© 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. Dell Crypto Library for Dell iDRAC, Dell CMC and Dell OME-M v2.4 FIPS 140-2 Non-Proprietary Security Policy Document Revision 2.3 12/19/2018 © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. © 2018 Dell Inc. All Rights Reserved. Dell, the Dell logo, and other Dell names and marks are trademarks of Dell Inc. in the US and worldwide. Dell disclaims proprietary interest in the marks and names of others. Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 3 of 17 Revision History Revision Date Authors Summary 1.0 01/18/2017 Kwok Wong Modified from the OEM SP from 140-2 Cert. #2496 2.0 12/15/2017 Jason Dale Updated to include new algorithm certificates. 2.1 01/25/2018 Alaric Silveira Updated based on CMVP review feedback. 2.2 05/10/2018 Alaric Silveira Updated for 140-2 Cert. #2861 2.2 06/14/2018 Zack Baron Updated to include new algorithm certificates 2.2 08/01/2018 Zack Baron Updated footnote for linux operating systems 2.2 09/04/2018 Zack Baron Updated Linux to Custom Linux 2.3 12/19/2018 Zack Baron Updated to include OME-M © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. Table of Contents Revision History ...........................................................................................................................................3 Introduction...................................................................................................................................................5 Dell Cryptographic Library...........................................................................................................................5 Module Specification ................................................................................................................................5 Security Level........................................................................................................................................6 FIPS Approved Mode of Operation.......................................................................................................7 Approved Cryptographic Algorithms ....................................................................................................8 Non-Approved Cryptographic Algorithms............................................................................................9 Module Interfaces......................................................................................................................................9 Roles, Services and Authentication.........................................................................................................10 Finite State Model ...................................................................................................................................11 Physical Security.....................................................................................................................................11 Operational Environment ........................................................................................................................12 Key Management ....................................................................................................................................12 Minimum Entropy Provided by Random Number Generation....................................................13 Electromagnetic Interference and Compatibility.....................................................................................15 Self-Tests.................................................................................................................................................15 Guidance and Secure Operation..............................................................................................................16 Crypto-officer Guidance......................................................................................................................16 User Guidance .....................................................................................................................................16 Mitigation of Other Attacks ....................................................................................................................17 Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 5 of 17 Introduction This non-proprietary FIPS 140-2 security policy for the Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M details the secure operation of the Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M as required in the Federal Information Processing Standards Publication 140-2 (FIPS 140-2) as published by the National Institute of Standards and Technology (NIST) of the United State Department of Commerce. This document, the Cryptographic Module Security Policy, also referred to as the Security Policy, specifies the security rules under which the Dell OpenSSL Cryptographic Library must operate. The Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M provides cryptography to Dell iDRAC, Dell CMC, and Dell OME-M lifecycle controlers