

Red Hat Enterprise Linux 9 - OpenSSL FIPS Provider

version 3.0.7-395c1a240fbfffd8

FIPS 140-3 Non-Proprietary Security Policy

document version 1.2

Last update: 2024-10-25

Prepared by:

atsec information security corporation

4516 Seton Center Parkway, Suite 250

Austin, TX 78759

www.atsec.com

Table	e of Contents	
1 (General	4
1.1	l Overview	4
1.2	2 How this Security Policy was prepared	4
1.3	· · · · · , · · · ·	
2 (Cryptographic module specification	5
2.1	L Description	5
2.2	2 Operational environments	5
2.3	3 Approved algorithms	5
2.4	1 Non-approved algorithms	10
2.5	5 Module design and components	11
2.6	1	
3 (Cryptographic module interfaces	13
4 I	Roles, services, and authentication	
4.1		
4.2		
4.3		
5 9	Software/Firmware security	22
5.1	l Integrity techniques	22
5.2	2 On-demand integrity test	
6 (Operational environment	23
6.1		
6.2		
6.3	B Policy and requirements	23
	Physical security	
8 1	Non-invasive security	25
	Sensitive security parameters management	
9.1		
9.2		
9.3		
9.4		
9.5	5	
9.6		
	Self-tests	
10.	•	
	10.1.1 Pre-operational software integrity test	
10.		
	10.2.1 Conditional cryptographic algorithm tests	
_	10.2.2 Conditional pair-wise consistency test	
10.		
	Life-cycle assurance	
11.		
_	11.1.1 End of life procedures	
11.	.2 Crypto Officer guidance	

App	endix B.	References	44
App	endix A.	Glossary and abbreviations	42
12	Mitigati	on of other attacks	41
		RSA Key Agreement	
	11.2.5	RSA Key Wrapping	40
	11.2.4	SP 800-56Ar3 Assurances	39
	11.2.3	Key derivation using SP 800-132 PBKDF2	39
	11.2.2	AES XTS	39
	11.2.1	AES GCM IV	38

1 General

1.1 Overview

This document is the non-proprietary FIPS 140-3 Security Policy for version 3.0.7-395c1a240fbfffd8 of the Red Hat Enterprise Linux 9 - OpenSSL FIPS Provider. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for an overall Security Level 1 module.

This Non-Proprietary Security Policy may be reproduced and distributed, but only whole and intact and including this notice. Other documentation is proprietary to their authors.

1.2 How this Security Policy was prepared

In preparing the Security Policy document, the laboratory formatted the vendor-supplied documentation for consolidation without altering the technical statements therein contained. The further refining of the Security Policy document was conducted iteratively throughout the conformance testing, wherein the Security Policy was submitted to the vendor, who would then edit, modify, and add technical contents. The vendor would also supply additional documentation, which the laboratory formatted into the existing Security Policy, and resubmitted to the vendor for approval.

1.3 Security levels

Table 1 describes the individual security areas of FIPS 140-3, as well as their security levels.

ISO/IEC 24759 Section 6. [Number Below]	FIPS 140-3 Section Title	Security Level			
1	General	1			
2	Cryptographic Module Specification	1			
3	Cryptographic Module Interfaces	1			
4	Roles, Services, and Authentication	1			
5	Software/Firmware Security	1			
6	Operational Environment	1			
7	Physical Security	Not Applicable			
8	Non-invasive Security	Not Applicable			
9	Sensitive Security Parameter Management	1			
10	Self-tests	1			
11	Life-cycle Assurance	1			
12	Mitigation of Other Attacks	1			
	Overall 1				

Table 1 - Security Levels

© 2024 Red Hat, Inc. / atsec information security corporation.

2 Cryptographic module specification

2.1 Description

The Red Hat Enterprise Linux 9 - OpenSSL FIPS Provider (hereafter referred to as "the module") is defined as a software module in a multi-chip standalone embodiment. It provides a C language application program interface (API) for use by other applications that require cryptographic functionality. The module consists of one software component, the "FIPS provider", which implements the FIPS requirements and the cryptographic functionality provided to the operator.

2.2 Operational environments

The module has been tested on the following platforms with the corresponding module variants and configuration options with and without PAA:

#	Operating System	Hardware Platform	Processor	PAA/ Acceleration
1	Red Hat Enterprise Linux 9	Dell PowerEdge R440	Intel(R) Xeon(R) Silver 4216	With and without PAA (AES-NI, SHA extensions)

Table 2 - Tested Operational Environments

In addition to the configurations tested by the atsec CST laboratory, the vendor affirms testing was performed on the following platforms for the module.

#	Operating System	Hardware Platform
1	Red Hat Enterprise Linux 9	Intel(R) Xeon(R) E5

Table 3 - Vendor Affirmed Operational Environments

Note: the CMVP makes no statement as to the correct operation of the module or the security strengths of the generated SSPs when so ported if the specific operational environment is not listed on the validation certificate.

2.3 Approved algorithms

Table 4 lists all approved cryptographic algorithms of the module, including specific key lengths employed for approved services (Table 9), and implemented modes or methods of operation of the algorithms.

The module supports RSA modulus sizes which are not tested by CAVP in compliance with FIPS 140-3 IG C.F.

CAVP Cert	Algorithm and Standard	Mode / Method	Description / Key Size(s) / Key Strengths	Use / Function
A4813 A4823 A4824 A4825 A4826		SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA- 512/224, SHA-512/256	N/A	Message digest

© 2024 Red Hat, Inc. / atsec information security corporation.

A4814	SHA-3 [FIPS 202]	SHA3-224, SHA3-256, SHA3- 384, SHA3-512	N/A	Message digest
	SHA-3 [FIPS 202]	SHAKE128, SHAKE256	N/A	XOF
A4809 A4810 A4811 A4837 A4838 A4839 A4840 A4841	AES [FIPS 197, SP 800-38A]	ECB	128, 192, 256 bits with 128, 192, 256 bits of security strength	Encryption Decryption
A4810	800-38A, SP 800- 38A Addendum, SP 800-38C, SP	CBC, CBC-CTS-CS1, CBC- CTS-CS2, CBC-CTS-CS3, CFB1, CFB8, CFB128, CTR, OFB, CCM KW, KWP (KTS)	128, 192, 256 bits with 128, 192, 256 bits of security strength	Encryption Decryption
	AES [FIPS 197, SP 800-38E]	XTS	128, 256 bits with 128, 256 bits of security strength	Encryption Decryption
	AES [FIPS 197, SP 800-38B]	СМАС	128, 192, 256 bits with 128, 192, 256 bits of security strength	Message authentication
A4812 A4815 A4816 A4817	AES [FIPS 197, SP 800-38D]	GCM (internal IV) (KTS)	128, 192, 256 bits with 128, 192, 256 bits of security strength	Encryption
A4818 A4819 A4820 A4821 A4822	AES [FIPS 197, SP 800-38D]	GCM (external IV) (KTS)	128, 192, 256 bits with 128, 192, 256 bits of security strength	Decryption
	AES [FIPS 197, SP 800-38D]	GMAC	128, 192, 256 bits with 128, 192, 256 bits of security strength	Message authentication
A4813 A4823 A4824 A4825 A4825 A4826	1]	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA- 512/224, SHA-512/256	112-524288 bits with 112-256 bits of security strength	Message authentication
A4814		SHA3-224, SHA3-256, SHA3- 384, SHA3-512		

© 2024 Red Hat, Inc. / atsec information security corporation.

	1	1		1
A4843	KBKDF [SP 800- 108r1]	Counter and feedback mode, using CMAC and HMAC SHA-1, SHA-224, SHA-256, SHA-384, SHA- 512, SHA-512/224, SHA- 512/256, SHA3-224, SHA3- 256, SHA3-384, SHA3-512	112-4096 bits with 112-256 bits of security strength	KBKDF Key derivation
A4844	KDA OneStep¹ [SP 800-56Cr2]	(HMAC) SHA-1, SHA-224, SHA-256, SHA-384, SHA- 512, SHA-512/224, SHA- 512/256, SHA3-224, SHA3- 256, SHA3-384, SHA3-512	224-8192 bits with 112-256 bits of security strength	KDA OneStep Key derivation
A4807	HKDF [SP 800- 56Cr2]	SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA- 512/224, SHA-512/256, SHA3-224, SHA3-256, SHA3- 384, SHA3-512	224-8192 bits with 112-256 bits of security strength	HKDF Key derivation
A4813 A4823 A4824 A4825 A4825 A4826	ANS X9.42 KDF [SP 800-135r1] CVL	AES KW with SHA-1, SHA- 224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256	224-8192 bits with 112-256 bits of security strength	ANS X9.42 KDF Key derivation
A4814		AES KW with SHA3-224, SHA3-256, SHA3-384, SHA3- 512		
A4813 A4823 A4824 A4825 A4825 A4826	ANS X9.63 KDF [SP 800-135r1] CVL	SHA-224, SHA-256, SHA- 384, SHA-512, SHA- 512/224, SHA-512/256	224-8192 bits with 112-256 bits of security strength	ANS X9.63 KDF Key derivation
A4814		SHA3-224, SHA3-256, SHA3- 384, SHA3-512		
	SSH KDF [SP 800- 135r1] CVL	AES-128, AES-192, AES-256 with SHA-1, SHA-224, SHA- 256, SHA-384, SHA-512	224-8192 bits with 112-256 bits of security strength	SSH KDF Key derivation
	TLS 1.2 KDF [SP 800-135r1] CVL	SHA-256, SHA-384, SHA-512	224-8192 bits with 112-256 bits of security strength	TLS 1.2 KDF Key derivation
A4807	TLS 1.3 KDF [RFC 8446] CVL	SHA-256, SHA-384	224-8192 bits with 112-256 bits of security strength	TLS 1.3 KDF Key derivation

 $^{^1\}mbox{This}$ algorithm is referred to as "Single Step KDF" or "SSKDF" by OpenSSL.

