# SANSUNG

## Samsung SAS TCG Enterprise SSC SEDs PM1653/PM1655 Series

FIPS 140-3 Non-Proprietary Security Policy

**Document Version: 1.0** 

| H/W Version: | MZILG960HCHQ-00AC9, MZILG1T9HCJR-00AC9,         |
|--------------|-------------------------------------------------|
|              | MZILG3T8HCLS-00AC9, MZILG7T6HBLA-00AC9,         |
|              | MZILG15THBLA-00AC9, MZILG800HCHQ-00AC9,         |
|              | MZILG1T6HCJR-00AC9, MZILG3T2HCLS-00AC9,         |
|              | MZILG960HCHQ-00AD9, MZILG1T9HCJR-00AD9,         |
|              | MZILG3T8HCLS-00AD9, MZILG7T6HBLA-00AD9,         |
|              | MZILG800HCHQ-00AD9, MZILG1T6HCJR-00AD9,         |
|              | MZILG3T2HCLS-00AD9, MZILG3T8HCLS-00AG6,         |
|              | MZILG3T8HCLS-00AG7, MZILG3T8HCLS-00AVF,         |
|              | MZILG1T9HCJR-00AH9, MZILG3T8HCLS-00AH9,         |
|              | MZILG7T6HBLA-00AH9, MZILG15THBLA-00AH9          |
| F/W Version: | EXG0, EZG0, EXG5, EZG5, EXG6, EZG6, NA50, MS00, |
|              | 3P00, 3P01, DXG0, DZG0, DXG2, DZG2 and LEB0     |

#### **Revision History**

| Version | Changes         |
|---------|-----------------|
| 1.0     | Initial version |
|         |                 |
|         |                 |
|         |                 |

## **Table of Contents**

| 1. |        | eral                                  |    |
|----|--------|---------------------------------------|----|
|    | 1.1.   | Scope                                 | .4 |
|    | 1.2.   | Acronyms                              | .4 |
|    | 1.3.   | Security Levels                       | .4 |
| 2. | Cryp   | otographic module specification       | .5 |
|    | 2.1.   | Hardware and Physical Perimeter       | .5 |
|    | 2.2.   | Firmware and Cryptographic Boundary   | .6 |
|    | 2.3.   | Version Information                   | .6 |
|    | 2.4.   | Cryptographic Functionality           | .7 |
|    | 2.4.1. | Approved Algorithm                    | .7 |
|    | 2.4.2. | Non-Approved Algorithm                | .7 |
|    | 2.5.   | Approved Mode of Operation            | .7 |
| 3. | Cry    | otographic module interfaces          | .8 |
| 4. |        | es, services, and authentication      |    |
|    | 4.1.   | Role                                  | .9 |
|    | 4.2.   | Approved service                      | .9 |
|    | 4.3.   | Authentication1                       | 1  |
| 5. | Soft   | ware/Firmware security1               | 2  |
| 6. | •      | rational environment1                 |    |
| 7. | -      | sical security1                       |    |
| 8. |        | i-invasive security                   |    |
| 9. |        | sitive security parameter managementl |    |
| 10 |        | -tests1                               |    |
|    | 10.1.  | Pre-operational Test                  | 8  |
|    | 10.2.  | Conditional Test1                     | 8  |
| 11 |        | -cycle assurance1                     |    |
|    | 11.1.  | C.Secure Installation                 | 9  |
|    | 11.2.  | Operational Description of Module     | 9  |
| 12 | . Miti | gation of other attacks               | 20 |

## 1. General

#### 1.1. Scope

This document is non-proprietary Security Policy for **Samsung SAS TCG Enterprise SSC SEDs PM1653/PM1655 Series**, herein after referred to as a "cryptographic module" or "module", SSD (Solid State Drive), satisfies all applicable FIPS 140-3 security level 2 requirements, supporting TCG Enterprise SSC based SED (Self-Encrypting Drive) features, designed to protect unauthorized access to the user data stored in its NAND Flash memories. The built-in AES hardware engines in the cryptographic module's controller provide on-the-fly encryption and decryption of the user data without performance loss. The SED's nature also provides instantaneous sanitization of the user data via cryptographic erase.