and provides them with the protection afforded by industry-standard, government-approved algorithms to ensure secure, remote management. Dell iDRAC, Dell CMC, and Dell OME-M leverage the Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M to ensure use of FIPS 140-2 validated cryptography. Dell Cryptographic Library The following sections describe the Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M. Module Specification The Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M (hereinafter referred to as the “Library,” “cryptographic module,” or the “module”) is a software-only cryptographic module executing on a general-purpose computing system running Linux (Custom Linux 3.2.18, Custom Linux 3.4.11, Custom Linux 3.16.47, Custom Linux 4.1.12, Custom Linux 4.9.31, or Custom Linux 4.9.77-30)1 . 1 Linux operating system versions © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. The physical perimeter of the general-purpose computing system comprises the module’s physical cryptographic boundary, while the Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M constitutes the module’s logical cryptographic boundary. Security Level The Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M meets the overall requirements applicable to Level 1 security overall of FIPS 140-2 and the following specified section security levels. Table 1 - Module Security Level Specification # FIPS 140-2 Section Level 1 Cryptographic Module Specification 1 2 Cryptographic Module Ports and Interfaces 1 3 Roles, Services, and Authentication 1 4 Finite State Model 1 5 Physical Security N/A 6 Operational Environment 1 7 Cryptographic Key Management 1 8 EMI/EMC 1 9 Self-tests 1 10 Design Assurance 3 11 Mitigation of Other Attacks N/A Overall Level 1 Figure 1 - Logical Diagram Physical Cryptographic Boundary (General Purpose Computing System) Operating System Linking Application Logical Cryptographic Boundary Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 7 of 17 FIPS Approved Mode of Operation The Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M provides both FIPS-Approved and non-FIPS-Approved services, and thus provides both a FIPS-Approved and non-Approved mode of operation. To use the Library in a FIPS-compliant mode of operation, the operator should follow these rules: 1. As allowed by FIPS 140-2 overall Level 1 security, the module does not provide any indicator of its FIPS mode of operation. Thus, an operator (calling process) must ensure to follow each of the rules in this section (during the development of a calling application) to ensure that the module operates in its FIPS mode. 2. The module affords no persistent or permanent configuration to ensure use of its Approved mode or operation, rather the module, when in its operational state, alternates service by service between its Approved and non-Approved mode of operation (depending on what services the operator calls). 3. The list of services enumerated in the Roles, Services and Authentication section includes all security functions, roles, and services provided by the cryptographic module in both its Approved and non-Approved modes of operation. 4. An operator does not configure the module during power-up initialization to operate only in one mode or another mode. The module provides no such configuration, but instead requires the operator to only solicit Approved services and to not solicit non-Approved services. The following services are non-Approved services: a. Random Number Generation using Hash_DRBG, HMAC_DRBG, and ANSI X9.31 RNG (all non-compliant) b. ECDSA (non-compliant) c. Triple-DES CMAC (non-compliant) d. AES CMAC (non-compliant), AES-GCM (non-compliant), and AES-XTS (non- compliant) 5. An operator must avoid violating Approved-mode key generation and usage requirements by: a. Not generating keys in a non-Approved mode of operation and then switch to an Approved-mode of operation (for example, using the same keys for the ECDH and ECDSA algorithms) b. Not electronically importing keys in plaintext in a non-Approved mode of operation and then switch to an Approved-mode of operation and use those keys for Approved services c. Not generating keys in an Approved-mode of operation and then switching to a non- Approved mode of operation and using the generated keys for non-Approved services © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. d. Not changing the default RNG to non-approved algorithms via calls like ENGINE_set_RAND() and ENGINE_set_default_RAND(). When the module is in the Approved mode of operation, the default RNG is the validated AES-256 CTR_DRBG. Approved Cryptographic Algorithms The module uses cryptographic algorithm implementations that have received the following certificate numbers from the Cryptographic Algorithm Validation Program. Table 2 – FIPS-Approved Algorithm Certificates Algorithm CAVP Certificate Custom Linux 3.2.18 on PowerPC 440EPX, Custom Linux 3.4.11 on Renesas SH7758 AES #4248 DRBG #1327 DSA #1138 HMAC #2786 RSA #2293 SHA #3485 Triple-DES #2303 