Data...40

9.2. User Guidance.. 40
9.2.1. RSA and DSA Keys.. 41
9.2.1. RSA and DSA Keys.. 41
9.2.2. Triple-DES Keys... 41
9.2.2. Triple-DES Keys... 41
9.2.3. Key derivation using SP800-132 PBKDF..41
9.2.3. Key derivation using SP800-132 PBKDF..41
9.2.4. AES-GCM IV... 42

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

2 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

9.2.4. AES-GCM IV... 42
9.3. Handling Self-Test Errors..42

10. Mitigation of Other Attacks.. 43
11. Glossary and Abbreviations.. 44
12. References... 45

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

3 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

1. Cryptographic Module Specifcatioo
This document is the non-proprietary security policy for the Red Hat Enterprise Linux 8 NSS
Cryptographic Module, and was prepared as part of the requirements for conformance to Federal
Information Processing Standard (FIPS) 140-2, Security Level 1.

1.1. Descriptioo of the Module
The Red Hat Enterprise Linux 8 NSS Cryptographic Module version rhel8.20201215 (hereafter
referred to as the “Module”) is a software library supporting FIPS 140-2 approved cryptographic
algorithms. For the purposes of the FIPS 140-2 validation, its embodiment type is defned as multi-
chip standalone. The Module is an open-source, general-purpose set of libraries designed to
support cross-platform development of security-enabled client and server applications.
Applications built with NSS can support SSL v2 and v3, TLS, IKE, PKCS #5, PKCS #7, PKCS #11,
PKCS #12, S/MIME, X.509 v3 certifcates, and other security standards supporting FIPS 140-2
validated cryptographic algorithms. It combines a vertical stack of Linux components intended to
limit the external interface each separate component may provide.

The Module is FIPS 140-2 validated at overall Security Level 1 with levels for individual sections
shown in the table below:

Security Compooeot FIPS 140-2 Security Level

Cryptographic Module Specifcation 1

Cryptographic Module Ports and Interfaces 1

Roles, Services and Authentication 2

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

Table 1: Security Level of the Module

The Red Hat Enterprise Linux 8 NSS Cryptographic Module has been tested on the following
platforms:

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

4 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Hardware
Platform

Processor Operatiog System Tested

With
AES-NI

Without
AES-NI

Dell PowerEdge
R440

Intel(R) Xeon(R) Silver
4216

Red Hat Enterprise Linux 8 Yes Yes

Table 2: Tested Platforms

NOTE: This validation is only for the tested platform listed in Table 2 of this document. It does not
cover other derivatives of the Operating Systems (I.e, CentOS or Fedora).

The Module has been tested for the following confgurations:
• 64-bit library, x86_64 with and without AES-NI enabled.

To operate the Module, the operating system must be restricted to a single operator mode of
operation. (This should not be confused with single user mode which is run level 1 on Red Hat

Enterprise Linux (RHEL). This refers to processes having access to the same cryptographic
instance which RHEL ensures this cannot happen by the memory management hardware.)

The following platform has not been tested as part of the FIPS 140-2 level 1 certifcation however
Red Hat “vendor afrms” that this platform is equivalent to the tested and validated platform.
Additionally, Red Hat afrms that the module will function the same way and provide the same
security services on any of the systems listed below.

Maoufacturer Processor O/S & Ver. Tested

Dell PowerEdge
R430

Intel(R) Xeon(R)
E5

Red Hat Enterprise
Linux 8

N/A

Table 2A: Vendor Afrmed Operating Environment

Per FIPS 140-2 IG G.5, the CMVP makes no statement as to the correct operation of the module or
the security strengths of the generated keys when so ported if the specifc operational
environment is not listed on the validation certifcate.

1.2. Descriptioo of the Approved Modes
The Module supports two modes of operation: FIPS Approved mode and non-Approved mode.
When the Module is powered on, the power-up self-tests are executed automatically without any
operator intervention. If the power-up self-tests complete successfully, the Module will be in FIPS
Approved mode.

The table below lists the Approved algorithms in FIPS Approved mode:

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

5 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Usage Approved Algorithm Keys/CSPs CAVP
Certifcate

Encryption
and decryption

AES encryption and
decryption with ECB, CBC,
CTR and GCM modes

AES 128, 192 and 256 bits keys Certs.
#A1173,
#A1174

AES encryption and
decryption with CMAC mode

Cert.
#A1176

AES key wrapping and
unwrapping with KW and KWP
modes

Certs.
#A1175
#A1177

Three-key Triple-DES
encryption and decryption
with ECB and CBC modes

Three-key Triple-DES 192 bits keys Cert.
#A1173

Message
digest

SHA-11, SHA-224, SHA-256,
SHA-384 and SHA-512

N/A Cert.
#A1173

HMAC with SHA-1, SHA-224,
SHA-256, SHA-384 and SHA-
512

At least 112 bits HMAC keys

Random
number
generation

NIST SP800-90A Hash_DRBG
with SHA-256

Entropy input string, seed, V and C
values

Cert.
#A1173

Signature
generation
and
verifcation

DSA signature generation L=3072, N=256 (with SHA-224,
SHA-256, SHA-384, SHA-512)

L=2048, N=256 (with SHA-224,
SHA-256 SHA-384, SHA-512)

L=2048, N=224 (with SHA-224,
SHA-256 SHA-384, SHA-512)

Cert.
#A1173

DSA signature verifcation L=3072, N=256 (with SHA-1, SHA-
224, SHA-256, SHA-384, SHA-512)

L=2048, N=256 (with SHA-1, SHA-
224, SHA-256, SHA-384, SHA-512)

L=2048, N=224 (with SHA-1, SHA-
224, SHA-256, SHA-384, SHA-512)

L=1024, N=160 (with SHA-1, SHA-
224, SHA-256, SHA-384, SHA-512)

1 SHA-1 is used in the approved mode for secure hash algorithm, HMAC, DSA Signature
Verifcation, ECDSA Signature Verifcation and PBKDF key derivation only.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

6 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Usage Approved Algorithm Keys/CSPs CAVP
Certifcate

ECDSA signature generation ECDSA keys based on P-256, P-384
and P-521 curves (with SHA-224,
SHA-256, SHA-384, SHA-512)

ECDSA signature verifcation ECDSA keys based on P-256, P-384
and P-521 curves (with SHA-1,
SHA-224, SHA-256, SHA-384, SHA-
512)

FIPS 186-4 RSA signature
generation according to
PKCS#1v1.5

RSA 2048, 3072 and 4096 bits keys
(with SHA-256, SHA-384, SHA-512)

FIPS 186-4 RSA signature
verifcation according to
PKCS#1v1.5

RSA 2048, 3072 and 4096 bits keys
(with SHA-1, SHA-256, SHA-384,
SHA-512)

Key and
domain
parameter
generation

FIPS 186-4 RSA key pair
generation

RSA 2048, 3072 and 4096 bits keys Cert.
#A1173

DSA key pair generation L=3072, N=256

L=2048, N=256

L=2048, N=224

DSA domain parameter
generation

L=3072, N=256 (with SHA-256)

L=2048, N=256 (with SHA-256)

L=2048, N=224 (with SHA-224)

ECDSA key pair generation ECDSA keys based on P-256, P-384
and P-521 curves

Key and
domain
parameter
verifcation

ECDSA public key verifcation ECDSA keys based on P-256, P-384
and P-521 curves

DSA domain parameter
verifcation

L=3072, N=256 (with SHA-256)

L=2048, N=256 (with SHA-256)

L=2048, N=224 (with SHA-224)

L=1024, N=160 (with SHA-1)

Encryption
padding

RSA OAEP Partial_Val Modulo 2048, 3072, 4096, 6144,
8192 with SHA-224, SHA-256, SHA-
384, SHA-512

Cert.
#A1173

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

7 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Usage Approved Algorithm Keys/CSPs CAVP
Certifcate

Key
generation

SP800-133
Cryptographic Key Generation
(CKG)

AES key
Triple-DES key
HMAC key
RSA key pair
DSA key pair
ECDSA key pair
ECDH key pair
DH key pair

(vendor af-
frmed)

SP 800-56Arev3 Safe Primes
Key Generation

Safe Prime Groups:
ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192

for Dife-Hellman shared
secret computation

Dife-Hellman key pair Cert.
#A1173

Key derivation SP800-135 key derivation
TLS v1.0, TLS v1.1, TLS v1.2
SHA2-256, SHA2-384, SHA2-
512

TLS pre-master secret and master
secret

CVL Cert.
#A1173

SP800-56Crev1 KDA HKDF for
TLS1.3 PRF.