 $[\]ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

A4813 A4823 A4824 A4825 A4825 A4826	PBKDF2 [SP 800- 132]	Option 1a with SHA-1, SHA- 224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256	8-128 characters with password strength between 10 ⁸ and 10 ¹²⁸	Password-based key derivation
A4814	PBKDF2 [SP 800- 132]	Option 1a with SHA3-224, SHA3-256, SHA3-384, SHA3- 512	8-128 characters with password strength between 10 ⁸ and 10 ¹²⁸	Password-based key derivation
A4808	CTR_DRBG [SP 800-90Ar1]	AES-128, AES-192, AES-256, with/without derivation function, with/without prediction resistance	256, 320, 384 bits with 128, 192, 256 bits of security strength	Random number generation
	Hash_DRBG [SP 800-90Ar1]	SHA-1, SHA-256, SHA-512 with/without prediction resistance	880, 1776 bits with 128, 256 bits of security strength	Random number generation
	HMAC_DRBG [SP 800-90Ar1]	SHA-1, SHA-256, SHA-512 with/without prediction resistance	320, 512, 1024 bits with 128, 256 bits of security strength	Random number generation
A4813 A4823 A4824 A4825 A4825 A4826	KTS-IFC [SP 800- 56Br2]	KTS-OAEP-basic	2048-15360 bits with 112-256 bits of security strength	Key transport
A4813 A4823 A4824 A4825 A4825 A4826	KAS-IFC-SSC	KAS1, KAS2	2048-15360 bits with 112-256 bits of security strength	Shared secret computation
A4845	KAS-FFC-SSC [SP 800-56Ar3]	dhEphem (initiator/responder)	MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192, ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 with 112-200 bits of security strength	Shared secret computation
	KAS-ECC-SSC [SP 800-56Ar3]	Ephemeral Unified Model (initiator/responder)	P-224, P-256, P-384, P-521 with 112, 128, 192, 256 bits of security strength	Shared secret computation
A4813 A4823 A4824	RSA [FIPS 186-5]	PKCS#1 v1.5 and PSS with SHA-224, SHA-256, SHA- 284, SHA 512, SHA	2048-16384 bits with 112-256 bits of security strength	Signature generation
	RSA [FIPS 186-5]	-384, SHA-512, SHA- 512/224, SHA-512/256, SHA3-224, SHA3-256, SHA3- 384, SHA3-512	2048-16384 bits with 112-256 bits of security strength	Signature verification

© 2024 Red Hat, Inc. / atsec information security corporation.

A4813 A4823 A4824 A4825 A4825 A4826	RSA [FIPS 186-4]	PKCS#1 v1.5 and PSS with SHA-224, SHA-256, SHA- 384, SHA-512, SHA- 512/224, SHA-512/256	NIST SP 800-131Ar2 Legacy use: 1024 bits with 80 bits of security strength	Signature verification
	ECDSA [FIPS 186- 5]	SHA-224, SHA-256, SHA- 384, SHA-512, SHA- 512/224, SHA-512/256,	P-224, P-256, P-384, P-521 with 112, 128, 192, 256 bits of security strength	Signature generation
A4814		SHA3-224, SHA3-256, SHA3- 384, SHA3-512		
	ECDSA [FIPS 186- 5]	SHA-224, SHA-256, SHA- 384, SHA-512, SHA- 512/224, SHA-512/256,		Signature verification
A4814		SHA3-224, SHA3-256, SHA3- 384, SHA3-512		
	Safe primes [SP 800-56Ar3]	SP 800-56Ar3 Section 5.6.1.1.4 Testing Candidates	MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192, ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 with 112-200 bits of security strength	Key pair generation
	Safe primes [SP 800-56Ar3]	SP 800-56Ar3 Sections 5.6.2.1.2 and 5.6.2.1.4		Key pair verification
A4813 A4823 A4824 A4825 A4825	RSA [FIPS 186-5]	FIPS 186-5 Appendix A.1.6 Probable Primes with Conditions Based on Auxiliary Probable Primes	2048-15360 bits with 112-256 bits of security strength	Key pair generation
	ECDSA [FIPS 186- 5]	FIPS 186-5 Appendix A.2.2 Rejection Sampling	P-224, P-256, P-384, P-521 with 112, 128, 192, 256 bits of security strength	Key pair generation
	ECDSA [FIPS 186- 5]	N/A		Key pair verification
	CKG [SP 800- 133r2 Section 4]	Safe primes	MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192, ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 with 112-200 bits of security strength	Key pair generation
		RSA	2048-16384 bits with 112-256 bits of security strength	
		ECDSA	P-224, P-256, P-384, P-521 with 112, 128, 192, 256 bits of security strength	

Vendor affirme		PKCS#1 v1.5 and PSS with SHA3-224, SHA3-256, SHA3-	5,	Signature verification
	[FIPS 140-3 IG C.C]	384, SHA3-512	security strength	

Table 4 - Approved Algorithms

2.4 Non-approved algorithms

The module does not offer any non-approved cryptographic algorithms that are allowed in approved services (with or without security claimed).

Table 5 lists all non-approved cryptographic algorithms of the module employed by the non-approved services in Table 10.

Algorithm / Functions	Use / Function
AES GCM (external IV)	Encryption
HMAC (< 112-bit keys)	Message authentication
KBKDF, KDA OneStep, HKDF, ANS X9.42 KDF, ANS X9.63 KDF (< 112-bit keys)	KBKDF Key derivation KDA OneStep Key derivation HKDF Key derivation ANS X9.42 KDF Key derivation ANS X9.63 KDF Key derivation
KDA OneStep (SHAKE128, SHAKE256)	KDA OneStep Key derivation
ANS X9.42 KDF (SHAKE128, SHAKE256)	ANS X9.42 KDF Key derivation
ANS X9.63 KDF (SHA-1, SHAKE128, SHAKE256)	ANS X9.63 KDF Key derivation
SSH KDF (SHA-512/224, SHA-512/256, SHA-3, SHAKE128, SHAKE256)	SSH KDF Key derivation
TLS 1.2 KDF (SHA-1, SHA-224, SHA-512/224, SHA-512/256, SHA-3)	TLS 1.2 KDF Key derivation
TLS 1.3 KDF (SHA-1, SHA-224, SHA-512, SHA-512/224, SHA-512/256, SHA-3)	TLS 1.3 KDF Key derivation
PBKDF2 (short password; short salt; insufficient iterations; < 112-bit keys)	Password-based key derivation
RSA and ECDSA (pre-hashed message)	Signature generation component Signature verification component
RSA-PSS (invalid salt length)	Signature generation Signature verification

Table 5 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

2.5 Module design and components

Figure 1 shows a block diagram that represents the design of the module when the module is operational and providing services to other user space applications. In this diagram, the physical perimeter of the operational environment (a general-purpose computer on which the module is installed) is indicated by a purple dashed line. The cryptographic boundary is represented by the component painted in orange block, which consists only of the shared library implementing the FIPS provider (fips.so).

Green lines indicate the flow of data between the cryptographic module and its operator application, through the logical interfaces defined in Section 3.

Components in white are only included in the diagram for informational purposes. They are not included in the cryptographic boundary (and therefore not part of the module's validation). For example, the kernel is responsible for managing system calls issued by the module itself, as well as other applications using the module for cryptographic services.

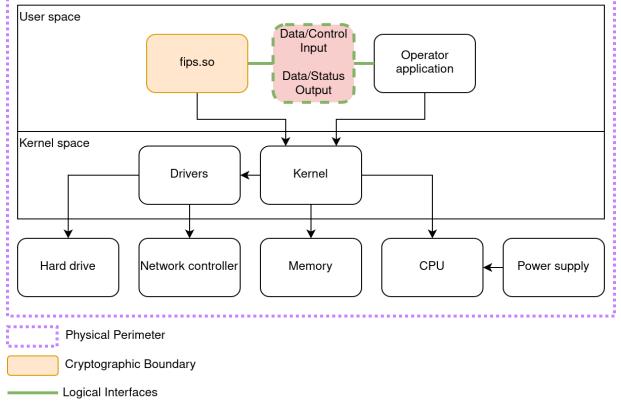


Figure 1 – Software Block Diagram

2.6 Rules of operation

Upon initialization, the module immediately performs all cryptographic algorithm self-tests (CASTs) as specified in Table 13. When all those self-tests pass successfully, the module automatically performs the pre-operational integrity test using the integrity value embedded in the fips.so file. Only if this integrity test also passed successfully, the module transitions to the operational state. No operator intervention is required to reach this point. The module operates in the approved mode of operation by default and can only transition into the non-approved mode by calling one of the non-approved services listed in Table 10 of the Security Policy.

