
Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 1 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Microsoft Windows

FIPS 140 Validation
Microsoft Windows 11

Windows Server 2022

Microsoft Windows 10 (versions 20H2 and 21H1)

Microsoft Windows Server (version 20H2)

Windows Server Azure Edition

Azure Host 2021

Azure Stack HCI version 21H2

Azure Virtual Desktop

Non-Proprietary

Security Policy Document

Version Number 1.1
Updated On June 24, 2024

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 2 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The information contained in this document

represents the current view of Microsoft Corporation

on the issues discussed as of the date of publication.

Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a

commitment on the part of Microsoft, and Microsoft

cannot guarantee the accuracy of any information

presented after the date of publication.

This document is for informational purposes only.

MICROSOFT MAKES NO WARRANTIES, EXPRESS

OR IMPLIED, AS TO THE INFORMATION IN THIS

DOCUMENT.

Complying with all applicable copyright laws is the

responsibility of the user. This work is licensed under

the Creative Commons Attribution-NoDerivs-

NonCommercial License (which allows redistribution

of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or

send a letter to Creative Commons, 559 Nathan

Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,

trademarks, copyrights, or other intellectual property

rights covering subject matter in this document.

Except as expressly provided in any written license

agreement from Microsoft, the furnishing of this

document does not give you any license to these

patents, trademarks, copyrights, or other intellectual

property.

© 2024 Microsoft Corporation. All rights reserved.

Microsoft, Azure, Windows, the Windows logo,

Windows Server, and BitLocker are either registered

trademarks or trademarks of Microsoft Corporation in

the United States and/or other countries.

The names of actual companies and products

mentioned herein may be the trademarks of their

respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 3 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Version History

Version Date Summary of changes

1.0 March 25, 2022 Draft sent to NIST CMVP

1.1 June 24, 2024 Updates in response to NIST feedback

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 4 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

TABLE OF CONTENTS

1 INTRODUCTION ...8

1.1 LIST OF CRYPTOGRAPHIC MODULE BINARY EXECUTABLES ..9

1.2 VALIDATED PLATFORMS ..9

1.3 CONFIGURE WINDOWS TO USE FIPS-APPROVED CRYPTOGRAPHIC ALGORITHMS 11

2 CRYPTOGRAPHIC MODULE SPECIFICATION ... 11

2.1 CRYPTOGRAPHIC BOUNDARY .. 12

2.2 FIPS 140-2 APPROVED ALGORITHMS .. 12

2.3 NON-APPROVED ALGORITHMS ... 19

2.4 FIPS 140-2 APPROVED ALGORITHMS FROM BOUNDED MODULES .. 20

2.5 CRYPTOGRAPHIC BYPASS ... 21

2.6 HARDWARE COMPONENTS OF THE CRYPTOGRAPHIC MODULE .. 21

3 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES .. 22

3.1 CNG PRIMITIVE FUNCTIONS .. 22

3.1.1 ALGORITHM PROVIDERS AND PROPERTIES ... 23

3.1.1.1 BCryptOpenAlgorithmProvider ... 23

3.1.1.2 BCryptCloseAlgorithmProvider ... 24

3.1.1.3 BCryptSetProperty .. 24

3.1.1.4 BCryptGetProperty .. 24

3.1.1.5 BCryptFreeBuffer .. 24

3.1.2 RANDOM NUMBER GENERATION ... 25

3.1.2.1 BCryptGenRandom ... 25

3.1.2.2 SystemPrng ... 25

3.1.2.3 EntropyRegisterSource ... 25

3.1.2.4 EntropyUnregisterSource .. 26

3.1.2.5 EntropyProvideData .. 26

3.1.2.6 EntropyPoolTriggerReseedForIum .. 26

3.1.3 KEY AND KEY-PAIR GENERATION .. 26

3.1.3.1 BCryptGenerateSymmetricKey ... 26

3.1.3.2 BCryptGenerateKeyPair .. 27

3.1.3.3 BCryptFinalizeKeyPair ... 27

3.1.3.4 BCryptDuplicateKey .. 27

3.1.3.5 BCryptDestroyKey ... 27

3.1.4 KEY ENTRY AND OUTPUT .. 27

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 5 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.1.4.1 BCryptImportKey ... 27

3.1.4.2 BCryptImportKeyPair .. 28

3.1.4.3 BCryptExportKey ... 28

3.1.5 ENCRYPTION AND DECRYPTION .. 28

3.1.5.1 BCryptEncrypt ... 28

3.1.5.2 BCryptDecrypt ... 29

3.1.6 HASHING AND MESSAGE AUTHENTICATION ... 29

3.1.6.1 BCryptCreateHash ... 29

3.1.6.2 BCryptHashData .. 29

3.1.6.3 BCryptDuplicateHash .. 29

3.1.6.4 BCryptFinishHash .. 30

3.1.6.5 BCryptDestroyHash ... 30

3.1.6.6 BCryptHash .. 30

3.1.6.7 BCryptCreateMultiHash .. 30

3.1.6.8 BCryptProcessMultiOperations ... 31

3.1.7 SIGNING AND VERIFICATION .. 31

3.1.7.1 BCryptSignHash ... 31

3.1.7.2 BCryptVerifySignature ... 32

3.1.8 SECRET AGREEMENT AND KEY DERIVATION .. 32

3.1.8.1 BCryptSecretAgreement ... 32

3.1.8.2 BCryptDeriveKey ... 32

3.1.8.3 BCryptDestroySecret ... 33

3.1.8.4 BCryptKeyDerivation ... 33

3.1.8.5 BCryptDeriveKeyPBKDF2 ... 33

3.1.9 CRYPTOGRAPHIC TRANSITIONS ... 33

3.1.9.1 KAS-FFC and KAS-ECC ... 33

3.1.9.2 SHA-1 ... 34

3.2 CONTROL INPUT INTERFACE ... 34

3.3 STATUS OUTPUT INTERFACE ... 34

3.4 DATA OUTPUT INTERFACE ... 34

3.5 DATA INPUT INTERFACE .. 34

3.6 NON-SECURITY RELEVANT CONFIGURATION INTERFACES ... 34

4 ROLES, SERVICES AND AUTHENTICATION ... 36

4.1 ROLES ... 36

4.2 SERVICES ... 36

4.2.1 MAPPING OF SERVICES, ALGORITHMS, AND CRITICAL SECURITY PARAMETERS ... 36

4.2.2 MAPPING OF SERVICES, EXPORT FUNCTIONS, AND INVOCATIONS .. 38

4.2.3 NON-APPROVED SERVICES .. 40

4.3 AUTHENTICATION .. 40

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 6 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

