

FIPS 140-3 Non-Proprietary Security Policy

Motorola Solutions Cryptographic Firmware Module

Firmware Version: R01.13.00

Document Version: 1.0

Date: July 16, 2024

Prepared by:

Introduction

Federal Information Processing Standards Publication 140-3 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Canadian Centre for Cyber Security (CCCS) Cryptographic Module Validation Program (CMVP) run the FIPS 140 program. The NVLAP accredits independent testing labs to perform FIPS 140 testing; the CMVP validates modules meeting FIPS 140 validation. Validated is the term given to a module that is documented and tested against the FIPS 140 criteria.

More information is available on the CMVP website at: https://csrc.nist.gov/projects/cryptographic-module-validation-program

About this Document

This non-proprietary Cryptographic Module Security Policy for the Motorola Solutions Cryptographic Firmware Module provides an overview of the product and a high-level description of how it meets the overall Level 1 security requirements of FIPS 140-3.

The Motorola Solutions Cryptographic Firmware Module may also be referred to as the "module" in this document.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in methodology, design, and manufacturing. Motorola Solutions, Inc. shall have no liability for any error or damages of any kind resulting from the use of this document.

Notices

This document may be freely reproduced and distributed in its entirety without modification.

Table of Contents

Introduction					
Disclaimer	. 2				
Notices	. 2				
1. General	. 4				
2. Cryptographic Module Specification	. 5				
2.1 Modes of Operation	. 5				
2.2 Cryptographic Functionality	. 6				
2.3 Module Description and Cryptographic Boundary	. 7				
2.4 Security Rules and Guidance	. 8				
3. Cryptographic Module Interfaces	. 8				
4. Roles, Services, and Authentication	. 9				
5. Software/Firmware Security 1	12				
6. Operational Environment1	12				
7. Physical Security 1	12				
8. Non-invasive Security1	13				
9. Sensitive Security Parameters Management1	13				
10. Self-Tests					
10.1 Automatic Self-Test					
10.2 Operator Initiated Self-Test16					
11. Life-Cycle Assurance					
12. Mitigation of Other Attacks					
References and Definitions1	References and Definitions				
List of Tobles					

List of Tables

Table 1 – Security Levels	4
Table 2 – Tested Operational Environments	5
Table 3 – Vendor Affirmed Operational Environments	5
Table 4 – Approved Algorithms	7
Table 5 – Non-Approved Algorithms Allowed in the Approved Mode of Operation	7
Table 6 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation	7
Table 7 – Ports and Interfaces	9
Table 8 – Roles, Service Commands, Input and Output	10
Table 9 – Approved Services	12
Table 10 – Non-Approved Services	12
Table 11 – SSP's	15
Table 12 – Non-Deterministic Random Number Generator Specification	15
List of Figures	

Figure 1 – Logical cryptographic boundary and physical boundar	ry8
--	-----

1. General

This document defines the cryptographic module security policy for the Motorola Solutions Cryptographic Firmware Module (Firmware version: R01.13.00), also referred to as the "module" hereafter. The module is a multichip standalone embodiment. It contains specification of the security rules, under which the cryptographic module operates, including the security rules derived from the requirements of the FIPS 140-3 standard.

ISO/IEC 24759 Section 6.	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic Module Specification	1
3	Cryptographic Module Interfaces	1
4	Roles, Services, and Authentication	1
5	Software/Firmware Security	1
6	Operational Environment	1
7	Physical Security	1
8	Non-invasive Security	N/A
9	Sensitive Security Parameter Management	1
10	Self-Tests	1
11	Life-Cycle Assurance	1
12	Mitigation of Other Attacks	N/A

The following table lists the level of validation for each area in FIPS 140-3:

Table 1 – Security Levels

2. Cryptographic Module Specification

The module is a firmware-based cryptographic module that runs on a Motorola Solutions, Inc. radio hardware platform. The module provides FIPS 140-3 approved cryptographic functionalities via an Application Programming Interface (API) to the application layer running in Motorola Solutions, Inc. radio products supporting the APCO Project 25 standard.

The module is intended for use by the markets that require FIPS 140-3 validated overall Security Level 1.