In the operational state, the module accepts service requests from calling applications through its logical interfaces. At any point in the operational state, a calling application can end its process, thus causing the module to end its operation.

The module supports two modes of operation:

© 2024 Red Hat, Inc. / atsec information security corporation.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

- The approved mode of operation, in which the approved or vendor affirmed services are available as specified in Table 9.
- The non-approved mode of operation, in which the non-approved services are available as specified in Table 10.

3 Cryptographic module interfaces

The logical interfaces are the APIs through which the applications request services. These logical interfaces are logically separated from each other by the API design. Table 6 summarizes the logical interfaces:

Physical Port	Logical Interface	Data that passes over port / interface
	Data Input	API input parameters
module does not have physical ports. Physical Ports are interpreted to be	Data Output	API output parameters
	Control Input	API function calls
	Status Output	API return codes, error queue

Table 6 - Ports and Interfaces

The module does not implement a control output interface.

4 Roles, services, and authentication

4.1 Roles

The module supports the Crypto Officer role only. This sole role is implicitly and always assumed by the operator of the module. No support is provided for multiple concurrent operators or a maintenance role.

Table 7 lists the roles supported by the module with corresponding services with input and output parameters.

Role	Service	Input	Output		
Crypto	Message digest	Message	Digest value		
Officer	XOF	Message, output length	Digest value		
	Encryption	Plaintext, AES key	Ciphertext		
	Decryption	Ciphertext, AES key	Plaintext		
	Message authentication	Message, AES key or HMAC key	MAC tag		
	KBKDF Key derivation	Key-derivation key	KBKDF Derived key		
	KDA OneStep Key derivation	Shared secret	KDA OneStep Derived key		
	HKDF Key derivation	Shared secret	HKDF Derived key		
	ANS X9.42 KDF Key derivation	Shared secret	ANS X9.42 KDF Derived key		
	ANS X9.63 KDF Key derivation	Shared secret	ANS X9.63 KDF Derived key		
	SSH KDF Key derivation	Shared secret	SSH KDF Derived key		
	TLS 1.2 KDF Key derivation	Shared secret, EMS check	TLS 1.2 KDF Derived key		
	TLS 1.3 KDF Key derivation	Shared secret, EMS check	TLS 1.3 KDF Derived key		
	Password-based key derivation	Password, salt, iteration count	PBKDF2 Derived key		
	Random number generation	Output length	Random bytes		
	Shared secret computation	Owner private key, peer public key	Shared secret		
	Signature generation component	Pre-hashed message, private key	Signature		
	Signature verification component	Pre-hashed message, public key, signature	Pass/fail		
	Signature generation	Message, private key, hashing algo	Signature		
	Signature verification	Message, public key, signature, hashing algo	Pass/fail		
	Key Transport (encapsulation)	RSA public key, plaintext key	Wrapped key		

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

Key Transport (un- encapsulation)	RSA private key, wrapped key	Plaintext Key
Key pair generation	Key size	Key pair
Key pair verification	Key pair	Pass/fail
Show version	N/A	Name and version information
Show status	N/A	Module status
Self-test	N/A	Pass/fail results of self-tests
Zeroization	Any SSP	N/A

Table 7 - Roles, Service Commands, Input and Output

4.2 Authentication

The module does not support authentication for roles.

4.3 Services

The module provides services to operators that assume the available role. All services are described in detail in the API documentation (manual pages). The next tables define the services that utilize approved and non-approved security functions in this module. For the respective tables, the convention below applies when specifying the access permissions (types) that the service has for each SSP.

- Generate (G): The module generates or derives the SSP.
- Read (R): The SSP is read from the module (e.g. the SSP is output).
- Write (W): The SSP is updated, imported, or written to the module.
- **Execute (E)**: The module uses the SSP in performing a cryptographic operation.
- Zeroize (Z): The module zeroizes the SSP.
- **N/A**: The module does not access any SSP or key during its operation.

To interact with the module, a calling application must use the EVP API layer provided by OpenSSL. This layer will delegate the request to the FIPS provider, which will in turn perform the requested service. Additionally, this EVP API layer can be used to retrieve the approved service indicator for the module. The redhat_ossl_query_fipsindicator() function indicates whether an EVP API function is approved. After a cryptographic service was performed by the module, the API context (listed in the left column of Table 8) associated with this request can contain a parameter (listed in the right column of Table 8) which represents the approved service indicator.

Context	Service Indicator
EVP_CIPHER_CTX	OSSL_CIPHER_PARAM_REDHAT_FIPS_INDICATOR
EVP_MAC_CTX	OSSL_MAC_PARAM_REDHAT_FIPS_INDICATOR
EVP_KDF_CTX	OSSL_KDF_PARAM_REDHAT_FIPS_INDICATOR
EVP_PKEY_CTX	OSSL_SIGNATURE_PARAM_REDHAT_FIPS_INDICATOR
EVP_PKEY_CTX	OSSL_ASYM_CIPHER_PARAM_REDHAT_FIPS_INDICATOR
EVP_PKEY_CTX	OSSL_KEM_PARAM_REDHAT_FIPS_INDICATOR

Table 8 - Service Indicator Parameters

The details to use these functions and parameters are described in the module's manual pages.

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

Table 9 lists the approved services in this module, the algorithms involved, the Sensitive Security Parameters (SSPs) involved and how they are accessed, the roles that can request the service, and the respective service indicator. In this table, CO specifies the Crypto Officer role.

Service	Descriptio n	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Message digest	message digest	SHA-1, SHA-224, SHA- 256, SHA-384, SHA- 512, SHA-512/224, SHA-512/256, SHA3- 224, SHA3-256, SHA3- 384, SHA3-512	N/A	СО	N/A	EVP_DigestFinal_ex returns 1
XOF	Compute the output of an XOF	SHAKE128, SHAKE256	N/A	CO	N/A	EVP_DigestFinalXOF returns 1
Encryption	plaintext	AES ECB, CBC, CBC- CTS-CS1, CBC-CTS- CS2, CBC-CTS-CS3, CFB1, CFB8, CFB128, CTR, OFB, CCM, KW, KWP, GCM, XTS	AES key	со	W, E	AES GCM: EVP_CIPHER_REDHAT _FIPS_INDICATOR_APP ROVED Others: EVP_EncryptFinal_ex returns 1
Decryption	Decrypt a ciphertext			со	W, E	AES GCM: EVP_CIPHER_REDHAT _FIPS_INDICATOR_APP ROVED Others: EVP_DecryptFinal_ex returns 1
Message authenticati on	MAC tag		AES key HMAC key	со	W, E	HMAC: OSSL_MAC_PARAM_R EDHAT_FIPS_INDICAT OR_APPROVED Others: EVP_MAC_final returns 1
KBKDF Key derivation	Derive a key from a key- derivation key		Key-derivation key KBKDF Derived key		W, E G, R	EVP_KDF_REDHAT_FIP S_INDICATOR_APPRO VED
KDA OneStep	from a shared	KDA OneStep	DH Shared secret		W, E	
Key derivation	secret		ECDH Shared secret		W, E	

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

Service	Descriptio n	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
			RSA Shared secret		W, E	
			KDA OneStep Derived key		G, R	
HKDF Key derivation		HKDF	DH Shared secret		W, E	
			ECDH Shared secret		W, E	
			RSA Shared secret		W, E	
			HKDF Derived key		G, R	
ANS X9.42 KDF Key		ANS X9.42 KDF	DH Shared secret		W, E	
derivation			ECDH Shared secret		W, E	
			RSA Shared secret		W, E	
			ANS X9.42 KDF Derived key		G, R	
ANS X9.63 KDF Key		ANS X9.63 KDF	DH Shared secret		W, E	
derivation			ECDH Shared secret		W, E	
			RSA Shared secret		W, E	
			ANS X9.63 KDF Derived key		G, R	
SSH KDF Key		SSH KDF	DH Shared secret		W, E	
derivation			ECDH Shared secret		W, E	
			SSH KDF Derived key		G, R	
TLS 1.2 KDF Key		TLS 1.2 KDF	DH Shared secret	1	W, E	
derivation			ECDH Shared secret	1	W, E	
			TLS 1.2 KDF Derived key]	G, R	

