## **Corsec Security, Inc.**

CorSSL<sup>™</sup> Software Version: 1.1.1s.005



Prepared by:



**Corsec Security, Inc.** 12600 Fair Lakes Circle, Suite 210 Fairfax, VA 22033 United States of America

Phone: +1 703 267 6050 www.corsec.com

### <u>Abstract</u>

This is a non-proprietary Cryptographic Module Security Policy for CorSSL<sup>™</sup> (version: 1.1.1s.005) from Corsec Security, Inc. (Corsec). This Security Policy describes how CorSSL<sup>™</sup> meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-3, which details the U.S. and Canadian government requirements for cryptographic modules. More information about the FIPS 140-3 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Canadian Centre for Cyber Security (CCCS) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the module in a secure Approved mode of operation. This policy was prepared as part of the Level 1 FIPS 140-3 validation of the module. CorSSL<sup>™</sup> is also referred to in this document as the module.

### **References**

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-3 cryptographic module security policy. More information is available on the module from the following sources:

- The Corsec website <u>www.corsec.com</u> contains information on the full line of services and solutions from Corsec.
- The search page on the CMVP website (<u>https://csrc.nist.gov/Projects/cryptographic-module-validation-program/Validated-Modules/Search</u>) can be used to locate and obtain vendor contact information for technical or sales-related questions about the module.

### **Document Organization**

*ISO/IEC 19790* Annex B uses the same section naming convention as *ISO/IEC 19790* section 7 - Security requirements. For example, Annex B section B.2.1 is named "General" and B.2.2 is named "Cryptographic module specification," which is the same as *ISO/IEC 19790* section 7.1 and section 7.2, respectively. Therefore, the format of this Security Policy is presented in the same order as indicated in Annex B, starting with "General" and ending with "Mitigation of other attacks." If sections are not applicable, they have been marked as such in this document.

## **Table of Contents**

| 1.          | General5                                                |                                                                                             |                                                                                                                                                                 |                                                                 |
|-------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 2.          | Crypto<br>2.1<br>2.2<br>2.3<br>2.4                      | ographic<br>Operat<br>Algorith<br>Cryptog<br>Modes                                          | a <b>Module Specification</b><br>ional Environments<br>im Implementations<br>graphic Boundary<br>of Operation                                                   | <b>.7</b><br>.7<br>.7<br>L5<br>L7                               |
| 3.          | Crypto                                                  | ographic                                                                                    | Module Interfaces1                                                                                                                                              | 18                                                              |
| 4.          | <b>Roles,</b><br>4.1<br>4.2<br>4.3                      | Service<br>Author<br>Authen<br>Service                                                      | s, and Authentication                                                                                                                                           | 19<br>19<br>20<br>20                                            |
| 5.          | Softw                                                   | are/Firn                                                                                    | nware Security2                                                                                                                                                 | 25                                                              |
| 6.          | Opera                                                   | tional E                                                                                    | nvironment2                                                                                                                                                     | 26                                                              |
| 7.          | Physic                                                  | al Secu                                                                                     | rity2                                                                                                                                                           | 27                                                              |
| 8.          | Non-lı                                                  | nvasive                                                                                     | Security2                                                                                                                                                       | 28                                                              |
| 9.          | Sensit<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5               | ive Secu<br>Keys ar<br>DRBGs.<br>SSP Sto<br>SSP Zer<br>RBG En                               | Irity Parameter Management       2         Id Other SSPs       2         rage Techniques       3         oization Methods       3         tropy Sources       3 | <b>29</b><br>32<br>33<br>33<br>33                               |
| 10.         | Self-Te<br>10.1<br>10.2<br>10.3<br>10.4                 | ests<br>Pre-Op<br>Conditi<br>On-Der<br>Self-Tes                                             | erational Self-Tests                                                                                                                                            | <b>14</b><br>34<br>34<br>35<br>35                               |
| 11.         | Life-Cy<br>11.1<br>11.2<br>11.3<br>11.4<br>11.5<br>11.6 | ycle Ass<br>Secure<br>Initializ<br>Startup<br>Admini<br>Non-Ac<br>Commo<br>11.6.1<br>11.6.2 | urance                                                                                                                                                          | <b>16</b><br>36<br>36<br>36<br>36<br>36<br>37<br>38<br>38<br>38 |
| 12.         | Mitiga                                                  | ation of                                                                                    | Other Attacks4                                                                                                                                                  | 10                                                              |
| Арр         | endix A                                                 | ۱.                                                                                          | Acronyms and Abbreviations4                                                                                                                                     | ļ1                                                              |
| Appendix B. |                                                         | 5.                                                                                          | Approved Service Indicators4                                                                                                                                    | 13                                                              |

## **List of Tables**

| Table 1 – Security Levels                                                       | 5  |
|---------------------------------------------------------------------------------|----|
| Table 2 – Tested Operational Environments                                       | 7  |
| Table 3 – Approved Algorithms                                                   | 8  |
| Table 4 – Non-Approved Algorithms Allowed in the Approved Mode of Operation     | 14 |
| Table 5 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation | 14 |
| Table 6 – Ports and Interfaces                                                  | 18 |
| Table 7 – Roles, Service Commands, Input and Output                             | 19 |
| Table 8 – Approved Services                                                     | 21 |
| Table 9 – Non-Approved Services                                                 | 23 |
| Table 10 – Keys                                                                 | 29 |
| Table 11 – Non-Deterministic Random Number Generation Specification             | 33 |
| Table 12 – CVEs                                                                 | 39 |
| Table 13 – Acronyms and Abbreviations                                           | 41 |

## **List of Figures**

| Figure 1 – GPC Block Diagram                                  | 16 |
|---------------------------------------------------------------|----|
| Figure 2 – Module Block Diagram (with Cryptographic Boundary) | 17 |

## 1. General

Corsec Security, Inc. is a privately owned company dedicated to assisting organizations through the security certification and validation process. Over the past 22 years, Corsec has grown significantly, becoming a global leader in product and corporate security, offering critical guidance and expertise to meet important business challenges in product security and third-party certifications and security validations, including FIPS 140-2, FIPS 140-3, Common Criteria, and the DoDIN<sup>1</sup> APL<sup>2</sup>.

Corsec's certification methodology helps open doors to new markets and increase revenue for clients with products ranging from mobile phones to satellites. Corsec's broad knowledge safeguards against common pitfalls and thwarts delays, translating to a swift and seamless path to certification. Corsec has created the benchmark for providing business leaders with fast, flexible access to industry knowledge on security certifications and validations.

CorSSL<sup>™</sup> v1.1.1s.005 is a software library providing a C language API<sup>3</sup> for use by other applications requiring cryptographic functionality. CorSSL<sup>™</sup> v1.1.1s.005 offers symmetric encryption/decryption, digital signature generation/verification, hashing, cryptographic key generation, random number generation, message authentication, and key establishment functions to secure data-at-rest/data-in-flight and to support industry-standard secure communications protocols (including TLS<sup>4</sup> 1.2/1.3).

Corsec's CorSSL<sup>™</sup> is built upon the OpenSSL 1.1.1 code base, providing engineering teams with a completely compatible cryptographic/protocol engine, allowing quick "drop-in" replacement into any existing OpenSSL 1.1.1-based architecture. CorSSL<sup>™</sup> (which includes both the libcrypto crypto library and the libssl protocol library) does not modify the OpenSSL interface, maintaining complete compatibility, and eliminating engineering development time to meet FIPS 140-3 requirements.

CorSSL<sup>™</sup> is validated at the FIPS 140-3 section levels shown in Table 1.

| ISO/IEC 24579 Section 6.<br>[Number Below] | FIPS 140-3 Section Title            | Security Level |
|--------------------------------------------|-------------------------------------|----------------|
| 1                                          | General                             | 1              |
| 2                                          | Cryptographic Module Specification  | 1              |
| 3                                          | Cryptographic Module Interfaces     | 1              |
| 4                                          | Roles, Services, and Authentication | 1              |
| 5                                          | Software/Firmware Security          | 1              |
| 6                                          | Operational Environment             | 1              |
| 7                                          | Physical Security                   | N/A            |
| 8                                          | Non-Invasive Security               | N/A            |

#### Table 1 – Security Levels

<sup>3</sup> API – Application Programming Interface

<sup>&</sup>lt;sup>1</sup> DoDIN – Department of Defense Information Network

<sup>&</sup>lt;sup>2</sup> APL – Approved Product List

<sup>&</sup>lt;sup>4</sup> TLS – Transport Layer Security

| ISO/IEC 24579 Section 6.<br>[Number Below] | FIPS 140-3 Section Title                | Security Level |
|--------------------------------------------|-----------------------------------------|----------------|
| 9                                          | Sensitive Security Parameter Management | 1              |
| 10                                         | Self-tests                              | 1              |
| 11                                         | Life-Cycle Assurance                    | 1              |
| 12                                         | Mitigation of Other Attacks             | N/A            |

The module has an overall security level of 1.

# 2. Cryptographic Module Specification

CorSSL<sup>™</sup> v1.1.1s.005 is a software module with a multi-chip standalone embodiment. The module is designed to operate within a modifiable operational environment.

## 2.1 **Operational Environments**

The module was tested and found to be compliant with FIPS 140-3 requirements on the environments listed in Table 2.

| # | Operating System | Hardware Platform   | Processor                            | PAA/Acceleration |
|---|------------------|---------------------|--------------------------------------|------------------|
| 1 | Debian 9         | Dell PowerEdge R440 | Intel <sup>®</sup> Xeon Silver 4214R | With (AES-NI)    |
| 2 | Debian 9         | Dell PowerEdge R440 | Intel <sup>®</sup> Xeon Silver 4214R | Without          |

#### Table 2 – Tested Operational Environments

The module is designed to utilize the AES-NI<sup>5</sup> extended instruction set when available on the host platform's CPU to accelerate the processing of its AES implementation.

There are no vendor-affirmed operational environments claimed.

The cryptographic module maintains validation compliance when operating on any general-purpose computer (GPC) provided that the GPC uses any single-user operating system/mode specified on the validation certificate, or another compatible single-user operating system. The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment not listed on the validation certificate.

## 2.2 Algorithm Implementations

The module implements cryptographic algorithms in the following providers:

- CorSSL (libcrypto) v1.1.1s.005 (Cert. <u>A3254</u>)
- CorSSL (libssl) v1.1.1s.005 (Cert. <u>A3253</u>)

Validation certificates for each Approved security function are listed in Table 3 below.

<sup>&</sup>lt;sup>5</sup> AES-NI – Advanced Encryption Algorithm New Instructions

| CAVP Cert <sup>6</sup> | Algorithm and Standard                                                      | Mode / Method | Description / Key Size(s) /<br>Key Strength(s) | Use / Function                         |  |  |  |
|------------------------|-----------------------------------------------------------------------------|---------------|------------------------------------------------|----------------------------------------|--|--|--|
| CorSSL (libcrypto)     |                                                                             |               |                                                |                                        |  |  |  |
| <u>A3254</u>           | <b>AES-CBC</b> <sup>7</sup><br>FIPS PUB <sup>8</sup> 197<br>NIST SP 800-38A | СВС           | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | AES-CCM <sup>9</sup><br>NIST SP 800-38C                                     | ССМ           | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | <b>AES-CFB1</b> <sup>10</sup><br>FIPS PUB 197<br>NIST SP 800-38A            | CFB1          | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | <b>AES-CFB128</b><br>FIPS PUB 197<br>NIST SP 800-38A                        | CFB128        | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | <b>AES-CFB8</b><br>FIPS PUB 197<br>NIST SP 800-38A                          | CFB8          | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | AES-CMAC <sup>11</sup><br>NIST SP 800-38B                                   | СМАС          | 128, 192, 256                                  | MAC Generation/Verification            |  |  |  |
| <u>A3254</u>           | <b>AES-CTR</b> <sup>12</sup><br>FIPS PUB 197<br>NIST SP 800-38A             | CTR           | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | AES-ECB <sup>13</sup><br>FIPS PUB 197<br>NIST SP 800-38A                    | ECB           | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | AES-GCM <sup>14</sup><br>NIST SP 800-38D                                    | GCM           | 128, 192, 256                                  | Authenticated<br>Encryption/Decryption |  |  |  |
| <u>A3254</u>           | AES-GMAC <sup>15</sup><br>NIST SP 800-38D                                   | GMAC          | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | <b>AES-KW</b> <sup>16</sup><br>NIST SP 800-38F                              | кw            | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | AES-KWP <sup>17</sup><br>NIST SP 800-38F                                    | KWP           | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |
| <u>A3254</u>           | <b>AES-OFB</b> <sup>18</sup><br>FIPS PUB 197<br>NIST SP 800-38A             | OFB           | 128, 192, 256                                  | Encryption/Decryption                  |  |  |  |

#### Table 3 – Approved Algorithms

<sup>15</sup> GMAC – Galois Message Authentication Code

<sup>17</sup> KWP – Key Wrap with Padding

<sup>&</sup>lt;sup>6</sup> This table includes vendor-affirmed algorithms that are approved but CAVP testing is not yet available.