HMAC-SHA-224, HMAC-SHA-
256, HMAC-SHA-384, HMAC-
SHA-512

Cert.
#A1172

SP800-135 key derivation
IKE v1 and v2

IKE SA encryption and integrity
keys, IPsec SA encryption and
integrity keys, shared secret

CVL Cert.
#A1178

SP800-132 PBKDF PBKDF password
PBKDF derived key

Cert.
#A1173

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

8 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Usage Approved Algorithm Keys/CSPs CAVP
Certifcate

Shared Secret
Computation2

SP 800-56Arev3 KAS-FFC-SSC

dhEphem Scheme with safe
prime groups for Dife-
Hellman Shared Secret
Computation

Safe Prime Groups:
ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192

Dife-Hellman key pair

Shared secret

Cert.
#A1173

SP 800-56Arev3 KAS-ECC-SSC

ECC
Ephemeral Unifed Scheme
for EC Dife-Hellman Shared
Secret Computation

NIST curves P-256, P-384, P-
521

EC Dife-Hellman key pair

Shared secret

KTS SP800-38F AES KW, KWP AES keys 128, 192, 256 bits Certs.
#A1175
#A1177

SP800-38F AES GCM Certs.
#A1173,
#A1174

SP800-38F AES CBC and
HMAC

AES keys 128, 256 bits AES Certs.
#A1173,
#A1174

HMAC Cert.
#A1173

SP800-38F Triple-DES CBC
and HMAC

Triple-DES keys 192 bits Triple-Des
Cert.
#A1173

HMAC Cert.
#A1173

RFC 3560 RSA OAEP RSA keys 2048, 3072, 4096, 6144,
8192 bits

Cert.
#A1173

Entropy SP800-90B ENT (NP) N/A N/A

2 KAS-FFC-SSC and KAS-ECC-SSC components which are not SP 800-56ARev3, although tested by
CAVP, are not used by the module and only the SP 800-56ARev3 compliant are used.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

9 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Table 3: Approved Algorithms in FIPS Approved mode

Note: The TLS protocol has not been reviewed or tested by the CAVP and CMVP.

Note: There are algorithms, modes, and keys that have been CAVP tested but not used by the
module in FIPS approved mode. Only the algorithms, modes/methods, and key
lengths/curves/moduli shown in tables 3 and 4 are used by the module in FIPS approved mode.

Table 4 lists the non-Approved but allowed algorithms in FIPS Approved mode:

Usage ooo-Approved but
allowed Algorithm

Keys/CSPs Note

Key wrapping RSA PKCS#1-v1.5
key wrapping
(encrypt, decrypt)

RSA key size between 2048
bits and 16384 bits (or more)

Allowed according to IG D.9

Table 4: non-Approved but Allowed Algorithms in FIPS Approved mode

Table 5 lists the non-Approved algorithms, use of these algorithms will result the module operating
in non-Approved mode implicitly.

Usage ooo-Approved Algorithm

Encryption and
decryption

AES CTS

AES-GCM with counter IV generation

AES-GCM with random IV generation using less than 96 bits

AES-GCM with external IV generation

Camellia

Chacha20/Poly1305 AEAD

DES

RC2

RC4

RC5

SEED

Two-key Triple-DES encryption/decryption

Signature generation
and verifcation

DSA signature generation with key size not equal to 2048 or 3072 bits or
with SHA-1.
DSA signature verifcation with key size not equal to 1024, 2048 or 3072
bits

RSA signature generation with key size not equal to 2048, 3072 or 4096
bits or with SHA-1.
RSA signature generation and signature verifcation using SHA-224
RSA signature verifcation with key size not equal to 1024, 2048, 3072 or
4096 bits

ECDSA signature generation using SHA-1

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

10 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Usage ooo-Approved Algorithm

Key Derivation PBKDF (non-compliant with SP800-132)

Key Derivation KBKDF (no KAT)

Message digest MD2

MD5

Key management DSA domain parameter verifcation with key size not equal to 1024, 2048
or 3072 bits
DSA key pair generation with key size not equal to 2048 and 3072 bits

RSA key pair generation for key sizes not listed in Table 3

AES/Triple-DES non-SP 800-38F compliant key wrapping

Dife-Hellman shared secret computation with key size less than 2048 bits
or use of non safe primes

Dife-Hellman keys generated with domain parameters other than safe
primes.

RSA key wrapping (encrypt, decrypt) with key size less than 2048 bits

J-PAKE key agreement

EC with Edwards 25519 Curve

Table 5: non-Approved Algorithms

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

11 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

1.3. Cryptographic Bouodary
The Module's physical boundary is the surface of the case of the platform (depicted in Figure 1).

The Module's logical cryptographic boundary consists of the shared library fles and their integrity
check signature fles, which are delivered through Red Hat Package Manager (RPM) as listed below:

• nss-softokn RPM fle with version 3.53.1-17.el8_3, which contains the following fles:

◦ /usr/lib64/libsoftokn3.chk (64 bits)

◦ /usr/lib64/libsoftokn3.so (64 bits)

• nss-softokn-freebl RPM with version 3.53.1-17.el8_3, which contains the following fles:

◦ /usr/lib64/libfreeblpriv3.chk (64 bits)

◦ /usr/lib64/libfreeblpriv3.so (64 bits)

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

12 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

1.3.1. Hardware Block Diagram

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

13 of 45

Figure 1: Hardware Block Diagram

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

1.3.2. Software Block Diagram

The NSS cryptographic module implements the PKCS #11 (Cryptoki) API. The API itself defnes the
logical cryptographic boundary, thus all implementation is inside the boundary. The diagram below
shows the relationship of the layers.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

14 of 45

Figure 2: Software Block Diagram

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

2. Cryptographic Module Ports aod Ioterfaces
As a software-only module, the Module does not have physical ports. For the purpose of FIPS 140-2
validation, the physical ports of the Module are interpreted to be the physical ports of the
hardware platform on which it runs. The logical interface is a C-language Application Program
Interface (API) following the PKCS #11 specifcation, the database fles in kernel fle system, the
environment variables and confguration fle.

Table 6 Summarizes the four logical interfaces.

FIPS 140-2 Ioterface Logical Ioterface

Data Input API input parameters and database fles in kernel fle system

Data Output API output parameters and database fles in kernel fle system

Control Input API function calls, environment variables and confguration
fle (/proc/sys/crypto/fps_enabled)

Status Output API return codes and status parameters

Table 6: Ports and Interfaces

The Module uses different function arguments for input and output to distinguish between data
input, control input, data output, and status output, to disconnect the logical paths followed by
data/control entering the module and data/status exiting the module. The Module doesn't use the
same buffer for input and output. After the Module is done with an input buffer that holds security-
related information, it always zeroizes the buffer so that if the memory is later reused as an output
buffer, no sensitive information can be inadvertently leaked.

2.1. PKCS #11
The logical interfaces of the Module consist of the PKCS #11 (Cryptoki) API. The API itself defnes
the Module's logical boundary, i.e. all access to the Module is through this API. The functions in the
PKCS #11 API are listed in Table 7.

2.2. Iohibitioo of Data Output
All data output via the data output interface is inhibited when the NSS cryptographic module is
performing self-tests or in the Error state.

• During self-tests: All data output via the data output interface is inhibited while self-tests
are executed.

• In Error state: The Boolean state variable sftk_fatalError tracks whether the NSS
cryptographic module is in the Error state. Most PKCS #11 functions, including all the
functions that output data via the data output interface, check the sftk_fatalError state
variable and, if it is true, return the CKR_DEVICE_ERROR error code immediately. Only the
functions that shut down and restart the module, reinitialize the module, or output status
information can be invoked in the Error state. These functions are FC_GetFunctionList,
FC_Initialize, FC_Finalize, FC_GetInfo, FC_GetSlotList, FC_GetSlotInfo,
FC_GetTokenInfo, FC_InitToken, FC_CloseSession, FC_CloseAllSessions, and
FC_WaitForSlotEvent.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

15 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

2.3. Discoooectiog the Output Data Path from the Key
Processes

During key generation and key zeroization, the Module may perform audit logging, but the audit
records do not contain sensitive information. The Module does not return the function output
arguments until the key generation or key zeroization is fnished. Therefore, the logical paths used
by output data exiting the module are logically disconnected from the processes/threads
performing key generation and key zeroization.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

16 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

3. Roles, Services aod Autheoticatioo
This section defnes the roles, services, and authentication mechanisms and methods with respect
to the applicable FIPS 140-2 requirements.