Service	Descriptio n	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
TLS 1.3 KDF Key		TLS 1.3 KDF	DH Shared secret		W, E	
derivation			ECDH Shared secret		W, E	
			TLS 1.3 KDF Derived key		G, R	
Password-		PBKDF2	Password	со	W, E	EVP_KDF_REDHAT_FIP
based key derivation	from a password		PBKDF2 Derived key		G, R	S_INDICATOR_APPRO VED
Random number	Generate	CTR_DRBG	Entropy input	со	W, E	EVP_RAND_generate returns 1
generation	random bytes		DRBG seed		E, G	
			DRBG Internal state (V, Key)		W, E, G	
		Hash_DRBG	Entropy input		W, E	
			DRBG seed		E, G	
			DRBG Internal state (V, C)		W, E, G	
		HMAC_DRBG	Entropy input		W, E	-
			DRBG seed		E, G	
			DRBG Internal state (V, Key)		W, E, G	
Key transport	Key wrapping	RSA-OAEP Encrypt	RSA public key	со	W, E	EVP_PKEY_REDHAT_FI PS_INDICATOR_APPR
(encapsulati on)	using KTS-		Plaintext key		W, E	OVĒD
	OAEP-basic		Wrapped key	-	R	
Key transport (un-	Key unwrapping	RSA-OAEP Decrypt	RSA private key	СО	W, E	
encapsulatio	using KTS- OAEP-basic		Wrapped key		W, E	
n)	UAEF-DASIC		Plaintext key		R	
Shared secret computation	Compute a shared secret	KAS-IFC-SSC	RSA private key (owner), RSA public key (peer)		W, E	EVP_PKEY_REDHAT_FI PS_INDICATOR_APPR OVED
			RSA Shared secret		G, R	
		KAS-FFC-SSC	DH private key (owner), DH public key (peer)		W, E	EVP_PKEY_derive returns 1

Service	Descriptio n	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator		
			DH Shared secret		G, R			
		KAS-ECC-SSC	EC private key (owner), EC public key (peer)		W, E			
			ECDH Shared secret		G, R			
Signature generation	Generate a signature	RSA signature generation/verificatio n (PKCS#1 v1.5 and	RSA private key EC private key	со	W, E	RSA: OSSL_RH_FIPSINDICA TOR_APPROVED and		
Signature verification	Verify a signature	PSS) ECDSA signature generation/verificatio n	RSA public key EC public key	со	W, E	EVP_SIGNATURE_RED HAT_FIPS_INDICATOR _APPROVED ECDSA: OSSL_RH_FIPSINDICA TOR_APPROVED		
Key pair generation	Generate a key pair	ey pair CTR_DRBG, Hash_DRBG, HMAC_DRBG Safe primes key pair generation RSA key pair generation	DH private key, DH public key RSA private key, RSA public key EC private key, EC public key	СО	G, R	EVP_PKEY_generate returns 1		
			Intermediate key generation value		G, E, Z			
Key pair verification	Verify a key pair	Safe primes key pair verification ECDSA key pair verification	DH private key, DH public key EC private key, EC public key	СО	W, E	EVP_PKEY_public_che ck or EVP_PKEY_private_ch eck or EVP_PKEY_check returns 1		
Other FIPS-related Services								
Show version	Return the name and version information	N/A	N/A	со	N/A	None		
Show status	Return the module status	N/A	N/A	СО	N/A	None		

© 2024 Red Hat, Inc. / atsec information security corporation.

Service	Descriptio n	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
	CASTs and integrity test	256 AES ECB, KW, GCM HMAC KBKDF, KDA OneStep, HKDF, ANS X9.42 KDF, ANS X9.63 KDF, SSH KDF, TLS 1.2 KDF, TLS 1.3 KDF PBKDF2 CTR_DRBG, HASh_DRBG, HMAC_DRBG KAS-FFC-SSC, KAS- ECC-SSC RSA (OAEP and PKCS#1 v1.5) ECDSA See Table 13 for specifics	HMAC key Key-derivation key Password DH private key, DH public key	CO	N/A	None
	Zeroize all SSPs	N/A	Any SSP	СО	Z	None

Table 9 - Approved Services

Table 10 lists the non-approved services in this module, the algorithms involved, the roles that can request the service, and the respective service indicator. In this table, CO specifies the Crypto Officer role.

Service	Description	otion Algorithms Accessed			
Encryption	Encrypt a plaintext	AES GCM (external IV)	со		
Message authentication	Compute a MAC tag	HMAC (< 112-bit keys)	СО		
KBKDF Key derivation	Derive a key from a key-derivation key	KBKDF (< 112-bit keys)	СО		
KDA OneStep Key derivation		KDA OneStep (< 112-bit keys) KDA OneStep (SHAKE128, SHAKE256)			
HKDF Key derivation		HKDF (< 112-bit keys)			
ANS X9.42 KDF Key derivation		ANS X9.42 KDF (< 112-bit keys) ANS X9.42 KDF (SHAKE128, SHAKE256)			
ANS X9.63 KDF Key derivation		ANS X9.63 KDF (< 112-bit keys) ANS X9.63 KDF (SHA-1, SHAKE128, SHAKE256)			
SSH KDF Key derivation		SSH KDF (< 112-bit keys) SSH KDF (SHA-512/224, SHA-512/256, SHA-3, SHAKE128, SHAKE256)			
TLS 1.2 KDF Key derivation		TLS 1.2 KDF (< 112-bit keys) TLS 1.2 KDF (SHA-1, SHA-224, SHA-512/224, SHA- 512/256, SHA-3)			
TLS 1.3 KDF Key derivation		TLS 1.3 KDF (< 112-bit keys) TLS 1.3 KDF (SHA-1, SHA-224, SHA-512, SHA-512/224, SHA-512/256, SHA-3)			
Password-based key derivation		PBKDF2 (short password; short salt; insufficient iterations; < 112-bit keys)	СО		
Signature generation component		RSA and ECDSA signature generation/verification (pre- hashed message)	со		
Signature verification component	Verify a signature		СО		
Signature generation	Generate a signature	RSA-PSS (invalid salt length)	со		
Signature verification	Verify a signature				

Table 10 - Non-Approved Services

© 2024 Red Hat, Inc. / atsec information security corporation.

5 Software/Firmware security

5.1 Integrity techniques

The integrity of the module is verified by comparing a HMAC SHA-256 value calculated at run time with the HMAC SHA-256 value embedded in the fips.so file that was computed at build time.

5.2 On-demand integrity test

Integrity tests are performed as part of the pre-operational self-tests, which are executed when the module is initialized. The integrity test may be invoked on-demand by unloading and subsequently re-initializing the module. This will perform (among others) the software integrity test.

6 Operational environment

6.1 Applicability

The module operates in a modifiable operational environment per FIPS 140-3 level 1 specification: the module executes on a general purpose operating system (Red Hat Enterprise Linux 9), which allows modification, loading, and execution of software that is not part of the validated module.

6.2 Tested operational environments

See Section 2.2.

The Red Hat Enterprise Linux operating system is used as the basis of other products which include but are not limited to:

- Red Hat Enterprise Linux CoreOS
- Red Hat Ansible Automation Platform
- Red Hat OpenStack Platform
- Red Hat OpenShift
- Red Hat Gluster Storage
- Red Hat Satellite

Compliance is maintained for these products whenever the binary is found unchanged.

6.3 Policy and requirements

The module shall be installed as stated in Section 11. If properly installed, the operating system provides process isolation and memory protection mechanisms that ensure appropriate separation for memory access among the processes on the system. Each process has control over its own data and uncontrolled access to the data of other processes is prevented.

There are no concurrent operators.

The module does not have the capability of loading software or firmware from an external source. Instrumentation tools like the ptrace system call, gdb and strace, userspace live patching, as well as other tracing mechanisms offered by the Linux environment such as ftrace or systemtap, shall not be used in the operational environment. The use of any of these tools implies that the cryptographic module is running in a non-validated operational environment.

7 Physical security

The module is comprised of software only and therefore this section is not applicable.

8 Non-invasive security

This module does not implement any non-invasive security mechanism and therefore this section is not applicable.

9 Sensitive security parameters management

Table 11 summarizes the Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the module in the approved services (Table 9).

SSPs (including CSPs) are directly imported as input parameters and exported as output parameters from the module. Because these SSPs are only transiently used for a specific service, they are by definition exclusive between approved and non-approved services.