<sup>&</sup>lt;sup>7</sup> CBC – Cipher Block Chaining

<sup>&</sup>lt;sup>8</sup> PUB – Publication

<sup>&</sup>lt;sup>9</sup> CCM – Counter with Cipher Block Chaining - Message Authentication Code

<sup>&</sup>lt;sup>10</sup> CFB – Cipher Feedback

<sup>&</sup>lt;sup>11</sup> CMAC – Cipher-Based Message Authentication Code

<sup>&</sup>lt;sup>12</sup> CTR – Counter

<sup>&</sup>lt;sup>13</sup> ECB – Electronic Code Book

<sup>&</sup>lt;sup>14</sup> GCM – Galois Counter Mode

<sup>&</sup>lt;sup>16</sup> KW – Key Wrap

<sup>&</sup>lt;sup>18</sup> OFB – Output Feedback

| CAVP Cert <sup>6</sup> | Algorithm and Standard                                                 | Mode / Method                                                    | Description / Key Size(s) /<br>Key Strength(s)                                                                                                                         | Use / Function                         |
|------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <u>A3254</u>           | AES-XTS <sup>19,20,21</sup> Testing Revision<br>2.0<br>NIST SP 800-38E | XTS <sup>22,23,24</sup>                                          | 128, 256                                                                                                                                                               | Encryption/Decryption                  |
| <u>A3254</u>           | Counter DRBG <sup>25</sup><br>NIST SP 800-90Arev1                      | Counter-based                                                    | 128, 192, 256-bit AES-CTR                                                                                                                                              | Deterministic Random Bit<br>Generation |
| <u>A3254</u>           | DSA <sup>26</sup> KeyGen (FIPS186-4)<br>FIPS PUB 186-4                 | DSA KeyGen                                                       | 2048/224, 2048/256,<br>3072/256                                                                                                                                        | Key Pair Generation                    |
| <u>A3254</u>           | DSA PQGGen (FIPS186-4)<br>FIPS PUB 186-4                               | DSA PQGGen                                                       | 2048/224, 2048/256,<br>3072/256 (SHA2-224,<br>SHA2-256, SHA2-384,<br>SHA2-512)                                                                                         | Domain Parameter<br>Generation         |
| <u>A3254</u>           | <b>DSA PQGVer (FIPS186-4)</b><br>FIPS PUB 186-4                        | DSA PQGVer                                                       | 1024/160, 2048/224,<br>2048/256, 3072/256 (SHA-<br>1, SHA2-224, SHA2-256,<br>SHA2-384, SHA2-512)                                                                       | Domain Parameter<br>Verification       |
| <u>A3254</u>           | DSA SigGen (FIPS186-4)<br>FIPS PUB 186-4                               | DSA SigGen                                                       | 2048/224, 2048/256,<br>3072/256 (SHA2-224,<br>SHA2-256, SHA2-384,<br>SHA2-512)                                                                                         | Digital Signature Generation           |
| <u>A3254</u>           | DSA SigVer (FIPS186-4)<br>FIPS PUB 186-4                               | DSA SigVer                                                       | 1024/160, 2048/224,<br>2048/256, 3072/256 (SHA-<br>1, SHA2-224, SHA2-256,<br>SHA2-384, SHA2-512)                                                                       | Digital Signature Verification         |
| <u>A3254</u>           | ECDSA <sup>27</sup> KeyGen (FIPS186-4)<br>FIPS PUB 186-4               | ECDSA KeyGen<br>Secret generation<br>mode: Testing<br>candidates | B-233, B-283, B-409, B-571,<br>K-233, K-283, K-409, K-571,<br>P-224, P-256, P-384, P-521                                                                               | Key Pair Generation                    |
| <u>A3254</u>           | ECDSA KeyVer (FIPS186-4)<br>FIPS PUB 186-4                             | ECDSA KeyVer                                                     | B-163, B-233, B-283, B-409,<br>B-571, K-163, K-233, K-283,<br>K-409, K-571, P-192, P-224,<br>P-256, P-384, P-521 (SHA-1,<br>SHA2-224, SHA2-256,<br>SHA2-384, SHA2-512) | Public Key Validation                  |
| <u>A3254</u>           | ECDSA SigGen (FIPS186-4)<br>FIPS PUB 186-4                             | ECDSA SigGen                                                     | B-233, B-283, B-409, B-571,<br>K-233, K-283, K-409, K-571,<br>P-224, P-256, P-384, P-521<br>(SHA2-224, SHA2-256,<br>SHA2-384, SHA2-512)                                | Digital Signature Generation           |

CorSSL<sup>™</sup> 1.1.1s.005

©2024 Corsec Security, Inc.

<sup>&</sup>lt;sup>19</sup> XOR – Exclusive OR

<sup>&</sup>lt;sup>20</sup> XEX – XOR Encrypt XOR

<sup>&</sup>lt;sup>21</sup> XTS – XEX-Based Tweaked-Codebook Mode with Ciphertext Stealing

<sup>&</sup>lt;sup>22</sup> XOR – Exclusive OR

<sup>&</sup>lt;sup>23</sup> XEX – XOR Encrypt XOR

 $<sup>^{\</sup>rm 24}$  XTS – XEX-Based Tweaked-Codebook Mode with Ciphertext Stealing

<sup>&</sup>lt;sup>25</sup> DRBG – Deterministic Random Bit Generator

 <sup>&</sup>lt;sup>26</sup> DSA – Digital Signature Algorithm
 <sup>27</sup> ECDSA – Elliptic Curve Digital Signature Algorithm

| CAVP Cert <sup>6</sup> | Algorithm and Standard                                       | Mode / Method             | Description / Key Size(s) /<br>Key Strength(s)                                                                                                                         | Use / Function                                                       |
|------------------------|--------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| <u>A3254</u>           | ECDSA SigVer (FIPS186-4)<br>FIPS PUB 186-4                   | ECDSA SigVer              | B-163, B-233, B-283, B-409,<br>B-571, K-163, K-233, K-283,<br>K-409, K-571, P-192, P-224,<br>P-256, P-384, P-521 (SHA-1,<br>SHA2-224, SHA2-256,<br>SHA2-384, SHA2-512) | Digital Signature Verification                                       |
| <u>A3254</u>           | HMAC SHA-1<br>FIPS PUB 198-1                                 | SHA-1                     | MAC: 80-160 Increment 8<br>Key Length: 8-524288<br>Increment 8                                                                                                         | Message Authentication<br>The module also supports HMAC<br>SHA-1-80. |
| <u>A3254</u>           | HMAC SHA2-224<br>FIPS PUB 198-1                              | SHA2-224                  | MAC: 224<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | HMAC SHA2-256<br>FIPS PUB 198-1                              | SHA2-256                  | MAC: 256<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | HMAC SHA2-384<br>FIPS PUB 198-1                              | SHA2-384                  | MAC: 384<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | HMAC SHA2-512<br>FIPS PUB 198-1                              | SHA2-512                  | MAC: 512<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | HMAC SHA3-224<br>FIPS PUB 198-1                              | SHA3-224                  | MAC: 224<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | HMAC SHA3-256<br>FIPS PUB 198-1                              | SHA3-256                  | MAC: 256<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | HMAC SHA3-384<br>FIPS PUB 198-1                              | SHA3-384                  | MAC: 384<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | HMAC SHA3-512<br>FIPS PUB 198-1                              | SHA3-512                  | MAC: 512<br>Key Length: 8-524288<br>Increment 8                                                                                                                        | Message Authentication                                               |
| <u>A3254</u>           | KAS-ECC-SSC <sup>28</sup> Sp800-56Ar3<br>NIST SP 800-56Arev3 | ephemeralUnified          | B-233, B-283, B-409, B-571,<br>K-233, K-283, K-409, K-571,<br>P-224, P-256, P-384, P-521                                                                               | Shared Secret Computation                                            |
| <u>A3254</u>           | KAS-FFC-SSC <sup>29</sup> Sp800-56Ar3<br>NIST SP 800-56Arev3 | dhEphem                   | 2048/224 (FB), 2048/256<br>(FC)                                                                                                                                        | Shared Secret Computation                                            |
| <u>A3254</u>           | PBKDF2 <sup>30</sup><br>NIST SP 800-132                      | Section 5.4, option<br>1a | SHA-1, SHA2-224, SHA2-<br>256, SHA2-384, SHA2-512,<br>SHA3-224, SHA3-256,<br>SHA3-384, SHA3-512                                                                        | Password-Based Key<br>Derivation                                     |

<sup>&</sup>lt;sup>28</sup> KAS-ECC-SSC – Key Agreement Scheme - Elliptic Curve Cryptography - Shared Secret Computation

 <sup>&</sup>lt;sup>29</sup> KAS-FFC-SSC – Key Agreement Scheme - Finite Field Cryptography - Shared Secret Computation
 <sup>30</sup> PBKDF2 – Password-based Key Derivation Function 2

| CAVP Cert <sup>6</sup> | Algorithm and Standard                                       | Mode / Method                    | Description / Key Size(s) /<br>Key Strength(s)                                | Use / Function                 |
|------------------------|--------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------|--------------------------------|
| <u>A3254</u>           | <b>RSA<sup>31</sup> KeyGen (FIPS186-4)</b><br>FIPS PUB 186-4 | Key generation<br>mode:<br>B.3.3 | 2048, 3072, 4096                                                              | Key Pair Generation            |
| <u>A3254</u>           | RSA <sup>32</sup> SigGen (FIPS186-4)<br>FIPS PUB 186-4       | X9.31                            | 2048, 3072, 4096 (SHA2-<br>256, SHA2-384, SHA2-512)                           | Digital Signature Generation   |
|                        |                                                              | PKCS#1 v1.5                      | 2048, 3072, 4096 (SHA2-<br>224, SHA2-256, SHA2-384,<br>SHA2-512)              | Digital Signature Generation   |
|                        |                                                              | PSS <sup>33</sup>                | 2048, 3072, 4096 (SHA2-<br>224, SHA2-256, SHA2-384,<br>SHA2-512)              | Digital Signature Generation   |
| <u>A3254</u>           | RSA <sup>34</sup> SigVer (FIPS186-4)<br>FIPS PUB 186-4       | X9.31                            | 1024, 2048, 3072, 4096<br>(SHA-1, SHA2-256, SHA2-<br>384, SHA2-512)           | Digital Signature Verification |
|                        |                                                              | PKCS#1 v1.5                      | 1024, 2048, 3072, 4096<br>(SHA-1, SHA2-224, SHA2-<br>256, SHA2-384, SHA2-512) | Digital Signature Verification |
|                        |                                                              | PSS <sup>35</sup>                | 1024, 2048, 3072, 4096<br>(SHA-1, SHA2-224, SHA2-<br>256, SHA2-384, SHA2-512) | Digital Signature Verification |
| <u>A3254</u>           | SHA-1<br>FIPS PUB 180-4                                      | SHA-1                            | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | SHA2-224<br>FIPS PUB 180-4                                   | SHA2-224                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | SHA2-256<br>FIPS PUB 180-4                                   | SHA2-256                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | SHA2-384<br>FIPS PUB 180-4                                   | SHA2-384                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | SHA2-512<br>FIPS PUB 180-4                                   | SHA2-512                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | SHA3-224<br>FIPS PUB 202                                     | SHA3-224                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | SHA3-256<br>FIPS PUB 202                                     | SHA3-256                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | <b>SHA3-384</b><br>FIPS PUB 202                              | SHA3-384                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | <b>SHA3-512</b><br>FIPS PUB 202                              | SHA3-512                         | Message Length:<br>0-65528 Increment 8                                        | Message Digest                 |
| <u>A3254</u>           | SHAKE <sup>36</sup> -128<br>FIPS PUB 202                     | SHAKE-128                        | Output Length: 16-1024<br>Increment 8                                         | Message Digest                 |