Custom Linux 4.9.31 on PowerPC 440EPX AES #5477 DRBG #2155 DSA #1408 HMAC #3632 RSA #2941 SHA #4395 Triple-DES #2756 Custom Linux 3.16.47 on Renesas SH7758 AES #5478 DRBG #2156 DSA #1409 HMAC #3633 RSA #2942 SHA #4396 Triple-DES #2757 Custom Linux 4.1.2 on ARMv7 NPCMX50 AES #5032 DRBG #1844 DSA #1323 HMAC #3346 RSA #2716 SHA #4091 Triple-DES #2594 Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 9 of 17 Custom Linux 4.9.77-30 on Intel Atom E3950 AES #C 194 DRBG #C 194 DSA #C 194 HMAC #C 194 RSA #C 194 SHA #C 194 Triple-DES #C 194 Non-Approved Cryptographic Algorithms The module uses the following non-FIPS 140-2 approved, but allowed, algorithms. • RSA with 2048-bit to 16384-bit key sizes provides between 112 and 270 bits of encryption strength – allowed for use as part of a key-establishment scheme. • Diffie-Hellman with 2048-bit to 16384-bit key sizes provides between 112 and 270 bits of encryption strength – allowed for use as part of a key-agreement scheme. • Elliptic Curve Diffie-Hellman with 224, 256, 384, and 521-bit prime field sizes provides between 112 and 256 bits of encryption strength – allowed for use as part of a key-agreement scheme. The module also provides the following non-Approved algorithms: • Hash_DRBG, HMAC_DRBG, and ANSI X9.31 RNG (non-compliant) • ECDSA (non-compliant) • Triple-DES CMAC (non-compliant) • AES CMAC (non-compliant), AES-GCM (non-compliant), and AES-XTS (non-compliant) As described above, in order to utilize the Library in FIPS-compliant mode, a calling process cannot solicit non-Approved algorithms. Module Interfaces The module is classified as a multiple-chip standalone module for FIPS 140-2 purposes. As such, the module’s physical cryptographic boundary encompasses the general-purpose computing system running Linux1 and interfacing with the peripherals (through its console port, network (Ethernet and QSFP) ports, USB ports, and power adapter). However, the module provides only a logical interface via an application programming interface (API) and does not interface with or communicate across any of the physical ports of the computing system. This logical interface exposes services that operators (calling applications) may use directly. © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. The module’s C-language API interface provided by the module is mapped onto the four FIPS 140-2 logical interfaces: data input, data output, control input, and status output. It is through this logical API that the module logically separates them into distinct and separate interfaces. The mapping of the module’s API to the four FIPS 140-2 interfaces is as follows: • Data input – API entry point data input stack parameters • Data output – API entry point data output stack parameters • Control input – API entry point and corresponding stack parameters • Status output – API entry point return values and status stack parameters Roles, Services and Authentication The module supports both of the FIPS 140-2 required roles, the Crypto-officer and the User role, and supports no additional roles. An operator implicitly selects the Crypto-officer role when loading (or causing loading of) the library and selects the User role when soliciting services from the module through its API. The module requires no operator authentication. The following table enumerates the module’s services. Table 3 - Service Descriptions for Crypto-officer and User Roles Service Description and Critical Security Parameter (CSP) Access Crypto-Officer services Library Loading The process of loading the assembly Self-test Perform self-tests (FIPS_selftest) User services Show Status Fucntions that provide module status information • Version (an unsigned long or const char *) • FIPS Mode (Boolean) • FIPS POST Status (returns 1 if they failed) Does not access CSPs. Zeroize Functions that destroy CSPs: • fips_drbg_uninstantiate: for the CTR_DRBG context, overwrites CTR_DRBG CSPs All other services automatically overwrite CSPs stored in allocated memory. Stack cleanup is the responsibility of the calling application. Random number generation Used for random number generation. • Seed or reseed the CTR_DRBG instance • Determine security strength of the CTR_DRBG instance • Obtain random data Uses and updates the CTR_DRBG CSPs. Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 11 of 17 Service Description and Critical Security Parameter (CSP) Access Asymmetric key generation Used to generate RSA, DH, DSA, and EC keys: RSA Signature Generation Key (SGK), RSA Signature Verification Key (SVK), DH Private, DH Public, DSA SGK, DSA SVK, EC DH Private, EC DH Public There is one supported entropy strength for each mechanism and algorithm type, the maximum specified in SP 800-90A Symmetric encrypt/decrypt Used to encrypt or decrypt data. For symmetric encryption or decryption, the module supports: • Approved AES: ECB, CBC, CFB128, OFB, or CTR modes • Approved Triple-DES: ECB, CBC, CFB8, CFB64, or OFB modes • Non-Approved AES CMAC, Triple-DES CMAC, AES-GCM, or AES-XTS Message