3.1. Roles
The Module implements a Crypto Ofcer (CO) role and a User role:

• The CO role is supported for the installation and initialization of the module. Also, the CO
role can access other general-purpose services (such as message digest and random
number generation services) and status services of the Module. The CO does not have
access to any service that utilizes the secret or private keys of the Module. The CO must
control the access to the Module both before and after installation, including management
of physical access to the computer, executing the Module code as well as management of
the security facilities provided by the operating system.

• The User role has access to all cryptographically secure services which use the secret or
private keys of the Module. It is also responsible for the retrieval, updating and deletion of
keys from the private key database.

3.2. Role Assumptioo
The CO role is implicitly assumed by an operator while installing the Module by following the
instructions in Section 9.1 and while performing other CO services on the Module.

The Module implements a password-based authentication for the User role (role-based
authentication). To perform any security services under the User role, an operator must log into
the Module and complete an authentication procedure using the password information unique to
the User role operator. The password is passed to the Module via the API function as an input
argument and won't be displayed. The return value of the function is the only feedback
mechanism, which does not provide any information that could be used to guess or determine the
User's password. The password is initialized by the CO role as part of module initialization and can
be changed by the User role operator.

If a User-role service is called before the operator is authenticated, it returns the
CKR_USER_NOT_LOGGED_IN error code. The operator must call the FC_Login function to provide the
required authentication.

Once a password has been established for the Module, the user is allowed to use the security
services if and only if the user is successfully authenticated to the Module. Password establishment
and authentication are required for the operation of the Module. When the Module is powered off,
the result of previous authentication will be cleared and the user needs to be re-authenticated.

3.3. Streogth of Autheoticatioo Mechaoism
The Module imposes the following requirements on the password. These requirements are
enforced by the module on password initialization or change.

• The password must be at least seven characters long.

• The password must consist of characters from three or more character classes. We defne
fve character classes: digits (0-9), ASCII lowercase letters (a-z), ASCII uppercase letters (A-
Z), ASCII non-alphanumeric characters (space and other ASCII special characters such as
'$', '!'), and non-ASCII characters (Latin characters such as 'é', 'ß'; Greek characters such as

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

17 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

'Ω', 'θ'; other non-ASCII special characters such as '¿'). If an ASCII uppercase letter is the
frst character of the password, the uppercase letter is not counted toward its character
class. Similarly, if a digit is the last character of the password, the digit is not counted
toward its character class.

To estimate the maximum probability that a random guess of the password will succeed, we
assume that:

• The characters of the password are independent with each other.

• The password contains the smallest combination of the character classes, which is fve
digits, one ASCII lowercase letter and one ASCII uppercase letter. The probability to guess
every character successfully is (1/10)^5 * (1/26) * (1/26) = 1/67,600,000.

Since the password can contain seven characters from any three or more of the aforementioned
fve character classes, the probability that a random guess of the password will succeed is less
than or equals to 1/67,600,000, which is smaller than the required threshold 1/1,000,000.

After each failed authentication attempt, the NSS cryptographic module inserts a one-second delay
before returning to the caller, allowing at most 60 authentication attempts during a one-minute
period. Therefore, the probability of a successful random guess of the password during a one-
minute period is less than or equals to 60 * 1/67,600,000 = 0.089 * (1/100,000), which is smaller
than the required threshold 1/100,000.

3.4. Multiple Coocurreot Operators
The Module doesn't allow concurrent operators.

Note: FIPS 140-2 Implementation Guidance Section 6.1 clarifes the use of a cryptographic module
on a server.

When a cryptographic module is implemented in a server environment, the server application is
the user of the cryptographic module. The server application makes the calls to the cryptographic
module. Therefore, the server application is the single user of the cryptographic module, even
when the server application is serving multiple clients.

3.5. Services

3.5.1. Calliog Cooveotioo of API Fuoctioos

The Module has a set of API functions denoted by FC_xxx. All the API functions are listed in Table 7.

Among the module's API functions, only FC_GetFunctionList is exported and therefore callable by
its name. All the other API functions must be called via the function pointers returned by
FC_GetFunctionList. It returns a CK_FUNCTION_LIST structure containing function pointers
named C_xxx such as C_Initialize and C_Finalize. The C_xxx function pointers in the
CK_FUNCTION_LIST structure returned by FC_GetFunctionList point to the FC_xxx functions.

The following convention is used to describe API function calls. Here FC_Initialize is used as
examples:

• When “call FC_Initialize” is mentioned, the technical equivalent of “call the
FC_Initialize function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by FC_GetFunctionList” is implied.

3.5.2. API Fuoctioos

The Module supports Crypto-Ofcer services which require no operator authentication, and User

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

18 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

services which require operator authentication. Crypto-Ofcer services do not require access to
the secret and private keys and other CSPs associated with the user. The message digesting
services are available to Crypto-Ofcer only when CSPs are not accessed. User services which
access CSPs (e.g., FC_GenerateKey, FC_GenerateKeyPair) require operator authentication.

Table 7 lists all the services available in FIPS Approved mode with the role type, API function,
description, Keys/CSPs and access type. Access types R, W and Z stand for Read, Write, and
Zeroize, respectively. Role types U and CO correspond to User role and Crypto Ofcer role,
respectively. Please refer to Table 3 and Table 4 for the Approved or allowed cryptographic
algorithms supported by the Module.

Note: The message digest functions (except FC_DigestKey) that do not use any keys of the
Module can be accessed by the Crypto-Ofcer role and do not require authentication to the
Module. The FC_DigestKey API function computes the message digest (hash) of the value of a
secret key, so it is available only to the User role.

Service Role Fuoctioo Descriptioo Keys/CSPs Access

Get the
function list

CO FC_GetFunctionList Return a pointer to the
list of function pointers
for the operational mode

none N/A

Module
initialization

CO FC_InitToken Initialize or re-initialize a
token

User password
and all keys

Z

CO FC_InitPIN Initialize the user's
password, i.e., set the
user's initial password

User password W

General
Purpose

CO FC_Initialize Initialize the module
library

none N/A

CO FC_Finalize Finalize (shut down) the
module library

All keys Z

CO FC_GetInfo Obtain general
information about the
module library

none N/A

Slot and
token
management

CO FC_GetSlotList Obtain a list of slots in
the system

none N/A

CO FC_GetSlotInfo Obtain information
about a particular slot

none N/A

CO FC_GetTokenInfo Obtain information
about the token
(This function provides
the Show Status service)

none N/A

CO FC_GetMechanismList Obtain a list of
mechanisms
(cryptographic
algorithms) supported
by a token

none N/A

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

19 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role Fuoctioo Descriptioo Keys/CSPs Access

CO FC_GetMechanismInfo Obtain information
about a particular
mechanism

none N/A

U FC_SetPIN Change the user's
password

User password RW

Session
management

CO FC_OpenSession Open a connection
(session) between an
application and a
particular token

none N/A

CO FC_CloseSession Close a session All keys for the
session

Z

CO FC_CloseAllSessions Close all sessions with a
token

All keys Z

CO FC_GetSessionInfo Obtain information
about the session
(This function provides
the Show Status service)

none N/A

CO FC_GetOperationState Save the state of the
cryptographic
operations in a session
(This function is only
implemented for
message digest
operations)

none N/A

CO FC_SetOperationState Restore the state of the
cryptographic
operations in a session
(This function is only
implemented for
message digest
operations)

none N/A

U FC_Login Log into a token User password R

U FC_Logout Log out from a token none N/A

Object
management

U FC_CreateObject Create a new object Any key type W

U FC_CopyObject Create a copy of an
object

Any key type R

W

U FC_DestroyObject Destroy an object Any key type Z

U FC_GetObjectSize Obtain the size of an
object in bytes

Any key type R

U FC_GetAttributeValue Obtain an attribute
value of an object

Any key type R

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

20 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role Fuoctioo Descriptioo Keys/CSPs Access