<sup>31</sup> RSA – Rivest Shamir Adleman

<sup>32</sup> RSA – Rivest Shamir Adleman

<sup>33</sup> PSS – Probabilistic Signature Scheme

<sup>34</sup> RSA – Rivest Shamir Adleman

<sup>35</sup> PSS – Probabilistic Signature Scheme

<sup>36</sup> SHAKE – Secure Hash Algorithm KECCAK

| CAVP Cert <sup>6</sup>                                                 | Algorithm and Standard                                                             | Mode / Method                                                         | Description / Key Size(s) /<br>Key Strength(s)                                                                                                                          | Use / Function                                                                                                     |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| <u>A3254</u>                                                           | SHAKE-256<br>FIPS PUB 202                                                          | SHAKE-256                                                             | Output Length: 16-1024<br>Increment 8                                                                                                                                   | Message Digest                                                                                                     |
| <u>A3254</u>                                                           | <b>TDES-CBC</b><br><i>NIST SP 800-67rev2</i><br><i>NIST SP 800-38A</i>             | CBC                                                                   | 168                                                                                                                                                                     | Decryption                                                                                                         |
| <u>A3254</u>                                                           | <b>TDES-CFB1</b><br><i>NIST SP 800-67rev2</i><br><i>NIST SP 800-38A</i>            | CFB1                                                                  | 168                                                                                                                                                                     | Decryption                                                                                                         |
| <u>A3254</u>                                                           | <b>TDES-CFB64</b><br>NIST SP 800-67rev2<br>NIST SP 800-38A                         | CFB64                                                                 | 168                                                                                                                                                                     | Decryption                                                                                                         |
| <u>A3254</u>                                                           | <b>TDES-CFB8</b><br>NIST SP 800-67rev2<br>NIST SP 800-38A                          | CFB8                                                                  | 168                                                                                                                                                                     | Decryption                                                                                                         |
| <u>A3254</u>                                                           | TDES-CMAC<br>NIST SP 800-67rev2<br>NIST SP 800-38B                                 | CMAC                                                                  | 112, 168                                                                                                                                                                | MAC verification                                                                                                   |
| <u>A3254</u>                                                           | <b>TDES-ECB</b><br>NIST SP 800-67rev2<br>NIST SP 800-38A                           | ECB                                                                   | 168                                                                                                                                                                     | Decryption                                                                                                         |
| <u>A3254</u>                                                           | TDES-OFB<br>NIST SP 800-67rev2<br>NIST SP 800-38A                                  | OFB                                                                   | 168                                                                                                                                                                     | Decryption                                                                                                         |
| <u>A3254</u>                                                           | TLS v1.2 KDF RFC 7627<br>CVL<br>NIST SP 800-135rev1<br>RFC 7627                    | KDF (TLS <sup>37</sup> v1.2)                                          | SHA2-256, SHA2-384,<br>SHA2-512                                                                                                                                         | Key Derivation<br>No part of the TLS 1.2 protocol,<br>other than the KDF, has been<br>tested by the CAVP and CMVP. |
| CorSSL (libssl)                                                        |                                                                                    |                                                                       |                                                                                                                                                                         |                                                                                                                    |
| <u>A3253</u>                                                           | <b>TLS v1.3 KDF</b><br><b>CVL</b><br><i>NIST SP 800-135rev1</i><br><i>RFC 8446</i> | KDF (TLS v1.3)                                                        | SHA2-256, SHA2-384                                                                                                                                                      | Key Derivation<br>No part of the TLS 1.3 protocol,<br>other than the KDF, has been<br>tested by the CAVP and CMVP. |
| Security Funct                                                         | ion Implementations (SFIs)                                                         |                                                                       |                                                                                                                                                                         |                                                                                                                    |
| KAS-ECC-SSC<br><u>A3254</u><br>TLS v1.2 KDF<br>RFC7627<br><u>A3254</u> | <b>KAS</b> <sup>38</sup><br>NIST SP 800-56Arev3<br>NIST SP 800-135rev1<br>RFC 7627 | NIST SP 800-<br>56Arev3. KAS-ECC<br>per IG D.F Scenario<br>2 path (2) | B-233, B-283, B-409, B-571,<br>K-233, K-283, K-409, K-571,<br>P-224, P-256, P-384, and P-<br>521 curves providing<br>between 112 and 256 bits<br>of encryption strength | Key Agreement                                                                                                      |
| KAS-ECC-SSC<br><u>A3254</u><br>TLS v1.3 KDF<br><u>A3253</u>            | <b>KAS</b><br>NIST SP 800-56Arev3<br>NIST SP 800-135rev1<br>RFC 8446               | NIST SP 800-<br>56Arev3. KAS-ECC<br>per IG D.F Scenario<br>2 path (2) | B-233, B-283, B-409, B-571,<br>K-233, K-283, K-409, K-571,<br>P-224, P-256, P-384, and P-<br>521 curves providing<br>between 112 and 256 bits<br>of encryption strength | Key Agreement                                                                                                      |

<sup>37</sup> TLS – Transport Layer Security

<sup>38</sup> KAS – Key Agreement Scheme

| CAVP Cert <sup>6</sup>                                                 | Algorithm and Standard                                        | Mode / Method                                                                                      | Description / Key Size(s) /<br>Key Strength(s)                                              | Use / Function                |
|------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------|
| KAS-FFC-SSC<br><u>A3254</u><br>TLS v1.2 KDF<br>RFC7627<br><u>A3254</u> | KAS<br>NIST SP 800-56Arev3<br>NIST SP 800-135rev1<br>RFC 7627 | <i>NIST SP 800-<br/>56Arev3</i> . KAS-FFC<br>per IG D.F Scenario<br>2 path (2)                     | 2048-bit key providing 112<br>bits of encryption strength                                   | Key Agreement                 |
| KAS-FFC-SSC<br><u>A3254</u><br>TLS v1.3 KDF<br><u>A3253</u>            | KAS<br>NIST SP 800-56Arev3<br>NIST SP 800-135rev1<br>RFC 8446 | NIST SP 800-<br>56Arev3. KAS-FFC<br>per IG D.F Scenario<br>2 path (2)                              | 2048-bit key providing 112<br>bits of encryption strength                                   | Key Agreement                 |
| AES-CCM<br><u>A3254</u>                                                | KTS <sup>39</sup><br>NIST SP 800-38C<br>NIST SP 800-38F       | NIST SP 800-38C<br>and NIST SP 800-<br>38F. KTS (key<br>wrapping and<br>unwrapping) per IG<br>D.G. | 128, 192, and 256-bit keys<br>provide between 128 and<br>256 bits of encryption<br>strength | Key Wrap/Unwrap <sup>40</sup> |
| AES-GCM<br><u>A3254</u>                                                | <b>KTS</b><br>NIST SP 800-38D<br>NIST SP 800-38F              | NIST SP 800-38D<br>and NIST SP 800-<br>38F. KTS (key<br>wrapping and<br>unwrapping) per IG<br>D.G. | 128, 192, and 256-bit keys<br>provide between 128 and<br>256 bits of encryption<br>strength | Key Wrap/Unwrap <sup>41</sup> |
| AES-KW<br><u>A3254</u>                                                 | <b>KTS</b><br>NIST SP 800-38F                                 | NIST SP 800-38F.<br>KTS (key wrapping<br>and unwrapping)<br>per IG D.G.                            | 128, 192, and 256-bit keys<br>provide between 128 and<br>256 bits of encryption<br>strength | Key Wrap/Unwrap               |
| AES-KWP<br><u>A3254</u>                                                | KTS<br>NIST SP 800-38F                                        | NIST SP 800-38F.<br>KTS (key wrapping<br>and unwrapping)<br>per IG D.G.                            | 128, 192, and 256-bit keys<br>provide between 128 and<br>256 bits of encryption<br>strength | Key Wrap/Unwrap               |
| Vendor Affirm                                                          | ed                                                            |                                                                                                    |                                                                                             |                               |
| Vendor<br>Affirmed                                                     | <b>CKG</b> <sup>42</sup><br>NIST SP 800-133rev2               | -                                                                                                  | -                                                                                           | Cryptographic Key Generation  |

The vendor affirms the following cryptographic security methods:

<u>Cryptographic key generation</u> – In compliance with sections 4 and 5.1 of *NIST SP 800-133rev2*, the module uses its Approved DRBG to generate random values and seeds used for asymmetric key generation. The generated seed is an unmodified output from the DRBG. The cryptographic module invokes a GET command to obtain entropy for random number generation (the module requests 256 bits of entropy from the calling application per request), and then passively receives entropy from the calling application

<sup>&</sup>lt;sup>39</sup> KTS – Key Transport Scheme

<sup>&</sup>lt;sup>40</sup> Per FIPS 140-3 Implementation Guidance D.G, AES-CCM is Approved for key wrap/unwrap.

 $<sup>^{\</sup>rm 41}$  Per FIPS 140-3 Implementation Guidance D.G, AES-GCM is Approved for key wrap/unwrap.

<sup>&</sup>lt;sup>42</sup> CKG – Cryptographic Key Generation

<sup>43</sup> OCB – Offset Codebook

while having no knowledge of the entropy source and exercising no control over the amount or the quality of the obtained entropy.

The calling application and its entropy sources are located within the operational environment inside the module's physical perimeter but outside the cryptographic boundary. Thus, there is no assurance of the minimum strength of generated SSPs (e.g., keys)

The module implements the Non-Approved but allowed algorithms shown in Table 4 below.

| Algorithm  | Caveat                                               | Use / Function                                                               |
|------------|------------------------------------------------------|------------------------------------------------------------------------------|
| AES        | Cert. <u>#A3254</u> , Key Unwrapping. Per IG<br>D.G. | Symmetric Key Unwrapping (using any approved mode)                           |
| Triple-DES | Cert. <u>#A3254</u> , Key Unwrapping. Per IG<br>D.G. | Symmetric Key Unwrapping (using any approved mode with two-key or three-key) |

Table 4 – Non-Approved Algorithms Allowed in the Approved Mode of Operation

The module does not implement any Non-Approved algorithms allowed in the approved mode of operation for which no security is claimed.

The module employs the Non-Approved algorithms shown in Table 5 below. These algorithms shall not be used in the module's Approved mode of operation.

| Algorithm / Function                                                              | Use / Function                      |
|-----------------------------------------------------------------------------------|-------------------------------------|
| AES-GCM (non-compliant with external IV)                                          | Encryption/Decryption               |
| AES-OCB <sup>43</sup>                                                             | Authenticated Encryption/decryption |
| ANSI X9.31 RNG (with 128-bit AES core)                                            | Random Number Generation            |
| ARIA                                                                              | Encryption/Decryption               |
| Blake2                                                                            | Encryption/Decryption               |
| Blowfish                                                                          | Encryption/Decryption               |
| Camellia                                                                          | Encryption/Decryption               |
| CAST, CAST5                                                                       | Encryption/Decryption               |
| ChaCha20                                                                          | Encryption/Decryption               |
| DES                                                                               | Encryption/Decryption               |
| DRBG (non-compliant when using Hash_DRBG and HMAC_DRBG)                           | Random Bit Generation               |
| DSA, ECDSA, and RSA (non-compliant when used with SHA-1 outside the TLS protocol) | Digital Signature Generation        |
| DH (non-compliant with key sizes below 2048 bits)                                 | Key Agreement                       |

#### Table 5 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

CorSSL™ 1.1.1s.005 ©2024 Corsec Security, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 14 of 46

| Algorithm / Function                                                           | Use / Function                                                                                   |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| DSA (non-compliant with key sizes below the minimums for Approved mode)        | Key Pair Generation; Digital Signature Generation; Digital Signature Verification                |
| ECDH (non-compliant with curves P-192, K-163, B-<br>163, and non-NIST curves)  | Key Agreement                                                                                    |
| ECDSA (non-compliant with curves P-192, K-163, B-<br>163, and non-NIST curves) | Key Pair Generation; Digital Signature Generation; Digital Signature Verification                |
| EdDSA <sup>44</sup>                                                            | Key Pair Generation; Digital Signature Generation; Digital Signature Verification                |
| IDEA                                                                           | Encryption/Decryption                                                                            |
| KDF                                                                            | Key Derivation Functions for TLS 1.0/1.1; HKDF; X9.42                                            |
| MD2, MD4, MD5                                                                  | Message Digest                                                                                   |
| Poly1305                                                                       | Message Authentication Code                                                                      |
| RC2 <sup>45</sup> , RC4, RC5                                                   | Encryption/Decryption                                                                            |
| RIPEMD                                                                         | Message Digest                                                                                   |
| RMD160                                                                         | Message Digest                                                                                   |
| RSA (non-compliant with non-approved/untested key sizes, and functions)        | Key Pair Generation; Digital Signature Generation; Digital Signature Verification; Key Transport |
| SEED                                                                           | Encryption/Decryption                                                                            |
| SHA-1 (non-compliant)                                                          | Signature Generation for TLS 1.0/1.1                                                             |
| SM2, SM3                                                                       | Message Digest                                                                                   |
| SM4                                                                            | Encryption/Decryption                                                                            |
| Triple-DES (non-compliant)                                                     | Encryption; MAC Generation; Key Wrapping                                                         |
| Whirlpool                                                                      | Message Digest                                                                                   |

## 2.3 Cryptographic Boundary

As a software cryptographic module, the module has no physical components. The physical perimeter of the cryptographic module is defined by each host platform on which the module is installed. Figure 1 below illustrates a block diagram of a typical GPC and the module's physical perimeter.