5 FINITE STATE MODEL ... 40

5.1 SPECIFICATION .. 40

6 OPERATIONAL ENVIRONMENT... 41

6.1 SINGLE OPERATOR ... 42

6.2 CRYPTOGRAPHIC ISOLATION ... 42

6.3 INTEGRITY CHAIN OF TRUST ... 42

7 CRYPTOGRAPHIC KEY MANAGEMENT .. 44

7.1 ACCESS CONTROL POLICY .. 45

7.2 KEY MATERIAL .. 46

7.3 KEY GENERATION .. 46

7.4 KEY ESTABLISHMENT .. 47

7.4.1 NIST SP 800-132 PASSWORD BASED KEY DERIVATION FUNCTION (PBKDF) ... 47

7.4.2 NIST SP 800-38F AES KEY WRAPPING.. 48

7.5 KEY ENTRY AND OUTPUT ... 48

7.6 KEY STORAGE ... 48

7.7 KEY ARCHIVAL .. 48

7.8 KEY ZEROIZATION .. 48

8 SELF-TESTS .. 49

8.1 POWER-ON SELF-TESTS .. 49

8.2 CONDITIONAL SELF-TESTS .. 49

9 DESIGN ASSURANCE .. 50

10 MITIGATION OF OTHER ATTACKS ... 50

11 SECURITY LEVELS ... 52

12 ADDITIONAL DETAILS .. 52

13 APPENDIX A – HOW TO VERIFY WINDOWS VERSIONS AND DIGITAL SIGNATURES 53

13.1 HOW TO VERIFY WINDOWS VERSIONS ... 53

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 7 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

13.2 HOW TO VERIFY WINDOWS DIGITAL SIGNATURES ... 53

14 APPENDIX B – REFERENCES .. 54

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 8 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1 Introduction
The Microsoft Kernel Mode Cryptographic Primitives Library is a kernel-mode cryptographic module that

provides cryptographic services through the Microsoft CNG (Cryptography, Next Generation) API to

Windows 10 kernel components.

The Kernel Mode Cryptographic Primitives Library also provides cryptographic provider registration and

configuration services to both user and kernel mode components. See Non-Security Relevant

Configuration Interfaces for more information.

The relationship between the Kernel Mode Cryptographic Primitives Library and other components is

shown in the following diagram:

ApplicationApplication layer

CNG API router
(BCRYPT.DLL)

BCRYPTPRIMITIVES.DLL Other provider(s)

CNG API

Kernel

CNG Provider
Layer

CNG API Layer CNG Provider
Interface

CNG.SYS

Driver

Provider
Registration

RNG

Entropy
Source

Entropy
Source

Crpyto Provider Installer

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 9 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1.1 List of Cryptographic Module Binary Executables
The Kernel Mode Cryptographic Primitives Library consists of the following binary. Each binary has a

distinct implementation per build.

• CNG.SYS

The Windows products covered by this validation are:

• Build 10.0.22000

o Windows 11

• Build 10.0.20348

o Windows Server 2022

o Windows Server Azure Edition

o Azure Host 2021

o Azure Stack HCI version 21H2

• Build 10.0.19043:

o Windows 10 version 21H1

• Build 10.0.19042

o Windows 10 version 20H2

o Windows Server version 20H2

1.2 Validated Platforms
The Windows editions covered by this validation are:

• Microsoft Windows 11

• Windows Server 2022

• Microsoft Windows 10 Pro Edition (64-bit version)

• Microsoft Windows 10 Enterprise Edition (64-bit version)

• Windows Server Core Standard

• Windows Server Core Datacenter

• Windows Server Azure Edition

• Azure Host 2021

• Azure Stack HCI

The Kernel Mode Cryptographic Primitives Library component listed in Section 1.1 was validated using

the combination of computers and Windows operating system editions specified in the tables below.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 10 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

All the computers for Windows 10 and Windows Server listed in the tables below are 64-bit Intel

architecture and implement the AES-NI instruction set but not the SHA Extensions, with the following

exception:

• HPE ProLiant E910 (Edgeline EL8000) – Intel Xeon Gold 6248, with AES-NI disabled and no SHA

Extensions.

Table 1 Validated Platforms for Windows 10 and Windows Server version 20H2

Computer Windows
10 Pro

Windows 10
Enterprise

Windows
Server
Core

Windows
Server Core
Datacenter

Microsoft Surface Laptop
4 - Intel i5-1145G7

√

Microsoft Windows
Server 2019 Hyper-V on
Dell R630 - Intel Xeon E5-
2660 v4

 √ √

Dell Latitude 3520 - Intel
i3-1115G4

√

Dell Latitude 9520 - Intel
i7-1185G7

 √

Dell Latitude 7420 - Intel
i7-1185G7

 √

HP EliteBook x360 830 G8
- Intel i7-1165G7

√

Table 2 Validated Platforms for Windows 10 version 21H1 and Windows Server 2022

Computer Windows
10 Pro

Windows
Server 2022
Core

Windows
Server 2022
Core
Datacenter

HPE ProLiant E910 (Edgeline EL8000) -
Intel Xeon Gold 6248

 √

Microsoft Surface Laptop 4 - Intel i5-
1145G7

√

Microsoft Windows Server 2019
Hyper-V on Dell R630 - Intel Xeon E5-
2660 v4

 √ √

HP EliteBook x360 830 G8 - Intel i7-
1165G7

√

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 11 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Table 3 Validated Platforms for Windows 11 and Azure

Computer Windows 11 Windows
Server Azure
Edition

Azure Host
2021

Azure Stack
HCI version
21H2

Microsoft Surface
Laptop 4 - Intel i5-
1145G7

√

Dell PowerEdge
R840 - Intel Xeon
Platinum 8260

 √ √

HPE ProLiant DL380
- Intel Xeon
Platinum 8276L

 √

1.3 Configure Windows to use FIPS-Approved Cryptographic Algorithms

There are two methods to enable FIPS-Approved mode for the Kernel Mode Cryptographic Primitives
Library.

The first is to use FIPS Local/Group Security Policy setting or a Mobile Device Management (MDM) to
enable FIPS-Approved mode for the Kernel Mode Cryptographic Primitives Library. The Windows
operating system provides a group (or local) security policy setting, “System cryptography: Use FIPS
compliant algorithms for encryption, hashing, and signing”.

The second method to enable FIPS-Approved mode for the Kernel Mode Cryptographic Primitives
Library is to set the following registry key to 1:
HKLM\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\STE. When this registry key exists
and is set to 1, the selftests in Kernel Mode Cryptogaphic Primitives Library will run in compliance with
FIPS 140-2 Implementation Guidance section 9.11 and the module will be in FIPS Approved mode.

In addition to these methods, Consult the MDM documentation for information on how to enable FIPS-
Approved mode. The Policy CSP - Cryptography includes the setting AllowFipsAlgorithmPolicy.

Changes to either Approved mode security policy setting do not take effect until the computer has been

rebooted.

2 Cryptographic Module Specification
The Kernel Mode Cryptographic Primitives Library is a multi-chip standalone module that operates in

FIPS-Approved mode during normal operation of the computer and Windows operating system and

when Windows is configured to use FIPS-approved cryptographic algorithms as described in Configure

Windows to use FIPS-Approved Cryptographic Algorithms.

https://docs.microsoft.com/en-us/windows/client-management/mdm/policy-csp-cryptography#cryptography-allowfipsalgorithmpolicy

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 12 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

In addition to configuring Windows to use FIPS-Approved Cryptographic Algorithms, third-party

applications and drivers installed on the Windows platform must not use any of the non-Approved

algorithms implemented by this module. Windows will not operate in an Approved mode when the

operators chooses to use a non-Approved algorithm or service.