U FC_SetAttributeValue Modify an attribute
value of an object

Any key type W

U FC_FindObjectsInit Initialize an object
search operation

none N/A

U FC_FindObjects Continue an object
search operation

Any key type
matching the
search criteria

R

U FC_FindObjectsFinal Finish an object search
operation

none N/A

Encryption
and
decryption

U FC_EncryptInit Initialize an encryption
operation

AES/Triple-DES
key

R

U FC_Encrypt Encrypt single-part data AES/Triple-DES
key

R

U FC_EncryptUpdate Continue a multiple-part
encryption operation

AES/Triple-DES
key

R

U FC_EncryptFinal Finish a multiple-part
encryption operation

AES/Triple-DES
key

R

U FC_DecryptInit Initialize a decryption
operation

AES/Triple-DES
key

R

U FC_Decrypt Decrypt single-part
encrypted data

AES/Triple-DES
key

R

U FC_DecryptUpdate Continue a multiple-part
decryption operation

AES/Triple-DES
key

R

U FC_DecryptFinal Finish a multiple-part
decryption operation

AES/Triple-DES
key

R

Message
digest

CO FC_DigestInit Initialize a message-
digesting operation

none N/A

CO FC_Digest Digest single-part data none N/A

CO FC_DigestUpdate Continue a multiple-part
digesting operation

none N/A

U FC_DigestKey Continue a multiple-part
message-digesting
operation by digesting
the value of a secret key
as part of the data
already digested

HMAC key R

CO FC_DigestFinal Finish a multiple-part
digesting operation

none N/A

Signature
generation
and

U FC_SignInit Initialize a signature
operation

DSA/ECDSA/RSA
private key,
HMAC key

R

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

21 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role Fuoctioo Descriptioo Keys/CSPs Access

verifcation U FC_Sign Sign single-part data DSA/ECDSA/RSA
private key,
HMAC key

R

U FC_SignUpdate Continue a multiple-part
signature operation

DSA/ECDSA/RSA
private key,
HMAC key

R

U FC_SignFinal Finish a multiple-part
signature operation

DSA/ECDSA/RSA
private key,
HMAC key

R

U FC_SignRecoverInit Initialize a signature
operation, where the
data can be recovered
from the signature

DSA/ECDSA/RSA
private key

R

U FC_SignRecover Sign single-part data,
where the data can be
recovered from the
signature

DSA/ECDSA/RSA
private key

R

U FC_VerifyInit Initialize a
verifcation operation

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_Verify Verify a signature on
single-part data

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_VerifyUpdate Continue a multiple-part
verifcation operation

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_VerifyFinal Finish a multiple-part
verifcation operation

DSA/ECDSA/RSA
public key,
HMAC key

R

U FC_VerifyRecoverInit Initialize a verifcation
operation, where the
data is recovered from
the signature

DSA/ECDSA/RSA
public key

R

U FC_VerifyRecover Verify a signature on
single-part data, where
the data is recovered
from the signature

DSA/ECDSA/RSA
public key

R

Dual-function
cryptographic
operations

U FC_DigestEncryptUpda
te

Continue a multiple-part
digesting and encryption
operation

AES/Triple-DES
key

R

U FC_DecryptDigestUpda
te

Continue a multiple-part
decryption and digesting
operation

AES/Triple-DES
key

R

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

22 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role Fuoctioo Descriptioo Keys/CSPs Access

U FC_SignEncryptUpdate Continue a multiple-part
signing and encryption
operation

DSA/ECDSA/RSA
private key,
HMAC key

R

AES/Triple-DES
key

R

U FC_DecryptVerifyUpda
te

Continue a multiple-part
decryption and verify
operation

DSA/ECDSA/RSA
public key,
HMAC key

R

AES/Triple-DES
key

R

Key
management

U FC_GenerateKey Generate a secret key
(Also used by TLS to
generate a pre-master
secret)

Used to derive a key
from PBKDF password

AES/Triple-
DES/HMAC key,
TLS pre-master
secret

W

PBKDF derived
key

W

U FC_GenerateKeyPair Generate a
public/private key pair
(This function performs
the pair-wise
consistency tests)

RSA/DSA/ECDSA
key pair, Dife-
Hellman/EC
Dife-Hellman
public and
private
components

W

U FC_WrapKey Wrap (encrypt) a key
using the following
mechanism: AES(KW,
KWP) or
RSA encryption

AES key, RSA
public key,
wrapped key(of
any key type)

R

R

U FC_UnwrapKey Unwrap (decrypt) a key
using the following
mechanism: AES(KW,
KWP) or RSA decryption

AES key, RSA
private key,
wrapped key(of
any key type)

R

W

U FC_DeriveKey Shared secret
computation

Dife-
Hellman/EC
Dife-Hellman
public and
private
components

R

Dife-
Hellman/EC
Dife-Hellman
shared secrets

W

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

23 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role Fuoctioo Descriptioo Keys/CSPs Access

Derive a key from TLS
master secret which is
derived from TLS pre-
master secret

Derive a key from
DH/ECDH shared secret
using IKE KDF

Derive a key from
DH/ECDH shared secret
using HKDF

TLS pre-master
secret

R

TLS master
secret

RW

TLS and HKDF
Derived keys

RW

IKE shared
secret (from
DH/ECDH SSC)

W

IKE SA Tunnel
Encryption Keys

IKE SA Tunnel
Integrity Keys

IPsec SA Tunnel
Encryption Keys

IPsec SA Tunnel
Integrity Keys

W

Random
number
generation

CO FC_SeedRandom Mix in additional seed
material to the random
number generator

Entropy input
string, seed,
DRBG V and C
values

RW

CO FC_GenerateRandom Generate random data
(This function performs
the continuous random
number generator test)

Random data,
DRBG V and C
values

RW

Parallel
function
management

CO FC_GetFunctionStatus A legacy function, which
simply returns the value
0x00000051 (function
not parallel)

none N/A

CO FC_CancelFunction A legacy function, which
simply returns the value
0x00000051 (function
not parallel)

none N/A

Self tests CO N/A The self tests are
performed automatically
when loading the
module

DSA 2048-bit
public key for
module integrity
test

R

Show Status U N/A Via exit codes N/A N/A

Zeroization U FC_DestroyObject All CSPs are All secret or Z

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

24 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Role Fuoctioo Descriptioo Keys/CSPs Access

automatically zeroized
when freeing the cipher
handle

private keys and
password

CO FC_InitToken
FC_Finalize
FC_CloseSession
FC_CloseAllSessions

Table 7: Services details in FIPS Approved mode

Table 7(A) lists all the services available in non-Approved mode with API function and the non-
Approved algorithm that the function may invoke. Please note that the functions are the same as
the ones listed in Table 7, but the underneath non-Approved algorithms are invoked. Please also
refer to Table 5 for the non-Approved algorithms. If any service invokes the non-Approved
algorithms, then the module will enter non-Approved mode implicitly.

Service Fuoctioo ooo-Approved Algorithm iovoked

Encryption and
decryption

FC_EncryptInit AES CTS mode, AES-GCM listed in Table 5,
Camellia, ChaCha20/Poly1305 AEAD, DES,
RC2, RC4, RC5, SEED, Two-key Triple-DES

FC_Encrypt

FC_EncryptUpdate

FC_EncryptFinal

FC_DecryptInit AES CTS mode, AES-GCM listed in Table 5,
Camellia, ChaCha20/Poly1305 AEAD, DES,
RC2, RC4, RC5, SEED, Two-key Triple-DES

FC_Decrypt

FC_DecryptUpdate

FC_DecryptFinal

Message digest FC_DigestInit MD2, MD5

FC_Digest

FC_DigestUpdate

FC_DigestKey

FC_DigestFinal

Signature generation
and verifcation

FC_SignInit DSA signature generation with non-compliant
key size listed in Table 5, DSA signature
generation with SHA-1, RSA signature
generation with key size not equal to 2048,
3072 or 4096 bits or with SHA-1, RSA
signature generation and signature
verifcation using SHA-224, RSA signature
verifcation with key size not equal to 1024,
2048, 3072 or 4096 bits, ECDSA signature
generation with SHA-1

FC_Sign

FC_SignUpdate

FC_SignFinal

FC_SignRecoverInit

FC_SignRecover

FC_VerifyInit DSA signature verifcation with non-compliant
key size listed in Table 5, RSA signature
verifcation with non-compliant key size listed
in Table 5