A unique binary is generated for each operating system. The following operating environments have been tested for this validation:

#	Operating System	Hardware Platform	Processor	PAA/Acceleration
1	Mentor Graphics	Texas Instrument	ARM926EJ-S	N/A
	Nucleus 3.0	(TI) OMAP-L138		
	(version 2013.08.1)	C6000 DSP+ARM		
2	Texas Instrument	Texas Instrument	TMS320C674x	N/A
	(TI) DSP/BIOS	(TI) OMAP-L138		
	(version 5.41.04.18)	C6000 DSP+ARM		

Table 2 – Tested Operational Environments

The module has also been confirmed by Motorola Solutions, Inc. to be operational on the following OE shown in Table 3. However, no target testing was performed on this platform for the FIPS 140-3 validation with the specific firmware version listed in this document. Note: The CMVP makes no statement as to the correct operation of the module on the operational environments for which operational testing was not performed.

#	Operating System	Hardware Platform	
1 Enea OSE, Version 5.8		Motorola Solutions GRV 8000	
		Comparator, NXP QorIQ P1021	

Table 3 – Vendor Affirmed Operational Environments

2.1 Modes of Operation

The module operates in two different modes of operation.

- **Approved mode**: DES Encrypt/Decrypt are blocked. All services listed in *Table 9* are available when the module is operating in Approved mode.
- **non-Approved mode**: All services listed in *Table 9* and *Table 10* are available when the module is operating in non-Approved mode.

The module defaults to the Approved mode at the initial power-up and will transition between Approved Mode and non-Approved mode by using the "Configure Approved Mode" service. The operator can configure the mode of the module by using the "Configure Approved Mode" Service listed in *Table 9*. The "Configure Approved Mode" services sets an Approved mode flag via the API. The Approved mode flag is "fips_mode = 1" in the Approved mode and the non-Approved mode flag is "fips_mode = 0". The operator shall zeroize all CSPs by power cycling the module when transitioning between Approved and non-Approved modes. The operator must retain control of the module while zeroization is in process.

2.2 Cryptographic Functionality

The module's supported cryptographic functions are listed in the following tables:

CAVP	Algorithm and	Mode/Method	Description /	Use / Function
Cert #	Standard		Key Size(s) /	
			Key Strength(s)	
		CBC [SP 800-38A]	Key Size: 256	Encrypt, Decrypt
		ECB [SP 800-38A]	Key Size: 256	Encrypt, Decrypt
	AES [FIPS 197]	GCM [SP 800-38D] ¹	Key Size: 256	Encrypt, Decrypt
		KW [SP 800-38F]	Key Size: 256	Encrypt, Decrypt
		OFB [SP 800-38A]	Key Size: 256	Encrypt, Decrypt
		СТР		Deterministic Random
	DRBG [SP800-90ALT]	CIR	AE3-230	Bit Generation
				Key Generation,
	ECDSA [FIPS 186-4]		P-384	Supported only on OE
				#1.
			(1024 bit)	Message
	HMAC [FIPS 198-1]	HMAC-SHA2-384	(1024 bit)	authentication, Code
				Integrity tests
		ECC (Initiator, Responder), Key pair generation,	P-384 with SHA2-	Key Establishment
	KAS-ECC [SP 800- 56Ar3]		256	nrovides 192 hits of
			P-384 with SHA2-	encryption strength
<u>A2228</u>		Partial public key	384	Supported only on
		validation, One- P-384 with SHA2-	OF#1	
		step key derivation	512	02/11
	KTS [IG D.G]		Key Size: 256	Key Wrap provides 256
		AES-KW		bits of encryption
				strength
	KTS [IG D.G]	GCM	Key Size: 256	Key Wrap provides 256
				bits of encryption
				strength
			sLen = 16 – 512	
		Option 1a	bytes	Password-Based Key
	PBKDF [SP 800-132]	Option 2a (using	C = 1 - 5000	Derivation. Supported
		HMAC)	SHA2-256, SHA2-	only on OE #1.
			384, SHA2-512	
	SHS [FIPS 180-4]	SHA2-256	N/A	Message Digest
		SHA2-384		Generation, Password
Manulari		SHA2-512		
Vendor	CKG	CTR_DRBG	N/A	Symmetric key and
Attirmed				asymmetric key seed

¹ Per IG C.H option 2, the module generates 96-bit GCM IVs randomly as specified in SP800-38D section 8.2.2 using an approved DRBG (Cert. #A2228), that is internal to the module's boundary.