<sup>45</sup> RC – Rivest Cipher

<sup>&</sup>lt;sup>44</sup> EdDSA – Edwards-curve Digital Signature Algorithm



Figure 1 – GPC Block Diagram

The module's cryptographic boundary consists of all functionalities contained within the module's compiled source code. Including:

- libcrypto (cryptographic primitives library file)
- libssl (TLS protocol library file)
- libcrypto.hmac (an HMAC digest file for libcrypto integrity checks)
- libssl.hmac (an HMAC digest file for libssl integrity checks)

The cryptographic boundary is the contiguous perimeter that surrounds all memory-mapped functionality provided by the module when it is loaded and stored in the host platform's memory. The module is entirely contained within the physical perimeter.

Figure 2 shows the logical block diagram of the module executing in memory, its interactions with surrounding software components, and the module's physical perimeter and cryptographic boundary.



Figure 2 – Module Block Diagram (with Cryptographic Boundary)

### 2.4 Modes of Operation

The module supports two modes of operation: Approved and Non-Approved. The module operates in the Approved mode when all pre-operational self-tests have completed successfully, and only Approved services are invoked. Table 3 and Table 4 list the Approved and allowed algorithms, while Table 8 provides descriptions of the Approved services.

The module alternates on a service-by-service basis between Approved and Non-Approved modes of operation. The module will implicitly switch to the Non-Approved mode upon execution of a Non-Approved service. The module will implicitly switch back to the Approved mode upon execution of an Approved service. Table 5 lists the Non-Approved algorithms implemented by the module, while Table 9 below lists the services that constitute the Non-Approved mode.

When following the guidance in section 11.5 of this document, CSPs are not shared between Approved and non-Approved services and modes of operation.

# 3. Cryptographic Module Interfaces

FIPS 140-3 defines the following logical interfaces for cryptographic modules:

- Data Input
- Data Output
- Control Input
- Control Output
- Status Output

As a software library, the cryptographic module has no direct access to any of the host platform's physical ports, as it communicates only to the calling application via its well-defined API. A mapping of the FIPS-defined interfaces and the module's logical ports and interfaces can be found in Table 6. Note that the module does not output control information, and thus has no specified control output interface.

#### **Physical Port Logical Interface Data That Passes Over Port/Interface** Physical data input port(s) of Data Input • Data to be encrypted, decrypted, signed, the tested platforms • API input arguments that provide verified, or hashed input data for processing • Keys to be used in cryptographic services • Random seed material for the module's DRBG • Keying material to be used as input to key establishment services Physical data output port(s) of Data Output • Data that has been encrypted, the tested platforms • API output arguments that return decrypted, or verified generated or processed data back **Digital signatures** ٠ to the caller • Hashes • Random values generated by the module's DRBG Keys established using module's key establishment methods Physical control input port(s) of Control Input API commands invoking cryptographic the tested platforms • API input arguments that are services used to initialize and control the • Modes, key sizes, etc. used with operation of the module cryptographic services Physical status output port(s) Status Output • Status information regarding the module of the tested platforms • API call return values Status information regarding the invoked

#### Table 6 – Ports and Interfaces

service/operation

# 4. Roles, Services, and Authentication

The sections below describe the module's authorized roles, services, and operator authentication methods.

## 4.1 Authorized Roles

The module supports a Crypto Officer (CO) that authorized operators can assume. The CO role performs cryptographic initialization or management functions and general security services.

The module also supports the following role(s):

• User – The User role performs general security services, including cryptographic operations and other approved security functions.

The module does not support multiple concurrent operators. The calling application that loaded the module is its only operator.

Table 7 below lists the supported roles, along with the services (including input and output) available to each role.

| Role | Service                                       | Input                                                            | Output                       |
|------|-----------------------------------------------|------------------------------------------------------------------|------------------------------|
| со   | Show Status                                   | API call parameters                                              | Current operational          |
|      |                                               |                                                                  | status                       |
| СО   | Perform Self-Tests On-Demand                  | Re-instantiate module; API call parameters                       | Status                       |
| со   | Zeroize                                       | Restart calling application; reboot or power-cycle host platform | None                         |
| CO   | Show Versioning Information                   | API call parameters                                              | Module name, version         |
| User | Perform Symmetric Encryption                  | API call parameters, key, plaintext                              | Status, ciphertext           |
| User | Perform Symmetric Decryption                  | API call parameters, key, ciphertext                             | Status, plaintext            |
| User | Generate Symmetric Digest                     | API call parameters, key, plaintext                              | Status, digest               |
| User | Verify Symmetric Digest                       | API call parameters, digest                                      | Status                       |
| User | Perform Authenticated Symmetric<br>Encryption | API call parameters, key, plaintext                              | Status, ciphertext           |
| User | Perform Authenticated Symmetric<br>Decryption | API call parameters, key, ciphertext                             | Status, plaintext            |
| User | Generate Random Number                        | API call parameters                                              | Status, random bits          |
| User | Perform Keyed Hash Operation                  | API call parameters, key, message                                | Status, MAC <sup>46</sup>    |
| User | Perform Hash Operation                        | API call parameters, message                                     | Status, hash                 |
| User | Generate DSA Domain Parameters                | API call parameters                                              | Status, domain               |
|      |                                               |                                                                  | parameters                   |
| User | Verify DSA Domain Parameters                  | API call parameters                                              | Status, domain<br>parameters |
| User | Generate Asymmetric Key Pair                  | API call parameters                                              | Status, key pair             |
| User | Verify ECDSA Public Key                       | API call parameters, key                                         | Status                       |
| User | Generate Digital Signature                    | API call parameters, key, message                                | Status, signature            |

Table 7 – Roles, Service Commands, Input and Output

<sup>46</sup> MAC – Message Authentication Code

| Role | Service                         | Input                                           | Output                |
|------|---------------------------------|-------------------------------------------------|-----------------------|
| User | Verify Digital Signature        | API call parameters, key,<br>signature, message | Status                |
| User | Perform Key Wrap                | API call parameters, encryption key, key        | Status, encrypted key |
| User | Perform Key Unwrap              | API call parameters, decryption key, key        | Status, decrypted key |
| User | Compute Shared Secret           | API call parameters                             | Status, shared secret |
| User | Derive Keys via TLS KDF         | API call parameters, TLS pre-<br>master secret  | Status, TLS keys      |
| User | Perform Key Agreement Functions | API call parameters                             | Status, symmetric key |
| User | Derive Key via PBKDF2           | API call parameters, password                   | Status, key           |

## 4.2 Authentication Methods

The module does not support authentication methods; operators implicitly assume an authorized role based on the service selected.

### 4.3 Services

Descriptions of the approved services available to the authorized roles are provided in Table 8 below.

This module is a software library that provides cryptographic functionality to calling applications. As such, the security functions provided by the module are considered the module's security services. Indicators for Approved services (in the case of this module, those security functions with algorithm validation certificates and all required self-tests) are provided via API return value.

When invoking a security function, the calling application provides inputs via an internal structure, or "context". Upon each service invocation, the module will determine if the invoked security function is an Approved service. To access the resulting value, the calling application must pass the finalized context to the indicator API associated with that security function (note the indicator check must be performed prior to any context cleanup is performed). The indicator API will return "1" to indicate the usage of an Approved service. Indicators for services providing Non-Approved security functions (as well as for services not requiring an indicator) will have a value other than "1", ensuring that the indicators for Approved services are unambiguous. Additional details on the APIs used for the Approved service indicators are provided in Appendix B below.

The keys and Sensitive Security Parameters (SSPs) listed in the table indicate the type of access required using the following notation:

- G = Generate: The module generates or derives the SSP.
- R = Read: The SSP is read from the module (e.g., the SSP is output).
- W = Write: The SSP is updated, imported, or written to the module.
- E = Execute: The module uses the SSP in performing a cryptographic operation.
- Z = Zeroize: The module zeroizes the SSP.

| Service               | Description                    | Approved Security Functions                                                         | ed Security Functions Keys and/or SSPs Roles Access Rights to K |        | Access Rights to Keys                  | Indicator           |
|-----------------------|--------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------|----------------------------------------|---------------------|
| Show Status           | Return Approved<br>mode status | None                                                                                | None                                                            | СО     | N/A                                    | N/A                 |
| Perform Self-         | Perform pre-                   | None                                                                                | Integrity Test Key -                                            | со     | Integrity Test Key – libcrypto         | API return          |
| Tests On-<br>Demand   | operational self-<br>tests     |                                                                                     | libcrypto<br>Integrity Test Key -                               |        | – E<br>Integrity Test Key - libssl – E | value               |
|                       |                                |                                                                                     | libssl                                                          |        |                                        |                     |
| Zeroize               | Zeroize and de-                | None                                                                                | All SSPs                                                        | со     | All SSPs – Z                           | N/A                 |
|                       | containing                     |                                                                                     |                                                                 |        |                                        |                     |
|                       | sensitive data                 |                                                                                     |                                                                 |        |                                        |                     |
| Show<br>Versioning    | Return module<br>versioning    | None                                                                                | None                                                            | СО     | N/A                                    | N/A                 |
| Information           | information                    |                                                                                     |                                                                 |        |                                        |                     |
| Perform               | Encrypt plaintext              | AES-CBC (Cert. <u>A3254</u> )                                                       | AES key                                                         | User   | AES key – WE                           | API return          |
| Encryption            | uata                           | AES-CFB1 (Cert. <u>A3254</u> )                                                      | AES XTS key                                                     |        | AES XTS key – WE                       | Value               |
|                       |                                | AES-CFB128 (Cert. <u>A3254</u> )                                                    |                                                                 |        |                                        |                     |
|                       |                                | AES-CFB8 (Cert. <u>A3254</u> )<br>AES-CTR (Cert. A3254)                             |                                                                 |        |                                        |                     |
|                       |                                | AES-ECB (Cert. A3254)                                                               |                                                                 |        |                                        |                     |
|                       |                                | AES-GMAC (Cert. <u>A3254</u> )<br>AES-KW (Cert. A3254)                              |                                                                 |        |                                        |                     |
|                       |                                | AES-KWP (Cert. A3254)                                                               |                                                                 |        |                                        |                     |
|                       |                                | AES-OFB (Cert. <u>A3254</u> )<br>AES-XTS Testing Revision 2.0 (Cert. <u>A3254</u> ) |                                                                 |        |                                        |                     |
| Perform               | Decrypt                        | AES-CBC (Cert. <u>A3254</u> )                                                       | AES key                                                         | User   | AES key – WE                           | API return          |
| Symmetric             | ciphertext data                | AES-CCM (Cert. A3254)                                                               | AES GMAC key                                                    |        | AES GMAC key – WE                      | value               |
| Decryption            |                                | AES-CFB1 (Cert. <u>A3254</u> )<br>AES-CFB128 (Cert. <u>A3254</u> )                  | Triple-DES key                                                  |        | Triple-DES key – WE                    |                     |
|                       |                                | AES-CFB8 (Cert. <u>A3254</u> )                                                      |                                                                 |        |                                        |                     |
|                       |                                | AES-CIR (Cert. <u>A3254</u> )<br>AES-ECB (Cert. <u>A3254</u> )                      |                                                                 |        |                                        |                     |
|                       |                                | AES GMAC (Cert. <u>A3254</u> )                                                      |                                                                 |        |                                        |                     |
|                       |                                | AES-KW (Cert. <u>A3254</u> )<br>AES-KWP (Cert. <u>A3254</u> )                       |                                                                 |        |                                        |                     |
|                       |                                | AES-OFB (Cert. A3254)                                                               |                                                                 |        |                                        |                     |
|                       |                                | AES-XTS Testing Revision 2.0 (Cert. A3254)                                          |                                                                 |        |                                        |                     |
|                       |                                | TDES-CFB1 (Cert. <u>A3254</u> )                                                     |                                                                 |        |                                        |                     |
|                       |                                | TDES-CFB64 (Cert. <u>A3254</u> )                                                    |                                                                 |        |                                        |                     |
|                       |                                | TDES-CCB8 (Cert. <u>A3254</u> )<br>TDES-ECB (Cert. <u>A3254</u> )                   |                                                                 |        |                                        |                     |
|                       |                                | TDES-OFB (Cert. <u>A3254</u> )                                                      |                                                                 |        |                                        |                     |
| Generate<br>Symmetric | Generate<br>symmetric digest   | AES-CMAC (Cert. <u>A3254</u> )                                                      | AES CMAC key                                                    | User   | AES CMAC key – WE                      | API return<br>value |
| Digest                | -,                             |                                                                                     |                                                                 |        |                                        |                     |
| Verify                | Verify symmetric               | AES-CMAC (Cert. A3254)                                                              | AES CMAC key                                                    | User   | AES CMAC key – WE                      | API return          |
| Digest                | uigest                         | 1023-CIMAC (CEIL <u>A3234</u> )                                                     | Thpie-DES CIVIAC Key                                            |        |                                        | Value               |
| Perform               | Encrypt plaintext              | AES-GCM (Cert. <u>A3254</u> )                                                       | AES GCM key                                                     | User   | AES GCM key – WE                       | API return          |
| Symmetric             | AES GCM key and                |                                                                                     | AES GCIVI IV                                                    |        | AES GCIVITV - WE                       | value               |
| Encryption            | IV                             |                                                                                     |                                                                 |        |                                        |                     |
| Authenticated         | Decrypt<br>ciphertext using    | AES-GCM (Cert. <u>A3254</u> )                                                       | AES GCM key<br>AES GCM IV                                       | User   | AES GCM key – WE<br>AES GCM IV – WE    | API return<br>value |
| Symmetric             | supplied AES GCM               |                                                                                     |                                                                 |        |                                        |                     |
| Decryption            | key and IV<br>Generate random  | Counter DBBG (Cert A3254)                                                           | DBBG entropy input                                              | llser  | DBBG entropy input – WF                | API return          |
| Random                | bits using DRBG                |                                                                                     | DRBG seed                                                       | - OSCI | DRBG seed – GE                         | value               |
| Number                |                                |                                                                                     | DRBG 'V' value                                                  |        | DRBG 'V' value – GE                    |                     |
| Perform Keyed         | Compute a                      | HMAC SHA-1 (Cert. <u>A3254</u> )                                                    | HMAC key                                                        | User   | HMAC key – WE                          | API return          |
| Hash                  | message                        | HMAC SHA2-224 (Cert. <u>A3254</u> )                                                 |                                                                 |        |                                        | value               |
| Operation             | code                           | HIVIAC SHA2-256 (Cert. <u>A3254</u> )<br>HMAC SHA2-384 (Cert. <u>A3254</u> )        |                                                                 |        |                                        |                     |
|                       |                                | HMAC SHA2-512 (Cert. <u>A3254</u> )                                                 |                                                                 |        |                                        |                     |
|                       |                                | HMAC SHA3-224 (Cert. <u>A3254</u> )<br>HMAC SHA3-256 (Cert. <u>A3254</u> )          |                                                                 |        |                                        |                     |
|                       |                                | HMAC SHA3-384 (Cert. <u>A3254</u> )                                                 |                                                                 |        |                                        |                     |
| 1                     | 1                              | HMAC SHA3-512 (Cert. A3254)                                                         | 1                                                               | 1      | 1                                      | 1                   |