FC_Verify

FC_VerifyUpdate

FC_VerifyFinal

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

25 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Fuoctioo ooo-Approved Algorithm iovoked

FC_VerifyRecoverInit

FC_VerifyRecover

Dual-function
cryptographic
operations

FC_DigestEncryptUpdate MD2, MD5, AES CTS mode, AES-GCM listed in
Table 5, Camellia, DES, RC2, RC4, RC5, SEED,
Two-key Triple-DES, Chacha20/Poly1305

FC_DecryptDigestUpdate AES CTS mode, AES-GCM listed in Table 5,
Camellia, DES, RC2, RC4, RC5, SEED, MD2,
MD5, Two-key Triple_DES, Chacha20/Poly1305

FC_SignEncryptUpdate DSA signature generation with non-compliant
key size listed in Table 5, RSA signature
generation with non-compliant key size listed
in Table 5, AES CTS mode, AES-GCM listed in
Table 5, Camellia, DES, RC2, RC4, RC5, SEED,
Two-key Triple-DES, ChaCha20/Poly1305

FC_DecryptVerifyUpdate AES CTS mode, AES-GCM listed in Table 5,
Camellia, DES, RC2, RC4, RC5, SEED, DSA
signature verifcation with non-compliant key
size listed in Table 5, RSA signature
verifcation with non-compliant key size listed
in Table 5, Two-key Triple-DES,
ChaCha20/Poly1305

Key management FC_GenerateKeyPair DSA domain parameter verifcation with non-
compliant key size listed in Table 5, DSA key
pair generation with non-compliant key size
listed in Table 5, RSA key pair generation

FC_WrapKey AES/Triple-DES non-SP 800-38F compliant key
wrapping (encrypt), Triple-DES key wrapping
(encrypt) using Two-key Triple-DES, RSA key
wrapping (encrypt) with non-compliant key
size listed in Table 5

FC_UnwrapKey AES/Triple-DES non-SP 800-38F compliant key
wrapping (decrypt), Triple-DES key wrapping
(decrypt) using Two-key Triple-DES, RSA key
wrapping (decrypt) with non-compliant key
size listed in Table 5

FC_DeriveKey Dife-Hellman shared secret computation
with non-compliant key size listed in Table 5,
Dife-Hellman keys generated with domain
parameters other than safe primes, EC with
Edwards 25519 Curve, J-PAKE key agreement,
PBKDF (non-compliant with SP800-132),
KBKDF

Table 7(A): Services details in non-Approved mode

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

26 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

4. Physical Security
The Module comprises of software only and thus does not claim any physical security.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

27 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

5. Operatiooal Eoviroomeot

5.1 Applicability
The module operates in a modifable operational environment per FIPS 140-2 level 1 specifcations.
The module runs on a commercially available general-purpose operating system executing on the
hardware specifed in section 1.1.

The Red Hat Enterprise Linux operating system is used as the basis of other products which
include but are not limited to:

• Red Hat Enterprise Linux CoreOS
• Red Hat Virtualization (RHV)
• Red Hat OpenStack Platform
• OpenShift Container Platform
• Red Hat Gluster Storage
• Red Hat Ceph Storage
• Red Hat CloudForms
• Red Hat Satellite.

• Compliance is maintained for these products whenever the binary is found unchanged.

5.2 Policy
The operating system is restricted to a single operator (concurrent operators are explicitly
excluded). The application that request cryptographic services is the single user of the
module, even when the application is serving multiple clients.
The ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall be not used.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

28 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

6. Cryptographic Key Maoagemeot
The following table provides a summary of the Keys/CSPs in the Module:

Keys/CSPs Geoeratioo Storage Eotry/Output Zeroizatioo

AES 128, 192 and
256 bits keys

Use of NIST
SP800-90A DRBG

Application
memory or
key database

Encrypted through
key wrapping using
FC_UnwrapKey for
input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

Triple-DES 192 bits
keys

Use of NIST
SP800-90A DRBG

Application
memory or
key database

Encrypted through
key wrapping using
FC_UnwrapKey for
input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

DSA public and
private key with key
size 2048 and 3072
bits

Use of NIST
SP800-90A DRBG
as a seed for the
FIPS 186-4 DSA
key generation
mechanism

Application
memory or
key database

Encrypted through
key wrapping using
FC_UnwrapKey for
input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

ECDSA public and
private key for curve
P-256, P-384 and P-
521 curves

Use of NIST
SP800-90A DRBG
as a seed for the
FIPS 186-4 ECDSA
key generation
mechanism

Application
memory or
key database

Encrypted through
key wrapping using
FC_UnwrapKey for
input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

RSA public and
private key with key
size 2048, 3072 and
4096

Use of NIST
SP800-90A DRBG
as a seed for the
FIPS 186-4 RSA
key generation
mechanism

Application
memory or
key database

Encrypted through
key wrapping using
FC_UnwrapKey for
input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

HMAC keys with at
least 112 bits

Use of NIST
SP800-90A DRBG

Application
memory or
key data base

Encrypted through
key wrapping using
FC_UnwrapKey for
input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

29 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

DRBG entropy input
string

Obtained from
CPU jitter source
which is the
ENT(NP)

Application
memory

N/A Automatically
zeroized when
freeing DRBG
handle

DRBG seed, V and C
values

Derived from the
entropy input
string as defned
in NIST SP800-90A

Application
memory

N/A Automatically
zeroized when
freeing DRBG
handle

TLS pre-master
secret

N/A Application
memory

Entry: API input
parameter

Output: N/A

Automatically
zeroized when
freeing the
cipher handle

TLS master secret Derived from TLS
pre-master secret
by using key
derivation

Application
memory

N/A Automatically
zeroized when
freeing the
cipher handle

TLS derived keys TLS derived keys
Generated during
the TLS v1.0/1.1
and v1.2 KDFs
from TLS master-
secret

Application
memory

Encrypted for output
using FC_WrapKey

Automatically
zeroized when
freeing the
cipher handle

HKDF derived keys Derived SP800-
56Crev1 HKDF
KDF mechanisms

Application
memory

Encrypted for output
using FC_WrapKey

Automatically
zeroized when
freeing the
cipher handle

Dife-Hellman public
and private key

Public and private
keys are
generated using
the SP800-
56ARev3 Safe
Primes key
generation
method. Random
values are
obtained from the
SP800-90A DRBG.

Application
memory

Encrypted
through key
wrapping using
FC_UnwrapKey
for input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

EC Dife-Hellman
public and private
key

Public and private
keys are
generated using
the FIPS 186-4
key generation
method. Random
values are
obtained from the
SP800-90A DRBG.

Application
memory

Encrypted through
key wrapping using
FC_UnwrapKey for
input and
FC_WrapKey for
output

Automatically
zeroized when
freeing the
cipher handle

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

30 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Dife-Hellman
shared secret

Generated during
shared secret
computation.

Application
memory

Encrypted for output
using FC_WrapKey

Automatically
zeroized when
freeing the
cipher handle

EC Dife-Hellman
shared secret

Generated during
shared secret
computation.

Application
memory

Encrypted for output
using FC_WrapKey

Automatically
zeroized when
freeing the
cipher handle

IKE SA Tunnel
Encryption Keys

SP 800-135 IKE
KDF

Ephemeral Encrypted for output
using FC_WrapKey

Close of IKE SA
or termination of
Pluto IKE
Daemon zeroizes
the CSP

IKE SA Tunnel
Integrity Keys

SP 800-135 IKE
KDF

Ephemeral Encrypted for output
using FC_WrapKey

Close of IKE SA
or termination of
Pluto IKE
Daemon zeroizes
the CSP

IKE Derived Keys Derived SP800-
135 IKE KDF
mechanisms

Application
memory

Encrypted for output
using FC_WrapKey

Automatically
zeroized when
freeing the
cipher handle

IPsec SA Tunnel
Encryption Keys

SP 800-135 IKE
KDF

Ephemeral Encrypted for output
using FC_WrapKey

Zeroized from
the module's
memory when
passed to the
kernel after
establishment of
the SA

IPsec SA Tunnel
Integrity Keys

SP 800-135 IKE
KDF

Ephemeral Encrypted for output
using FC_WrapKey

Zeroized from
the module's
memory when
passed to the
kernel after
establishment of
the SA

PBKDF password N/A Application
memory

API input parameter Automatically
zeroized when
freeing the
cipher handle

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

31 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

PBKDF derived key Derived using
SP800-132 PBKDF
mechanisms

Application
memory

Encrypted for output
using FC_WrapKey

Automatically
zeroized when
freeing the
cipher handle

User Passwords N/A (supplied by
the calling
application)

Application
memory or
key database
in salted form

API input parameter Automatically
zeroized when
the module is re-
initialized or
overwritten when
the user changes
its password

Table 8: Keys/CSPs

6.1. Raodom Number Geoeratioo
The Module provides a Hash based SP800-90A-compliant Deterministic Random Bit Generator
(DRBG) with SHA-256 for creation of key components of asymmetric keys, and random number
generation. The seeding (and automatic reseeding) of the DRBG is done with getrandom() call.
Reseeding is performed by pulling more data from getrandom(). A product using the module
should periodically reseed the module's random number generator with unpredictable noise by
calling FC_SeedRandom. After 2⁴⁸ calls to the random number generator the module reseeds
automatically.