The following configurations and modes of operation will cause the Kernel Mode Cryptographic

Primitives Library to operate in a non-Approved mode of operation:

• Boot Windows in Debug mode

• Boot Windows with Driver Signing disabled

• Windows enters the ACPI S4 power state

2.1 Cryptographic Boundary
The software cryptographic boundary for the Kernel Mode Cryptographic Primitives Library is defined as

the binary CNG.SYS.

2.2 FIPS 140-2 Approved Algorithms
The Kernel Mode Cryptographic Primitives Library implements the following FIPS-140-2 Approved
algorithms:1

Table 4 Algorithm Certificates for Windows 10, Windows Server, and Azure Virtual Desktop

Algorithm Windows 10 and
Windows Server version

20H2

Windows 10 version
21H1 and Azure Virtual
Desktop version 21H1

FIPS 180-4 SHS SHA-1, SHA-256, SHA-384, and
SHA-512

#A2066 #A2025

FIPS PUB 198-1 HMAC-SHA-12, HMAC-SHA-256,
HMAC-SHA-384, and HMAC-SHA-512

#A2066 #A2025

FIPS 197 AES-128, AES-192, and AES-256 in ECB,
CBC, CFB8, CFB128, and CTR modes #A2066 #A2025

NIST SP 800-38B and SP 800-38C AES-128, AES-
192, and AES-256 in CCM and CMAC modes #A2066 #A2025

NIST SP 800-38D AES-128, AES-192, and AES-
256 GCM and GMAC #A2066 #A2025

NIST SP 800-38E XTS-AES XTS-128 and XTS-2563
#A2066 #A2025

1 This module may not use some of the capabilities described in each CAVP certificate. Only those
algorithms/modes listed in the tables below are utilized by the module.
2 For HMAC, only key sizes that are >= 112 bits in length are used by the module in FIPS mode.
3 AES XTS must be used only to protect data at rest and the caller needs to ensure that the length of data
encrypted does not exceed 220 AES blocks.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 13 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Windows 10 and
Windows Server version

20H2

Windows 10 version
21H1 and Azure Virtual
Desktop version 21H1

FIPS 186-4 RSA PKCS#1 (v1.5) digital signature
generation and verification with 1024, 2048,
3072, and 4096 moduli; supporting SHA-14,
SHA-256, SHA-384, and SHA-512

#A2066 #A2025

Safe primes key generation with groups

ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144,
MODP-2048, MODP-3072, and MODP-4096

#A2066 #A2025

FIPS 186-4 RSA key-pair generation with 2048
and 3072 moduli

#A2066 #A2025

FIPS 186-4 ECDSA key pair generation and
verification, signature generation and
verification with the following NIST curves: P-
256, P-384, P-521

#A2066 #A2025

FIPS 186-4 DSA PQG generation and
verification, signature generation and
verification

#A2066 #A2025

NIST SP 800-56Arev3 KAS – Diffie-Hellman Key
Agreement; Finite Field Cryptography (FFC)
with domain parameters FB (p=2048, q=224),
FC (p=2048, q=256), and safe primes
(ffdhe2048, MODP-2048, ffdhe3072, MODP-
3072, ffdhe4096, and MODP-4096); key
establishment methodology provides at least
112 bits of encryption strength

#A2066 #A2025

NIST SP 800-56A rev3 KAS – EC Diffie-Hellman
Key Agreement; Elliptic Curve Cryptography
(ECC) with domain parameters EC (P-256 w/
SHA-256), ED (P-384 w/ SHA-384), and EE (P-
521 w/ SHA-512); key establishment
methodology provides between 128 and 256-
bits of encryption strength

#A2066 #A2025

NIST SP 800-56A rev3 KAS-FFC-SSC key
agreement (dhEphem, dhOneFlow, and
dhStatic; KAS Roles: initiator, responder), with
domain parameters FB, FC, and safe primes
(ffdhe2048, MODP-2048)

#A2066 #A2025

NIST SP 800-56A rev3 KAS-ECC-SSC key
agreement (ephemeralUnified; KAS roles:
initiator, responder), with domain parameters
P-256 (hash functions SHA2-256, SHA2-384,
SHA2-512), P-384 (hash functions SHA2-384,

#A2066 #A2025

4 SHA-1 is only acceptable for legacy signature verification.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 14 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Windows 10 and
Windows Server version

20H2

Windows 10 version
21H1 and Azure Virtual
Desktop version 21H1

SHA2-512), and P-521 (hash function SHA2-
512).

NIST SP 800-56B RSADP (CVL) mod 2048
#A2066 #A2025

NIST SP 800-90A AES-256 counter mode DRBG
#A2066 #A2025

NIST SP 800-67r1 Triple-DES (2 key legacy-use
decryption5 and 3 key encryption/decryption)
in ECB, CBC, CFB8 and CFB64 modes

#A2066 #A2025

NIST SP 800-108 Key Derivation Function
(KBKDF) CMAC-AES (128, 192, 256), HMAC
(SHA1, SHA-256, SHA-384, SHA-512)

#A2069 #A2031

NIST SP 800-38F AES Key Wrapping (KW) (128,
192, and 256), KTS (key establishment
methodology provides between 128 and 256
bits of encryption strength)

#A2069 #A2031

NIST SP 800-135 IKEv1, IKEv2, TLS 1.0/1.1, and
TLS 1.2 KDF primitive (CVL)6

#A2066 #A2025

NIST SP 800-132 KDF (also known as PBKDF)
with HMAC (SHA-1, SHA-256, SHA-384, SHA-
512) as the pseudo-random function #A2066 #A2025

NIST SP 800-133 (Sections 5.1, 5.2, 6.1, and 6.2)
Cryptographic Key Generation (CKG)

Vendor Affirmed Vendor Affirmed

5 Two-key Triple-DES Decryption is only allowed for Legacy-usage (as per SP 800-131A). The use of two-key Triple-
DES Encryption is disallowed. The caller is responsible for following the 2^16 guidelines in all uses.
6 This cryptographic module supports the TLS, IKEv1, and IKEv2 protocols with SP 800-135 rev 1 KDF primitives,
however, the protocols have not been reviewed or tested by the NIST CAVP and CMVP.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14492
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14498
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14492
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14498
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 15 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Windows 10 and
Windows Server version

20H2

Windows 10 version
21H1 and Azure Virtual
Desktop version 21H1

NIST SP 800-90B Entropy Source (ENT (P))

N/A N/A

NIST SP 800-90B AES-CBC-MAC Conditioning
Component

#A1791, #A2165,
#A2138, #A2668

#A1791, #A2165,
#A2138, #A2668

Table 5 Algorithm Certificates for Windows 11, Windows Server 2022, and Azure

Algorithm Windows 11 Windows Server
version 2022 and
Windows Server
Azure Edition