Key / SSP Name / Type	Strength	Security Function and Cert. Number	Generation	Import / Export	Esta blish ment	Stor age	Zeroiza tion	Use and related keys
AES key (CSP)	AES-XTS: 128, 256 bits Rest of modes: 128, 192, 256 bits	AES AES CMAC AES GMAC A4809, A4810, A4811, A4812, A4815, A4816, A4817, A4818, A4819, A4820, A4821, A4822, A4837, A4838, A4839, A4840, A4841	N/A	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: None	N/A	RAM	EVP_CI- PHER_CTX_f ree EVP_MAC_C TX_free	Use: Encryption Decryption Message au- thentication Related SSPs: None
HMAC key (CSP)	112-256 bits	HMAC A4813, A4814, A4823, A4824, A4825, A4826	N/A	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: None	N/A	RAM	EVP_MAC_C TX_free	Use: Message au- thentication Related SSPs: None
Key-deriva- tion key (CSP)	112-256 bits	KBKDF A4843	N/A	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: None	N/A	RAM	EVP_KDF_CT X_free	Use: KBKDF Key deri- vation Related SSPs: KBKDF Derived key

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

DH Shared secret (CSP)	112-256 bits	KAS-FFC-SSC KDA OneStep HKDF ANS X9.42 KDF ANS X9.63 KDF SSH KDF TLS 1.2 KDF TLS 1.3 KDF A4807 A4813 A4814 A4823 A4824 A4825 A4826 A4837 A4838 A4839 A4840 A4841 A4844 A4845	N/A	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: API output pa- rameters From: Crypto- graphic mod- ule To: Operator calling appli- cation (TOEPP)	SP 800- 56Ar3 (DH shared secret compu- tation)	RAM	EVP_KDF_CT X_free	Use: Shared secret computation KDA OneStep Key derivation HKDF Key deri- vation ANS X9.42 KDF Key derivation ANS X9.63 KDF Key derivation SSH KDF Key derivation TLS 1.2 KDF Key derivation TLS 1.3 KDF Key derivation Related SSPs: KDA OneStep Derived key HKDF Derived key ANS X9.42 KDF Derived key ANS X9.63 KDF Derived key SSH KDF De- rived key TLS 1.2 KDF De- rived key TLS 1.3 KDF De- rived key DH private key DH private key
ECDH Sha- red secret (CSP)	112-256 bits	KAS-ECC-SSC KDA OneStep HKDF ANS X9.42 KDF ANS X9.63 KDF SSH KDF TLS 1.2 KDF TLS 1.3 KDF A4807 A4813 A4814 A4823 A4824 A4825 A4826 A4837 A4838 A4839 A4840 A4841 A4844	N/A	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: API output pa- rameters From: Crypto- graphic mod- ule To: Operator calling appli- cation (TOEPP)	SP 800- 56Ar3 (ECDH shared secret compu- tation)	RAM	EVP_KDF_CT X_free	Use: Shared secret computation KDA OneStep Key derivation HKDF Key deri- vation ANS X9.42 KDF Key derivation ANS X9.63 KDF Key derivation SSH KDF Key derivation TLS 1.2 KDF Key derivation TLS 1.3 KDF Key derivation Related SSPs: KDA OneStep Derived key HKDF Derived key ANS X9.42 KDF Derived key

								ANS X9.63 KDF Derived key SSH KDF De- rived key TLS 1.2 KDF De- rived key TLS 1.3 KDF De- rived key EC private key EC public key
RSA Shared secret (CSP)	112-256 bits	KAS-IFC-SSC KDA OneStep HKDF ANS X9.42 KDF ANS X9.63 KDF SSH KDF TLS 1.2 KDF TLS 1.3 KDF A4807 A4813 A4814 A4823 A4824 A4825 A4826 A4837 A4838 A4839 A4834 A4841 A4844	N/A	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: API output pa- rameters From: Crypto- graphic mod- ule To: Operator calling appli- cation (TOEPP)	SP 800- 56Br2 (IFC shared secret compu- tation)	RAM	EVP_KDF_CT X_free	Use: Shared secret computation KDA OneStep Key derivation HKDF Key deri- vation ANS X9.42 KDF Key derivation ANS X9.63 KDF Key derivation Related SSPs: KDA OneStep Derived key HKDF Derived key ANS X9.42 KDF Derived key ANS X9.63 KDF Derived key RSA private key RSA public key
Password (CSP)	Password strength: 10 ⁸ - 10 ¹²⁸	PBKDF2 A4813, A4814, A4823, A4824, A4825, A4826	N/A	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: None	N/A	RAM	EVP_KDF_CT X_free	Use: Password-based key derivation Related SSPs: PBKDF2 Derived key
KBKDF Deri- ved key (CSP)	112-256 bits	KBKDF A4843	SP 800-108r1 SP 800-133r2, Sec- tion 6.2	MD/EE Import: None Export: API output pa- rameters From: Crypto- graphic mod- ule To: Operator	N/A	RAM	EVP_KDF_CT X_free	Use: KBKDF Key deri- vation Related SSPs: Key-derivation key

				calling appli- cation (TOEPP)				
KDA OneStep Derived key (CSP)	112-256 bits	KDA OneStep A4844	SP 800-56Cr2 SP 800-133r2, Sec- tion 6.2	MD/EE Import: None Export: API output pa- rameters From: Crypto-	N/A	RAM	EVP_KDF_CT X_free	Use: KDA OneStep Key derivation Related SSPs: DH Shared se- cret ECDH Shared se- cret RSA Shared se-
HKDF Deri- ved key (CSP)		HKDF A4807		graphic mod- ule To: Operator calling appli- cation (TOEPP)				cret Use: HKDF Key deri- vation Related SSPs: DH Shared se- cret ECDH Shared se- cret
ANS X9.42 KDF De- rived key (CSP)		ANS X9.42 KDF A4813 A4814 A4823 A4824 A4825 A4826	SP 800-135r1 SP 800-133r2, Sec- tion 6.2					RSA Shared se- cret Use: ANS X9.42 KDF Key derivation Related SSPs: DH Shared se- cret ECDH Shared se-
ANS X9.63 KDF De- rived key (CSP)		ANS X9.63 KDF A4813 A4814 A4823 A4824 A4825 A4826						cret RSA Shared se- cret Use: ANS X9.63 KDF Key derivation Related SSPs: DH Shared se- cret
SSH KDF Derived key (CSP)	-	SSH KDF A4837 A4838 A4839 A4840 A4841						ECDH Shared se- cret RSA Shared se- cret Use: SSH KDF Key derivation Related SSPs:
TLS 1.2 KDF Derived key (CSP)		TLS 1.2 KDF A4813 A4823 A4824 A4825 A4826						DH Shared se- cret ECDH Shared se- cret Use: TLS 1.2 KDF Key derivation Related SSPs: DH Shared se- cret

								ECDH Shared se- cret
TLS 1.3 KDF Derived key (CSP)		TLS 1.3 KDF A4807						Use: TLS 1.3 KDF Key derivation Related SSPs: DH Shared se- cret ECDH Shared se-
PBKDF2 De- rived key (CSP)		PBKDF2 A4813 A4814 A4823 A4824 A4825 A4826	SP 800-132 SP 800-133r2, Sec- tion 6.2					cret Use: Password-based key derivation Related SSPs: Password
Entropy in- put (CSP)	112-336 bits	CTR_DRBG Hash_DRBG HMAC_DRBG A4808	N/A	Import: None Export: None	N/A	RAM	EVP_RAND_ CTX_free	Use: Random number generation Related SSPs: DRBG seed
DRBG seed (CSP) IG D.L com- pliant	CTR_DRBG: 128, 192, 256 bits Hash_DRBG: 128, 256 bits HMAC_DRBG: 128, 256 bits		CTR_DRBG Hash_DRBG HMAC_DRBG	Import: None Export: None	N/A	RAM	EVP_RAND_ CTX_free	Use: Random number generation Related SSPs: Entropy input DRBG Internal state (V, Key) DRBG Internal state (V, C)
DRBG Inter- nal state (V, Key) (CSP) IG D.L com- pliant		CTR_DRBG HMAC_DRBG A4808	CTR_DRBG HMAC_DRBG	Import: None Export: None	N/A	RAM	EVP_RAND_ CTX_free	Use: Random number generation Related SSPs: DRBG seed
DRBG Inter- nal state (V, C) (CSP) IG D.L com- pliant		Hash_DRBG A4808	Hash_DRBG					
DH private key (CSP)	112-200 bits	KAS-FFC-SSC A4845	SP 800-56Ar3 (safe primes) Section 5.6.1.1.4 Testing Candidates	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule	N/A	RAM	EVP_PKEY_fr ee	Use: Shared secret computation Key pair genera- tion Key pair verifica- tion Related SSPs: DH public key Intermediate key generation value
DH public key (PSP)	112-200 bits			Export: API output pa- rameters From: Crypto- graphic				Use: Shared secret computation Key pair genera- tion

				module To: Operator calling appli- cation (TOEPP)				Key pair verifica- tion Related SSPs: DH private key Intermediate key generation value
EC private key (CSP) EC public key (PSP)	112, 128, 192, 256 bits 112, 128, 192, 256 bits	KAS-ECC-SSC ECDSA A4813, A4814, A4823, A4824, A4825, A4826	FIPS 186-5 Appen- dix A.2.2 Rejection Sampling	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: API output pa- rameters From: Crypto- graphic mod- ule To: Operator calling appli- cation (TOEPP)	N/A	RAM	EVP_PKEY_fr ee	Use: Shared secret computation Signature gener- ation Key pair genera- tion Related SSPs: EC public key Intermediate key generation value Use: Shared secret computation Signature verifi- cation Key pair genera- tion Key pair genera- tion Related SSPs: EC private key Intermediate key generation value
RSA private key (CSP) RSA public key (PSP)	112-256 bits Signature veri- fication: 80- 256 bits Others: 112- 256 bits	RSA KTS- IFC KAS-IFC- SSC A4813, A4823, A4824, A4825, A4826	FIPS 186-5 Appen- dix A.1.6 Probable Primes with Condi- tions Based on Auxiliary Probable Primes	MD/EE Import: API input pa- rameters From: Opera- tor calling ap- plication (TOEPP) To: Crypto- graphic mod- ule Export: API output pa- rameters From: Crypto- graphic mod- ule To: Operator calling appli-	N/A	RAM	EVP_PKEY_fr ee	Use: Key pair genera- tion Shared secret computation Signature gener- ation Key un-encapsu- lation Related SSPs: RSA public key Intermediate key generation value Use: Key pair genera- tion Shared secret computation Signature verifi- cation