digest Used to generate a SHA-1 or SHA-2 message digest. Does not access CSPs. Keyed Hash Used to generate or verify data integrity with HMAC. Executes using HMAC Key (passed in by the calling process). Key transport2 primivites Used to encrypt or decrypt a key value on behalf of the calling process (does not establish keys into the module). Executes using RSA Key Decryption Key (KDK), RSA Key Encryption Key (KEK) (passed in by the calling process). Key agreement primivites Used to perform key agreement primitives on behalf of the calling process (does not establish keys into the module). Executes using EC DH Private, DH Private, EC DH Public, DH Public (passed in by the calling process). Digital Signature Used to generate or verify RSA or DSA digital signatures. Executes using RSA Signature Generation Key (SGK), RSA Signature Verification Key (SVK); DSA SGK, DSA SVK (passed in by the calling process). Finite State Model The module has a finite state model (FSM) that descrbes the module’s behavior and transitions based on its current state and the command received. The module’s FSM was reviewed as part of the overall FIPS 140-2 validation. Physical Security The physical security requirements does not apply to the module. The module is a software-only module that executes on a general-purpose computing system. 2 "Key transport" can refer to a) moving keys in and out of the module or b) the use of keys by an external application. The latter definition is the one that applies to the OpenSSL FIPS Object Module © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. Operational Environment The Library executes on a general-purpose operating system (Linux1 ) running in single-user mode that segregates processes into separate process spaces. Thus, the operating system separates each process space from all others, implicitly satisfying the FIPS 140-2 requirement for a single-user mode of operation. Table 4 – Tested Operational Environments in Dell iDRAC8 Custom Linux 3.4.11 (single-user mode) Executing on 1 PowerEdge R730 Rack Server with Renesas SH7758 CPU and Dell iDRAC8 firmware 2.41 Custom Linux 3.16.47 (single-user mode) Executing on 1 PowerEdge R730 Rack Server with Renesas SH7758 CPU and Dell iDRAC8 firmware 2.60 Table 5 – Tested Operational Environments in Dell iDRAC9 Custom Linux 4.1.12 (single-user mode) Executing on 1 PowerEdge R740 Rack Server with ARMv7 NPCMX50 CPU and Dell iDRAC9 firmware 3.15 Table 6 – Tested Operational Environments in Dell CMC Custom Linux 3.2.18 (single-user mode) Executing on 1 PowerEdge M1000e Chassis with PowerPC 440EPX CPU and Dell CMC firmware 5.21 Custom Linux 4.9.31 (single-user mode) Executing on 1 PowerEdge M1000e Chassis with PowerPC 440EPX CPU and Dell CMC firmware 6.10 Table 7 – Tested Operational Environments in Dell OME-M Custom Linux 4.9.77-30 (single-user mode) Executing on 1 PowerEdge MX7000 Modular Chassis with Intel Atom E3950 Processor and Dell OME-M firmware 1.00.10 Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 13 of 17 Key Management The module possesses its HMAC-SHA-1 self-integrity test key and power-up self-test known answer test (KAT) keys. Beyond those keys, the module does not store any other keys persistently. It is the calling applications responsibility to appropriately manage keys. The module can generate keys (DSA, EC, and RSA asymmetric key pairs), can accept keys entered by an operator, and affords an operator the ability to zeroize keys held in RAM. Minimum Entropy Provided by Random Number Generation When the approved AES-256 CTR_DRBG is instantiated, it is seeded with 48 bytes (384 bits) from the entropy pool. Given that the lowest measured amount of entropy across all platforms was between 2.5 and 5.7 bits per byte of entropy, using a conservative estimate of 2.5 bits per byte of entropy yields 48 bytes * 2.5 bits/byte = 120 bits. Therefore, at the minimum, the approved AES-256 CTR_DRBG can provide at least 120 bits of entropy per request. © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. The following table describes the module’s security-relevant data items (SRDI’s) including asymmetric and symmetric keys: Table 8 - Module Security-Relevant Data Items Key Type Bitsize Description Origin Stored Zeroized RSA SGK RSA 2048 or 3072 RSA PKCS#1, ANSI X9.31, or PSS signature generation key Entered or Generated RAM / plaintext Clear method RSA KDK RSA 2048- 16384 RSA key decryption (private key transport) key Entered or Generated RAM / plaintext Clear method DSA SGK DSA 2048 or 3072 DSA signature generation key Entered or Generated RAM / plaintext Clear method DH Private DH 224-512 DH private key agreement key Entered or Generated RAM / plaintext Clear method EC DH Private EC DH 224-521 EC DH private key agreement key Entered or Generated RAM / plaintext Clear method AES EDK AES 128-256 AES encrypt / decrypt key Entered RAM / plaintext Clear method Triple-DES EDK Triple- DES 192 Triple-DES encrypt / decrypt key Entered RAM / plaintext Clear method HMAC Key HMAC 112+ Keyed hash key