CAVP Cert #	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
				generation in accordance with SP 800-133rev2 sections 5.2, 6.1 and 6.2 and IG D.H with B=U. ²

Table 4 – Approved Algorithms

Algorithm	Caveat	Use / Function
AES MAC ³		[IG D.C] AES MAC for Project 25
		APCO OTAR (Cert. #A2228)

Table 5 – Non-Approved Algorithms Allowed in the Approved Mode of Operation

Algorithm/Function	Use/Function
DES	DES Encryption/Decryption – ECB, OFB and CBC
	Mode.

Table 6 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

The module does not support Non-Approved Allowed Algorithms with No Security Claimed.

2.3 Module Description and Cryptographic Boundary

The module is classified by FIPS 140-3 as a firmware module, with a multi-chip standalone module embodiment. The physical perimeter is the Motorola Solutions, Inc. Radio Platform on which the module is installed. The logical perimeter and cryptographic boundary of the module is the static linked library that is linked into the application running on Motorola Solutions, Inc. radio products.

² PBKDF salt, GCM IV, and ECDH private key

³ AES-CBC-MAC is allowed for use within OTAR until November 1, 2023.

Figure 1 – Logical cryptographic boundary and physical boundary

2.4 Security Rules and Guidance

The module enforces the following security rules:

- 1. The module does not support any operator authentication.
- 2. The module is available to perform services only after successfully completing the pre-operational self-tests.
- 3. Data output is inhibited during pre-operational self-tests, zeroization, and while in an error state.
- 4. The module shall not support concurrent operators.
- 5. The module enters the uninitialized state if any pre-operational self-test fail. The uninitialized state can be exited by restarting the module allowing the module to attempt to re-initialize itself.
- 6. If the module enters a soft error state, the error condition may be cleared by executing the Operator Initiated Self-Test service documented in Section 11.2 or power cycling the module.
- 7. The module can perform periodic self-tests. An operator can perform periodic self-tests on demand by using the Operator Initiated Self-Test API or power cycle.
- 8. The module does not perform any cryptographic functions while in the uninitialized state.
- 9. The module returns the results of the pre-operational self-tests to the operator.
- 10. The module may be power cycled to zeroize all CSPs.
- 11. The module is to be installed on Motorola Solutions radio products.
- 12. The operator may choose whether the module will run in the Approved mode or non-Approved mode using the "Configure Approved Mode" Service.

3. Cryptographic Module Interfaces

The Module's logical interfaces are described in Table 7:

Physical Port	Logical interface	Data that passes over port/interface	
1	Data input	API entry point data input stack parameters	
2	Data output	API entry point data output stack parameters	
3	Control input	API entry point and corresponding stack parameters	
4	Status output	API entry point return values and status stack	
		parameters	

Table 7 – Ports and Interfaces

The module does not support a control output interface.

4. Roles, Services, and Authentication

The module supports the Cryptographic Officer (CO) role and does not support authentication. An operator is considered the owner of the thread that instantiates the module and, therefore, only one concurrent operator is allowed.

Role	Service	Input	Output
СО	Self-Test	Power-up/Run Self-Test	Status: Success/Error
		command	
CO	Load Entropy	Entropy Input String	N/A
СО		Get module status	Module initialization
	Get Module Status	command	status, Approved mode
			status
СО		Get module version	"libALG Library R01.13.00 –
	Get Module Version	command	Copyright 2021 Motorola
			Solutions, Inc."
СО	Configure Approved	Approved mode	Enable/Disable
	Mode	enabled/Approved mode	
		disabled	
0	Utility	Module query for	Algorithm/key status
		algorithm/key status	information
0	Encrypt	Encryption key, plaintext	Ciphertext or error status
СО	Decrypt	Decryption key, ciphertext	Plaintext or error status
CO	AES Key Wrapping	Encryption key, input data	Wrapped key
CO	AES Key Unwrapping	Decryption key, input data	Unwrapped data
CO	Generate OTAR MAC	Input data	МАС Кеу
СО	DRBG	Entropy input data	Pseudo-random number
СО	Hashing	Hash algorithm, input data	Hashed output
CO	HMAC-SHA	Hash Key, input data	digest
СО	Zeroize	N/A	N/A
СО	PBKDE	Password, iteration count,	Derived key
		salt, hash algorithm	