								Related SSPs: RSA private key Intermediate key generation value
Intermedi- ate key generation value (CSP)	112-256 bits	CKG vendor affirmed	SP 800-133r2 Sec- tion 4, 5.1, and 5.2	Import: None Export: None	N/A	RAM	Automatic	Use: Key pair genera- tion Related SSPs: DH private key
								DH public key EC private key EC public key RSA private key RSA public key

Table 11 – SSPs

9.1 Random bit generators

The module employs two Deterministic Random Bit Generator (DRBG) implementations based on SP 800-90Ar1. These DRBGs are used internally by the module (e.g. to generate seeds for asymmetric key pairs and random numbers for security functions). They can also be accessed using the specified API functions. The following parameters are used:

- 1. Private DRBG: AES-256 CTR_DRBG with derivation function. This DRBG is used to generate secret random values (e.g. during asymmetric key pair generation). It can be accessed using RAND_priv_bytes.
- 2. Public DRBG: AES-256 CTR_DRBG with derivation function. This DRBG is used to generate general purpose random values that do not need to remain secret (e.g. initialization vectors). It can be accessed using RAND_bytes.

These DRBGs will always employ prediction resistance. More information regarding the configuration and design of these DRBGs can be found in the module's manual pages.

Entropy Source	Minimum number of bits of entropy	Details
SP 800-90B compliant Non-Physical Entropy Source (ESV cert. E48)	224 bits of entropy in the 256-bit output	OpenSSL CPU Jitter 2.2.0 entropy source is located within the physical perimeter of the module but partially outside the cryptographic boundary of the module.

Table 12 – Non-Deterministic Random Number Generation Specification The module generates SSPs (e.g., keys) whose strengths are modified by available entropy.

9.2 SSP generation

The module implements Cryptographic Key Generation (CKG, vendor affirmed), compliant with SP 800-133r2. When random values are required, they are obtained from the SP 800-90Ar1 approved DRBG, compliant with Section 4 of SP 800-133r2. The following methods are implemented:

- Safe primes key pair generation: compliant with SP 800-133r2, Section 5.2, which maps to SP 800-56Ar3. The method described in Section 5.6.1.1.4 of SP 800-56Ar3 ("Testing Candidates") is used.
- RSA key pair generation: compliant with SP 800-133r2, Section 5.1, which maps to FIPS 186-5. The method described in Appendix A.1.6 of FIPS 186-5 ("Probable Primes with Conditions Based on Auxiliary Probable Primes") is used.

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

• ECC (ECDH and ECDSA) key pair generation: compliant with SP 800-133r2, Section 5.1, which maps to FIPS 186-5. The method described in Appendix A.2.2 of FIPS 186-5 ("Rejection Sampling") is used.

Additionally, the module implements the following key derivation methods:

- KBKDF: compliant with SP 800-108r1. This implementation can be used to generate secret keys from a pre-existing key-derivation-key.
- KDA OneStep, HKDF: compliant with SP 800-56Cr2.
- ANS X9.42 KDF, ANS X9.63 KDF: compliant with SP 800-135r1. These implementations shall only be used to generate secret keys in the context of an ANS X9.42-2001 resp. ANS X9.63-2001 key agreement scheme.
- SSH KDF, TLS 1.2 KDF, TLS 1.3 KDF: compliant with SP 800-135r1. These implementations shall only be used to generate secret keys in the context of the SSH, TLS 1.2, or TLS 1.3 protocols, respectively.
- PBKDF2: compliant with option 1a of SP 800-132. This implementation shall only be used to derive keys for use in storage applications.

Intermediate key generation values are not output from the module and are explicitly zeroized after processing the service.

9.3 SSP establishment

The module provides Diffie-Hellman (DH) and Elliptic Curve Diffie-Hellman (ECDH) shared secret computation compliant with SP800-56Ar3, in accordance with scenario 2 (1) of FIPS 140-3 IG D.F. For Diffie-Hellman, the module supports the use of the safe primes defined in RFC 3526 (IKE) and RFC 7919 (TLS). Note that the module only implements key pair generation, key pair verification, and shared secret computation. No other part of the IKE or TLS protocols is implemented (with the exception of the TLS 1.2 and 1.3 KDFs):

- IKE (RFC 3526):
 - MODP-2048 (ID = 14)
 - MODP-3072 (ID = 15)
 - MODP-4096 (ID = 16)
 - MODP-6144 (ID = 17)
 - MODP-8192 (ID = 18)
- TLS (RFC 7919)
 - ffdhe2048 (ID = 256)
 - ffdhe3072 (ID = 257)
 - ffdhe4096 (ID = 258)
 - ffdhe6144 (ID = 259)
 - ffdhe8192 (ID = 260)

For Elliptic Curve Diffie-Hellman, the module supports the NIST-defined P-224, P-256, P-384, and P-521 curves.

According to FIPS 140-3 IG D.B, the key sizes of DH and ECDH provide the following security strengths in the approved mode of operation:

- Diffie-Hellman shared secret computation provides between 112 and 200 bits of security strength.
- EC Diffie-Hellman shared secret computation provides between 112 and 256 bits of security strength.

In addition, the module provides RSA shared secret computation compliant with SP800-56Br2, in accordance with scenario 1 (1) of FIPS 140-3 IG D.F.

For RSA key generation, the module provides 2048-15360 bits keys. Therefore, according to FIPS 140-3 IG D.B, the key sizes of RSA shared secret computation provide 112-256 bits of security strength in the approved mode of operation.

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

The module offers RSA key wrapping and unwrapping using KTS-OAEP-basic scheme. The implementation supports 2048-15360 bits modulus size, with both key encapsulation and un-encapsulation supported. The module does not implement key confirmation. See section 11.2.4 for operator guidance details. The SSP establishment methodology provides 112 to 256 bits of encryption strength.

The module also supports the AES KW, AES KWP, and AES GCM key wrapping mechanisms. These algorithms can be used to wrap SSPs with a security strength between 128 and 256 bits, depending on the wrapping key size.

9.4 SSP entry/output

The module only supports SSP entry and output to and from the calling application running on the same operational environment. This corresponds to manual distribution, electronic entry/output ("CM Software to/from App via TOEPP Path") per FIPS 140-3 IG 9.5.A Table 1. There is no entry or output of cryptographically protected SSPs.

SSPs can be entered into the module via API input parameters in plaintext form, when required by a service. SSPs can also be output from the module via API output parameters, immediately after generation of the SSP (see Section 9.2).

9.5 SSP storage

SSPs are provided to the module by the calling application and are destroyed when released by the appropriate API function calls. The module does not perform persistent storage of SSPs.

9.6 SSP zeroization

The memory occupied by SSPs is allocated by regular memory allocation operating system calls. The operator application is responsible for calling the appropriate destruction functions provided in the module's API. The destruction functions (listed in Table 11) overwrite the memory occupied by SSPs with zeroes and de-allocate the memory with the regular memory de-allocation operating system call. All data output is inhibited during zeroization.

10 Self-tests

The module performs pre-operational self-tests and conditional self-tests. While the module is executing the self-tests, services are not available, and data output (via the data output interface) is inhibited until the tests are successfully completed. The module does not return control to the calling application until the tests are completed. Both conditional and pre-operational self-tests can be executed on-demand by unloading and subsequently re-initializing the module.

All the self-tests are listed in Table 12, with the respective condition under which those tests are performed. Note that the pre-operational integrity test is only executed after all cryptographic algorithm self-tests (CASTs) executed successfully.