Azure Host 2021 Azure Stack HCI
version 21H2

FIPS 180-4 SHS SHA-1,
SHA-256, SHA-384, and
SHA-512

#A2004 #A2019 #A2019 #A2019

FIPS PUB 198-1 HMAC-
SHA-17, HMAC-SHA-256,
HMAC-SHA-384, and
HMAC-SHA-512

#A2004 #A2019 #A2019 #A2019

FIPS 197 AES-128, AES-
192, and AES-256 in ECB,
CBC, CFB8, CFB128, and
CTR modes

#A2004 #A2019 #A2019 #A2019

NIST SP 800-38B and SP
800-38C AES-128, AES-
192, and AES-256 in CCM
and CMAC modes

#A2004 #A2019 #A2019 #A2019

NIST SP 800-38D AES-
128, AES-192, and AES-
256 GCM and GMAC

#A2004 #A2019 #A2019 #A2019

NIST SP 800-38E XTS-AES
XTS-128 and XTS-2568

#A2004 #A2019 #A2019 #A2019

7 For HMAC, only key sizes that are >= 112 bits in length are used by the module in FIPS mode.
8 AES XTS must be used only to protect data at rest and the caller needs to ensure that the length of data
encrypted does not exceed 220 AES blocks.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14291
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14675
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34747
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15140
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14291
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14675
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34747
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15140
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 16 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Windows 11 Windows Server
version 2022 and
Windows Server
Azure Edition

Azure Host 2021 Azure Stack HCI
version 21H2

FIPS 186-4 RSA PKCS#1
(v1.5) digital signature
generation and
verification with 1024,
2048, 3072, and 4096
moduli; supporting SHA-
19, SHA-256, SHA-384,
and SHA-512

#A2004 #A2019 #A2019 #A2019

Safe primes key
generation with groups

ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
MODP-2048, MODP-3072,
MODP-4096

#A2004 #A2019 #A2019 #A2019

FIPS 186-4 RSA key-pair
generation with 2048
and 3072 moduli

#A2004 #A2019 #A2019 #A2019

FIPS 186-4 ECDSA key
pair generation and
verification, signature
generation and
verification with the
following NIST curves: P-
256, P-384, P-521

#A2004 #A2019 #A2019 #A2019

FIPS 186-4 DSA PQG
generation and
verification, signature
generation and
verification

#A2004 #A2019 #A2019 #A2019

NIST SP 800-56Arev3
KAS – Diffie-Hellman Key
Agreement; Finite Field
Cryptography (FFC) with
domain parameters FB
(p=2048, q=224), FC
(p=2048, q=256), and
safe primes (ffdhe2048,
MODP-2048, ffdhe3072,
MODP-3072, ffdhe4096,
and MODP-4096); key
establishment
methodology provides at

#A2004 #A2019 #A2019 #A2019

9 SHA-1 is only acceptable for legacy signature verification.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 17 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Windows 11 Windows Server
version 2022 and
Windows Server
Azure Edition

Azure Host 2021 Azure Stack HCI
version 21H2

least 112 bits of
encryption strength

NIST SP 800-56Arev3
KAS – EC Diffie-Hellman
Key Agreement; Elliptic
Curve Cryptography
(ECC) with domain
parameters EC (P-256 w/
SHA-256), ED (P-384 w/
SHA-384), and EE (P-521
w/ SHA-512); key
establishment
methodology provides
between 128 and 256-
bits of encryption
strength

#A2004 #A2019 #A2019 #A2019

NIST SP 800-56A rev3
KAS-FFC-SSC key
agreement (dhEphem,
dhOneFlow, and
dhStatic KAS Roles:
initiator, responder),
with domain parameters
FB, FC, and safe primes
(ffdhe2048, MODP-2048)

#A2004 #A2019 #A2019 #A2019

NIST SP 800-56B RSADP
(CVL) mod 2048 #A2004 #A2019 #A2019 #A2019

NIST SP 800-90A AES-256
counter mode DRBG #A2004 #A2019 #A2019 #A2019

NIST SP 800-67r1 Triple-
DES (2 key legacy-use
decryption10 and 3 key
encryption/decryption)
in ECB, CBC, CFB8 and
CFB64 modes

#A2004 #A2019 #A2019 #A2019

10 Two-key Triple-DES Decryption is only allowed for Legacy-usage (as per SP 800-131A). The use of two-key Triple-
DES Encryption is disallowed. The caller is responsible for following the 2^16 guidelines in all uses.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 18 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Windows 11 Windows Server
version 2022 and
Windows Server
Azure Edition

Azure Host 2021 Azure Stack HCI
version 21H2

NIST SP 800-108 Key
Derivation Function
(KBKDF) CMAC-AES (128,
192, 256), HMAC (SHA1,
SHA-256, SHA-384, SHA-
512)

#A2001 #A2023 #A2023 #A2023

NIST SP 800-38F AES Key
Wrapping (KW) (128,
192, and 256), KTS (key
establishment
methodology provides
between 128 and 256
bits of encryption
strength)

#A2001 #A2023 #A2023 #A2023

NIST SP 800-135 IKEv1,
IKEv2, TLS 1.0/1.1, and
TLS 1.2 KDF primitive
(CVL)11

#A2004 #A2019 #A2019 #A2019

NIST SP 800-132 KDF
(also known as PBKDF)
with HMAC (SHA-1, SHA-
256, SHA-384, SHA-512)
as the pseudo-random
function

#A2004 #A2019 #A2019 #A2019

NIST SP 800-133
(Sections 5.1, 5.2, 6.1,
and 6.2) Cryptographic
Key Generation (CKG)

Vendor Affirmed Vendor Affirmed Vendor Affirmed Vendor Affirmed

NIST SP 800-90B Entropy
Source (ENT (P)) N/A N/A N/A N/A

NIST SP 800-90B AES-
CBC-MAC Conditioning
Component

#A1791, #A2165,
#A2138, #A2668

#A1791, #A2165,
#A2138, #A2668

#A1791, #A2165,
#A2138, #A2668

#A1791, #A2165,
#A2138, #A2668

11 This cryptographic module supports the TLS, IKEv1, and IKEv2 protocols with SP 800-135 rev 1 KDF primitives,
however, the protocols have not been reviewed or tested by the NIST CAVP and CMVP.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14504
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14522
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14522
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14522
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14504
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14522
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14522
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14522
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14291
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14675
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34747
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15140
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14291
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14675
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34747
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15140
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14291
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14675
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34747
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15140
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14291
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14675
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=34747
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15140

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 19 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2.3 Non-Approved Algorithms
The Kernel Mode Cryptographic Primitives Library implements the following non-Approved but allowed

algorithms:

• SHA-1 hash, which is disallowed for use in digital signature generation. It can be used for legacy
digital signature verification. Its use is acceptable for non-digital signature generation
applications.