Module’s DRBG is seeded with an entropy source from the kernel that consists of CPU Jitter noise
source and a HMAC_DRBG conditioning component. The entropy source ENT (NP) is compliant with
[SP 800-90B] and is within the module's physical boundary but outside of the module's logical
boundary. The CPU Jitter noise source provides 330 bits of entropy to the HMAC_DRBG, which
preserves it at the output. However, this HMAC_DRBG conditioning component does not implement
prediction resistance. Therefore the caveat, “The module generates cryptographic keys whose
strengths are modifed by available entropy” applies.

The Key Generation methods implemented in the module for Approved services in FIPS mode is
compliant with [SP800-133]. The module generates symmetric key through the FC_GenerateKey()
function using the random numbers from the SP 800-90A DRBG.

For generating RSA, DSA and ECDSA keys the module implements asymmetric key generation
services compliant with [FIPS186-4]. A seed (i.e. the random value) used in asymmetric key
generation is directly obtained from the [SP800-90A] DRBG.

The public and private keys used in the EC Dife-Hellman shared secret computation schemes are
generated internally by the module using the ECDSA key generation method compliant with
[FIPS186-4] and [SP800-56Arev3]. The Dife-Hellman shared secret computation scheme is also
compliant with [SP800-56Arev3], and generates keys using safe primes defned in RFC7919 and
RFC3526, as described in section 6.3.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

32 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

6.2. Key/CSP Storage
The Module employs the cryptographic keys and CSPs in the FIPS Approved mode of operation as
listed in Table 8. The module does not perform persistent storage for any keys or CSPs. Note that
the private key database (provided with the fle key4.db) is within the Module's physical boundary
but outside its logical boundary.

6.3. Key Establishmeot
The module provides Dife-Hellman shared secret computation (KAS FFC SSC) and EC Dife-
Hellman shared secret computation (KAS ECC SSC) compliant with SP800-56Arev3, in accordance
with scenario X1 (1) of IG D.8. The module provides support for Dife-Hellman an EC Dife-
Hellman key agreement schemes compliant with SP800-56Arev3 by offering separate services for
shared secret computation and the key derivation using the SP800- 135 TLS KDF (for use within
the TLS protocol), so that the user application can implement the key agreement.

For Dife-Hellman, the module supports the use of safe primes defned in RFC 7919 for domain
parameters and key generation, which are used in TLS key exchange. Note that the module only
implements key generation and shared secret computation of safe primes, and no other part of the
TLS protocol (with the exception of the TLS KDF, which is separately implemented).

• TLS (RFC7919)

• ffdhe2048 (ID = 256)

• ffdhe3072 (ID = 257)

• ffdhe4096 (ID = 258)

• ffdhe6144 (ID = 259)

• ffdhe8192 (ID = 260)

The module also supports the use of safe primes defned in RFC3526, which are part of the
Modular Exponential (MODP) Dife-Hellman groups that can be used for Internet Key Exchange
(IKE). Note that the module only implements key generation and shared secret computation of
safe primes, and no other part of the IKE protocol (with the exception of the IKE KDF, which is
separately implemented).

• IKEv2 (RFC3526)

• MODP-2048 (ID=14)

• MODP-3072 (ID=15)

• MODP-4096 (ID=16)

• MODP-6144 (ID=17)

• MODP-8192 (ID=18)

According to Table 2: Comparable strengths in [SP 800-57], the key sizes of AES, Triple-DES, RSA,
Dife-Hellman and EC Dife-Hellman provide the following security strength in FIPS mode of
operation:

• Dife-Hellman shared secret computation provides between 112 and 200 bits of encryption
strength.

• EC Dife-Hellman shared secret computation provides between 128 and 256 bits of
encryption strength.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

33 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• RSA key wrapping with PKCS#1-v1.5 provides between 112 and 256 bits of encryption
strength; Allowed per IG D.9

• AES key wrapping with KW, KWP and GCM key establishment methodology provides
between provides between 128 and 256 bits of encryption strength.

• AES key wrapping with AES CBC and HMAC key establishment methodology provides 128 or
256 bits of encryption strength).

• Triple-DES Key wrapping with Triple-DES CBC and HMAC key establishment methodology
provides 112 bits of encryption strength).

• RSA key wrapping with OAEP key establishment methodology provides between 112 and
200 bits of encryption strength).

6.4. Key/CSP Zeroizatioo
The application that uses the Module is responsible for appropriate zeroization of the key material.
The Module provides zeroization methods to clear the memory region previously occupied by a
plaintext secret key, private key or password. A plaintext secret or private key gets zeroized when
it is passed to a FC_DestroyObject call. All plaintext secret and private keys must be zeroized
when the Module is shut down (with a FC_Finalize call), reinitialized (with a FC_InitToken call),
or when the session is closed (with a FC_CloseSession or FC_CloseAllSessions call). All zeroization
is to be performed by storing the value 0 into every byte of the memory region that is previously
occupied by a plaintext secret key, private key or password.

Zeroization is performed in a time that is not sufcient to compromise plaintext secret or private
keys and password.

6.5. Key Derivatioo
The module supports the following key derivation methods:

• KDF for the TLS protocol, used as pseudo-random functions (PRF) for TLSv1.0/1.1 and
TLSv1.2.

• HKDF for the TLS protocol TLSv1.3.

• KDF for the IKE protocol.

The module also supports password-based key derivation (PBKDF). The implementation is
compliant with option 1a of [SP-800-132]. Keys derived from passwords or passphrases using this
method can only be used in storage applications.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

34 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

7. Electromagoetic Ioterfereoce/Electromagoetic
Compatibility (EMI/EMC)
MARKETING NAME......................…. PowerEdge R440
REGULATORY MODEL................….. E45S
REGULATORY TYPE.....................…. E45S001
EFFECTIVE DATE..........................… March 01, 2020
EMC EMISSIONS CLASS...............… Class A

7.1 Statemeot of compliaoce
This product has been determined to be compliant with the applicable standards, regulations, and
directives for the countries where the product is marketed. The product is afxed with regulatory
marking and text as necessary for the country/agency. Generally, Information Technology
Equipment (ITE) product compliance is based on IEC and CISPR standards and their national
equivalent such as Product Safety, IEC 60950-1 and European Norm EN 60950-1 or EMC, CISPR
22/CISPR 24 and EN 55022/55024. Dell products have been verifed to comply with the EU RoHS
Directive 2011/65/EU. Dell products do not contain any of the restricted substances in
concentrations and applications not permitted by the RoHS Directive.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

35 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

8. Self-Tests
FIPS 140-2 requires that the Module perform self-tests to ensure the integrity of the Module and
the correctness of the cryptographic functionality at start up. In addition, some functions require
conditional tests. All of these tests are listed and described in this section.

8.1. Power-Up Tests
All the power-up self-tests are performed automatically without requiring any operator
intervention. During the power-up self-tests, no cryptographic operation is available and all input
or output is inhibited. Once the power-up self-tests are completed successfully, the Module enters
operational mode and cryptographic operations are available. If any of the power-up self-tests fail,
the Module enters the Error state. In Error state, all output is inhibited and no cryptographic
operation is allowed. The Module returns the error code CKR_DEVICE_ERROR to the calling
application to indicate the Error state. The Module needs to be reinitialized in order to recover from
the Error state.