#### Table 8 – Approved Services

#### FIPS 140-3 Non-Proprietary Security Policy, Version 0.1

| Service                               | Description                                                                      | Approved Security Functions                                                                                                                                                                                                                                                                                              | Keys and/or SSPs                                                                                                                                                         | Roles | Access Rights to Keys<br>and/or SSPs                                                                                                                                                                                       | Indicator           |
|---------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Perform Hash<br>Operation             | Compute a<br>message digest                                                      | SHA-1 (Cert. <u>A3254</u> )<br>SHA2-224 (Cert. <u>A3254</u> )<br>SHA2-256 (Cert. <u>A3254</u> )<br>SHA2-384 (Cert. <u>A3254</u> )<br>SHA3-512 (Cert. <u>A3254</u> )<br>SHA3-224 (Cert. <u>A3254</u> )<br>SHA3-256 (Cert. <u>A3254</u> )<br>SHA3-384 (Cert. <u>A3254</u> )<br>SHA3-512 (Cert. <u>A3254</u> )              | None                                                                                                                                                                     | User  | N/A                                                                                                                                                                                                                        | API return<br>value |
| Generate DSA<br>Domain<br>Parameters  | Generate DSA<br>domain<br>parameters                                             | DSA PQGGen (FIPS186-4) (Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                             | None                                                                                                                                                                     | User  | N/A                                                                                                                                                                                                                        | API return<br>value |
| Verify DSA<br>Domain<br>Parameters    | Verify DSA<br>domain<br>parameters                                               | DSA PQGVer (FIPS186-4) (Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                             | None                                                                                                                                                                     | User  | N/A                                                                                                                                                                                                                        | API return<br>value |
| Generate<br>Asymmetric<br>Key Pair    | Generate a<br>public/private key<br>pair                                         | DSA KeyGen (FIPS186-4) (Cert. <u>A3254</u> )<br>ECDSA KeyGen (FIPS186-4) (Cert. <u>A3254</u> )<br>RSA KeyGen (FIPS186-4) (Cert. <u>A3254</u> )                                                                                                                                                                           | DSA public key<br>DSA private key<br>ECDSA public key<br>ECDSA private key<br>RSA public key<br>RSA private key                                                          | User  | DSA public key – GR<br>DSA private key – GR<br>ECDSA public key – GR<br>ECDSA private key – GR<br>RSA public key – GR<br>RSA private key – GR                                                                              | API return<br>value |
| Verify ECDSA<br>Public Key            | Verify an ECDSA<br>public key                                                    | ECDSA KeyVer (FIPS186-4) (Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                           | ECDSA public key                                                                                                                                                         | User  | ECDSA public key – W                                                                                                                                                                                                       | API return<br>value |
| Generate<br>Digital<br>Signature      | Generate a digital signature                                                     | DSA SigGen (FIPS186-4) (Cert. <u>A3254</u> )<br>ECDSA SigGen (FIPS186-4) (Cert. <u>A3254</u> )<br>RSA SigGen (FIPS186-4) (Cert. <u>A3254</u> )                                                                                                                                                                           | DSA private key<br>ECDSA private key<br>RSA private key                                                                                                                  | User  | DSA private key – WE<br>ECDSA private key – WE<br>RSA private key – WE                                                                                                                                                     | API return<br>value |
| Verify Digital<br>Signature           | Verify a digital signature                                                       | DSA SigVer (FIPS186-4) (Cert. <u>A3254</u> )<br>ECDSA SigVer (FIPS186-4) (Cert. <u>A3254</u> )<br>RSA SigVer (FIPS186-4) (Cert. <u>A3254</u> )                                                                                                                                                                           | DSA public key<br>ECDSA public key<br>RSA public key                                                                                                                     | User  | DSA public key – WE<br>ECDSA public key – WE<br>RSA public key – WE                                                                                                                                                        | API return<br>value |
| Perform Key<br>Wrap                   | Perform key wrap                                                                 | KTS (AES-CCM) (Cert. <u>A3254</u> )<br>KTS (AES-GCM) (Cert. <u>A3254</u> )<br>KTS (AES-KW) (Cert. <u>A3254</u> )<br>KTS (AES-KWP) (Cert. <u>A3254</u> )                                                                                                                                                                  | AES key<br>AES GCM key<br>AES GCM IV                                                                                                                                     | User  | AES key – WE<br>AES GCM key – WE<br>AES GCM IV – WE                                                                                                                                                                        | API return<br>value |
| Perform Key<br>Unwrap                 | Perform key<br>unwrap                                                            | KTS (AES-CCM) (Cert. <u>A3254</u> )<br>KTS (AES-GCM) (Cert. <u>A3254</u> )<br>KTS (AES-KW) (Cert. <u>A3254</u> )<br>KTS (AES-KWP) (Cert. <u>A3254</u> )                                                                                                                                                                  | AES key<br>AES GCM key<br>AES GCM IV                                                                                                                                     | User  | AES key – WE<br>AES GCM key – WE<br>AES GCM IV – WE                                                                                                                                                                        | API return<br>value |
| Compute<br>Shared Secret              | Compute<br>DH/ECDH shared<br>secret suitable for<br>use as input to a<br>TLS KDF | KAS-ECC-SSC Sp800-56Ar3 (Cert. <u>A3254</u> )<br>KAS-FFC-SSC Sp800-56Ar3 (Cert. <u>A3254</u> )                                                                                                                                                                                                                           | DH public key<br>DH private key<br>ECDH public key<br>ECDH private key<br>TLS pre-master secret                                                                          | User  | DH public key – WE<br>DH private key – WE<br>ECDH public key – WE<br>ECDH private key – WE<br>TLS pre-master secret – GE                                                                                                   | API return<br>value |
| Derive Keys<br>via TLS KDF            | Derive TLS session<br>and integrity keys                                         | TLS v1.2 KDF RFC7627 (Cert. <u>A3254</u> )<br>TLS v1.3 KDF (Cert. <u>A3253</u> )                                                                                                                                                                                                                                         | TLS pre-master secret<br>TLS master secret<br>AES key<br>AES GCM key<br>AES GCM IV<br>HMAC key                                                                           | User  | TLS pre-master secret – WE<br>TLS master secret – GE<br>AES key – GR<br>AES GCM key – GR<br>AES GCM IV – GR<br>HMAC key – GR                                                                                               | API return<br>value |
| Perform Key<br>Agreement<br>Functions | Establish<br>symmetric key<br>using DH/ECDH<br>key agreement                     | KAS (KAS-ECC_SSC/TLS v1.2 KDF RFC7627)<br>(Certs. <u>A3254</u> , <u>A3253</u> )<br>KAS (KAS-ECC_SSC/TLS v1.3 KDF) (Certs.<br><u>A3254</u> , <u>A3253</u> )<br>KAS (KAS-FFC_SSC/TLS v1.2 KDF RFC7627)<br>(Certs. <u>A3254</u> , <u>A3253</u> )<br>KAS (KAS-FFC_SSC/TLS v1.3 KDF) (Certs.<br><u>A3254</u> , <u>A3253</u> ) | DH public key<br>DH private key<br>ECDH public key<br>ECDH private key<br>TLS pre-master secret<br>TLS master secret<br>AES key<br>AES GCM key<br>AES GCM IV<br>HMAC key | User  | DH public key – WE<br>DH private key – WE<br>ECDH public key – WE<br>ECDH private key – WE<br>TLS pre-master secret – GE<br>TLS master secret – GE<br>AES key – GR<br>AES GCM key – GR<br>AES GCM IV – GR<br>HMAC key – GR | API return<br>value |
| Derive Key via<br>PBKDF2              | Derive key from<br>PBKDF2                                                        | PBKDF2 (Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                                             | Passphrase<br>AES key<br>Triple-DES key                                                                                                                                  | User  | Passphrase – WE<br>AES key – GR<br>Triple-DES key – GR                                                                                                                                                                     | API return<br>value |

\*Per FIPS 140-3 Implementation Guidance 2.4.C, the Show Status, Zeroize, and Show Versioning Information services do not require an Approve security service indicator.

The following services/algorithms are allowed for legacy use only:

• Digital signature verification using ECDSA with curves B-163, K-163, and P-192

- Digital signature verification using DSA with key lengths of 1024 bits
- Digital signature verification using RSA with modulus lengths of 1024 bits
- Digital signature verification using SHA-1
- Symmetric decryption using two-key and three-key Triple DES
- Key unwrapping using two-key and three-key Triple DES
- MAC verification using two-key and three-key Triple DES CMAC

Table 9 below lists the Non-Approved services available to module operators.

| Service                                                                      | Description                                                                                                                                     | Algorithms Accessed                                                                                                                              | Role | Indicator        |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|--|
| Perform Data Encryption<br>(Non-Compliant)                                   | Perform symmetric data encryption                                                                                                               | etric data ARIA, Blake2, Blowfish,<br>Camellia, CAST, CAST5,<br>ChaCha20, DES, IDEA, RC2,<br>RC4, RC5, SEED, SM4, Triple-<br>DES (non-compliant) |      | API return value |  |
| Perform Data Decryption<br>(Non-Compliant)                                   | ryption Perform symmetric data decryption ARIA, Blake2, Blowfish, Camellia, CAST, CAST5, ChaCha20, DES, IDEA, RC2, RC4, RC5, SEED, SM4          |                                                                                                                                                  | User | API return value |  |
| Perform MAC Operations<br>(Non-Compliant)                                    | Perform message<br>authentication operations                                                                                                    | Poly1305, Triple-DES/CMAC<br>(non-compliant for MAC<br>generation)                                                                               | User | API return value |  |
| Perform Hash Operation Perform hash operation MI<br>(Non-Compliant) RN<br>WI |                                                                                                                                                 | MD2, MD4, MD5, RIPEMD,<br>RMD160, SM2, SM3, SM4,<br>Whirlpool                                                                                    | User | API return value |  |
| Perform Digital Signature<br>Functions (Non-Compliant)                       | erform Digital Signature Perform digital signature Inctions (Non-Compliant) Functions                                                           |                                                                                                                                                  | User | API return value |  |
| Perform Key Agreement<br>Functions (Non-Compliant)                           | Perform key agreement functions                                                                                                                 | DH (non-compliant), ECDH<br>(non-compliant)                                                                                                      | User | API return value |  |
| Perform Key Wrap (Non-<br>Compliant)                                         | Perform key wrap functions                                                                                                                      | Triple-DES/CMAC (non-<br>compliant)                                                                                                              | User | API return value |  |
| Perform Key Encapsulation<br>(Non-Compliant)                                 | Perform key encapsulation functions                                                                                                             | RSA (non-compliant)                                                                                                                              | User | API return value |  |
| Perform Key Un-<br>Encapsulation (Non-<br>Compliant)                         | Perform key un-encapsulation functions                                                                                                          | RSA (non-compliant)                                                                                                                              | User | API return value |  |
| Perform Key Derivation<br>Functions (Non-Compliant)                          | Perform key derivation functions                                                                                                                | HKDF, TLS v1.0/1.1 KDF (non-<br>compliant)                                                                                                       | User | API return value |  |
| Perform Authenticated<br>Encryption/Decryption (Non-<br>Compliant)           | Perform authenticated encryption/decryption                                                                                                     | AES-OCB                                                                                                                                          | User | API return value |  |
| Perform Random Number<br>Generation (Non-Compliant)                          | form Random Number<br>heration (Non-Compliant)<br>perform random number<br>generation<br>(Non-Compliant)<br>(non-compliant),<br>(non-compliant) |                                                                                                                                                  | User | API return value |  |

#### Table 9 – Non-Approved Services

| Service                                        | Description                 | Algorithms Accessed                                                          | Role | Indicator        |
|------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|------|------------------|
| Perform Key Pair Generation<br>(Non-Compliant) | Perform key pair generation | DSA (non-compliant), ECDSA<br>(non-compliant), EdDSA, RSA<br>(non-compliant) | User | API return value |

## 5. Software/Firmware Security

All software components within the cryptographic boundary are verified using an Approved integrity technique implemented within the cryptographic module itself. The module implements independent HMAC SHA2-256 digest checks to test the integrity of each library file; failure of the integrity test for either library file will cause the module to enter a critical error state. Details regarding the keys used for the integrity checks can be found in Table 10 below.

The module's integrity check is performed automatically at module instantiation (i.e., when the module is loaded into memory for execution) without action from the module operator. The CO can initiate the pre-operational tests on demand by re-instantiating the module or issuing the FIPS\_selftest() API command.

CorSSL<sup>™</sup> is not a standalone application; it is a cryptographic toolkit intended for use in a with a vendor's solution. The module will be linked to a host application, and the host application will be pre-installed onto a target platform by the vendor or installed onto target platforms by the end-user. The module requires no configuration steps to be performed by application developers or end-users, and no action is required from developers or end-users to initialize the module for operation. The module is designed with a default entry point (DEP) that ensures that the pre-operational tests and conditional CASTs are initiated automatically when the module is loaded.

## 6. **Operational Environment**

The CorSSL<sup>™</sup> comprises a software cryptographic library that executes in a modifiable operational environment.

The cryptographic module has control over its own SSPs. The process and memory management functionality of the host device's OS prevents unauthorized access to plaintext private and secret keys, intermediate key generation values and other SSPs by external processes during module execution. The module only allows access to SSPs through its well-defined API. The operational environment provides the capability to separate individual application processes from each other by preventing uncontrolled access to CSPs and uncontrolled modifications of SSPs regardless of whether this data is in the process memory or stored on persistent storage within the operational environment. Processes that are spawned by the module are owned by the module and are not owned by external processes/operators.

Please refer to section 2.1 of this document for a list/description of the applicable operational environments.

## 7. Physical Security

The cryptographic module is software module and does not include physical security mechanisms. Therefore, per *ISO/IEC 19790:2021* section 7.7.1, requirements for physical security are not applicable.

## 8. Non-Invasive Security

This section is not applicable. There is currently no approved non-invasive mitigation techniques referenced in *ISO/IEC 19790:2021* Annex F.

# 9. Sensitive Security Parameter Management

### 9.1 Keys and Other SSPs

The module supports the keys and other SSPs listed Table 10 below.

| Key/SSP<br>Name/Type                              | Strength                    | Security Function and<br>Cert. Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Generation | Import / Export                                                 | Establishment                       | Storage                            | Zeroisation                                   | Use &<br>Related Keys                                          |
|---------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------|-------------------------------------|------------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| Keys                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                 |                                     |                                    |                                               |                                                                |
| Integrity Test<br>Key - libcrypto<br>(not an SSP) | 256 bits                    | HMAC SHA2-256<br>(Cert. <u>A2544</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -          | -                                                               | Hardcoded in<br>the module<br>image | Plaintext in<br>RAM                | Not subject to<br>zeroization<br>requirements | Pre-<br>operational<br>verification of<br>libcrypto<br>library |
| Integrity Test<br>Key - libssl<br>(not an SSP)    | 256 bits                    | HMAC SHA2-256<br>(Cert. <u>A2544</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -          | -                                                               | Hardcoded in<br>the module<br>image | Plaintext in<br>RAM                | Not subject to<br>zeroization<br>requirements | Pre-<br>operational<br>verification of<br>libssl library       |
| AES Key<br>(CSP)                                  | Between 128<br>and 256 bits | AES-CBC         (Cert. A3254)         AES-CCM         (Cert. A3254)         AES-CFB1         (Cert. A3254)         AES-CFB128         (Cert. A3254)         AES-CFB128         (Cert. A3254)         AES-CFB8         (Cert. A3254)         AES-CFB8         (Cert. A3254)         AES-CFR         (Cert. A3254)         AES-ECB         (Cert. A3254)         AES-KW         (Cert. A3254)         AES-ECB         (Cert. A3254)         AES-KW         (Cert. A3254)         AES-ECB         (Cert. A3254)         AES-KW         (Cert. A3254)         AES-CR         (Cert. A3254)         AES-KW         (Cert. A3254)         KTS (AES-CCM)         (Cert. A3254)         KTS (AES-GCM)         (Cert. A3254)         KTS (AES-KW)         (Cert. A3254) |            | Imported in<br>plaintext via API<br>parameter<br>Never exported | Derived via<br>TLS KDF              | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power             | Symmetric<br>Encryption,<br>Decryption;<br>Key Transport       |

#### Table 10 – Keys

CorSSL<sup>™</sup> 1.1.1s.005

©2024 Corsec Security, Inc.

| Key/SSP<br>Name/Type            | Strength                    | Security Function and<br>Cert. Number                                                                                                                                                                                                                                                                                                                                               | Generation                                   | Import / Export                                                 | Establishment          | Storage                            | Zeroisation                       | Use &<br>Related Keys                                    |
|---------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|------------------------|------------------------------------|-----------------------------------|----------------------------------------------------------|
|                                 |                             | (Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                                                                                                               |                                              |                                                                 |                        |                                    |                                   |                                                          |
| AES GCM Key<br>(CSP)            | Between 128<br>and 256 bits | AES-GCM<br>(Cert. <u>A3254</u> )<br>KTS (AES-GCM)                                                                                                                                                                                                                                                                                                                                   | -                                            | Imported in<br>plaintext via API<br>parameter                   | Derived via<br>TLS KDF | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Authenticated<br>Symmetric<br>Encryption,<br>Decryption; |
| AES XTS Key<br>(CSP)            | 256 bits                    | (Cert. <u>A3254</u> )<br>AES-XTS<br>(Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                                                                           | -                                            | Imported in<br>plaintext via API<br>parameter                   | -                      | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Symmetric<br>Encryption,<br>Decryption                   |
| AES CMAC Key<br>(CSP)           | Between 128<br>and 256 bits | AES-CMAC<br>(Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                                                                                                   | -                                            | Imported in<br>plaintext via API<br>parameter<br>Never exported | -                      | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | MAC<br>Generation,<br>Verification                       |
| AES GMAC Key<br>(CSP)           | Between 128<br>and 256 bits | AES-GMAC<br>(Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                                                                                                   | -                                            | Imported in<br>plaintext via API<br>parameter<br>Never exported | -                      | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | MAC<br>Generation,<br>Verification                       |
| Triple-DES Key<br>(CSP)         | 168 bits                    | TDES-CBC<br>(Cert. <u>A3254</u> )<br>TDES-CFB1<br>(Cert. <u>A3254</u> )<br>TDES-CFB64<br>(Cert. <u>A3254</u> )<br>TDES-CFB8<br>(Cert. <u>A3254</u> )<br>TDES-ECB<br>(Cert. <u>A3254</u> )<br>TDES-OFB<br>(Cert. <u>A3254</u> )                                                                                                                                                      | -                                            | Imported in<br>plaintext via API<br>parameter<br>Never exported | -                      | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Symmetric<br>Decryption;<br>Key<br>Unwrapping            |
| Triple-DES<br>CMAC Key<br>(CSP) | 168 bits                    | TDES-CMAC<br>(Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                                                                                                  | -                                            | Imported in<br>plaintext via API<br>parameter<br>Never exported | -                      | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | MAC<br>Verification                                      |
| HMAC Key<br>(CSP)               | 112 bits<br>(minimum)       | HMAC SHA-1<br>(Cert. <u>A3254</u> )<br>HMAC SHA2-224<br>(Cert. <u>A3254</u> )<br>HMAC SHA2-256<br>(Cert. <u>A3254</u> )<br>HMAC SHA2-384<br>(Cert. <u>A3254</u> )<br>HMAC SHA2-512<br>(Cert. <u>A3254</u> )<br>HMAC SHA3-224<br>(Cert. <u>A3254</u> )<br>HMAC SHA3-256<br>(Cert. <u>A3254</u> )<br>HMAC SHA3-384<br>(Cert. <u>A3254</u> )<br>HMAC SHA3-512<br>(Cert. <u>A3254</u> ) | -                                            | Imported in<br>plaintext via API<br>parameter<br>Never exported | Derived via<br>TLS KDF | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Keyed Hash                                               |
| DSA Private Key<br>(CSP)        | 112 or 128<br>bits          | DSA SigGen (FIPS186-<br>4)<br>(Cert. <u>A3254</u> )                                                                                                                                                                                                                                                                                                                                 | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter                   | -                      | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Digital<br>Signature<br>Generation                       |

CorSSL<sup>™</sup> 1.1.1s.005

©2024 Corsec Security, Inc.

#### FIPS 140-3 Non-Proprietary Security Policy, Version 0.1

| Key/SSP<br>Name/Type          | Strength                    | Security Function and<br>Cert. Number                | Generation                                   | Import / Export                               | Establishment | Storage                            | Zeroisation                       | Use &<br>Related Keys                   |
|-------------------------------|-----------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------|------------------------------------|-----------------------------------|-----------------------------------------|
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>DSA Public Key          |
| DSA Public Key<br>(PSP)       | 112 or 128<br>bits          | DSA SigVer (FIPS186-<br>4)<br>(Cert. <u>A3254</u> )  | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Digital<br>Signature<br>Verification    |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>DSA Private<br>Key      |
| ECDSA Private<br>Key<br>(CSP) | Between 112<br>and 256 bits | ECDSA SigGen<br>(FIPS186-4)<br>(Cert. <u>A3254</u> ) | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Digital<br>Signature<br>Generation      |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>ECDSA Public<br>Key     |
| ECDSA Public<br>Key<br>(PSP)  | Between 112<br>and 256 bits | ECDSA SigVer<br>(FIPS186-4)<br>(Cert. <u>A3254</u> ) | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Digital<br>Signature<br>Verification    |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>ECDSA Private<br>Key    |
| RSA Private Key<br>(CSP)      | Between 112<br>and 150 bits | RSA SigGen (FIPS186-<br>4)<br>(Cert. <u>A3254</u> )  | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Digital<br>Signature<br>Generation      |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>RSA Public Key          |
| RSA Public Key<br>(PSP)       | Between 80<br>and 150 bits  | RSA SigVer (FIPS186-<br>4)<br>(Cert. <u>A3254</u> )  | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Digital<br>Signature<br>Verification    |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>RSA Private<br>Key      |
| DH Private Key<br>(CSP)       | 112 bits                    | KAS-SSC-FFC Sp800-<br>56Ar3<br>(Cert. <u>A3254</u> ) | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | DH Shared<br>Secret<br>Computation      |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>DH Public Key           |
| DH Public Key<br>(PSP)        | 112 bits                    | KAS-SSC-FFC Sp800-<br>56Ar3<br>(Cert. <u>A3254</u> ) | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | DH Shared<br>Secret<br>Computation      |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>DH Public Key           |
| ECDH Private<br>Key<br>(CSP)  | Between 112<br>and 256 bits | KAS-SSC-ECC Sp800-<br>56Ar3<br>(Cert. <u>A3254</u> ) | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | ECDH Shared<br>Secret<br>Computation    |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>ECDH Public<br>Key      |
| ECDH Public Key<br>(PSP)      | Between 112<br>and 256 bits | KAS-SSC-ECC Sp800-<br>56Ar3<br>(Cert. <u>A3254</u> ) | Generated<br>internally via<br>approved DRBG | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | ECDH Shared<br>Secret<br>Computation    |
|                               |                             |                                                      |                                              | Exported in<br>plaintext via API<br>parameter |               |                                    |                                   | Paired with:<br>ECDH Private<br>Key     |
| Other SSPs                    |                             |                                                      |                                              |                                               |               |                                    |                                   |                                         |
| Passphrase<br>(PSP)           | -                           | PBKDF2<br>(Cert. <u>A3254</u> )                      | -                                            | Imported in<br>plaintext via API<br>parameter | -             | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Input to PBKDF<br>for key<br>derivation |

CorSSL<sup>™</sup> 1.1.1s.005

©2024 Corsec Security, Inc.