• MD5 and HMAC-MD5 – allowed for TLS and EAP-TLS (no security claimed)

• KAS-ECC with the following curves that are allowed in FIPS mode as per FIPS 140-2 IG A.2

Curve Security Strength (bits) Allowed in FIPS mode

brainpoolP160r1 80 No

brainpoolP192r1 96 No

brainpoolP192t1 96 No

brainpoolP224r1 112 Yes

brainpoolP224t1 112 Yes

brainpoolP256r1 128 Yes

brainpoolP256t1 128 Yes

brainpoolP320r1 160 Yes

brainpoolP320t1 160 Yes

brainpoolP384r1 192 Yes

brainpoolP384t1 192 Yes

brainpoolP512r1 256 Yes

brainpoolP512t1 256 Yes

ec192wapi 96 No

nistP192 96 No

nistP224 112 Yes

numsP256t1 128 Yes

numsP384t1 192 Yes

numsP512t1 256 Yes

secP160k1 80 No

secP160r1 80 No

secP160r2 80 No

secP192k1 96 No

secP192r1 96 No

secP224k1 112 Yes

secP224r1 112 Yes

secP256k1 128 Yes

secP256r1 128 Yes

secP384r1 192 Yes

secP521r1 256 Yes

wtls12 112 Yes

wtls7 80 No

wtls9 80 No

x962P192v1 96 No

x962P192v2 96 No

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 20 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Curve Security Strength (bits) Allowed in FIPS mode

x962P192v3 96 No

x962P239v1 120 Yes

x962P239v2 120 Yes

x962P239v3 120 Yes

x962P256v1 128 Yes

The Kernel Mode Cryptographic Primitives Library implements the following non-Approved algorithms

but should not be used:

• Non-compliant HMAC. If HMAC-SHA1 is used, key sizes less than 112 bits (14 bytes) are not
allowed for usage in HMAC generation, as per SP 800-131A.

• RC2, RC4, MD2, MD4

• 2-Key Triple-DES Encryption, which is disallowed for usage altogether as of the end of 2015.

• DES in ECB, CBC, CFB8 and CFB64 modes

• Non-complaint RSA encrypt/decrypt

• Non-complaint IEEE 1619-2007 XTS-AES, XTS-128 and XTS-256

• Non-compliant AES GCM encryption except when the module operator does not follow the FIPS
140-2 Implementation Guidance A.5 scenario 4 for generating initialization vectors.

• Non-compliant RSA 1024-bits for digital signature generation, which is disallowed.

• Non-compliant FIPS 186-2 DSA with key length of 1024 bits

• Legacy CAPI KDF (proprietary)

• Non-complaint HKDF

• Non-compliant ANSI X9.63 and X9.42 key derivation

• NIST SP 800-56A Key Agreement using Finite Field Cryptography (FFC) with parameter FA
(p=1024, q=160). The key establishment methodology provides 80 bits of encryption strength
instead of the Approved 112 bits of encryption strength listed above.

2.4 FIPS 140-2 Approved Algorithms from Bounded Modules
A bounded module is a FIPS 140 module which provides cryptographic functionality that is relied on by a

downstream module. As described in the Integrity Chain of Trust section, Code Integrity depends on the

following modules and algorithms:

The Windows OS Loader (module certificate #4339) provides

• CAVP certificates #A2071 (Windows 10 and Windows Server version 20H2) for FIPS 186-4 RSA

PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2066 (Windows 10 and Windows Server version 20H2) for FIPS 180-4 SHS

SHA-256

• CAVP certificates #A2024 (Windows 10 version 21H1 Windows Server 2022) for FIPS 186-4 RSA

PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2025 (Windows 10 version 20H1 and Windows Server 2022) for FIPS 180-4

SHS SHA-256

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4339
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14494
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14500
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 21 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

• CAVP certificates #A2003 (Windows 11) for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature

verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2004 (Windows 11) for FIPS 180-4 SHS SHA-256

• CAVP certificates #A2018 (Microsoft Azure operating systems) for FIPS 186-4 RSA PKCS#1 (v1.5)

digital signature verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2019 (Microsoft Azure operating systems) for FIPS 180-4 SHS SHA-256

The Windows Resume (module certificate #4348) provides

• CAVP certificates #A2019 (Windows 10 and Windows Server) for NIST SP 800-38E AES XTS 128

and 256

The TCB Launcher module (module certificate #4457) provides:

• CAVP certificates #A2071 (Windows 10 and Windows Server version 20H2) for FIPS 186-4 RSA

PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2066 (Windows 10 and Windows Server version 20H2) for FIPS 180-4 SHS

SHA-256

• CAVP certificates #A2024 (Windows 10 version 21H1 Windows Server 2022) for FIPS 186-4 RSA

PKCS#1 (v1.5) digital signature verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2025 (Windows 10 version 20H1 and Windows Server 2022) for FIPS 180-4

SHS SHA-256

• CAVP certificates #A2003 (Windows 11) for FIPS 186-4 RSA PKCS#1 (v1.5) digital signature

verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2004 (Windows 11) for FIPS 180-4 SHS SHA-256

• CAVP certificates #A2018 (Microsoft Azure operating systems) for FIPS 186-4 RSA PKCS#1 (v1.5)

digital signature verification with 2048 moduli; supporting SHA-256

• CAVP certificates #A2019 (Microsoft Azure operating systems) for FIPS 180-4 SHS SHA-256

Note that the validated platforms listed in section 1.2 include processors that support AES-NI. This

module does not implement AES, but the bounded modules may implement AES and, therefore, use

AES-NI.

2.5 Cryptographic Bypass
Cryptographic bypass is not supported by Kernel Mode Cryptographic Primitives Library.

2.6 Hardware Components of the Cryptographic Module
The physical boundary of the module is the physical boundary of the computer that contains the

module. The following diagram illustrates the hardware components of the Kernel Mode Cryptographic

Primitives Library module:

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14506
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14524
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4348
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4457
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14494
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14495
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14500
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14501
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14506
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14507
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14524
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=14525

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 22 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3 Cryptographic Module Ports and Interfaces
The Kernel Mode Cryptographic Primitives Library module implements a set of algorithm providers for

the Cryptography Next Generation (CNG) framework in Windows. Each provider in this module

represents a single cryptographic algorithm or a set of closely related cryptographic algorithms. These

algorithm providers are invoked through the CNG algorithm primitive functions, which are sometimes

collectively referred to as the CNG API. For a full list of these algorithm providers, see

https://docs.microsoft.com/en-us/windows/win32/seccng/cng-algorithm-identifiers

The Kernel Mode Cryptographic Primitives Library module is accessed through one of the following

logical interfaces:

1. Kernel applications requiring cryptographic services use the BCrypt APIs detailed in Services.

2. Entropy sources supply random bits to the random number generator through the entropy

interfaces.