Algorithm	Parameters	Condition	Туре	Test
НМАС	SHA-256	Initialization (af- ter CASTs)	Pre-operational Integrity Test	MAC tag verification on fips.so file
SHA-1	N/A	Initialization	Cryptographic Algorithm Self-Test	KAT digest generation
SHA-512	N/A	Initialization	Cryptographic Algorithm Self-Test	KAT digest generation
SHA3-256	N/A	Initialization	Cryptographic Algorithm Self-Test	KAT digest generation
AES GCM	256-bit key	Initialization	Cryptographic Algorithm Self-Test	KAT encryption and decryption
AES ECB	128-bit key	Initialization	Cryptographic Algorithm Self-Test	KAT decryption
KBKDF	HMAC SHA-256 in counter mode	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
KDA OneStep	SHA-224	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
HKDF	SHA-256	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
ANS X9.42 KDF	AES-128 KW with SHA-1	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
ANS X9.63 KDF	SHA-256	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
SSH KDF	SHA-1	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
TLS 1.2 KDF	SHA-256	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
TLS 1.3 KDF	SHA-256	Initialization	Cryptographic Algorithm Self-Test	KAT key derivation
PBKDF2	SHA-256 with 4096 iterations and 288-bit salt	Initialization	Cryptographic Algorithm Self-Test	KAT password-based key derivation
CTR_DRBG	AES-128 with derivation	Initialization	Cryptographic Algorithm	KAT DRBG generation and reseed

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

Algorithm	Parameters	Condition	Туре	Test
	function and prediction re- sistance		Self-Test	
Hash_DRBG	SHA-256 with prediction resistance	Initialization	Cryptographic Algorithm Self-Test	KAT DRBG generation and reseed
HMAC_DRBG	SHA-1 with prediction resi- stance	Initialization	Cryptographic Algorithm Self-Test	KAT DRBG generation and reseed
KAS-FFC-SSC	ffdhe2048	Initialization	Cryptographic Algorithm Self-Test	KAT shared secret computation
KAS-ECC-SCC	P-256	Initialization	Cryptographic Algorithm Self-Test	KAT shared secret computation
RSA ²	OAEP with 2048-bit key	Initialization	Cryptographic Algorithm Self-Test	KAT key encapsulation and un-en- capsulation
RSA	PKCS#1 v1.5 with SHA-256 and 2048-bit key	Initialization	Cryptographic Algorithm Self-Test	KAT signature generation and verifi- cation
ECDSA	SHA-256 and P-224, P-256, P- 384, and P-521	Initialization	Cryptographic Algorithm Self-Test	KAT signature generation and verifi- cation
DH	N/A	DH key pair ge- neration	Pair-wise Consistency Test	Section 5.6.2.1.4 pair-wise consi- stency
RSA	PKCS#1 v1.5 with SHA-256	RSA key pair ge- neration	Pair-wise Consistency Test	Sign/verify pair-wise consistency
ECDSA	SHA-256	EC key pair ge- neration	Pair-wise Consistency Test	Sign/verify pair-wise consistency

Table 13 - Self-Tests

10.1 Pre-operational tests

The module performs pre-operational tests automatically when the module is powered on. The pre-operational self-tests ensure that the module is not corrupted. The module transitions to the operational state only after the pre-operational self-tests are passed successfully. The types of pre-operational self-tests are described in the next sub-sections.

10.1.1 Pre-operational software integrity test

The integrity of the shared library component of the module is verified by comparing an HMAC SHA-256 value calculated at run time with the HMAC SHA-256 value embedded in the fips.so file that was computed at build time.

If the software integrity test fails, the module transitions to the error state (Section 10.3). As mentioned previously, the HMAC and SHA-256 algorithms go through their respective CASTs before the software integrity test is performed.

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

 $^{^{\}rm 2}$ According to FIPS IG 10.3.B and IG D.F scenario 1, this CAST also covers the self-test for the KAS-IFC implementation.

10.2 Conditional self-tests

10.2.1 Conditional cryptographic algorithm tests

The module performs self-tests on all approved cryptographic algorithms as part of the approved services supported in the approved mode of operation, using the tests shown in Table 13. Data output through the data output interface is inhibited during the self-tests. If any of these tests fails, the module transitions to the error state (Section 10.3).

10.2.2 Conditional pair-wise consistency test

Upon generation of a DH, RSA or EC key pair, the module will perform a pair-wise consistency test (PCT) as shown in Table 13, which provides some assurance that the generated key pair is well formed. For DH key pairs, this test consists of the PCT described in Section 5.6.2.1.4 of SP 800-56Ar3. For RSA and EC key pairs, this test consists of a signature generation and a signature verification operation. If the test fails, the module transitions to the error state (Section 10.3).

10.3 Error states

If the module fails any of the self-tests, the module enters the error state. In the error state, the module immediately stops functioning and ends the application process. Consequently, the data output interface is inhibited, and the module accepts no more inputs or requests (as the module is no longer running).

Error State	Cause of Error	Status Indicator
Error	Software integrity test failure	OSSL_PROV_PARAM_STATUS is set to 0
	CAST failure	Module will not load
	PCT failure	Module is aborted

Table 14 lists the error states and the status indicator values that explain the error that has occurred.

Table 14 – Error States

11 Life-cycle assurance

11.1 Delivery and operation

The module is distributed as a part of the Red Hat Enterprise Linux 9 (RHEL 9) package in the form of the openssl-3.0.7-18.el9_2 RPM package. Also, the module can be distributed using the openssl-fips-provider-3.0.7-1.el9 RPM package.

11.1.1 End of life procedures

As the module does not persistently store SSPs, secure sanitization of the module consists of unloading the module. This will zeroize all SSPs in volatile memory. Then, if desired, the installed RPM package can be uninstalled from the RHEL 9 system.

11.2 Crypto Officer guidance

Before the RPM package is installed, the RHEL 9 system must operate in the approved mode. This can be achieved by:

- Starting the installation in the approved mode. Add the fips=1 option to the kernel command line during the system installation. During the software selection stage, do not install any third-party software. More information can be found at <u>the vendor documentation</u>.
- Switching the system into the approved mode after the installation. Execute the fips-modesetup –enable command. Restart the system. More information can be found at <u>the vendor</u> <u>documentation</u>.

In both cases, the Crypto Officer must verify the RHEL 9 system operates in the approved mode by executing the fips-mode-setup --check command, which should output "FIPS mode is enabled." After installation of the RPM package, the Crypto Officer must execute the opensol list -providers command. The Crypto Officer must ensure that the fips provider is listed in the output as follows: fips

name: Red Hat Enterprise Linux 9 - OpenSSL FIPS Provider version: 3.0.7-395c1a240fbfffd8 status: active

The cryptographic boundary consists only of the FIPS provider as listed. If any other OpenSSL or third-party provider is invoked, the user is not interacting with the module specified in this Security Policy.

The crypto policies package provided as part of the RHEL OS should be set with no restrictions, any options selected will reduce the available services.

11.2.1 AES GCM IV

The Crypto Officer shall consider the following requirements and restrictions when using the module.

For TLS 1.2, the module offers the AES GCM implementation and uses the context of Scenario 1 of FIPS 140-3 IG C.H. OpenSSL 3 is compliant with SP 800-52r2 Section 3.3.1 and the mechanism for IV generation is compliant with RFC 5288 and 8446.

The module does not implement the TLS protocol. The module's implementation of AES GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the TLS protocol implicitly ensures that the counter (the nonce_explicit part of the IV) does not exhaust the maximum number of possible values for a given session key.

In the event the module's power is lost and restored, the consuming application must ensure that a new key for use with the AES GCM key encryption or decryption under this scenario shall be established.

Alternatively, the Crypto Officer can use the module's API to perform AES GCM encryption using internal IV generation. These IVs are always 96 bits and generated using the approved DRBG internal to the module's boundary. This is in compliance with Scenario 2 of FIPS 140-3 IG C.H.

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

The module also provides a non-approved AES GCM encryption service which accepts arbitrary external IVs from the operator. This service can be requested by invoking the EVP_EncryptInit_ex2 API function with a non-NULL IV value. When this is the case, the API will set a non-approved service indicator as described in Section 4.3.

Finally, for TLS 1.3, the AES GCM implementation uses the context of Scenario 5 of FIPS 140-3 IG C.H. The protocol that provides this compliance is TLS 1.3, defined in RFC8446 of August 2018, using the cipher-suites that explicitly select AES GCM as the encryption/decryption cipher (Appendix B.4 of RFC8446). The module supports acceptable AES GCM cipher suites from Section 3.3.1 of SP800-52r2. TLS 1.3 employs separate 64-bit sequence numbers, one for protocol records that are received, and one for protocol records that are sent to a peer. These sequence numbers are set at zero at the beginning of a TLS 1.3 connection and each time when the AES-GCM key is changed. After reading or writing a record, the respective sequence number is incremented by one. The protocol specification determines that the sequence number should not wrap, and if this condition is observed, then the protocol implementation must either trigger a re-key of the session (i.e., a new key for AES-GCM), or terminate the connection.

11.2.2 AES XTS

The length of a single data unit encrypted or decrypted with AES XTS shall not exceed 2²⁰ AES blocks, that is 16MB, of data per XTS instance. An XTS instance is defined in Section 4 of SP 800-38E.

The XTS mode shall only be used for the cryptographic protection of data on storage devices. It shall not be used for other purposes, such as the encryption of data in transit.

In compliance with IG C.I, the module implements the check to ensure that the two AES keys used in AES XTS are not identical.