#### 1.2. Acronyms

| Acronym  | Description                                             |
|----------|---------------------------------------------------------|
| CTRL     | RGX Controller (SAMSUNG RGX SAS TLC/MLC SSD Controller) |
| DRAM I/F | Dynamic Random Access Memory Interface                  |
| LBA      | Logical Block Address                                   |
| MD/EE    | Manual Distribution/Electronic Entry                    |
| MEK      | Media Encryption Key                                    |
| MSID     | Manufactured SID (Security Identifier)                  |
| NAND I/F | NAND Flash Interface                                    |
| NDRNG    | Non-Deterministic Random Number Generator               |
| PMIC     | Power Management Integrated Circuit                     |
| ROM      | Read Only Memory                                        |
| SAS I/F  | Serial Attached SCSI Interface                          |
| SED      | Self-Encrypting Drive                                   |
| SICOC    | Self-Initiated Cryptographic Output Capability          |
| SSC      | Security Subsystem Class                                |
| SSP      | Sensitive Security Parameter                            |
| TCG      | Trusted Computing Group                                 |

Table 1. Acronyms

#### 1.3. Security Levels

The cryptographic module is intended to meet requirements of FIPS 140-3 Security Level 2 overall. The following table lists the module's FIPS 140-3 Security Level for each ISO/IEC 24759 sections.

| ISO/IEC 24759<br>Section 6. [Number Below] | FIPS 140-3 Section Title                | Security Level |
|--------------------------------------------|-----------------------------------------|----------------|
| 1                                          | General                                 | 2              |
| 2                                          | Cryptographic module specification      | 2              |
| 3                                          | Cryptographic module interfaces         | 2              |
| 4                                          | Roles, services, and authentication     | 2              |
| 5                                          | Software/Firmware security              | 2              |
| 6                                          | Operational environment                 | N/A            |
| 7                                          | Physical security                       | 2              |
| 8                                          | Non-invasive security                   | N/A            |
| 9                                          | Sensitive security parameter management | 2              |
| 10                                         | Self-tests                              | 2              |
| 11                                         | Life-cycle assurance                    | 2              |
| 12                                         | Mitigation of other attacks             | N/A            |

Table 2. Security Levels

### 2. Cryptographic module specification

#### 2.1. Hardware and Physical Perimeter

This firmware version within the scope of this validation must be validated through the FIPS 140-3 CMVP. Any other firmware loaded into this module is out of the scope of this validation and requires a separate FIPS 140-3 validation.

The following photographs show the cryptographic module's top and bottom views. The multiple-chip standalone cryptographic module consists of hardware and firmware components that are all enclosed in two aluminum alloy cases, which serve as the physical perimeter of the module.

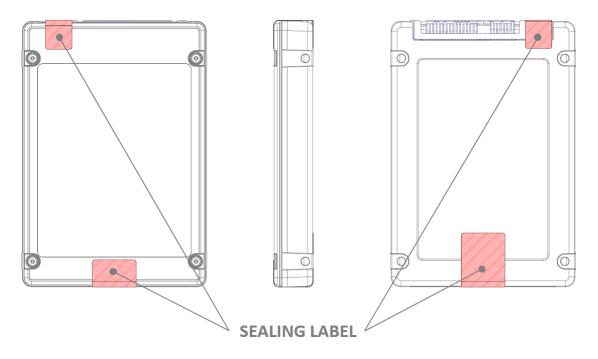



Figure 1. Specification of the Samsung SAS TCG Enterprise SSC SEDs PM1653/PM1655 Series Cryptographic Boundary

#### 2.2. Firmware and Cryptographic Boundary

The PM1653/PM1655 series use a single chip controller with a SAS interface on the system side and Samsung NAND flash internally. The following figure depicts the Module operational environment.