3.1 CNG Primitive Functions
The following security-relevant functions are exported by the Kernel Mode Cryptographic Primitives

Library:

• BCryptCloseAlgorithmProvider

• BCryptCreateHash

• BCryptCreateMultiHash

• BCryptDecrypt

• BCryptDeriveKey

• BCryptDeriveKeyPBKDF2

• BCryptDestroyHash

https://docs.microsoft.com/en-us/windows/win32/seccng/cng-algorithm-identifiers

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 23 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

• BCryptDestroyKey

• BCryptDestroySecret

• BCryptDuplicateHash

• BCryptDuplicateKey

• BCryptEncrypt

• BCryptExportKey

• BCryptFinalizeKeyPair

• BCryptFinishHash

• BCryptFreeBuffer

• BCryptGenerateKeyPair

• BCryptGenerateSymmetricKey

• BCryptGenRandom

• BCryptGetProperty

• BCryptHash

• BCryptHashData

• BCryptImportKey

• BCryptImportKeyPair

• BCryptKeyDerivation

• BCryptOpenAlgorithmProvider

• BCryptProcessMultiOperations

• BCryptSecretAgreement

• BCryptSetProperty

• BCryptSignHash

• BCryptVerifySignature

• SystemPrng

• EntropyPoolTriggerReseedForIum

• EntropyProvideData

• EntropyRegisterSource

• EntropyUnregisterSource

All of these functions are used in the Approved mode. Furthermore, these are the only Approved

functions that this module can perform.

The Kernel Mode Cryptographic Primitives Library has additional export functions described in Non-

Security Relevant Configuration Interfaces.

3.1.1 Algorithm Providers and Properties

3.1.1.1 BCryptOpenAlgorithmProvider

NTSTATUS WINAPI BCryptOpenAlgorithmProvider(

BCRYPT_ALG_HANDLE *phAlgorithm,

LPCWSTR pszAlgId,

LPCWSTR pszImplementation,

ULONG dwFlags);

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 24 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The BCryptOpenAlgorithmProvider() function has four parameters: algorithm handle output to the

opened algorithm provider, desired algorithm ID input, an optional specific provider name input, and

optional flags. This function loads and initializes a CNG provider for a given algorithm, and returns a

handle to the opened algorithm provider on success.

Unless the calling function specifies the name of the provider, the default provider is used.

The calling function must pass the BCRYPT_ALG_HANDLE_HMAC_FLAG flag in order to use an HMAC

function with a hash algorithm.

3.1.1.2 BCryptCloseAlgorithmProvider

NTSTATUS WINAPI BCryptCloseAlgorithmProvider(

BCRYPT_ALG_HANDLE hAlgorithm,

ULONG dwFlags);

This function closes an algorithm provider handle opened by a call to BCryptOpenAlgorithmProvider()

function.

3.1.1.3 BCryptSetProperty

NTSTATUS WINAPI BCryptSetProperty(

BCRYPT_HANDLE hObject,

LPCWSTR pszProperty,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptSetProperty() function sets the value of a named property for a CNG object. The CNG object

is a handle, the property name is a NULL terminated string, and the value of the property is a length-

specified byte string.

3.1.1.4 BCryptGetProperty

NTSTATUS WINAPI BCryptGetProperty(

BCRYPT_HANDLE hObject,

LPCWSTR pszProperty,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptGetProperty() function retrieves the value of a named property for a CNG object. The CNG

object is a handle, the property name is a NULL terminated string, and the value of the property is a

length-specified byte string.

3.1.1.5 BCryptFreeBuffer

VOID WINAPI BCryptFreeBuffer(

PVOID pvBuffer);

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 25 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Some of the CNG functions allocate memory on caller’s behalf. The BCryptFreeBuffer() function frees

memory that was allocated by such a CNG function.

3.1.2 Random Number Generation

3.1.2.1 BCryptGenRandom

NTSTATUS WINAPI BCryptGenRandom(

BCRYPT_ALG_HANDLE hAlgorithm,

PUCHAR pbBuffer,

ULONG cbBuffer,

ULONG dwFlags);

The BCryptGenRandom() function fills a buffer with random bytes. The random number generation

algorithm is:

• BCRYPT_RNG_ALGORITHM. This is the AES-256 counter mode based random generator as
defined in SP 800-90A.

This function is a wrapper for SystemPrng.

3.1.2.2 SystemPrng

BOOL SystemPrng(

unsigned char *pbRandomData,

size_t cbRandomData);

The SystemPrng() function fills a buffer with random bytes generated from output of NIST SP 800-90A

AES-256 counter mode based DRBG seeded from the Windows entropy pool. The Windows entropy pool

is populated from the following sources:

• An initial entropy value provided by the Windows OS Loader at boot time.

• The values of the high-resolution CPU cycle counter at times when hardware interrupts are

received.

• Random values gathered from the Trusted Platform Module (TPM), if one is available on the

system.

• Random values gathered by calling the RDRAND CPU instruction, if supported by the CPU.

The Windows DRBG infrastructure located in cng.sys continues to gather entropy from these sources

during normal operation, and the DRBG cascade is periodically reseeded with new entropy.

3.1.2.3 EntropyRegisterSource

NTSTATUS EntropyRegisterSource(

ENTROPY_SOURCE_HANDLE * phEntropySource,

ENTROPY_SOURCE_TYPE entropySourceType,

PCWSTR entropySourceName);

This function is used to obtain a handle that can be used to contribute randomness to the Windows

entropy pool. The handle is returned in the phEntropySource parameter. For this function,

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 26 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

entropySource must be set to ENTROPY_SOURCE_TYPE_HIGH_PUSH, and entropySourceName must be

a Unicode string describing the entropy source.

3.1.2.4 EntropyUnregisterSource

NTSTATUS EntropyRegisterSource(

ENTROPY_SOURCE_HANDLE hEntropySource);

This function is used to destroy a handle created with EntropyRegisterSource().

3.1.2.5 EntropyProvideData

NTSTATUS EntropyProvideData(

ENTROPY_SOURCE_HANDLE hEntropySource,

PCBYTE pbData,

SIZE_T cbData,

ULONG entropyEstimateInMilliBits);

This function is used to contribute entropy to the Windows entropy pool. hEntropySource must be a

handle returned by an earlier call to EntropyRegisterSource. The caller provides cbData bytes in the

buffer pointed to by pbData, as well as an estimate (in the entropyEstimateInMilliBits parameter) of how

many millibits of entropy are contained in these bytes.

3.1.2.6 EntropyPoolTriggerReseedForIum

VOID EntropyPoolTriggerReseedForIum(BOOLEAN fPerformCallbacks);

This function will trigger a kernel DRBG reseed for the cng.sys inside the IUM (Isolated User Mode)

environment. If called inside the IUM environment, it triggers a reseed from one or more of the entropy

pools of the system. If called inside the normal world (non-IUM) environment, this function does

nothing.