Role	Service	Input	Output
СО	ECDSA Key Gen	Private key	Private key/Public key
СО	KAS-ECC	Private key, Public Key of Remote Party (Host B)	ECDH Shared Secret/KDF Derived Key

Table 8 – Roles, Service Commands, Input and Output

The SSPs modes of access shown in Table 9, are defined as:

- **G** = Generate: The Module generates or derives the SSP.
- **R** = Read: The SSP is read from the Module (e.g. the SSP is output).
- **W** = Write: The SSP is updated, imported, or written to the Module.
- **E** = Execute: The Module uses the SSP in performing a cryptographic operation.
- **Z** = Zeroize: The Module zeroizes the SSP

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
	Automatic: See section 10.1	N/A	N/A	СО	N/A	"fips_mode = 1"
Self-Test	Operator Initiated: See section 10.2					
Load Entropy	Load external entropy to seed the DRBG	N/A	Entropy Input string	СО	W,E,Z	"fips_mode = 1"
Get Module Status	Show the module status	N/A	N/A	CO	N/A	"fips_mode = 1"
Get Module Version	Get module version number	N/A	N/A	CO	N/A	"fips_mode = 1"
Configure Approved Mode	Set/Unset module to Approved mode	N/A	N/A	СО	N/A	"fips_mode = 1"
Utility	Key check and other services	N/A	N/A	CO	N/A	"fips_mode = 1"
Encrypt	Encryption of voice and data	AES	AES-256 Key	CO	W,E,Z	"fips_mode = 1"
Decrypt	Decryption of voice and data	AES	AES-256 Key	CO	W,E,Z	"fips_mode = 1"
AES Key Wrapping	Used for the encryption of keys.	KTS (AES- KW or AES- GCM)	AES-256 Key Wrap Key	СО	W,E,Z	"fips_mode = 1"
AES Key Unwrapping	Used for the decryption of keys.	KTS (AES- KW or AES- GCM)	AES-256 Key Wrap Key	CO	W,E,Z	"fips_mode = 1"

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Generate OTAR MAC	Used to generate MAC (Message Authentication Code) as defined in [OTAR].	AES MAC	OTAR MAC Key	СО	W,E,Z	"fips_mode = 1"
DRBG	Used for random number, IV and key generation using DRBG [SP 800-90Ar1].	DRBG (output directly used for CKG) CKG	Entropy Input string/ SP 800- 90Ar1 Seed/ SP 800- 90Ar1 Internal State ("V" and "Key")	СО	G,R,W	"fips_mode = 1"
Hashing	Used to generate SHA2- 256/384/512 message digest.	SHS	N/A	со	N/A	"fips_mode = 1"
HMAC-SHA	Used to calculate data integrity codes with HMAC.	НМАС	Keyed Hash Key	СО	W,E	"fips_mode = 1"
Zeroize ⁴	Zeroize all SSPs	N/A	All	CO	Z	"fips_mode = 1"
PBKDF⁵	Used to generate keys using PBKDF [SP 800-132]	PBKDF	PBKDF Secret Value DPK	СО	W,E G,R	"fips_mode = 1"
ECDSA Key Gen	Used for generating asymmetric key pair	ECDSA	ECDSA Private Key, ECDSA Public Key	CO	G,R	"fips_mode = 1"
KAS-ECC	Used for key agreement process using ECDH	KAS-ECC	ECDH Shared Secret, KDF Derived Key, ECDH Private Key, ECDH Public	СО	G,R,W,E	"fips_mode = 1"

⁴ The Zeroize service zeroizes the key in the volatile memory by power cycling the module.

⁵ As per NIST SP 800-132, keys generated by the module shall be used as recommend in Section 5.4 of [132]. Any other use of the approved PBKDF is non-conformant. In approved mode the operator shall enter a password no less than 8 hexadecimal digits in length. The probability of guessing the password will be equal to 1:16⁸. Due to the computational limitations of this embedded operational environment, the iteration count associated with the PBKDF should not exceed 5000. The minimum iteration count is 1, however it shall be selected as large as possible. Keys derived from passwords may only be used in storage applications.