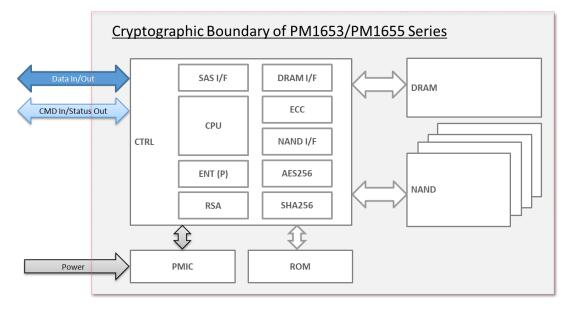



Figure 2. Block Diagram for Samsung SAS TCG Enterprise SSC SEDs PM1653 Series

#### 2.3. Version Information

| Model   | Hardware Version   | Firmware Version | Drive Capacity |
|---------|--------------------|------------------|----------------|
|         | MZILG960HCHQ-00AC9 |                  | 960GB          |
|         | MZILG1T9HCJR-00AC9 | EXG0             | 1.9TB          |
|         | MZILG3T8HCLS-00AC9 | EXG5             | 3.8TB          |
|         | MZILG7T6HBLA-00AC9 | EXG6             | 7.6TB          |
|         | MZILG15THBLA-00AC9 |                  | 15TB           |
|         | MZILG960HCHQ-00AD9 |                  | 960GB          |
|         | MZILG1T9HCJR-00AD9 | DXG0             | 1.9TB          |
| B144650 | MZILG3T8HCLS-00AD9 | DXG2             | 3.8TB          |
| PM1653  | MZILG7T6HBLA-00AD9 |                  | 7.6TB          |
|         | MZILG3T8HCLS-00AG6 | NA50             | 3.8TB          |
|         | MZILG3T8HCLS-00AG7 | MS00             | 3.8TB          |
|         | MZILG3T8HCLS-00AVF | LEBO             | 3.8TB          |
|         | MZILG1T9HCJR-00AH9 |                  | 1.9TB          |
|         | MZILG3T8HCLS-00AH9 | 3P00             | 3.8TB          |
|         | MZILG7T6HBLA-00AH9 | 3P01             | 7.6TB          |
|         | MZILG15THBLA-00AH9 |                  | 15TB           |
|         | MZILG800HCHQ-00AC9 | EZGO             | 800GB          |
|         | MZILG1T6HCJR-00AC9 | EZG5             | 1.6TB          |
|         | MZILG3T2HCLS-00AC9 | EZG6             | 3.2TB          |
| PM1655  | MZILG800HCHQ-00AD9 |                  | 800GB          |
|         | MZILG1T6HCJR-00AD9 | DZG0<br>DZG2     | 1.6TB          |
|         | MZILG3T2HCLS-00AD9 | 02.02            | 3.2TB          |

Table 3. Cryptographic Module Tested Configuration



#### 2.4. Cryptographic Functionality

#### 2.4.1. Approved Algorithm

| The cryptographic module supports the following approved a | algorithms for secure data storage: |
|------------------------------------------------------------|-------------------------------------|
|------------------------------------------------------------|-------------------------------------|

| CAVP Cert          | Algorithm and Standard | Mode/<br>Method | Description/<br>Key Size(s)/<br>Key Strength(s) | Use/Function                      |
|--------------------|------------------------|-----------------|-------------------------------------------------|-----------------------------------|
| A1767 <sup>1</sup> | AES /                  | XTS             | 256-bits                                        | Data Encryption / Decryption      |
|                    | FIPS 197, SP 800-38E   |                 |                                                 |                                   |
| Vendor             | CKG <sup>2</sup> /     | Section 4       | N/A                                             | Symmetric Cryptographic Key       |
| Affirmed           | SP800-133 Rev 2        | Section 6.1     |                                                 | Generation                        |
|                    |                        | Section 6.3     |                                                 |                                   |
| DRBG 2186          | DRBG /                 | CTR_DRBG        | N/A                                             | Deterministic Random Bit          |
|                    | SP 800-90A Rev. 1      | (AES-256)       |                                                 | Generation                        |
| A1765              | RSA / FIPS 186-4       | PKCS PSS        | 3072-bits                                       | Digital Signature Verification    |
| A1766              | SHS / FIPS 180-4       | SHA-256         | N/A                                             | Message Digest                    |
| E43                | ENT (P) /              | N/A             | N/A                                             | ENT (P) provides a minimum of     |
|                    | SP800-90B              |                 |                                                 | 256 bits of entropy for DRBG seed |

**Table 4. Approved Algorithms** 

#### 2.4.2. Non-Approved Algorithm

Following algorithms are not intended to be used as a security function, and not used whatsoever to meet any FIPS 140-3 requirements. These algorithms are not provided through a non-approved service to an operator.

| Algorithm                            | Caveat                                                                                    | Use/Function                     |
|--------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------|
| AES-XTS /<br>FIPS 197, SP 800-38E    | No Security Claimed; AES-XTS is only used for firmware decryption during ROM initialized. | Firmware Decryption              |
| AES-CCM /<br>FIPS 197, SP 800-38C    | No Security Claimed; Non-approved                                                         | Key Encryption and<br>Decryption |
| PBKDF2                               | algorithms here are only used for encrypting                                              | Key Derivation                   |
| HMAC /<br>SHA-256 (SHS Cert.# A1766) | or obfuscating the CSP                                                                    | Key Derivation                   |

Table 5. Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed

#### 2.5. Approved Mode of Operation

The cryptographic module has only one mode of operation, which is the approved mode of operation. The operator is responsible for following the guidance outlined in section 12. The module shows the approved mode through validated version status by Show Status Service and in Table 8 via SCSI Inquiry command.

<sup>&</sup>lt;sup>1</sup> AES-ECB is the pre-requisite for AES-XTS; AES-ECB alone is NOT supported by the cryptographic module in approved mode.

<sup>&</sup>lt;sup>2</sup> CKG is applied to generate the MEK in compliance with sections 4, 6.1 and 6.3 of SP800-133.

## 3. Cryptographic module interfaces

| Physical Port | Logical Interface Type | Data that Passes Over Port/Interface                                                                                                                                                                                                                                 |  |  |  |
|---------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               | Data Input             | plaintext data; signed data;<br>authentication data                                                                                                                                                                                                                  |  |  |  |
|               | Data Output            | plaintext data;                                                                                                                                                                                                                                                      |  |  |  |
| SAS Connector | Control Input          | commands input logically via an API (e.g. for the<br>software and firmware components of the<br>cryptographic module);<br>signals input logically or physically via one or<br>more physical ports (e.g. for the hardware<br>components of the cryptographic module); |  |  |  |
|               | Status Output          | status information output logically via an API;<br>signal outputs logically or physically via one or<br>more physical ports;                                                                                                                                         |  |  |  |
|               | Power Input            | Power input                                                                                                                                                                                                                                                          |  |  |  |

Table 6. Ports and Interfaces

Note: The module does not implement the Control Output

## 4. Roles, services, and authentication

#### 4.1. Role

The following table defines the roles, type of authentication, and associated authenticated data types supported by the cryptographic module.

| Role                              | Service                   | Input          | Output |
|-----------------------------------|---------------------------|----------------|--------|
| Crypto Officer (CO)               | Change the Password.      | CO Password    | Status |
| User                              | Set User Password         | User Password  | Status |
| CO and User                       | Lock/Unlock an LBA Range  | LBA Range      | Status |
| co and oser                       | Erase an LBA Range's Data | LBA Range      | Status |
| Firmware Loader (FL) <sup>3</sup> | Update the firmware       | Firmware Image | Status |

Table 7. Roles, Service Commands, Input and Output

#### 4.2. Approved service

#### E: Execute; W: Write; G: Generate; Z: Zeroise

| Service                     | Description                                                            | Approved<br>Security | SSPs                         | Role     | Type(s) of<br>Access⁴ |   |   |   | Indicator <sup>5</sup>                                                                                         |
|-----------------------------|------------------------------------------------------------------------|----------------------|------------------------------|----------|-----------------------|---|---|---|----------------------------------------------------------------------------------------------------------------|
|                             |                                                                        | Functions            |                              |          | Е                     | w | G | z |                                                                                                                |
| Change the<br>Password.     | Change CO<br>password                                                  | SHA-256              | CO Password                  | СО       | 0                     | 0 |   | 0 | UID: AdminSP_SID_C_PIN /<br>AdminSP_Admin1_C_PIN<br>TCG Method: Set<br>Result: TCG status code                 |
| Set User<br>Password        | Set User<br>Password                                                   | SHA-256              | User Password                | User     | 0                     | 0 |   | 0 | UID:<br>LockingSP_Admin1~4_C_PIN /<br>LockingSP_User1~9_C_PIN<br>TCG Method: Set<br>Result: TCG status code    |
| Lock/Unlock an<br>LBA Range | Block or allow<br>read (decrypt) /<br>write (encrypt)<br>of user data. | AES-XTS              | МЕК                          |          | 0                     | 0 |   | 0 | UID: Locking_GlobalRange /<br>Locking_RangeNNNN<br>TCG Method: Set<br>Result: TCG status code                  |
| Erase an LBA                | Erase user data<br>by changing the                                     | CTR_DRBG             | DRBG Internal<br>State       | CO, User | ο                     | 0 | 0 | 0 | UID:<br>K_AES_256_GlobalRange_Key /<br>K_AES_256_RangeNNNN_Key<br>TCG Method: Erase<br>Result: TCG status code |
| Range's Data                | data encryption<br>key.                                                | (AES-256)            | МЕК                          |          |                       | 0 | 0 | 0 |                                                                                                                |
| Update the firmware         | Update the<br>firmware                                                 | RSA                  | Firmware<br>Verification Key | FL       | 0                     |   |   |   | WRITE BUFFER Command<br>Result : Status Code                                                                   |

**Table 8. Authenticated Services** 

<sup>&</sup>lt;sup>3</sup> Firmware Loader role is classified as a Cryptographic Officer.

<sup>&</sup>lt;sup>4</sup> It means that "Write" and "Zeroise" perform in each storage of SSPs that is described in Table 13. The (R)ead column, which is specified in NIST SP 800-140B, is not applicable to the module.

<sup>&</sup>lt;sup>5</sup> The result of SCSI or TCG command is used as an indicator.

- The following table shows unauthenticated services. It is initially possible to use the services in following table without authentication. The operator can configure the setting that complied with Samsung SAS, TCG spec.

| Service                   | Description                                                | Approved<br>Security<br>Functions            | SSPs                      | Rol<br>e                                        | Type(s) of<br>Access <sup>6</sup><br>E W G Z |                                                                |   | Indicator <sup>7</sup>  |                                                                                                              |  |
|---------------------------|------------------------------------------------------------|----------------------------------------------|---------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|---|-------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                           |                                                            |                                              |                           |                                                 | Ε                                            | W                                                              | G | Z                       |                                                                                                              |  |
| Show Status <sup>8</sup>  | Show the module status -<br>FIPS fail mode                 | N/A                                          | N/A                       |                                                 |                                              |                                                                |   |                         | INQUIRY Command<br>Result : Status Code                                                                      |  |
| Show Version <sup>9</sup> | Show module version                                        | N/A                                          | N/A                       |                                                 |                                              |                                                                |   |                         | SECURITY PROTOCOL IN<br>00h, 02h, 02h, 01h<br>Result: Status Code                                            |  |
| Authentication            | Authoritisate the module                                   | SHA-256                                      | CO Password               | CO Password O AdminSP_Admin1<br>LockingSP_Admin |                                              | UID: AdminSP_SID /<br>AdminSP_Admin1 /<br>LockingSP_Admin1~4 / |   |                         |                                                                                                              |  |
| Authentication            | Authenticate the module                                    | 3HA-230                                      | User<br>Password          |                                                 | 0                                            |                                                                |   |                         | LockingSP_User1~9<br>TCG Method:<br>Authenticate<br>Result: TCG status code                                  |  |
| Get Random<br>Number      | Provide a random number generated by the CM.               | enerated by the CM. (AES-256) Internal State |                           | N/A                                             | 0                                            |                                                                | 0 |                         | UID: ThisSP<br>TCG Method: Random<br>Result: TCG status code<br>WRITE / READ Command<br>Result : Status Code |  |
| IO Command <sup>10</sup>  | Read/Write user data                                       |                                              |                           |                                                 | 0                                            |                                                                |   |                         |                                                                                                              |  |
| Descent                   | Erase user data in all<br>Range by changing the<br>data    | CTR_DRBG                                     | DRBG<br>Internal State    |                                                 | 0                                            |                                                                | 0 |                         | UID: SPObj(AdminSP)                                                                                          |  |
| Revert                    |                                                            | (AES-256)                                    | МЕК                       | TCG Method: Revert<br>Result: TCG status co     |                                              |                                                                |   | Result: TCG status code |                                                                                                              |  |
|                           | Erase user data by<br>changing the data<br>encryption key. | CTR_DRBG                                     | DRBG<br>Internal<br>State |                                                 | 0                                            | 0                                                              | 0 | 0                       | SANITIZE Command                                                                                             |  |
| Sanitize                  |                                                            | (AES-256)                                    | МЕК                       |                                                 |                                              | 0                                                              | 0 | 0                       | Result : Status Code                                                                                         |  |

Table 9. Unauthenticated Services

<sup>&</sup>lt;sup>6</sup> It means that "Write" and "Zeroise" perform in each storage of SSPs that is described in Table 13. The (R)ead column, which is specified in NIST SP 800-140B, is not applicable to the module.

<sup>&</sup>lt;sup>7</sup> The module only supports approved services in an approved manner. The module uses implicit indicators through the result of the SCSI or TCG commands.

<sup>&</sup>lt;sup>8</sup> If the module enters the FIPS Fail Mode, this command return fail.

<sup>&</sup>lt;sup>9</sup> The cryptographic module shows the hardware version and firmware version through the 'COMPLIANCE DESCRIPTOR HARDWARE VERSION' and 'COMPLIANCE DESCRIPTOR VERSION' of FIPS 140 compliance descriptor Structure.

<sup>&</sup>lt;sup>10</sup> Through Step3 to Step4 in the Section 12.1, the procedure handled by EraseMaster (CO) enforces to configure SICOC functionality which utilizes IO command from the beginning of module operational state.

#### 4.3. Authentication

The module supports role-based authentication that requires authentication to assume for the authorization of each role.

| Role | Authentication Method         | Authentication Strength                                                                                                                        |  |  |
|------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| со   | Password                      | Probability of 1/2 <sup>64</sup> in a single random attempt.                                                                                   |  |  |
| User | (Min: 8 bytes, Max: 32 bytes) | Probability of 80/2 <sup>64</sup> in multiple random attempts in a minute.                                                                     |  |  |
| FL   | RSA signature verification    | Probability of 1/2 <sup>128</sup> in a single random attempt.<br>Probability of 6000/2 <sup>128</sup> in multiple random attempts in a minute. |  |  |

#### Table 10. Roles and Authentication

The CO and User role requires password-based authentication, where each byte can be any of 0x00 to 0xFF. Each password authentication failure holds the cryptographic module for 750ms. This restricts the maximum attempts for a one-minute to less than 80 attempts (60,000ms/750ms) no matter how large Trylimit<sup>11</sup> is set.

The FL role is implemented by RSA signature verification. The firmware signed by Samsung is authenticated by verifying the 3072-bit RSA signature which has 128 security strength in every power-on. Each signature verification attempt takes at least 10ms. This can be enforced with up to 6,000 attempts in a minute.

<sup>&</sup>lt;sup>11</sup> Trylmit is maximum number of failed authentication attempts that are able to be made using password for each role.

## 5. Software/Firmware security

- The cryptographic module implements the 482 bytes per 4KB error detection code and SHA-256 hash verification for firmware integrity test.
- The firmware integrity test is performed every power on reset.

## 6. Operational environment

- The cryptographic module operates in a limited operational environment that is consist of the module's firmware. This operational environment does not require any specific security rules, settings/configurations or restrictions to be set.
- The cryptographic module does not provide any general-purpose operating system to the operator.
- Unauthorized modification of the firmware is prevented by the pre-operational firmware integrity test and conditional firmware load test.

## 7. Physical security

The following physical security mechanisms are implemented in the cryptographic module:

- The module consists of production-grade components enclosed in an aluminum alloy enclosure, which is opaque within the visible spectrum.
- Even if the top panel of the enclosure can be removed by unscrewing screws, the module is sealed with tamper-evident labels in accordance with FIPS 140-3 Level 2 physical security requirements so that tampering evidence can be easily detected when the top and bottom cases are detached.
- 2 tamper-evident labels are applied over both top and bottom cases of the module at the Samsung manufacturing. The tamper-evident labels cannot be removed and reapplied without remaining tamper evidence.

The following table summarizes the actions required by the Crypto Officer Role to ensure that physical security is maintained:

| Physical Security<br>Mechanisms | Recommended Frequency<br>of Inspection/Test | Inspection/Test Guidance Details                                                                                                              |  |  |
|---------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Production grade cases          | As often as feasible                        | Inspect the entire perimeter for cracks, gouges,<br>lack of screw(s) and other signs of tampering.<br>Remove from service if tampering found. |  |  |
| Tamper-evident sealing labels   | As often as feasible                        | Inspect the sealing labels for scratches, gouges,<br>cuts and other signs of tampering. Remove from<br>service if tampering found.            |  |  |

Table 11. Inspection/Testing of Physical Security Mechanisms



Figure 3. Module Seal Application Location

## 8. Non-invasive security

- Non-invasive security has not applicable for this cryptographic module.

## 9. Sensitive security parameter management

- Temporary SSPs are zeroised when power on reset.
- Firmware integrity temporary values are zeroised after the firmware integrity test is complete.
- The zeroisation is performed before overwriting to the target SSP with random value which is generated from the DRBG.
- SSP's are not exported outside the module.

| Key /<br>SSP Name/<br>Type                | Strength                     | Security<br>Function<br>and Cert.<br>Number | Generation                                            | Import /<br>Export            | Establish<br>ment | Storage                        | Zeroisation                                                                                                | Use &<br>related<br>keys |
|-------------------------------------------|------------------------------|---------------------------------------------|-------------------------------------------------------|-------------------------------|-------------------|--------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|
| DRBG<br>Internal<br>State <sup>12</sup>   | 256-bit                      | CTR_DRBG<br>(AES-256) /<br>DRBG 2186        | SP 800-90A<br>CTR_DRBG<br>(AES-256)                   | N/A                           | N/A               | N/A<br>(HW IP<br>internal)     | Power on<br>Reset                                                                                          | MEK                      |
| DRBG Seed                                 | 256-bit<br>Nonce:<br>128-bit | CTR_ DRBG<br>(AES-256) /<br>DRBG 2186       | ENT (P)                                               | N/A                           | N/A               | N/A<br>(HW IP<br>internal)     | Power on<br>Reset                                                                                          | MEK                      |
| DRBG<br>Entropy<br>Input<br>String        | 256-bit                      | CTR_ DRBG<br>(AES-256) /<br>DRBG 2186       | ENT (P)                                               | N/A                           | N/A               | N/A<br>(HW IP<br>internal)     | Power on<br>Reset                                                                                          | MEK                      |
| CO<br>Password                            | Min. 64-<br>bit              | N/A                                         | N/A                                                   | MD/EE                         | N/A               | RAM                            | Power on<br>Reset                                                                                          | N/A                      |
| User<br>Password                          | Min. 64-<br>bit              | N/A                                         | N/A                                                   | MD/EE                         | N/A               | RAM                            | Power on<br>Reset                                                                                          | N/A                      |
| Hashed CO<br>Authentica<br>tion Data      | 128-bit                      | SHA-256 /<br>A1766                          | Hashed from<br>Password as per<br>SHA-256             | N/A                           | N/A               | Flash                          | Via "Change<br>the<br>Password"<br>and Revert"<br>service                                                  | N/A                      |
| Hashed<br>User<br>Authentica<br>tion Data | 128-bit                      | SHA-256 /<br>A1766                          | Hashed from<br>Password as per<br>SHA-256             | N/A                           | N/A               | Flash                          | Via "Set<br>User<br>Password"<br>and Revert"<br>service                                                    | N/A                      |
| MEK                                       | 256-bit                      | CKG /<br>AES-XTS /<br>A1767                 | SP800-133Rev2/<br>SP 800-90A<br>CTR_DRBG<br>(AES-256) | N/A                           | N/A               | Plain Text<br>in RAM,<br>Flash | Via "Lock an<br>LBA Range",<br>"Erase an<br>LBA Range's<br>Data",<br>"Revert" and<br>"Sanitize"<br>service | N/A                      |
| Firmware<br>Verification<br>Key           | 128-bit                      | RSA /<br>A1765                              | N/A                                                   | Entered<br>during<br>manufact | N/A               | HW SFR                         | Right after<br>FW load test                                                                                | Firmware<br>load test    |
| ксу                                       |                              |                                             |                                                       | uring<br>e 12. SSPs           |                   | Flash                          | N/A                                                                                                        |                          |

Table 12. SSPs

<sup>&</sup>lt;sup>12</sup> The values of V and Key are the critical value of the internal state



The module contains an entropy source, compliant with SP 800-90B, within the module's cryptographic boundary.

| Entropy Sources      | Minimum Number of Bits of Entropy                                                                                                         | Details                                                                                                                                                                                                       |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cert #E43<br>ENT (P) | <ul> <li>- 0.2262 entropy per bit</li> <li>- Minimum of 256 bits of entropy for DRBG seed<br/>(total seed length of 384 bits).</li> </ul> | Provides entropy input and Nonce to<br>construct Entropy source seed for<br>CTR_DRBG<br>The number of bits input/output to the<br>derivation function are n <sub>in</sub> =3072 and<br>n <sub>out</sub> =384. |

Table 13. Non-Deterministic Random Number Generation Specification

#### 10. Self-tests

While executing the following self-tests, all data output is inhibited until the self-test is completed. To execute the preoperational tests on-demand, the operator may run the power-cycle of the module. If the self-test fails, the module enters an error state. All data output is inhibited during self-tests or in an error state.