3.1.3 Key and Key-Pair Generation

3.1.3.1 BCryptGenerateSymmetricKey

NTSTATUS WINAPI BCryptGenerateSymmetricKey(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

PUCHAR pbSecret,

ULONG cbSecret,

ULONG dwFlags);

The BCryptGenerateSymmetricKey() function generates a symmetric key object directly from a DRBG for

use with a symmetric encryption algorithm or key derivation algorithm from a supplied key value. The

calling application must specify a handle to the algorithm provider created with the

BCryptOpenAlgorithmProvider() function. The algorithm specified when the provider was created must

support symmetric key encryption or key derivation.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 27 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.1.3.2 BCryptGenerateKeyPair

NTSTATUS WINAPI BCryptGenerateKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE *phKey,

ULONG dwLength,

ULONG dwFlags);

The BCryptGenerateKeyPair() function creates an empty public/private key pair. After creating a key

using this function, call the BCryptSetProperty() function to set its properties. The key pair can be used

only after BCryptFinalizeKeyPair() function is called.

3.1.3.3 BCryptFinalizeKeyPair

NTSTATUS WINAPI BCryptFinalizeKeyPair(

BCRYPT_KEY_HANDLE hKey,

ULONG dwFlags);

The BCryptFinalizeKeyPair() function completes a public/private key pair import or generation directly

from the output of a DRBG. The key pair cannot be used until this function has been called. After this

function has been called, the BCryptSetProperty() function can no longer be used for this key.

3.1.3.4 BCryptDuplicateKey

NTSTATUS WINAPI BCryptDuplicateKey(

BCRYPT_KEY_HANDLE hKey,

BCRYPT_KEY_HANDLE *phNewKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

ULONG dwFlags);

The BCryptDuplicateKey() function creates a duplicate of a symmetric key.

3.1.3.5 BCryptDestroyKey

NTSTATUS WINAPI BCryptDestroyKey(

BCRYPT_KEY_HANDLE hKey);

The BCryptDestroyKey() function destroys the specified key.

3.1.4 Key Entry and Output

3.1.4.1 BCryptImportKey

NTSTATUS WINAPI BCryptImportKey(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbKeyObject,

ULONG cbKeyObject,

PUCHAR pbInput,

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 28 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

ULONG cbInput,

ULONG dwFlags);

The BCryptImportKey() function imports a symmetric key from a key blob.

3.1.4.2 BCryptImportKeyPair

NTSTATUS WINAPI BCryptImportKeyPair(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_KEY_HANDLE hImportKey,

LPCWSTR pszBlobType,

BCRYPT_KEY_HANDLE *phKey,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptImportKeyPair() function is used to import a public/private key pair from a key blob.

3.1.4.3 BCryptExportKey

NTSTATUS WINAPI BCryptExportKey(

BCRYPT_KEY_HANDLE hKey,

BCRYPT_KEY_HANDLE hExportKey,

LPCWSTR pszBlobType,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptExportKey() function exports a key to a memory blob that can be persisted for later use.

3.1.5 Encryption and Decryption

3.1.5.1 BCryptEncrypt

NTSTATUS WINAPI BCryptEncrypt(

BCRYPT_KEY_HANDLE hKey,

PUCHAR pbInput,

ULONG cbInput,

VOID *pPaddingInfo,

PUCHAR pbIV,

ULONG cbIV,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptEncrypt() function encrypts a block of data of given length.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 29 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.1.5.2 BCryptDecrypt

NTSTATUS WINAPI BCryptDecrypt(

BCRYPT_KEY_HANDLE hKey,

PUCHAR pbInput,

ULONG cbInput,

VOID *pPaddingInfo,

PUCHAR pbIV,

ULONG cbIV,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptDecrypt() function decrypts a block of data of given length.

3.1.6 Hashing and Message Authentication

3.1.6.1 BCryptCreateHash

NTSTATUS WINAPI BCryptCreateHash(

BCRYPT_ALG_HANDLE hAlgorithm,

BCRYPT_HASH_HANDLE *phHash,

PUCHAR pbHashObject,

ULONG cbHashObject,

PUCHAR pbSecret,

ULONG cbSecret,

ULONG dwFlags);

The BCryptCreateHash() function creates a hash object with an optional key. The optional key is used for

HMAC, AES GMAC and AES CMAC.

3.1.6.2 BCryptHashData

NTSTATUS WINAPI BCryptHashData(

BCRYPT_HASH_HANDLE hHash,

PUCHAR pbInput,

ULONG cbInput,

ULONG dwFlags);

The BCryptHashData() function performs a one way hash on a data buffer. Call the BCryptFinishHash()

function to finalize the hashing operation to get the hash result.

3.1.6.3 BCryptDuplicateHash

NTSTATUS WINAPI BCryptDuplicateHash(

BCRYPT_HASH_HANDLE hHash,

BCRYPT_HASH_HANDLE *phNewHash,

PUCHAR pbHashObject,

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 30 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

ULONG cbHashObject,

ULONG dwFlags);

The BCryptDuplicateHash()function duplicates an existing hash object. The duplicate hash object

contains all state and data that was hashed to the point of duplication.

3.1.6.4 BCryptFinishHash

NTSTATUS WINAPI BCryptFinishHash(

BCRYPT_HASH_HANDLE hHash,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG dwFlags);

The BCryptFinishHash() function retrieves the hash value for the data accumulated from prior calls to

BCryptHashData() function.

3.1.6.5 BCryptDestroyHash

NTSTATUS WINAPI BCryptDestroyHash(

BCRYPT_HASH_HANDLE hHash);

The BCryptDestroyHash() function destroys a hash object.

3.1.6.6 BCryptHash

NTSTATUS WINAPI BCryptHash(

BCRYPT_ALG_HANDLE hAlgorithm,

PUCHAR pbSecret,

ULONG cbSecret,

PUCHAR pbInput,

ULONG cbInput,

PUCHAR pbOutput,

ULONG cbOutput);

The function BCryptHash() performs a single hash computation. This is a convenience function that

wraps calls to the BCryptCreateHash(), BCryptHashData(), BCryptFinishHash(), and BCryptDestroyHash()

functions.

3.1.6.7 BCryptCreateMultiHash

NTSTATUS WINAPI BCryptCreateMultiHash(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_HASH_HANDLE *phHash,
ULONG nHashes,
PUCHAR pbHashObject,
ULONG cbHashObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags);

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 31 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

BCryptCreateMultiHash() is a function that creates a new MultiHash object that is used in parallel

hashing to improve performance. The MultiHash object is equivalent to an array of normal (reusable)

hash objects.

3.1.6.8 BCryptProcessMultiOperations

NTSTATUS WINAPI BCryptProcessMultiOperations(
BCRYPT_HANDLE hObject,
BCRYPT_MULTI_OPERATION_TYPE operationType,
PVOID pOperations,
ULONG cbOperations,
ULONG dwFlags);

The BCryptProcessMultiOperations() function is used to perform multiple operations on a single multi-

object handle such as a MultiHash object handle. If any of the operations fail, then the function will

return an error.

Each element of the operations array specifies an operation to be performed on/with the hObject.