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
			Key, ECDH Remote			
			Party Public			

Table 9 – Approved Services	
-----------------------------	--

Service	Description	Algorithms Accessed	Role	Indicator
Encrypt	Encryption of voice and data	DES	СО	"fips_mode = 0"
Decrypt	Decryption of voice and data	DES	СО	"fips_mode = 0"

Table 10 – Non-Approved Services

5. Software/Firmware Security

The module consists of firmware in the form of a statically linked library. The firmware components are protected and authenticated using an HMAC hash function using the keyed hash key referenced in *Table 11*. The operator can initiate the firmware integrity test (HMAC-SHA2-384) on demand by power cycling the radio. If the integrity test fails, the module will not initialize and no security functions will be provided by the module.

6. Operational Environment

The module operates and was tested on the following non-modifiable operational environment:

Motorola Solutions, Inc. Radio using hardware platform as specified in Table 2.

As per ISO/IEC 19790:2012 7.6.3:

- The cryptographic module has control over its own SSPs.
- The operational environment provides the capability to separate individual application processes from each other to prevent uncontrolled access to CSPs and uncontrolled modifications of SSPs, regardless if this data is in the process memory or stored on persistent storage within the operational environment. This ensures that direct access to CSPs and SSPs is restricted to the cryptographic module and the trusted parts of the operational environment.
- The module operates in a non-modifiable operational environment, therefore no restrictions or modifications to the configuration of the operational environment are possible.
- Processes that are spawned by the cryptographic module are owned by the module and are not owned by external processes/operators.

7. Physical Security

The module is a firmware module and operates in a Motorola Solutions, In. radio that is built with production grade materials that include standard passivation techniques. For the purposes of FIPS 140-

3, the embodiment is defined as multiple-chip standalone and is designed to meet Level 1 security requirements.

8. Non-invasive Security

Not Applicable. The module does not implement non-invasive security measures.

9. Sensitive Security Parameters Management

Key/SSP Name/Type	Strength	Security Function and Cert. Number	Generation	Import/Export	Establishment	Storage	Zeroisation	Use & related keys
Entropy Input string	Variable (384-bit minimum)	N/A	External	Import (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset	Used to derived SP 800-90Ar1 seed
SP 800- 90Ar1 Seed	384-bit	DRBG (A2228)	Internal	N/A	N/A	Volatile memory (plaintext)	Power Cycle/Reset	Derived from the Entropy Input string. Used in AES IV, ECDSA Private Key, and ECDH Private Key generation
SP 800- 90Ar1 Internal State ("V" and "Key")	N/A	DRBG (A2228) CKG	Internal	N/A	N/A	Volatile memory (plaintext)	Power Cycle/Reset	CTR_DRBG state
Keyed Hash Key	Variable (192-bit minimum)	HMAC (A2228)	External	lmport (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset	Used in HMAC function
AES-256 Key	256-bit	AES (A2228)	External	Import (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset /End of data processing	Used in data encryption / decryption

Key/SSP Name/Type	Strength	Security Function and Cert. Number	Generation	Import/Export	Establishment	Storage	Zeroisation	Use & related keys
AES-256 Key Wrap Key	256-bit	KTS (A2228)	External	Import (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset /End of data processing	Used in key encryption / decryption
PBKDF Secret Value	Variable (64-bit minimum)	PBKDF (A2228)	External 6	Import (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset	Used in Key Derivation
DPK	128-bit minimum	PBKDF (A2228)	Internal	Export (electr onic)	Internally computed	Volatile memory (plaintext)	Power Cycle/Reset	Derived by the PBKDF using the PBKDF Secret Value
OTAR MAC Key	256-bit	AES MAC	External	Import (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset	Used for AES MAC
ECDH Private Key	192-bit	KAS- ECC (A2228)	External or Internal	Import (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset	Used to generate ECDH Public Key
ECDH Shared Secret	192-bit	KAS- ECC (A2228)	Internal	Export (electr onic)	Internally computed	Volatile memory (plaintext)	Power Cycle/Reset	Used to generate KDF derived key
ECDSA Private Key	192-bit	ECDSA (A2228)	External or Internal	Import or Export (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset	Used for ECDSA
KDF Derived Key	Variable (128-bit minimum)	KAS- ECC (A2228)	Internal	Export (electr onic)	Internally computed	Volatile memory (plaintext)	Power Cycle/Reset	Used in KAS-ECC
ECDH Public Key	192-bit	KAS- ECC (A2228)	Internal	Export (electr onic)	Internally computed	Volatile memory (plaintext)	Power Cycle/Reset	Used in key exchange

⁶ Password generated externally. Salt may be generated externally or internally according to SP 800-133.