| Key/SSP<br>Name/Type              | Strength | Security Function and<br>Cert. Number                                                      | Generation                                                                                                            | Import / Export                                                               | Establishment                        | Storage                            | Zeroisation                       | Use &<br>Related Keys                                                                                                                                 |
|-----------------------------------|----------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | 1        |                                                                                            |                                                                                                                       | Never exported                                                                |                                      |                                    |                                   |                                                                                                                                                       |
| AES GCM IV<br>(CSP)               | -        | AES-GCM<br>(Cert. <u>A3254</u> )                                                           | Generated<br>internally in<br>compliance with<br>the provisions of<br>a peer-to-peer<br>industry standard<br>protocol | -                                                                             | -                                    | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Initialization<br>vector for AES<br>GCM<br>Paired with:<br>AES GCM Key                                                                                |
| TLS pre-master<br>secret<br>(CSP) | -        | TLS v1.2 KDF<br>RFC7627)<br>(Cert. <u>A3254</u> )<br>TLS v1.3 KDF<br>(Cert. <u>A3253</u> ) | -                                                                                                                     | Imported in<br>plaintext via API<br>parameter<br>Never exported               | -                                    | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Derivation of<br>the TLS master<br>secret                                                                                                             |
| TLS master<br>secret<br>(CSP)     | -        | TLS v1.2 KDF<br>RFC7627)<br>(Cert. <u>A3254</u> )<br>TLS v1.3 KDF<br>(Cert. <u>A3253</u> ) | -                                                                                                                     | -                                                                             | Derived<br>internally via<br>TLS KDF | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Derivation of<br>the AES key,<br>AES-GCM key,<br>and HMAC key<br>used for<br>securing TLS<br>connections<br>Derived from:<br>TLS pre-master<br>secret |
| DRBG entropy<br>input<br>(CSP)    | -        | Counter DRBG<br>(Cert. <u>A3254</u> )                                                      | -                                                                                                                     | Imported in<br>plaintext via API<br>parameter <sup>47</sup><br>Never exported | -                                    | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Entropy<br>material for<br>DRBG                                                                                                                       |
| DRBG seed<br>(CSP)                | -        | Counter DRBG<br>(Cert. <u>A3254</u> )                                                      | Generated<br>internally using<br>nonce along with<br>DRBG entropy<br>input                                            | -                                                                             | -                                    | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | Seeding<br>material for<br>DRBG                                                                                                                       |
| DRBG 'V' value<br>(CSP)           | -        | Counter DRBG<br>(Cert. <u>A3254</u> )                                                      | Generated<br>internally                                                                                               | -                                                                             | -                                    | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | State values<br>for DRBG                                                                                                                              |
| DRBG 'Key'<br>value<br>(CSP)      | -        | Counter DRBG<br>(Cert. <u>A3254</u> )                                                      | Generated<br>internally                                                                                               | -                                                                             | -                                    | Plaintext in<br>volatile<br>memory | Unload<br>module;<br>Remove power | State values<br>for DRBG                                                                                                                              |

### 9.2 DRBGs

The module implements the following Approved DRBG:

• Counter-based DRBG

This DRBG is used to generate random values at the request of the calling application. Outputs from this DRBG are also used as seeds in the generation of asymmetric key pairs.

The module implements the following Non-Approved DRBGs (which are only available in the Non-Approved mode of operation):

- Hash-based DRBG (non-compliant)
- HMAC-based DRBG (non-compliant)
- ANSI X9.31 RNG (Non-Approved)

<sup>&</sup>lt;sup>47</sup> The module obtains entropy input from the calling application (which is outside of the cryptographic boundary) but exercises no control over the amount or the quality of the obtained entropy. As such, there is no assurance of the minimum strength of generated SSPs (e.g., keys).

### 9.3 SSP Storage Techniques

There is no mechanism within the module's cryptographic boundary for the persistent storage of SSPs. The module stores DRBG state values for the lifetime of the DRBG instance. The module uses SSPs passed in on the stack by the calling application and does not store these SSPs beyond the lifetime of the API call.

### 9.4 SSP Zeroization Methods

Maintenance, including protection and zeroization, of any keys and CSPs that exist outside the module's cryptographic boundary are the responsibility of the end-user. For the zeroization of keys in volatile memory, module operators can unload the module from memory or reboot/power-cycle the host device.

### 9.5 **RBG Entropy Sources**

Table 11 below specifies the module's entropy sources.

| Entropy Sources     | Minimum Number<br>of Bits of Entropy | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calling application | 256                                  | 256 bits of seed material are provided to the module's DRBG by<br>the calling application. The calling application and its entropy<br>sources are outside the module's cryptographic boundary. The<br>calling application shall use entropy sources that meet the<br>security strength required for the CTR_DRBG as shown in <i>NIST SP</i><br><i>800-90Arev1</i> , Table 3. This entropy shall be supplied by means of<br>a callback function. The callback function must return an error if<br>the minimum entropy strength cannot be met. |

#### Table 11 – Non-Deterministic Random Number Generation Specification

## **10.** Self-Tests

Both pre-operational and conditional self-tests are performed by the module. Pre-operational tests are performed between the time the cryptographic module is instantiated and before the module transitions to the operational state. Conditional self-tests are performed by the module during module operation when certain conditions exist. The following sections list the self-tests performed by the module, their expected error status, and the error resolutions.

## **10.1** Pre-Operational Self-Tests

The module performs the following pre-operational self-test(s):

- Software integrity test for libcrypto (using an HMAC SHA2-256 digest)
- Software integrity test for libssl (using an HMAC SHA2-256 digest)

## **10.2 Conditional Self-Tests**

The module performs the following conditional self-tests:

- Conditional cryptographic algorithm self-tests (CASTs)
  - AES ECB encrypt KAT<sup>48</sup> (128-bit)
  - AES ECB decrypt KAT<sup>49</sup> (128-bit)
  - AES CCM encrypt KAT (192-bit)
  - AES CCM decrypt KAT (192-bit)
  - AES GCM encrypt KAT (128-bit)
  - AES GCM decrypt KAT (128-bit)
  - AES XTS encrypt KAT (128/256-bit)
  - AES XTS decrypt KAT (128/256-bit)
  - AES CMAC generate KAT (CBC mode; 128/192/256-bit)
  - AES CMAC verify KAT (CBC mode; 128/192/256-bit)
  - Triple-DES ECB decrypt KAT (3-Key)
  - Triple-DES CMAC verify KAT (CBC mode; 3-Key)
  - o CTR\_DRBG KAT (AES, 256-bit, with derivation function)
  - CTR\_DRBG generate/instantiate/reseed KAT (256-bit AES)
  - o DSA sign KAT (2048-bit; SHA2-256)
  - DSA verify KAT (2048-bit; SHA2-256)
  - ECDSA sign KAT (P-224 and K-233 curves; SHA2-256)
  - ECDSA verify KAT (P-224 and K-233 curves; SHA2-256)
  - RSA sign KAT (2048-bit; SHA2-256; PKCS#1.5 scheme)
  - RSA verify KAT (2048-bit; SHA2-256; PKCS#1.5 scheme)
  - HMAC KATs (SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512)
  - o SHA-1 KAT

 <sup>&</sup>lt;sup>48</sup> KAT – Known Answer Test
 <sup>49</sup> KAT – Known Answer Test

- SHA-2 KATs (SHA2-224, SHA2-256, SHA2-384, SHA2-512)
- SHA-3 KAT (SHA3-256)
- FFC DH Shared Secret "Z" Computation KAT (2048-bit)
- ECC CDH Shared Secret "Z" Computation KAT (P-224 curve)
- PBKDF2 KAT (SHA2-256)
- o TLS 1.2 KDF KAT
- o TLS 1.3 KDF KAT

To ensure all CASTs are performed prior to the first operational use of the associated algorithm, all CASTs are performed during the module's initial power-up sequence. The SHA and HMAC KATs are performed prior to the pre-operational software integrity test; all other CASTs are executed after the successful completion of the software integrity test.

- Conditional pair-wise consistency tests (PCTs)
  - DSA sign/verify PCT<sup>50</sup>
  - ECDSA sign/verify PCT
  - RSA sign/verify PCT
  - DH key generation PCT
  - ECDH key generation PCT
- Conditional critical functions tests
  - XTS AES duplicate key test

### **10.3 On-Demand Self-Testing**

The CO can initiate the pre-operational self-tests and conditional CASTs on demand for periodic testing of the module by re-instantiating the module, rebooting/power-cycling the host device, or issuing the FIPS selftest() API command.

## **10.4 Self-Test Failure Handling**

The module reaches the critical error state when any self-test fails. Upon test failure, the module immediately terminates the calling application's API call with a returned error code and sets an internal flag, signaling the error condition. For any subsequent request made by the calling application for cryptographic services, the module will return a failure indicator, thereby disabling all access to its cryptographic functions, sensitive security parameters (SSPs), and data output services while the error condition persists.

To recover, the module must be re-instantiated by the calling application. If the pre-operational self-tests complete successfully, then the module can resume normal operations. If the module continues to experience self-test failures after reinitializing, then the module will not be able to resume normal operations, and the CO should contact Corsec Security, Inc. for assistance.

<sup>&</sup>lt;sup>50</sup> PCT – Pairwise Consistency Test

# **11. Life-Cycle Assurance**

The sections below describe how to ensure the module is operating in its validated configuration, including the following:

- Procedures for secure installation, initialization, startup, and operation of the module
- Maintenance requirements
- Administrator and non-Administrator guidance

Operating the module without following the guidance herein (including the use of undocumented services) will result in non-compliant behavior and is outside the scope of this Security Policy.

### **11.1** Secure Installation

The module is distributed as a package containing the binaries and HMAC digest files that the Crypto Officer is to install onto a target platform specified in section 2.1 or one where portability is maintained.

### 11.2 Initialization

This module is designed to support third-party vendor applications, and these applications are the sole consumers of the cryptographic services provided by the module. No end-user action is required to initialize the module for operation; the calling application performs any actions required to initialization the module.

The pre-operational integrity test and conditional CASTs are performed automatically via a default entry point (DEP) when the module is loaded for execution, without any specific action from the calling application or the end-user. End-users have no means to short-circuit or bypass these actions. Failure of any of the initialization actions will result in a failure of the module to load for execution.

## 11.3 Startup

No startup steps are required to be performed by end-users.

## **11.4** Administrator Guidance

There are no specific management activities required of the CO role to ensure that the module runs securely. If any irregular activity is observed, or if the module is consistently reporting errors, then Corsec Customer Support should be contacted.

The following list provides additional guidance for the CO:

• The fips\_post\_status() API can be used to determine the module's operational status. A non-zero return value indicates that the module has passed all pre-operational self-tests and is currently in its Approved mode.

• The OpenSSL\_version() API can be used to obtain the module's versioning information. This information will include the module name and version, which can be correlated with the module's validation record.

### **11.5** Non-Administrator Guidance

The following list provides additional policies for the User role:

• The module uses PBKDF2 option 1a from section 5.4 of *NIST SP 800-132*. The iteration count shall be selected as large as possible, as long as the time required to generate the resultant key is acceptable for module operators. The minimum iteration count shall be 1000.

The length of the password/passphrase used in the PBKDF shall be of at least 20 characters, and shall consist of lower-case, upper-case, and numeric characters. The upper bound for the probability of guessing the value is estimated to be  $1/62^{20} = 10^{-36}$ , which is less than  $2^{-112}$ .

As specified in *NIST SP 800-132*, keys derived from passwords/passphrases may only be used in storage applications.

- The cryptographic module's services are designed to be provided to a calling application. Excluding the use of the NIST-defined elliptic curves as trusted third-party domain parameters, all other assurances from *FIPS PUB 186-4* (including those required of the intended signatory and the signature verifier) are outside the scope of the module and are the responsibility of the calling application.
- The module performs assurances for its key agreement schemes as specified in the following sections of *NIST SP 800-56Arev3:* 
  - Section 5.5.2 (for assurances of domain parameter validity)
  - Section 5.6.2.1 (for assurances required by the key pair owner)

The module includes the capability to provide the required recipient assurance of ephemeral public key validity specified in section 5.6.2.2.2 of *NIST SP 800-56Arev3*. However, since public keys from other modules are not received directly by this module (those keys are received by the calling application), the module has no knowledge of when a public key is received. Invocation of the proper module services to validate another module's public key is the responsibility of the calling application.

- AES GCM encryption is used in the context of the TLS protocol versions 1.2 and 1.3. To meet the AES GCM (key/IV) pair uniqueness requirements from *NIST SP 800-38D*, the module complies with *FIPS 140-3 IG* C.H as follows:
  - For TLS v1.2, the counter portion of the IV is strictly increasing. When the IV exhausts the maximum number of possible values for a given session key, a failure in encryption will occur and a handshake to establish a new encryption key will be required. It is the responsibility of the module operator (i.e., the first party, client, or server) to trigger this handshake in accordance with *RFC 5246* when this condition is encountered.