The following table provides the lists of Known-Answer Test (KAT) and Integrity Test as the power-
up self-tests:

Algorithm Test

AES KATs for ECB, CBC, CMAC and GCM modes: encryption and
decryption are tested separately

Triple-DES KATs for ECB and CBC modes: encryption and decryption are
tested separately

DSA KAT: DSA signature generation and verifcation with L=2048,
N=224 and SHA-224 (separately tested).

ECDSA KAT: ECDSA signature generation and verifcation with P-256 and
SHA-256 (separately tested).

Dife-Hellman (KAS-FFC-SSC) Primitive "Z" Computation KAT with 2048-bit key

EC Dife-Hellman
(KAS_ECC_SSC)

Primitive "Z" Computation KAT with P-256 curve

RSA KAT: RSA with 2048-bit key, public key encryption and private key
decryption (separately tested).

KAT: RSA PKCS#1 v1.5 signature generation and verifcation with
2048-bit key and SHA-256, SHA-384 and SHA-512 (separately
tested).

SHA-1, SHA-224, SHA-256,
SHA-384 and SHA-512

KAT

HMAC-SHA-1, HMAC-SHA-244,
HMAC-SHA-256, HMAC-SHA-
384 and HMAC-SHA-512

KAT

TLS KDF KAT: TLS 1.0 PRF KAT and TLS 1.2 KAT using SHA-224, SHA-256,
SHA-384 and SHA-512

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

36 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Test

HKDF KDF KAT: HKDF KAT using SHA-256, SHA-384 and SHA-512

IKE KDF KAT: SP800-135 IKE PRF using SHA-1, SHA-256, SHA-384 and SHA-
512.

PBKDF KDF KAT: Using SHA-256

NIST SP800-90A Hash_DRBG KAT

SP 800-90-A DRBG Health test per section 11.3 of SP 800-90A DRBG

Module integrity DSA signature verifcation with 2048 bits key and SHA-256

Table 9: Module Self-Tests

The power-up self tests can be performed on demand by reinitializing the Module

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

37 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

8.2. Cooditiooal Tests
The following table provides the lists of Pairwise Consistency Test (PCT) as the conditional self-
tests. If any of the conditional test fails, the Module enters the Error state. It returns the error code
CKR_DEVICE_ERROR to the calling application to indicate the Error state. The Module needs to be
reinitialized in order to recover from the Error state.

Algorithm Test

DSA PCT using sign/verify for DSA key generation

ECDSA PCT using sign/verify for ECDSA key generation

RSA PCT using sign/verify for RSA key generation

Table 10: Module Conditional Tests

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

38 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

9. Guidaoce

9.1. Crypto Officer Guidaoce
The version of the RPMs containing the FIPS validated Module is stated in section Error: Reference
source not found. The RPM packages forming the Module can be installed by standard tools
recommended for the installation of RPM packages on a Red Hat Enterprise Linux system (for
example, yum, rpm, and the RHN remote management tool). All RPM packages are signed with the
Red Hat build key, which is an RSA 2048 bit key using SHA-256 signatures. The signature is
automatically verifed upon installation of the RPM package. If the signature cannot be validated,
the RPM tool rejects the installation of the package. In such a case, the Crypto Ofcer is requested
to obtain a new copy of the module's RPMs from Red Hat.

In addition, to support the Module, the NSPR library must be installed that is offered by the
underlying operating system.

Only the cipher types listed in section 1.2 are allowed to be used.

9.1.1. FIPS module iostallatioo iostructioos

Recommeoded method

The system-wide cryptographic policies package (crypto-policies) contains a tool that completes the installation
of cryptographic modules and enables self-checks in accordance with the requirements of Federal Information
Processing Standard (FIPS) Publication 140-2. We call this step “FIPS enablement”. The tool named fips-mode-
setup installs and enables or disables all the validated FIPS modules and it is the recommended method to
install and configure a RHEL-8 system.

1. To switch the system to FIPS enablement in RHEL 8:

 # fips-mode-setup --enable
 Setting system policy to FIPS
 FIPS mode will be enabled.
 Please reboot the system for the setting to take effect.

2. Restart your system:

reboot

3. After the restart, you can check the current state:

fips-mode-setup --check
FIPS mode is enabled.

Note: As a side effect of the enablement procedure the fips-mode-setup tool also changes the system-wide
cryptographic policy level to a level named “FIPS”, this level helps applications by changing configuration
defaults to approved algorithms.

Maoual method
The recommended method automatically performs all the necessary steps.
The following steps can be done manually but are not recommended and are not required if the systems has
been installed with the fips-mode-setup tool:

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

39 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

- create a file named /etc/system-fips, the contents of this file are never checked
- ensure that the kernel boot line is configured with the fips=1 parameter set
- Reboot the system

NOTE: If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<boot
partition> must be supplied. The partition can be identified with the command "df | grep boot". For
example:

$ df |grep boot

/dev/sda1 233191 30454 190296 14% /boot

The partition of the /boot file system is located on /dev/sda1 in this example.

Therefore the parameter boot=/dev/sda1 needs to be appended to the kernel command
line in addition to the parameter fips=1

If an application that uses the Module for its cryptography is put into a chroot environment, the
Crypto Ofcer must ensure one of the above methods is available to the module from within the
chroot environment to confgure the operational environment to run the FIPS validated module.
Failure to do so will not allow the application to properly use the FIPS validated module.

9.1.2. Access to Audit Data

The Module may use the Unix syslog function and the audit mechanism provided by the operating
system to audit events. Auditing is turned off by default. Auditing capability must be turned on as
part of the initialization procedures by setting the environment variable NSS_ENABLE_AUDIT to 1.
The Crypto-Ofcer must also confgure the operating system's audit mechanism.

The Module uses the syslog function to audit events, so the audit data are stored in the system
log. Only the root user can modify the system log. On some platforms, only the root user can read
the system log; on other platforms, all users can read the system log. The system log is usually
under the /var/log directory. The exact location of the system log is specifed in the /etc/syslog.conf
fle. The Module uses the default user facility and the info, warning, and err severity levels for its
log messages.

The Module can also be confgured to use the audit mechanism provided by the operating system
to audit events. The audit data would then be stored in the system audit log. Only the root user
can read or modify the system audit log. To turn on this capability it is necessary to create a
symbolic link from the library fle /usr/lib/libaudit.so.0 to /usr/lib/libaudit.so.1.0.0 (on 32-bit
platforms) and /usr/lib64/libaudit.so.0 to /usr/lib64/libaudit.so.1.0.0 (on 64-bit platforms).

9.2. User Guidaoce
The Module must be operated in FIPS Approved mode to ensure that FIPS 140-2 validated
cryptographic algorithms and security functions are used.

The following module initialization steps must be followed by the Crypto-Ofcer before starting to
use the NSS module:

• Set the environment variable NSS_ENABLE_AUDIT to 1 before using the Module with an
application.

• Use the application to get the function pointer list using the API “FC_GetFunctionList”.

• Use the API FC_Initialize to initialize the module and ensure that it returns CKR_OK. A

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

40 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

return code other than CKR_OK means the Module is not initialized correctly, and in that
case, the module must be reset and initialized again.

• For the frst login, provide a NULL password and login using the function pointer C_Login,
which will in-turn call FC_Login API of the Module. This is required to set the initial NSS User
password.

• Now, set the initial NSS User role password using the function pointer C_InitPIN. This will
call the module's API FC_InitPIN API. Then, logout using the function pointer C_Logout,
which will call the module's API FC_Logout.

• The NSS User role can now be assumed on the Module by logging in using the User
password. And the Crypto-Ofcer role can be implicitly assumed by performing the Crypto-
Ofcer services as listed in Section 3.1.

The Module can be confgured to use a private key database format: key4.db. “key4.db” format is
based on SQL DataBase engine and can be used concurrently by multiple processes. The database
is considered outside the Module's logical boundary and all data stored in the database is
considered stored in plaintext. The interface code of the Module that accesses data stored in the
database is considered part of the cryptographic boundary.

Secret and private keys, plaintext passwords and other security-relevant data items are
maintained under the control of the cryptographic module. Secret and private keys must be
passed to the calling application in encrypted (wrapped) form with FC_WrapKey and entered from
calling application in encrypted form with FC_UnwrapKey. The key transport methods allowed for
this purpose in FIPS Approved mode is RSA key wrapping using the corresponding Approved
modes and key sizes.