Key/SSP Name/Type	Strength	Security Function and Cert. Number	Generation	Import/Export	Establishment	Storage	Zeroisation	Use & related keys
ECDH Remote Party Public Key	192-bit	KAS- ECC (A2228)	External	Import (electr onic)	Input via API in plaintext	Volatile memory (plaintext)	Power Cycle/Reset	Used in key exchange
ECDSA Public Key	192-bit	ECDSA (A2228)	Internal	Export (electr onic)	Internally computed	Volatile memory (plaintext)	Power Cycle/Reset	Used for ECDSA

Table 11 – SSPs

Entropy sources	Minimum number of bits of entropy	Details
Entropy Input String	384 (minimum seed length for AES-256 CTR_DRBG)	The entropy for seeding the SP 800-90Ar1 DRBG is determined by the user operator of the module which is outside of the module's cryptographic boundary. To be compliant, the target application shall supply at least 384 bits of entropy in order to meet the security strength required for the random number generation mechanism as shown in [SP 800- 90Ar1] Table 3 (CTR_DRBG) and set required bits into the module by calling module defined API function. Since entropy is loaded passively into the module, there is no assurance of the minimum strength of generated keys.

Table 12 – Non-Deterministic Random Number Generator Specification

10. Self-Tests

10.1 Automatic Self-Test

The module automatically performs pre-operational self-tests and conditional cryptographic algorithm self-tests. Automatic pre-operational self-tests are initiated upon module power-up and must pass in order for the module to initialize and render any security services. A failure of any pre-operational self-tests will prevent the module from initializing. Automatic conditional cryptographic algorithm self-tests (CAST) will run prior to the first use of a security service using an approved cryptographic algorithm after module initialization. Failure of a conditional CAST will cause the module to enter the soft error state and return an error to the operator of the module.

- a) Pre-Operational Self-Tests
- Firmware integrity test: HMAC-SHA2-384 (HMAC-SHA2-384 CAST done prior to integrity test)

- b) Conditional Self-Tests
- 1) Conditional cryptographic algorithm test
 - SHA2-256 CAST
 - SHA2-512 CAST
 - HMAC-SHA2-384 CAST
 - AES ECB Encrypt CASTs (256-bit key)
 - AES ECB Decrypt CASTs (256-bit key)
 - AES GCM Encrypt CASTs (256-bit key)
 - AES GCM Decrypt CASTs (256-bit key)
 - CTR_DRBG [SP 800-90Ar1] CAST (Instantiate, Generate, and Reseed)
 - AES-KW [SP 800-38F] Wrap/Unwrap CASTs
 - o KAS ECC [SP 800-56ar3] CAST
 - o KDF [SP 800-56Arev3] CAST (SHA2-256, SHA2-384, SHA2-512)
 - PBKDF [SP 800-132] CAST (128-bit key, 128-bit salt, 2 iterations)
 - 2) Conditional pair-wise consistency test
 - ECDSA Key Gen PCT (384-bit private key, 384-bit public key)

10.2 Operator Initiated Self-Test

Self-tests can also be initiated by calling the "Self-Test" service via the API. Operator initiated self-tests via the API can only be invoked after the module has initialized. When initiating self-test via API call, the following tests are performed:

- SHA2-256 CAST
- SHA2-512 CAST
- HMAC-SHA2-384 CAST
- AES ECB Encrypt CASTs (256-bit key)
- AES ECB Decrypt CASTs (256-bit key)
- AES GCM Encrypt CASTs (256-bit key)
- AES GCM Decrypt CASTs (256-bit key)
- CTR_DRBG [SP 800-90Ar1] CAST (Instantiate, Generate, and Reseed)
- AES-KW [SP 800-38F] Wrap CAST
- AES-KW [SP 800-38F] Unwrap CAST
- KAS ECC [SP 800-56ar3] CAST
- KDF [SP 800-56Arev3] CAST (SHA2-256, SHA2-384, SHA2-512)
- PBKDF [SP 800-132] CAST (128-bit key, 128-bit salt, 2 iterations)
- ECDSA Key Gen PCT (384-bit private key, 384-bit public key)

Failure of any of the self-test initiated by calling the "Self-Test" service via the API will render the module inoperable.