11.2.3 Key derivation using SP 800-132 PBKDF2

The module provides password-based key derivation (PBKDF2), compliant with SP 800-132. The module supports option 1a from Section 5.4 of SP 800-132, in which the Master Key (MK) or a segment of it is used directly as the Data Protection Key (DPK). In accordance to SP 800-132 and FIPS 140-3 IG D.N, the following requirements shall be met:

- Derived keys shall only be used in storage applications. The MK shall not be used for other purposes. The length of the MK or DPK shall be of 112 bits or more.
- Passwords or passphrases, used as an input for the PBKDF2, shall not be used as cryptographic keys.
- The minimum length of the password or passphrase accepted by the module is 8 characters. This will result in a password strength equal to 10⁸. Combined with the minimum iteration count as described below, this provides an acceptable trade-off between user experience and security against brute-force attacks.
- A portion of the salt, with a length of at least 128 bits, shall be generated randomly using the SP 800-90Ar1 DRBG provided by the module.
- The iteration count shall be selected as large as possible, as long as the time required to generate the key using the entered password is acceptable for the users. The module only allows minimum iteration count to be 1000.

11.2.4 SP 800-56Ar3 Assurances

To comply with the assurances found in Section 5.6.2 of SP 800-56Ar3, the operator must use the module together with an application that implements the SSH/TLS protocol. Additionally, the module's approved key pair generation service (see Table 9) must be used to generate ephemeral Diffie-Hellman or EC Diffie-Hellman key pairs, or the key pairs must be obtained from another FIPS-validated module. As part of this service, the module will internally perform the full public key validation of the generated public key.

The module's shared secret computation service will internally perform the full public key validation of the peer public key, complying with Sections 5.6.2.2.1 and 5.6.2.2.2 of SP 800-56Ar3.

11.2.5 RSA Key Wrapping

To comply with SP800-56Br2 assurances found in its Section 6 (specifically SP800-56Br2 Section 6.4 Required Assurances) the entity using the module must obtain required assurances listed in section 6.4 of SP 800-56Br2 by performing the following steps:

- The entity requesting the RSA key unwrapping (un-encapsulation) service from the module, shall only use an RSA private key that was generated by an active FIPS validated module that implements FIPS 186-5 compliant RSA key generation service and performs the key pair validity and the pairwise consistency as stated in section 6.4.1.1 of the SP 800-56Br2. Additionally, the entity shall renew these assurances over time by using any method described in section 6.4.1.5 of the SP 800-56Br2.
- 2. For use of an RSA key wrapping (encapsulation) service in the context of key transport per IG D.G the entity using the module shall:
 - a. verify the validity of the peer's public key using the public key validation service of the module (EVP_PKEY_check() API).
 - b. confirm the peer's possession of private key by using any method specified in section 6.4.2.3 of the SP 800-56Br2.

Only after the above assurances are successfully met, shall the entity use the peer's public key to perform the RSA key wrapping (encapsulation) service of the module.

11.2.6 RSA Key Agreement

To comply with the assurances found in Section 6.4 of SP 800-56Br2, the module's approved RSA key pair generation service (see Table 9) must be used to generate the RSA key pairs, or the key pairs must be obtained from another FIPS-validated module. As part of this service, the module will internally perform the key pair validity and the pairwise consistency according to section 6.4.1.1 of SP 800-56Br2.

Additionally, the entity requesting the shared secret computation service shall verify the validity of the peer's public key using the public key validation service of the module (EVP_PKEY_check() API). This service will perform the full public key validation of the peer's public key, complying with Section 6.4.2.1 of SP 800-56Br2.

12 Mitigation of other attacks

Certain cryptographic subroutines and algorithms are vulnerable to timing analysis. The module mitigates this vulnerability by using constant-time implementations. This includes, but is not limited to:

- Big number operations: computing GCDs, modular inversion, multiplication, division, and modular exponentiation (using Montgomery multiplication)
- Elliptic curve point arithmetic: addition and multiplication (using the Montgomery ladder)
- Vector-based AES implementations

In addition, RSA, ECDSA, ECDH, and DH employ blinding techniques to further impede timing and power analysis. No configuration is needed to enable the aforementioned countermeasures.

Appendix A. Glossary and abbreviations

AES	Advanced Encryption Standard
AES-NI	Advanced Encryption Standard New Instructions
API	Application Programming Interface
CAST	Cryptographic Algorithm Self-Test
CAVP	Cryptographic Algorithm Validation Program
CBC	Cipher Block Chaining
ССМ	Counter with Cipher Block Chaining-Message Authentication Code
CFB	Cipher Feedback
CKG	Cryptographic Key Generation
CMAC	Cipher-based Message Authentication Code
CMVP	Cryptographic Module Validation Program
CSP	Critical Security Parameter
CTR	Counter
CTS	Ciphertext Stealing
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ECC	Elliptic Curve Cryptography
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
EVP	Envelope
FFC	Finite Field Cryptography
FIPS	Federal Information Processing Standards
GCM	Galois Counter Mode
GMAC	Galois Counter Mode Message Authentication Code
HKDF	HMAC-based Key Derivation Function
HMAC	Keyed-Hash Message Authentication Code
IKE	Internet Key Exchange
KAS	Key Agreement Scheme
KAT	Known Answer Test
KBKDF	Key-based Key Derivation Function
KTS	Key Transport Scheme
KW	Key Wrap
KWP	Key Wrap with Padding
MAC	Message Authentication Code
NIST	National Institute of Science and Technology
OAEP	Optimal Asymmetric Encryption Padding
OFB	Output Feedback

 $\ensuremath{\mathbb{C}}$ 2024 Red Hat, Inc. / atsec information security corporation.

n

- PCT Pair-wise Consistency Test
- PBKDF2 Password-based Key Derivation Function v2
- PKCS Public-Key Cryptography Standards
- PSS Probabilistic Signature Scheme
- RSA Rivest, Shamir, Addleman
- SHA Secure Hash Algorithm
- SSC Shared Secret Computation
- SSH Secure Shell
- SSP Sensitive Security Parameter
- TLS Transport Layer Security
- XOF Extendable Output Function
- XTS XEX-based Tweaked-codebook mode with cipher text Stealing

Appendix B. References

ANS X9.42-2001	Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography 2001
	https://webstore.ansi.org/standards/ascx9/ansix9422001
ANS X9.63-2001	Public Key Cryptography for the Financial Services Industry, Key Agreement and Key Transport Using Elliptic Curve Cryptography 2001
	https://webstore.ansi.org/standards/ascx9/ansix9632001
FIPS 140-3	FIPS PUB 140-3 - Security Requirements For Cryptographic Modules March 2019
	https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
FIPS 140-3 IG	Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation Program November 2023
	https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig- announcements
FIPS 180-4	Secure Hash Standard (SHS)
	August 2015 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
FIPS 186-4	Digital Signature Standard (DSS)
	July 2013 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
FIPS 186-5	Digital Signature Standard (DSS) February 2023
	https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
FIPS 197	Advanced Encryption Standard May 2023
	https://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
FIPS 198-1	The Keyed Hash Message Authentication Code (HMAC) July 2008
	https://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
FIPS 202	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions August 2015
	https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
PKCS#1	Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1 February 2003
	https://www.ietf.org/rfc/rfc3447.txt
RFC 3526	More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)
	May 2003 https://www.ietf.org/rfc/rfc3526.txt

© 2024 Red Hat, Inc. / atsec information security corporation.

RFC 5288	AES Galois Counter Mode (GCM) Cipher Suites for TLS August 2008 https://www.ietf.org/rfc/rfc5288.txt
RFC 7919	Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS) August 2016 https://www.ietf.org/rfc/rfc7919.txt
RFC 8446	The Transport Layer Security (TLS) Protocol Version 1.3 August 2018 https://www.ietf.org/rfc/rfc8446.txt
SP 800-38A	Recommendation for Block Cipher Modes of Operation Methods and Techniques December 2001 <u>https://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf</u>
SP 800-38A Addendum	Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode October 2010 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a-add.pdf
SP 800-38B	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication May 2005 https://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
SP 800-38C	Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality May 2004 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
SP 800-38D	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC November 2007 <u>https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf</u>
SP 800-38E	Recommendation for Block Cipher Modes of Operation: The XTS AES Mode for Confidentiality on Storage Devices January 2010 https://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
SP 800-38F	Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping December 2012 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
SP 800-52r2	Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations August 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
SP 800-56Ar3	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography April 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

© 2024 Red Hat, Inc. / atsec information security corporation.

SP 800-56Br2	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography March 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
SP 800-56Cr2	Recommendation for Key-Derivation Methods in Key-Establishment Schemes August 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
SP 800-90Ar1	Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
SP 800-90B	Recommendation for the Entropy Sources Used for Random Bit Generation January 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
SP 800-108r1	NIST Special Publication 800-108 - Recommendation for Key Derivation Using Pseudorandom Functions August 2022 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
SP 800-131Ar2	Transitioning the Use of Cryptographic Algorithms and Key Lengths March 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
SP 800-132	Recommendation for Password-Based Key Derivation - Part 1: Storage Applications December 2010 https://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
SP 800-133r2	Recommendation for Cryptographic Key Generation June 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf
SP 800-135r1	Recommendation for Existing Application-Specific Key Derivation Functions December 2011 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf