
Page 1 of 16

BitArmor Secure Cryptographic Engine

Version 1.2

Security Policy v 1.1

BitArmor Systems, Inc Copyright ©2009 BitArmor Systems, Inc.
All rights reserved. BitArmor, BitArmor Systems,

and Smart Tag technology are trademarks of
BitArmor Systems, Inc.

401 Liberty Avenue, Suite 1900
Pittsburgh, PA 15222
Phone: 412-682-2200
www.bitarmor.com

http://www.bitarmor.com/

Page 2 of 16

FIPS 140-2 Security Policy

I. Introduction .. 4

A. Overview ... 4

B. Purpose ... 4

C. References .. 4

D. Conventions .. 4

E. Disclosure .. 4

II. Cryptographic Module Specification ... 5

A. Description .. 5

B. Cryptographic Boundary ... 5

C. Modes of Operation .. 7

D. FIPS-Approved Functionality ... 8

E. Non-FIPS Functionality .. 8

F. Module Ports and Interfaces .. 8

G. Roles, Services and Authentication ... 9

TABLE 5: SERVICES AND ACCESS CONTROL .. 10

TABLE 6: DESCRIPTION OF SERVICES .. 10

H. Self-Tests ... 11

BASCE MODULE INTEGRITY VERIFICATION ... 11

BASCE KNOWN ANSWER TESTS (KATS) .. 11

TABLE 7: KNOWN ANSWER TESTS ... 12

BASCE CONDITIONAL TESTING ... 12

TABLE 8: CONDITIONAL TESTING ... 12

I. Physical Security .. 12

J. Operational Environment ... 12

K. Cryptographic Key Management .. 12

TABLE 9: CRYPTOGRAPHIC KEYS AND CSPS ... 13

CSP OUTPUT CONTROLS ... 13

L. Design Assurance .. 14

M. Mitigation of Other Attacks .. 14

Page 3 of 16

III. FIPS 140-2 Compliant Operation .. 14

A. Crypto-Officer Guidance ... 14

INSTALLATION AND INITIALIZATION .. 14

ZEROIZATION ... 15

MANAGEMENT .. 16

B. User Guidance ... 16

Page 4 of 16

I. Introduction

A. Overview
BitArmor offers breakthrough data protection software that protects data wherever it goes.

Because it combines persistent file encryption with full disk encryption, BitArmor gives

customers a single integrated solution for protecting data at all of its most vulnerable points,

like on laptops, on USB drives, in e-mail attachments. BitArmor software helps customers

precisely control access to sensitive data so they can achieve regulatory compliance, reduce the

liability of publicly disclosing data breaches, and protect valuable intellectual property that is

shared inside and outside of their enterprise. Leaders in the Healthcare, Retail, Education, and

Legal industries — among others — have chosen BitArmor’s easy-to-manage, cost-effective data

protection.

B. Purpose
This document is the non-proprietary cryptographic module security policy for the BitArmor

Secure Cryptographic Engine from BitArmor Systems, Inc. It serves as a reference description

for BitArmor’s cryptographic module and its compliance to the FIPS 140-2 security standard.

This document was prepared as part of the FIPS 140-2 Security Level 1 validation of BASCE.

C. References
BitArmor Systems, Inc.’s website (www.bitarmor.com) provides detailed information on the

company and its DataControlTM security products that utilize proprietary SmartTag™ technology

and are covered by BitArmor’s No-Breach GuaranteeTM.

The Federal Information Processing Standards Publication 140-2 (FIPS 140-2), Security

Requirements for Cryptographic Modules, specifies the U.S. and Canadian governments’

requirements for cryptographic modules. Complete details on the FIPS 140-2 Cryptographic

Module Validation Program (CMVP) can be found at csrc.nist.gov/groups/STM/index.html.

D. Conventions
Hereafter, this document refers to the BitArmor Secure Cryptographic Engine as either BASCE,

“the cryptographic module”, or simply, “the module”.

E. Disclosure
This non-proprietary security policy may be reproduced and distributed intact including the

©2009 BitArmor Systems, Inc. copyright notice depicted on page 1 of this document and shown

here:

Copyright ©2009 BitArmor Systems, Inc. All rights reserved. BitArmor,

BitArmor Systems, and Smart Tag technology are trademarks of BitArmor

Systems, Inc.

http://www.bitarmor.com/
http://csrc.nist.gov/groups/STM/index.html

Page 5 of 16

II. Cryptographic Module Specification

A. Description
BASCE Version 1.2 is a software module that provides advanced cryptographic functionality to

BitArmor DataControl software products, including strong encryption, secure integrity and

authentication, and random number generation.

BASCE Version 1.2 consists of two dynamically linked software libraries: FIPSModule.dll,

BA_crypto.dll on MS Windows, and libcryptmod.so, libcrypto.so on SUSE Linux Enterprise

Server. The cryptographic module Application Program Interface (API) is provided in full by

FIPSModule.dll/libcryptmod.so, which in turn loads and uses BA_Crypto.dll/libcrypto.so in a

private manner to provide FIPS-Approved cryptographic functionality to BitArmor DataControl

client applications.

BASCE Version 1.2 meets the overall requirements of Level 1 security of the FIPS 140-2 standard.

Individual security sections of BASCE Version 1.2 are validated at the FIPS 140-2 security levels

shown in Table 1 below.

FIPS 140-2 Security Section Security Level

Cryptographic Module Specification 3

Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Model 1

Physical Security Not Applicable

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks Not Applicable

TABLE 1: BASCE SECURITY LEVEL VALIDATION PER FIPS 140-2 SECTION

B. Cryptographic Boundary
For FIPS 140-2 purposes, BASCE Version 1.2 (subsequently referred to as just BASCE) is classified

as a multi-chip standalone module. BASCE’s logical cryptographic boundary is the software

library file and its public API. BASCE comprises two such files: FIPSModule.dll and BA_crypto.dll

for Microsoft Windows operating systems and libcryptmod.so and libcrypto.so for the SUSE

Linux Enterprise Server operating system.

Page 6 of 16

BASCE’s physical boundary is the general purpose computer on which the module and client

applications run. General purpose computers typically include these basic hardware

components:

 Intel x86 processor or equivalent (CPU) Video controller

 Memory (RAM) Serial & parallel ports

 Hard disk, CD/DVD-ROM, floppy disk Power supply

 Keyboard, mouse, video, Universal
Serial Bus (USB) and Ethernet network
interfaces

FIGURE 1: PHYSICAL & LOGICAL CRYPTOGRAPHIC BOUNDARIES

The physical and logical cryptographic boundaries of BASCE are shown in Figure 1. The physical

computer enclosure contains general purpose computer hardware and is where BASCE and its

client-application runs, thus it forms the physical cryptographic boundary of BASCE. The logical

cryptographic boundary is the BASCE API and its software components consisting of two

dynamic-link library files whose names are operating system dependent. External devices that

interface to the general purpose computer (e.g., video, keyboard, mouse, etc.) are outside

BASCE’s physical cryptographic boundary.

FIPSModule.dll (MS Windows) and libcryptmod.so (SUSE Linux Enterprise Server) implement

BASCE’s API. FIPSModule.dll utilizes BA_CryptoLib.dll (and libcryptmod.so utilizes libcrypto.so)

to provide cryptographic functionality, accessing it through private routines only. BASCE

Page 7 of 16

interacts only with the client-application based process that loads it; the module makes no

network connections, spawns no new threads, and performs no file output or interprocess

communication.

 In addition, the module does not store any critical security parameter (CSP) internally — all

CSPs are passed by the client-application using references only.

Finally, BASCE is implemented entirely in software therefore physical security is provided solely

by the host platform. Accordingly, in conjunction with FIPS 140-2 Security Level 1 requirements,

BASCE is not subject to the physical security requirements of the standard.

For the purpose of FIPS 140-2 validation, BASCE was tested on Microsoft Windows XP-

Professional SP3 (32-bit), Windows Server 2003 (32-bit), Windows Server 2008 (64-bit),

Windows 7 Enterprise (32-bit) and SUSE Linux Enterprise Server 10 (32-bit) operating systems.

C. Modes of Operation
BASCE will operate in the following two modes of operation:

1. Non-Approved Mode

2. FIPS Mode

BASCE operates in Non-Approved Mode by default upon loading and initialization by a client-

application. In order to operate in FIPS Mode, the application must call the CM_setFIPSMode

routine, which performs module integrity and known-answer testing. If all tests are successful

the module transitions to FIPS Mode, otherwise it transitions to a failed operational state in

which no cryptographic functionality is available. FIPS-approved and non-FIPS approved

cryptographic algorithms can be run in the Non-Approved Mode.

The CM_setFIPSMode routine takes an integer input parameter called “mode”, which it uses to

establish BASCE’s mode of operation. “Mode” must be set to ‘1’ to operate BASCE in FIPS

Mode. Once BASCE establishes FIPS Mode operation, its mode cannot be changed to Non-

Approved Mode.

Note: All keys used while running BASCE in Non-Approved Mode are not to be

used during subsequent operation of BASCE in FIPS Mode. Conversely, all keys

used while running in FIPS Mode must not be used in Non-Approved Mode.

BASCE provides zeroization routines for all of its cryptographic data types,

which should be utilized to zeroize all client-application CSPs prior to

transitioning to FIPS Mode, or out of FIPS Mode. Refer to section G. Roles,

Services and Authentication below for details.

Page 8 of 16

D. FIPS-Approved Functionality
BASCE contains the following FIPS-approved cryptographic functionality.

Algorithm Function FIPS Std CAVP Certificate#

AES (ECB, CBC and CTR modes) Symmetric Cipher FIPS PUB 197 1101

TDES (ECB, CBC and CTR modes) Symmetric Cipher NIST SP800-67 802

SHA-1, SHA-256, SHA-384, SHA-512 Message Digest FIPS PUB 180-3 1024

HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384,
HMAC-SHA-512

Message
Authentication

FIPS PUB 198-1 614

ANSI X9.31 Appendix A.2.4 PRNG AES-128, AES-256 Deterministic RNG FIPS PUB 186-2 613

TABLE 2: FIPS APPROVED FUNCTIONALITY

These functions are made available by BASCE in both FIPS and Non-Approved Modes of

operation.

E. Non-FIPS Functionality
BASCE contains the following non-FIPS-approved cryptographic functionality.

Algorithm Function

DES (ECB, CBC, and CTR modes) Symmetric Cipher

MD5 Message Digest

HMAC-MD5 Message Authentication

TABLE 3: NON-FIPS APPROVED FUNCTIONALITY

These functions are made available by BASCE only when operating in Non-Approved Mode.

They are physically blocked by the module while in FIPS Mode and result in an error indicating

they are not available in FIPS Mode, when called.

F. Module Ports and Interfaces
The physical ports of BASCE are those of the general purpose computer system on which it runs,

including keyboard, mouse, network, hard disk drive, CD-ROM drive, video, USB and power.

BASCE has no direct physical controls, status indicators or electrical characteristics that impact

its operation. Logical controls and status indicators take the form of input/output parameters of

the module’s API.

BASCE’s API is its logical interface and the sole means by which client applications communicate

with it. All information flows through four logically distinct interfaces as required by FIPS 140-2:

data input, data output, control input, and status output. Although these interfaces share the

same physical port, BASCE’s API preserves the interface type semantic using explicit input,

output, control, and status parameters. These interfaces are defined in Table 4 below.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf

Page 9 of 16

Logical
Interface

Module Interface Physical Port

Data Input
API function parameters that contain data values or
references to data structures, which are used as input
to a module function

Keyboard, hard disk, mouse, CD-
ROM, floppy disk, and USB/
parallel/serial/network ports

Data Output
API function parameters that contain data values that
are, or references to data structures that refer to,
output from a module function

Video monitor, hard disk, floppy disk,
and USB/parallel/serial/ network
ports

Control Input
API function calls that initialize and modify the control
state and operational mode of the module

Keyboard, hard disk, mouse, CD-
ROM, floppy disk, and USB/
parallel/serial/network ports

Status Output API function return values
Video monitor, hard disk, floppy disk,
and USB/parallel/serial/ network
ports

Power Not applicable Power supply

TABLE 4: PORTS AND INTERFACES

G. Roles, Services and Authentication
BASCE supports both the Crypto-Officer and User roles for cryptographic module operation as

required by FIPS 140-2. The operator assumes either of the roles based on the operations being

performed; BASCE does not provide authentication and does not support concurrent operators.

BASCE supports the following services and access control.

Role Service CSP Access

ADMINISTRATIVE SERVICES

Crypto-Officer
Install None -

Uninstall None -

Crypto-Officer
or

User

Initialize None -

Show Version None -

Show Mode None -

Set FIPS Mode
Module Integrity

HMAC-SHA-256 Key
Execute

Run Self-Tests
Module Integrity

HMAC-SHA-256 Key
Execute

Zeroize
AES, TDES, HMAC-SHA-*Key,

 PRNG Seed or Seed Key
Write

CRYPTOGRAPHIC SERVICES

Crypto-Officer
or

User

Symmetric Encryption/Decryption
AES, TDES

Symmetric Key
Execute

Message Digest (SHA-1,
SHA-256, SHA-384, SHA-512)

none Execute

Page 10 of 16

Keyed Hash (HMAC-SHA-1,
-SHA-256, -SHA-384, -SHA-512)

HMAC-SHA-* Key Execute

Pseudo Random Number
Generation

ANSI X9.31 Appendix A.2.4 PRNG
(AES-128/-256)

Seed, Seed Key
Write,

Execute

TABLE 5: SERVICES AND ACCESS CONTROL

Note that only the Crypto-Officer can install and uninstall BASCE but all other services can be

performed by either Crypto-Officer or User role. The administrative services from Table 5 are

described in more detail in Table 6 below.

Service Description API Function Input Output

Initialize
Initialize BASCE to Non-
Approved Mode; must be run
before any other function

CM_init None Integer indicating Success or Failure

Show
Version

Obtain BASCE’s version
number

CM_getFIPSModule
Version

None
Major, Minor, Patch, Build number
as 32-bit unsigned integer

Set FIPS
Mode

Set BASCE operation mode to
FIPS Mode

CM_setFIPSMode Mode Integer indicating Success or Failure

Show
Mode

Obtain BASCE’s current
operating mode

CM_getFIPSMode None
Integer indicating FIPS or Non-
Approved Mode

Run
Self-Tests

Execute all BASCE known
answer self-tests and module
integrity test, blocking all
security function output
during operation

CM_runSelfTests None
Success or Failure;
In the event of Failure, transition
BASCE to the error/failed state

Zeroize

Zeroize BASCE’s integrity key CM_zeroize None
Zeroize BASCE’s HMAC-SHA-256
integrity key

Zeroize an AES, TDES key CM_releaseCipher
Cipher
Handle

Zeroize and free the client-
application’s memory structure
associated with a symmetric cipher

Zeroize a SHA
message digest

CM_releaseHash
Hash

Handle

Zeroize and free the client-
application’s memory structure
associated with a message digest

Zeroize a PRNG Seed and
Seed key

CM_releasePRNG

PRNG
Handle

and Flag

Zeroize and free the client-
application’s memory structure
associated with the module’s PRNG.
If Flag is true, zeroize and release
the AES 128/256 bit key as well

Zeroize an HMAC key CM_releaseHMAC
HMAC key

handle

Zeroize and free the client-
application’s memory associated
with an HMAC key

TABLE 6: DESCRIPTION OF SERVICES

Page 11 of 16

H. Self-Tests
As mentioned in the services above, BASCE employs self-tests to ensure the module’s integrity is

intact and that it’s functioning properly. Self-tests are performed when the Crypto-Officer

requests that the module operate in FIPS Mode, or on demand while BASCE is in FIPS Mode by

invoking the Run Self-Tests service. In addition, the FIPS 140-2 Continuous Random Number

Generator Test is performed while the module operates in FIPS Mode.

BASCE’s self-tests include module integrity verification and cryptographic service known answer

tests. During execution of self-tests, BASCE blocks access to all cryptographic services. If any

self-test fails, the module is transitioned to an error state and subsequent calls will return an

error code indicating this condition. Such errors can only be recovered by reloading BASCE by

restarting the application, reinstalling BASCE, or returning it BitArmor for analysis and repair if

the problem persists.

BASCE Module Integrity Verification

Module integrity verification is a self-test that is performed by checking a build (compile) time

HMAC-SHA-256 digest against the runtime executables. If the pre-computed value matches the

runtime-computed value, then the test succeeds otherwise BASCE transitions to the

irrecoverable error state described above.

BASCE Known Answer Tests (KATs)

Known answer tests are tests for which a set of cryptographic (question, answer) pairs are

stored in the cryptographic module and utilized by self-tests for comparison of runtime

performance with known results. If any KAT self-test fails, BASCE transitions to the

irrecoverable error state.

The following table contains self-tests that are incorporated into BASCE.

CIPHER FUNCTION KAT SELF-TESTS

AES
Encrypt

&
Decrypt

ECB-128, -192, -256

CBC-128, -192, -256

CTR-128, -256

TDES
Encrypt

&
Decrypt

ECB-Key Option 2

CBC-Key Option 2

SECURE HASH FUNCTION KAT SELF-TESTS

SHA1 Compute 20-byte message digest

SHA-256 Compute 32-byte message digest

SHA-384 Compute 48-byte message digest

SHA-512 Compute 64-byte message digest

HMAC FUNCTION KAT SELF-TESTS

HMAC-SHA-1 Compute 20-byte Keyed MAC

Page 12 of 16

HMAC-SHA-256 Compute 32-byte Keyed MAC

HMAC-SHA-384 Compute 48-byte Keyed MAC

HMAC-SHA-512 Compute 64-byte Keyed MAC

PRNG FUNCTION KAT SELF-TESTS

AES-ECB-128 Compute 16-byte random number

AES-ECB-256 Compute 16-byte random number

MODULE INTEGRITY VERIFICATION SELF-TEST

HMAC-SHA-256
Compute run-time HMAC and compare with
build-time HMAC

TABLE 7: KNOWN ANSWER TESTS

BASCE Conditional Testing

Conditional testing involves comparison of successively-generated random number values at

runtime to ensure a collision does not occur. This testing is done on a continuous basis while the

module operates in FIPS Mode and is referred to as the Continuous Random Number Generator

Test by FIPS 140-2. This means that every time a random number is generated, it is compared

with the previously generated value for a collision. If a collision ever occurs during module use,

BASCE transitions to the error state in the same manner as it does if a self-test fails.

CONDITIONAL TESTING

ANSI X9.31 with AES-128/-256
PRNG

Continuous Random Number Generator Test

TABLE 8: CONDITIONAL TESTING

I. Physical Security

BASCE is a software-only cryptographic module and therefore FIPS 140-2 physical security

requirements do not apply.

J. Operational Environment

As a dynamically-linked library, BASCE extends the functionality of the client-application that

links/loads it. Therefore the user/operator of BASCE is defined to be its client-application for

FIPS 140-2 purposes.

This is relevant to the FIPS 140-2 Security Level 1 requirement that cryptographic modules must

operate in a single-user mode, operational environment. Since BASCE is a software library,

there is only one application that accesses it and nothing further has to be done at the operating

system level to meet the FIPS 140-2 requirement.

K. Cryptographic Key Management

BASCE does not support long term key storage and all cryptographic key input to BASCE is

through references to client-application memory structures. Any use of cryptographic keys that

Page 13 of 16

requires temporary storage within the module uses local function variables that are de-allocated

at function termination.

BASCE uses cryptographic keys for symmetric cipher encrypt/decrypt functions AES and TDES,

generating HMAC-SHA-1/-256/-384/-512, and as a seed key for its PRNG. Cryptographic keys

can be encrypted using AES-128, AES-192, AES-256, or TDES and they can be zeroized by

overwriting their memory with zeros using the BASCE API.

If the client-application imports or exports keys outside the physical cryptographic boundary, it

must use a FIPS Approved encryption method and import or export them in encrypted form.

Cryptographic keys are stored in memory until they are zeroized using the API. The keys and

CSPs that BASCE uses are listed in Table 9 below.

Cryptographic Key/CSP
Size in

Bits
Source

Module
Input

Module
Output

Zeroization Function

PRNG Seed 128
BASCE or

Client-
Application

Plaintext Plaintext CM_releasePRNG

PRNG Seed Key
128 or

256
Client-

Application

Plaintext - CM_releasePRNG

AES Key
128, 192
or 256

Plaintext - CM_releaseCipher

TDES Keys (option 2) 128 Plaintext - CM_releaseCipher

HMAC-SHA-256
Module Integrity Key

256 BASCE - - CM_zeroize

HMAC Key Any
Client-

Application
Plaintext - CM_releaseHMAC

TABLE 9: CRYPTOGRAPHIC KEYS AND CSPS

CSP Output Controls

Note, that as required by FIPS 140-2, two independent, internal actions are required in order for

the module to output any CSP. The PRNG Seed is the only CSP that may be output by BASCE and

there are two routines that can output it – CM_initPRNG and CM_getPRNGRandom.

During initialization of the PRNG data structure, CM_initPRNG will generate and output a PRNG

seed if one is not input (i.e., generated and supplied by the client-application). Subsequent

random number generation requires re-computing and outputting the PRNG seed via

CM_getPRNGRandom.

 Output of the PRNG seed is controlled by two flags – a global module flag and an input

parameter flag for each function above. In order for a function to output the PRNG seed, both

flags must be set to ‘TRUE’; otherwise the function will fail with an error indicating that CSP

output was blocked.

Page 14 of 16

The two independent, internal actions are:

1. First, the client-application must indicate that PRNG CSP output is required during

module initialization by setting CM_init’s Boolean input parameter “outputCSP” to

‘TRUE’. This action sets the global module flag to ‘TRUE’.

2. Second, when the client-application invokes PRNG initialization and random number

generation services, it must again indicate that CSP output is requested through the

corresponding function’s input parameter “outputCSP”, setting it to ‘TRUE’ as well.

Note that in cases where the PRNG seed is initially generated by the client-application, CSP

output controls are still required in order to obtain the updated seed values computed by the

module during random number generation.

Also note that if a PRNG seed is not supplied by the client-application initially, one will be

generated via CryptGenRandom on Windows operating systems and /dev/random on SUSE

Linux.

L. Design Assurance
BitArmor Systems utilizes Perforce Server (v2006.2) for configuration management of product

source code and documentation. Perforce supports authentication, access control, and logging.

Refer to www.perforce.com for more information.

M. Mitigation of Other Attacks

BASCE does not provide any security mechanisms in addition to those required by FIPS 140-2

security requirements for cryptographic modules.

III. FIPS 140-2 Compliant Operation

A. Crypto-Officer Guidance

Installation and Initialization

BASCE is a component of the BitArmor DataControl security product and is not an end-user

product itself. The software libraries that make it up are installed and uninstalled as part of a

larger product installation procedure that is documented in the product installation guide.

Upon loading by the client-application, BASCE must be initialized by calling CM_init before it can

be used. This routine initializes BASCE’s control structures and establishes a Non-Approved

mode of operation.

BitArmor DataControl applications specify the mode of operation at run-time by calling

CM_setFIPSMode, the Set FIPS Mode service, and they determine the current mode of

operation by calling CM_getFIPSMode, the Show Mode service.

http://www.perforce.com/

Page 15 of 16

Specifically, an application calls CM_setFIPSMode using the CM_FIPS_LEVEL1 value as an input

argument in order to establish FIPS Mode. This produces a result status output of success or

failure:

// Status indicator variable

int status = CM_FAILURE;

// Initialize the module for CSP output and set FIPS Mode

if((status = CM_init(TRUE)) == CM_SUCCESS) {

 if((status = CM_setFIPSMode(CM_FIPS_LEVEL1)) == CM_SUCCESS) {

// Operating in FIPS Mode…

 } else {

 // Could not establish FIPS Mode…

 }
} //end

Additionally, an application can confirm BASCE’s operating mode with the Show Mode service:

// Determine the module’s mode of operation

If((status = CM_getFIPSMode()) == CM_FIPS_LEVEL1) {

//FIPS Mode…

} else {

 //Non-Approved Mode…
} //end

Zeroization

BASCE’s API provides zeroization routines that BitArmor DataControl applications use to zeroize

their in-memory CSPs (recall that BASCE stores no CSPs internally). It is recommended that

client applications zeroize all CSPs prior to program termination and immediately prior to a

transition from Non-Approved to FIPS Mode operation if any CSP has been used in Non-

Approved Mode. (Note that BASCE does not allow transitions from FIPS Mode to Non-Approved

Mode.)

Each cryptographic security function of BASCE has an associated data type that the client-

application must instantiate and use with BASCE’s API. Client applications pass references to

data type instances in their BASCE function calls for initialization/allocation, subsequent use of

the available cryptographic functionality, zeroization and de-allocation. BASCE initializes them

by allocating the appropriate amount of memory and initial values based on the cryptographic

function type, mode, key length, etc. The client-application then assigns data values and

performs further operations in a similar manner until it finishes with a particular cryptographic

function. When the client-application deems a CSP no longer necessary, it should zeroize and

de-allocate the memory associated with it using the appropriate BASCE zeroization function call

as described in Table 6 above. (Zeroization can be invoked by Crypto-Officer or User role.)

Page 16 of 16

Note that zeroizing the module integrity key (via CM_zeroize) will prevent a client-application

from subsequently setting FIPS Mode. This action zeroizes the HMAC-SHA-256 key used by

BASCE for Module Integrity Verification in memory only.

Management

The Crypto-Officer is not required to perform any maintenance or module management after it

is installed. All module management is performed at the application level.

B. User Guidance
BitArmor DataControl applications utilize BASCE to provide FIPS-approved cryptographic

functionality to their end-users. BitArmor DataContol applications are programmed to utilize

BASCE’s services in a manner that is consistent and correct according to BASCE’s detailed design

and API specifications. End users of BitArmor DataControl do not need to manage, or service

BASCE. End users interact with the application and do not interface directly with BASCE.