The module supports acceptable AES GCM cipher suites from section 3.3.1 of *NIST SP 800-52rev2*. The AES GCM IV generation is performed internally, is compliant with the *RFC 5288*, and shall only be used for the TLS 1.2 protocol to be compliant with scenario 1 in *FIPS 140-3 IG* C.H; thus, the module is compliant with *NIST SP 800-52rev2*.

 For TLS v1.3, a 64-bit sequence number is maintained separately for reading and writing records. Each sequence number is set to zero at the beginning of a connection and is incremented by one after reading or writing each record. Because the size of sequence numbers is 64-bit, they should not wrap. If a sequence number needs to wrap, the TLS implementation is responsible for either rekeying or terminating the connection.

The module supports the TLS 1.3 GCM cipher suite from section 3.3.1.2 of *NIST SP 800-52rev2*. The AES GCM IV generation is performed internally, is compliant with the *RFC 8446*, and shall only be used for the TLS 1.3 protocol to be compliant with scenario 5 in *FIPS 140-3 IG* C.H; thus, the module is compliant with *NIST SP 800-52rev2*.

The module also supports internal IV generation using the module's Approved DRBG. The IV is at least 96 bits in length per section 8.2.2 of *NIST SP 800-38D*. Per *NIST SP 800-38D* and scenario 2 of *FIPS 140-3 IG* C.H, the DRBG generates outputs such that the (key/IV) pair collision probability is less than 2<sup>-32</sup>.

In the event that power to the module is lost and subsequently restored, the calling application must ensure that any AES GCM keys used for encryption or decryption are re-distributed.

• The length of a single data unit encrypted or decrypted with the AES-XTS shall not exceed 2<sup>20</sup> AES blocks; that is, 16 MB of data per AES-XTS instance. An XTS instance is defined in section 4 of *NIST SP 800-38E*.

The AES-XTS mode shall only be used for the cryptographic protection of data on storage devices. The AES-XTS shall not be used for other purposes, such as the encryption of data in transit. The module implements the check to ensure that the two AES keys used in the XTS-AES algorithm are not identical.

- The calling application is responsible for ensuring that CSPs are not shared between Approved and Non-Approved services and modes of operation.
- The calling application is responsible for using entropy sources that meet the minimum security strength of 112 bits required for the CTR\_DRBG as shown in *NIST SP 800-90Arev1*, Table 3.

### **11.6** Common Vulnerabilities and Exposures

The Common Vulnerabilities and Exposures (CVE) program is a dictionary or glossary of vulnerabilities that have been identified for specific code bases, such as software applications or open libraries. This list allows interested parties to acquire the details of vulnerabilities by referring to a unique identifier known as the CVE ID.

## 11.6.1 Applicable CVEs

The following table lists the applicable CVEs impacting the module, as well as methods of mitigation.

| CVE Number    | Severity | Mitigation                                                                                                                                                        |
|---------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CVE-2023-3446 | Low      | Before calling DH_check(), DH_check_ex(), or EVP_PKEY_param_check(), operator should verify that the DH key or DH parameters were obtained from a trusted source. |
| CVE-2023-3817 | Low      | Before calling DH_check(), DH_check_ex(), or EVP_PKEY_param_check(), operator should verify that the DH key or DH parameters were obtained from a trusted source. |
| CVE-2024-4741 | Low      | Applications should not directly call the SSL_free_buffers function.                                                                                              |

Table 12 – CVEs

## 11.6.2 CVE Mitigation Plan

Post-submission, the module has been continually updated to provide mitigations for the CVEs listed above. These mitigations will be included in a future revalidation of the module.

# **12.** Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-3 Level 1 requirements for this validation.

# **Appendix A. Acronyms and Abbreviations**

Table 13 below provides definitions for the acronyms and abbreviations used in this document.

| Term    | Definition                                                       |  |  |
|---------|------------------------------------------------------------------|--|--|
| AES     | Advanced Encryption Standard                                     |  |  |
| ANSI    | American National Standards Institute                            |  |  |
| API     | Application Programming Interface                                |  |  |
| CAST    | Cryptographic Algorithm Self-Test                                |  |  |
| СВС     | Cipher Block Chaining                                            |  |  |
| cccs    | Canadian Centre for Cyber Security                               |  |  |
| ССМ     | Counter with Cipher Block Chaining - Message Authentication Code |  |  |
| CFB     | Cipher Feedback                                                  |  |  |
| СКБ     | Cryptographic Key Generation                                     |  |  |
| CMAC    | Cipher-Based Message Authentication Code                         |  |  |
| CMVP    | Cryptographic Module Validation Program                          |  |  |
| со      | Cryptographic Officer                                            |  |  |
| СРU     | Central Processing Unit                                          |  |  |
| CSP     | Critical Security Parameter                                      |  |  |
| CTR     | Counter                                                          |  |  |
| CVL     | Component Validation List                                        |  |  |
| DEP     | Default Entry Point                                              |  |  |
| DES     | Data Encryption Standard                                         |  |  |
| DH      | Diffie-Hellman                                                   |  |  |
| DRBG    | Deterministic Random Bit Generator                               |  |  |
| DSA     | Digital Signature Algorithm                                      |  |  |
| ECB     | Electronic Code Book                                             |  |  |
| ECC     | Elliptic Curve Cryptography                                      |  |  |
| ECC CDH | Elliptic Curve Cryptography Cofactor Diffie-Hellman              |  |  |
| ECDH    | Elliptic Curve Diffie-Hellman                                    |  |  |
| ECDSA   | Elliptic Curve Digital Signature Algorithm                       |  |  |
| EMI/EMC | Electromagnetic Interference /Electromagnetic Compatibility      |  |  |
| FFC     | Finite Field Cryptography                                        |  |  |
| FIPS    | Federal Information Processing Standard                          |  |  |
| GCM     | Galois/Counter Mode                                              |  |  |

#### Table 13 – Acronyms and Abbreviations

CorSSL™ 1.1.1s.005 ©2024 Corsec Security, Inc. This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 41 of 46

| Term  | Definition                                               |
|-------|----------------------------------------------------------|
| GMAC  | Galois Message Authentication Code                       |
| GPC   | General-Purpose Computer                                 |
| НМАС  | (keyed-) Hash Message Authentication Code                |
| KAS   | Key Agreement Scheme                                     |
| КАТ   | Known Answer Test                                        |
| ктѕ   | Key Transport Scheme                                     |
| кw    | Key Wrap                                                 |
| KWP   | Key Wrap with Padding                                    |
| MD    | Message Digest                                           |
| NIST  | National Institute of Standards and Technology           |
| ОСВ   | Offset Codebook                                          |
| OFB   | Output Feedback                                          |
| OS    | Operating System                                         |
| PBKDF | Password-Based Key Derivation Function                   |
| РСТ   | Pairwise Consistency Test                                |
| РКСЅ  | Public Key Cryptography Standard                         |
| PSS   | Probabilistic Signature Scheme                           |
| PUB   | Publication                                              |
| RC    | Rivest Cipher                                            |
| RNG   | Random Number Generator                                  |
| RSA   | Rivest Shamir Adleman                                    |
| SHA   | Secure Hash Algorithm                                    |
| SHAKE | Secure Hash Algorithm KECCAK                             |
| SHS   | Secure Hash Standard                                     |
| SP    | Special Publication                                      |
| TLS   | Transport Layer Security                                 |
| XEX   | XOR Encrypt XOR                                          |
| XTS   | XEX-Based Tweaked-Codebook Mode with Ciphertext Stealing |

## **Appendix B. Approved Service Indicators**

This appendix specifies the APIs that are externally accessible and return the Approved service indicators.

### **Synopsis**

#include <openssl/service\_indicator.h>
#include <openssl/ssl.h>

int EVP\_cipher\_get\_service\_indicator(EVP\_CIPHER\_CTX \*ctx); int DSA\_get\_service\_indicator(DSA \* ptr\_dsa, DSA\_MODES\_t mode); int RSA\_key\_get\_service\_indicator(RSA \* ptr\_rsa); int PBKDF\_get\_service\_indicator(); int EVP\_Digest\_get\_service\_indicator(EVP\_MD\_CTX \*ctx); int EC\_key\_get\_service\_indicator(EC\_KEY \*ec\_key); int CMAC\_get\_service\_indicator(CMAC\_CTX \*cmac\_ctx, CMAC\_MODE\_t mode); int HMAC\_get\_service\_indicator(HMAC\_CTX \*ctx); int TLSKDF\_get\_service\_indicator(EVP\_PKEY\_CTX \*tls\_ctx); int TLS1\_3\_kdf\_get\_service\_indicator(SSL \*s); int DRBG\_get\_service\_indicator(RAND\_DRBG \*drbg);

### Description

These APIs are high-level interfaces that return the Approved service indicator value based on the parameter(s) passed to them.

- **EVP\_cipher\_get\_service\_indicator()** is used to return the Approved service indicator status for block ciphers like AES and Triple-DES.
- **DSA\_get\_service\_indicator()** is used to return the Approved service indicator status for the DSA algorithm and its modes. You must include the mode you want the indicator for, which are specified in the DSA\_MODES\_t enum.
- **RSA\_key\_get\_service\_indicator()** is used to return the Approved service indicator status for RSA algorithm and its modes.
- **PBKDF\_get\_service\_indicator()** is used to return the Approved service indicator status for PBKDF usage.
- **EVP\_Digest\_get\_service\_indicator()** is used to return the Approved service indicator status for SHS algorithms like SHA-1 and SHAKE.
- **EC\_key\_get\_service\_indicator()** is used to return the Approved service indicator status for elliptic curve algorithms like ECDSA and its modes.

- CMAC\_get\_service\_indicator() is used to return the Approved service indicator status for CMAC requests that use AES or Triple-DES. You must include the mode you want the indicator for, which are specified in the CMAC\_MODE\_t enum.
- **HMAC\_get\_service\_indicator()** is used to return the Approved service indicator status for HMAC requests and the associated SHS algorithm.
- **TLSKDF\_get\_service\_indicator()** is used to return the Approved service indicator status for TLS KDF usage excluding TLS 1.3.
- TLS1\_3\_kdf\_get\_service\_indicator() is used to return the Approved service indicator status for TLS 1.3 KDF usage. This function requires the ssl.h file and is used to call the TLS1\_3\_get\_service\_indicator() function because of the SSL struct requirement. You cannot call TLS1\_3\_get\_service\_indicator() directly unless you have the SSL struct that was used.
- DRBG\_get\_service\_indicator() is used to return the Approved service indicator status for DRBG usage.

### **Return Values**

Each function returns "1" when indicating the usage of approved services and "0" for Non-Approved services.

### **Notes**

When calling a I<get> function, always call it after the variables have been finalized but before they are freed or destroyed.

### **Examples**

The code sample below provides examples of how to check the Approved service indicators for Triple-DES (3-key, in ECB mode) encryption and decryption:

```
int 3des_indicator_test()
 ş
   static EVP_CIPHER *cipher = NULL;
   static EVP_CIPHER_CTX *ctx;
   int outLen;
   unsigned char pltmp[8];
   unsigned char citmp[8];
        unsigned char key[] = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
                         19,20,21,22,23,24};
         unsigned char plaintext[] = { 'e', 't', 'a', 'o', 'n', 'r', 'i', 's' };
   cipher = EVP_des_ede3_ecb();
   //Encrypt
   ctx = EVP_CIPHER_CTX_new();
   EVP_EncryptInit_ex(ctx, cipher, NULL, key, NULL);
   EVP_CIPHER_CTX_set_key_length(ctx, 24);
   EVP_EncryptUpdate(ctx, citmp, &outLen, plaintext, 8);
   // Check the indicator
   int NID = EVP_CIPHER_CTX_nid(ctx);
   fprintf(stdout, "EVP_des_ede3_ecb (NID %i) encrypt indicator = %i\n", NID, EVP_cipher_get_service_indicator(ctx));
   EVP_CIPHER_CTX_cleanup(ctx);
```

//Decrypt
ctx = EVP\_CIPHER\_CTX\_new();
EVP\_DecryptInit\_ex(ctx, cipher, NULL, key, NULL);
EVP\_CIPHER\_CTX\_set\_key\_length(ctx, 24);
EVP\_DecryptUpdate(ctx, pltmp, &outLen, citmp, 8);

// Check the indicator
fprintf(stdout,"EVP\_des\_ede3\_ecb (NID %i) decrypt indicator = %i\n", NID, EVP\_cipher\_get\_service\_indicator(ctx));
EVP\_CIPHER\_CTX\_cleanup(ctx);
EVP\_CIPHER\_CTX\_free(ctx);

}

Prepared by: Corsec Security, Inc.



12600 Fair Lakes Circle, Suite 210 Fairfax, VA 22033 United States of America

> Phone: +1 703 267 6050 Email: <u>info@corsec.com</u> <u>http://www.corsec.com</u>