11. Life-Cycle Assurance

The cryptographic module is not installed, but it is a static library linked to the application at compile time. The operator shall configure the module to operate in approved mode as specified in Section 2.1. After end-of-life for the module, the operator shall zeroize all SSPs used by the module by removing power to the radio using the module.

12. Mitigation of Other Attacks

Not Applicable. The Module does not implement mitigations of other attacks outside the scope of FIPS 140-3.

References and Definitions

Abbreviation	Full Specification Name				
[FIPS 140-3]	Security Requirements for Cryptographic Modules, March 2019				
[IG]	Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation				
	Program, November 2021.				
[SP 800-132]	NIST Special Publication 800-132, Recommendation for Password-Based Key Derivation,				
	Part 1: Storage Applications, December 2010				
[FIPS 186-4]	National Institute of Standards and Technology, Digital Signature Standard (DSS),				
	Federal Information Processing Standards Publication 186-4, July 2013.				
[FIPS 197]	National Institute of Standards and Technology, Advanced Encryption Standard (AES),				
	Federal Information Processing Standards Publication 197, November 2001				
[FIPS 198-1]	National Institute of Standards and Technology, The Keyed-Hash Message				
	Authentication Code (HMAC), Federal Information Processing Standards Publication 198-				
	<u>1</u> , July 2008				
[FIPS 180-4]	National Institute of Standards and Technology, Secure Hash Standard, Federal				
	Information Processing Standards Publication 180-4, August 2015				
[SP 800-38A]	National Institute of Standards and Technology, Recommendation for Block Cipher				
	Modes of Operation, Methods and Techniques, Special Publication 800-38A, December				
	2001				
[SP 800-38D]	National Institute of Standards and Technology, Recommendation for Block Cipher				
	Modes of Operation: Galois/Counter Mode (GCM) and GMAC, Special Publication 800-				
	<u>38D</u> , November 2007				
[SP 800-38F]	National Institute of Standards and Technology, Recommendation for Block Cipher				
	Modes of Operation: Methods for Key Wrapping, Special Publication 800-38F, December				
	2012				
[SP 800-56Ar3]	NIST Special Publication 800-56A Revision 3, Recommendation for Pair-Wise Key				
	Establishment Schemes Using Discrete Logarithm Cryptography, April 2018				
[SP 800-56Cr2]	NIST Special Publication 800-56C Revision 2, Recommendation for Pair-Wise Key				
	Establishment Schemes Using Discrete Logarithm Cryptography, August 2020				
[SP 800-90Ar1]	National Institute of Standards and Technology, Recommendation for Random Number				
	Generation Using Deterministic Random Bit Generators, Special Publication 800-90A,				
	<u>Revision 1</u> , June 2015.				
[OTAR]	Project 25 – Digital Radio Over-The-Air-Rekeying (OTAR) Messages and Procedures [TIA-				
	102.AACA-A], September 2014				

Acronym	Definition				
AES	Advanced Encryption Standard				
APCO	Association of Public-Safety Communications Officials				
CBC	Cipher Block Chaining				
CKG	Cryptographic Key Generation				
CSP	Critical Security Parameter				
DRBG	Deterministic Random Bit Generator				
ECB	Electronic Code Book				
ECDH	Elliptic Curve Diffie-Hellman				
ECDSA	Elliptic Curve Diffie-Hellman				

FIPS	Federal Information Processing Standards
GCM	Galois/Counter Mode
HMAC	Hash-based Message Authentication Code
IV	Initialization Vector
КАТ	Known Answer Test
KDA	Key Derivation Algorithm
MAC	Message Authentication Code
OFB	Output Feedback
OTAR	Over The Air Rekeying
PBKDF	Password-Based Key Derivation Function
PCT	Pairwise Consistency Test
SSP	Sensitive Security Parameter