#### 10.1. Pre-operational Test

- Firmware integrity test
  - SHA-256 hash-based verification is performed at power-on.
  - 482-byte error detection code is performed at power-on.

#### 10.2. Conditional Test

- Cryptographic Algorithm Tests
  - The cryptographic algorithm test can be executed on-demand during the pre-operational test at power-on.

| Туре | Description                                                |  |  |
|------|------------------------------------------------------------|--|--|
| KAT  | SHA-256 hash digest                                        |  |  |
| KATs | SP 800-90A Section 11.3 Health Tests of CTR_DRBG (AES-256) |  |  |
| KAT  | AES-256 XTS mode encryption and decryption                 |  |  |
| KAT  | SHA-256 hash digest                                        |  |  |
| KAT  | RSA-3072 signature verification                            |  |  |
|      | KAT<br>KATs<br>KAT<br>KAT                                  |  |  |

Table 14. Self-tests

- Firmware load test
  - Firmware load test is performed using RSA-3072 with SHA-256.
  - The firmware load test can be executed on-demand by executing the Update the firmware service.
- TRNG Health tests

The cryptographic module has performed the below 2 types of tests and each test includes the Repetition Count Test and Adaptive Proportion Test described in SP800-90B.

- Start-up test is performed for Entropy Source every power on reset.
- Continuous test is performed for Entropy Source while the module is operating.



#### 11. Life-cycle assurance

The cryptographic module can operate in approved mode once shipped from the vendor's manufacturing site. The followings describe the security rules for secure installation and operation which the cryptographic module and Crypto Officer shall be enforced under FIPS 140-3 security level 2 compliant manner:

#### 11.1. C.Secure Installation

- [Step1] User should examine the tamper evidence.
  - Inspect the entire perimeter for cracks, gouges, lack of screw(s) and other signs of tampering including the tamper evident sealing label.
  - If there is any sign of tampering, do not use the product and contact Samsung.
  - [Step2] Identify the firmware version in the device.
  - Confirm that the firmware version is equivalent to the version(s) listed in this document via SCSI Inquiry command.
- [Step3] Take the drive's ownership.
  - Change the PIN of SID/EraseMaster to new PIN.
  - Run Erase Method on each Band.

Note: If required to use the additional Band in Locking SP, new PINs must be set after setting a Band by the Crypto Officer.

- Configure the Band(s) by setting ReadLockEnabled and WriteLockEnabled columns to True.
- Don't change LockOnReset column in Locking Table.
- [Step4] Power cycle the module.
- [Step5] Periodically examine the tamper evidence.
  - If there is any sign of tampering, stop using the product to avoid a potential security hazard or information leakage.

#### 11.2. Operational Description of Module

- The cryptographic module shall maintain logical separation of data input, data output, control input, control output, and power.
- The cryptographic module shall not output CSPs in any form.
- The cryptographic module shall use the approved DRBG for generating all cryptographic keys.
- The cryptographic module shall enforce role-based authentication for security relevant services.
- The cryptographic module shall enforce a limited operational environment by the secure firmware load test using RSA PSS-3072 with SHA-256.
- The cryptographic module shall provide a production-grade, opaque, and tamper-evident cryptographic boundary.
- The cryptographic module enters the error state upon failure of Self-tests. All commands except for supported command from the Host (General Purpose Computer (GPC) outside the cryptographic boundary) are rejected in the error state and the IO command returns a sense key (0x4) via the status output. Cryptographic services and data output are explicitly inhibited when in the error state. The module enforces to enter the power on reset if DRBG or NDRBG health test fails.
- The cryptographic module satisfies the requirements of FIPS 140-3 IG C.I (i.e. key\_1  $\neq$  key\_2)
- The RSA signature verification satisfies the requirements of FIPS 140-3 IG C.F
- The module generates at a minimum 256 bits of entropy for use in key generation.
- Bypass capability is not applicable to the cryptographic module.
- Critical functions are not applicable to the cryptographic module.
- The module generates symmetric keys which are unmodified outputs from the DRBG.



## 12. Mitigation of other attacks

The cryptographic module has not been designed to mitigate any specific attacks beyond the scope of FIPS 140-3.

| Other Attacks | Mitigation<br>Mechanism | Specific Limitations |  |  |
|---------------|-------------------------|----------------------|--|--|
| N/A           | N/A                     | N/A                  |  |  |

Table 15. Mitigation of Other Attacks