Note: If the secret and private keys passed to the calling application are encrypted using a
symmetric key algorithm, the encryption key may be derived from a password. In such a case,
they should be considered to be in plaintext form in the FIPS Approved mode.

Automated key transport methods must use FC_WrapKey and FC_UnwrapKey to output or input
secret and private keys from or to the module.

All cryptographic keys used in the FIPS Approved mode of operation must be generated in the FIPS
Approved mode or imported while running in the FIPS Approved mode.

9.2.1. RSA aod DSA Keys

The Module allows the use of 1024 bits RSA and DSA keys for legacy purposes including signature
generation, which is disallowed to be used in FIPS Approved mode as per NIST SP800-131A.
Therefore, the cryptographic operations with the non-approved key sizes will result the module
operating in non-Approved mode implicitly.

9.2.2. Triple-DES Keys
According to IG A.13, the same Triple-DES key shall not be used to encrypt more than 216 64- bit
blocks of data.

9.2.3. Key derivatioo usiog SP800-132 PBKDF

The module provides password-based key derivation (PBKDF), compliant with SP800-132. The
module supports option 1a from section 5.4 of [SP800-132], in which the Master Key (MK) or a
segment of it is used directly as the Data Protection Key (DPK).

In accordance to [SP800-132], the following requirements shall be met.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

41 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not be
used for other purposes. The length of the MK or DPK shall be of 112 bits or more.

• A portion of the salt, with a length of at least 128 bits, shall be generated randomly using
the SP800-90A DRBG,

• The iteration count shall be selected as large as possible, as long as the time required to
generate the key using the entered password is acceptable for the users. The minimum
value shall be 1000.

• Passwords or passphrases, used as an input for the PBKDF, shall not be used as
cryptographic keys.

• The length of the password or passphrase shall be of at least 20 characters, and shall
consist of lower-case, upper-case and numeric characters. The probability of guessing the
value is estimated to be 1/6220 = 10-36, which is less than 2-112.

The calling application shall also observe the rest of the requirements and recommendations
specifed in [SP800-132].

9.2.4. AES-GCM IV
In case the module’s power is lost and then restored, the key used for the AES GCM encryption or
decryption shall be redistributed.

The nonce_explicit part of the IV does not exhaust the maximum number of possible values for a
given session key. The design of the TLS protocol in this module implicitly ensures that the
nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.

The AES GCM IV generation is in compliance with the [RFC5288] and shall only be used for the TLS
protocol version 1.2 to be compliant with [FIPS140-2_IG] IG A.5, provision 1 (“TLS protocol IV
generation”); thus, the module is compliant with [SP800-52]. The module supports the TLS GCM
ciphersuites from SP800-52 Rev1, section 3.3.1

The module also complies with IG A.5, provision 2. The GCM random IV is generated by using the
approved Hash_DRBG and the user must ensure that the IV length is at least 96 bits.

When a GCM IV is used for decryption, the responsibility for the IV generation lies with the party
that performs the AES GCM encryption.

9.3. Haodliog Self-Test Errors
When the Module enters the Error state, it needs to be reinitialized to resume normal operation.
Reinitialization of the module is accomplished by rebooting the system.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

42 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

10. Mitigatioo of Other Attacks
The Module is designed to mitigate the following attacks.

Attack Mitigatioo Mechaoism Specifc Limit

Timing attacks on RSA RSA bliodiog
Timing attack on RSA was frst
demonstrated by Paul Kocher in
1996 [15], who contributed the
mitigation code to our module.
Most recently Boneh and Brumley
[16] showed that RSA blinding is
an effective defense against
timing attacks on RSA.

None

Cache-timing attacks on
the modular
exponentiation operation
used in RSA and DSA

Cache iovariaot modular
expooeotiatioo
This is a variant of a modular
exponentiation implementation
that Colin Percival [17] showed to
defend against cache-timing
attacks

This mechanism requires intimate
knowledge of the cache line sizes
of the processor. The mechanism
may be ineffective when the
module is running on a processor
whose cache line sizes are
unknown.

Arithmetic errors in RSA
signatures

Double-checkiog RSA
sigoatures
Arithmetic errors in RSA
signatures might leak the private
key. Ferguson and Schneier [18]
recommend that every RSA
signature generation should verify
the signature just generated.

None

Table 11: Mitigation of other attacks

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

43 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

11. Glossary aod Abbreviatioos
AES Advanced Encryption Specification

AES-NI Intel Advanced Encryption Standard New Instructions

CAVP Cryptographic Algorithm Validation Program

CBC Cypher Block Chaining

CSP Critical Security Parameter

CTR Counter Block Chaining

CVL Component Validation List

DES Data Encryption Standard

DRBG Deterministic Random Bit Generator

DSA Digital Signature Algorithm

ECB Electronic Code Book

ECDSA Elliptic Curve Digital Signature Algorithm

GCM Galois/Counter Mode

HMAC Hash Message Authentication Code

MAC Message Authentication Code

NIST National Institute of Science and Technology

O/S Operating System

PBKDF Password Based Key Derivation Function

PKCS Public-Key Cryptography Standards

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

TLS Transport layer Security

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

44 of 45

Red Hat Enterprise Linux 8 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

12. Refereoces
[1] FIPS 140-2 Standard, https://csrc.nist.gov/projects/cryptographic-module-validation-
program/standards
[2] FIPS 140-2 Implementation Guidance, https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-
Module-Validation-Program/documents/fps140-2/FIPS1402IG.pdf
[3] FIPS 140-2 Derived Test Requirements,
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-
Program/documents/fps140-2/FIPS1402DTR.pdf
[4] FIPS 197 Advanced Encryption Standard,
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
[5] FIPS 180-4 Secure Hash Standard, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
[6] FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC),
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf
[7] FIPS 186-4 Digital Signature Standard (DSS),
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
[8] NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
[9] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC, https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
[10] NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
[11] NIST SP 800-56A Revision 3, Recommendation for Pair-Wise Key Establishment Schemes using
Discrete Logarithm Cryptography (Revised),
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
[12] NIST SP 800-67 Revision 2, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
[13] NIST SP 800-90A Revision 1, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators,
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
[14] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”, 2004.
[15] P. Kocher, "Timing Attacks on Implementations of Dife-Hellman, RSA, DSS, and Other
Systems", CRYPTO '96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-113, Springer-
Verlag, 1996. http://www.cryptography.com/timingattack/
[16] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical",
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
[17] C. Percival, "Cache Missing for Fun and Proft", http://www.daemonology.net/papers/htt.pdf
[18] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA Signatures",
p. 286, Wiley Publishing, Inc., 2003.

© 10/19/22 Red Hat Enterprise Linux/atsec information security. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

45 of 45

http://www.daemonology.net/papers/htt.pdf
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html
http://www.cryptography.com/timingattack/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402DTR.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402DTR.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Module-Validation-Program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/projects/cryptographic-module-validation-program/standards
https://csrc.nist.gov/projects/cryptographic-module-validation-program/standards

	1.1. Description of the Module
	1.2. Description of the Approved Modes
	1.3. Cryptographic Boundary
	1.3.1. Hardware Block Diagram
	1.3.2. Software Block Diagram

	2.1. PKCS #11
	2.2. Inhibition of Data Output
	2.3. Disconnecting the Output Data Path from the Key Processes
	3.1. Roles
	3.2. Role Assumption
	3.3. Strength of Authentication Mechanism
	3.4. Multiple Concurrent Operators
	3.5. Services
	3.5.1. Calling Convention of API Functions
	3.5.2. API Functions

	5.1 Applicability
	5.2 Policy
	6.1. Random Number Generation
	6.2. Key/CSP Storage
	6.3. Key Establishment
	6.4. Key/CSP Zeroization
	6.5. Key Derivation
	7.1 Statement of compliance
	8.1. Power-Up Tests
	8.2. Conditional Tests
	9.1. Crypto Officer Guidance
	9.1.1. FIPS module installation instructions
	9.1.2. Access to Audit Data

	9.2. User Guidance
	9.2.1. RSA and DSA Keys
	9.2.2. Triple-DES Keys
	9.2.3. Key derivation using SP800-132 PBKDF
	9.2.4. AES-GCM IV

	9.3. Handling Self-Test Errors