intended for data integrity Entered RAM / plaintext Clear method CTR_DRBG Key AES 256 AES-256 CTR_DRBG internal state Key From environment RAM /plaintext Clear method CTR_DRBG V (seed) N/A 128 AES-256 CTR_DRBG internal state V (seed) From environment RAM /plaintext Clear method Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 15 of 17 The module also supports the following public/non-sensitive keys: Table 9 - Module Public Keys Key Type Bitsize Description Origin Stored Zeroized RSA SVK RSA 2048 or 3072 RSA PKCS#1, ANSI X9.31, or PSS signature verification key Entered or Generated RAM / plaintext Clear method RSA KEK RSA 2048- 16384 RSA key encryption (public key transport) key Entered or Generated RAM / plaintext Clear method DSA SVK DSA 2048 or 3072 DSA signature verification key Entered or Generated RAM / plaintext Clear method DH Public DH 2048- 16384 DH public key agreement key Entered or Generated RAM / plaintext Clear method EC DH Public EC DH 224-521 EC DH public key agreement key Entered or Generated RAM / plaintext Clear method Self-tests KAT Keys All All Keys used for module Power-Up Known Answer Self-Test Compiled into the module Module image N/A (see 140-2 IG 7.4) Self-tests Integrity Keys HMAC 256 bits HMAC-SHA-1 key used by the module for it’s power up integrity test Compiled into the module Module image / plaintext & obfuscated N/A (see 140-2 IG 7.4) Electromagnetic Interference and Compatibility The module meets Level 1 security for FIPS 140-2 EMI/EMC requirements as the Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M passed validation executing on a general-purpose computing system that confirms to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B (for example, for home use). Self-Tests The module provides the self-tests listed in Table 7. Table 10 – Self-tests FIPS Cryptographic Module Self-Tests Power-Up Self-Tests Integrity test (HMAC-SHA-1) DRBG KAT (CTR_DRBG - all applicable SP 800-90 Section 11 assurance tests) SHA KATs (SHA-1, -224, -256, -384, -512) HMAC-SHA KATs (SHA-1, -224, -256, -384, -512) CMAC KATs (CMAC is non-compliant) AES encrypt KAT and AES decrypt KAT AES CCM KATs AES GCM authenticated encryption KAT and AES GCM authenticated decryption KAT (GCM is non- compliant) AES XTS KATs (XTS is non-compliant) © 2018 Copyright Dell, Inc. Dell, Inc. grants permission to freely reproduce in entirety without revision. Triple-DES encrypt KAT and Triple-DES decrypt KAT RSA sign KAT and RSA verify KAT DSA sign KAT and DSA verify KAT Conditional Self-tests: DSA Key Generation Pairwise Consistency Test RSA Key Generation Pairwise Consistency Test AES-256 CTR_DRBG Continuous Random Number Generator Test Seeding of CTR_DRBG Continuous Random Number Generator Test” The module automatically performs the complete set of power-up self-tests during library load to ensure proper operation, thus an operator has no access to cryptographic functionality unless the power-up self- tests passes and the library load succeeds. The power-up self-tests include an integrity check of the module’s software using an HMAC-SHA-1 value calculated over the object module’s in-memory image. Should the module fail a self-test, the module enters an Error state where it prohibits cryptographic services. Additionally, the module performs both power-up and conditional self-tests for its cryptographic algorithms. An operator may invoke the power-up self-tests at any time by calling the FIPS Mode function. Guidance and Secure Operation The Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M meets overall Level 1 requirements for FIPS PUB 140-2. The following sections describe the Crypto-officer and User guidance. Crypto-officer Guidance The Crypto-officer or operator responsible for configuring the operational environment on which the module runs must ensure FIPS-compliant operation (as described in the section, FIPS Approved Mode of Operation, of the Security Policy). Additionally, the Crypto-officer is defined to be the operator responsible for loading the library, thus when invoked by a calling application (either at library load or dynamically), the operating system loader loads the module, causing it to automatically perform its power-up self-tests. If the module fails its power-up self-tests, the module transitions into an Error state. User Guidance After the operating system has been properly configured by the Crypto-officer (if needed), the Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M requires the user to follow the rules of section FIPS Approved Mode of Operation in order to operate in a FIPS-compliant manner. Furthermore, the User must assume responsibility for managing all keys, as the module does not provide any persistent key storage. Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M © 2018 Copyright Dell, Inc. Security Policy All rights reserved. Page 17 of 17 Mitigation of Other Attacks The Dell Crypto Library for Dell iDRAC, Dell CMC, and Dell OME-M does not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for validation.