For hash operations, there are two operation types:

• Hash data

• Finalize hash

These correspond directly to BCryptHashData() and BCryptFinishHash(). Each operation specifies an

index of the hash object inside the hObject MultiHash object that this operation applies to. Operations

are executed in any order or even in parallel, with the sole restriction that the set of operations that

specify the same index are all executed in-order.

3.1.7 Signing and Verification

3.1.7.1 BCryptSignHash

NTSTATUS WINAPI BCryptSignHash(

BCRYPT_KEY_HANDLE hKey,

VOID *pPaddingInfo,

PUCHAR pbInput,

ULONG cbInput,

PUCHAR pbOutput,

ULONG cbOutput,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptSignHash() function creates a signature of a hash value.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is disallowed for digital

signature generation. SHA-1 is currently legacy-use for digital signature verification.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 32 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3.1.7.2 BCryptVerifySignature

NTSTATUS WINAPI BCryptVerifySignature(

BCRYPT_KEY_HANDLE hKey,

VOID *pPaddingInfo,

PUCHAR pbHash,

ULONG cbHash,

PUCHAR pbSignature,

ULONG cbSignature,

ULONG dwFlags);

The BCryptVerifySignature() function verifies that the specified signature matches the specified hash.

Note: this function accepts SHA-1 hashes, which according to NIST SP 800-131A is disallowed for digital

signature generation. SHA-1 is currently legacy-use for digital signature verification.

3.1.8 Secret Agreement and Key Derivation

3.1.8.1 BCryptSecretAgreement

NTSTATUS WINAPI BCryptSecretAgreement(

BCRYPT_KEY_HANDLE hPrivKey,

BCRYPT_KEY_HANDLE hPubKey,

BCRYPT_SECRET_HANDLE *phAgreedSecret,

ULONG dwFlags);

The BCryptSecretAgreement() function creates a secret agreement value from a private and a public

key. This function is used with KAS-FFC and KAS-ECC algorithms.

3.1.8.2 BCryptDeriveKey

NTSTATUS WINAPI BCryptDeriveKey(

BCRYPT_SECRET_HANDLE hSharedSecret,

LPCWSTR pwszKDF,

BCryptBufferDesc *pParameterList,

PUCHAR pbDerivedKey,

ULONG cbDerivedKey,

ULONG *pcbResult,

ULONG dwFlags);

The BCryptDeriveKey() function derives a key from a secret agreement value.

Note: When supporting a key agreement scheme that requires a nonce, BCryptDeriveKey uses

whichever nonce is supplied by the caller in the BCryptBufferDesc. Examples of the nonce types are

found in Section 5.4 of http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

When using a nonce, a random nonce should be used. And then if the random nonce is used, the

entropy (amount of randomness) of the nonce and the security strength of the DRBG has to be at least

one half of the minimum required bit length of the subgroup order.

For example:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 33 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

for KAS FFC, entropy of nonce must be 112 bits for FB, 128 bits for FC.

for KAS ECC, entropy of the nonce must be 128 bits for EC, 192 for ED, 256 for EE.

3.1.8.3 BCryptDestroySecret

NTSTATUS WINAPI BCryptDestroySecret(

BCRYPT_SECRET_HANDLE hSecret);

The BCryptDestroySecret() function destroys a secret agreement handle that was created by using the

BCryptSecretAgreement() function.

3.1.8.4 BCryptKeyDerivation

NTSTATUS WINAPI BCryptKeyDerivation(

 In BCRYPT_KEY_HANDLE hKey,

 _In_opt_ BCryptBufferDesc *pParameterList,

 _Out_writes_bytes_to_(cbDerivedKey, *pcbResult) PUCHAR pbDerivedKey,

 In ULONG cbDerivedKey,

 Out ULONG *pcbResult,

 In ULONG dwFlags);

The BCryptKeyDerivation() function executes a Key Derivation Function (KDF) on a key generated with

BCryptGenerateSymmetricKey() function. It differs from the BCryptDeriveKey() function in that it does

not require a secret agreement step to create a shared secret.

3.1.8.5 BCryptDeriveKeyPBKDF2

NTSTATUS WINAPI BCryptDeriveKeyPBKDF2(
BCRYPT_ALG_HANDLE hPrf,

 PUCHAR pbPassword,
ULONG cbPassword,
PUCHAR pbSalt,
ULONG cbSalt,
ULONGLONG cIterations,
PUCHAR pbDerivedKey,
ULONG cbDerivedKey,
ULONG dwFlags);

The BCryptDeriveKeyPBKDF2() function derives a key from a hash value by using the password based key

derivation function as defined by SP 800-132 PBKDF and IETF RFC 2898 (specified as PBKDF2).

3.1.9 Cryptographic Transitions

3.1.9.1 KAS-FFC and KAS-ECC

Through the year 2010, implementations of KAS-FFC and KAS-ECC were allowed to have an acceptable

bit strength of at least 80 bits of security (for KAS-FFC at least 1024 bits and for KAS-ECC at least 160

bits). From 2011 through 2013, 80 bits of security strength was considered deprecated, and was

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 34 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

disallowed starting January 1, 2014. As of that date, only security strength of at least 112 bits is

acceptable. KAS-ECC uses curve sizes of at least 256 bits (that means it has at least 128 bits of security

strength), so that is acceptable. However, KAS-FFC has a range of 1024 to 4096 and that changed to

2048 to 4096 after 2013.

3.1.9.2 SHA-1

From 2011 through 2013, SHA-1 could be used in a deprecated mode for use in digital signature

generation. As of Jan. 1, 2014, SHA-1 is no longer allowed for digital signature generation, and it is

allowed for legacy use only for digital signature verification.

3.2 Control Input Interface
The Control Input Interface are the functions in Algorithm Providers and Properties. Options for control

operations are passed as input parameters to these functions.

3.3 Status Output Interface
The Status Output Interface for the Kernel Mode Cryptographic Primitives Library is the return value

from each export function in the Kernel Mode Cryptographic Primitives Library.

3.4 Data Output Interface
The Data Output Interface for the Kernel Mode Cryptographic Primitives Library consists of the Kernel

Mode Cryptographic Primitives Library export functions except for the Control Input Interfaces. Data is

returned to the function’s caller via output parameters.

3.5 Data Input Interface
The Data Input Interface for the Kernel Mode Cryptographic Primitives Library consists of the Kernel

Mode Cryptographic Primitives Library export functions except for the Control Input Interfaces. Data and

options are passed to the interface as input parameters to the export functions. Data Input is kept

separate from Control Input by passing Data Input in separate parameters from Control Input.

3.6 Non-Security Relevant Configuration Interfaces
The following interfaces are not cryptographic functions and are used to configure cryptographic

providers on the system. Please see https://msdn.microsoft.com for details.

Function Name Description

BCryptEnumAlgorithms Enumerates the algorithms for a given set of operations.

BCryptEnumProviders Returns a list of CNG providers for a given algorithm.

BCryptRegisterConfigChangeNotify This is deprecated beginning with Windows 10.

BCryptResolveProviders Resolves queries against the set of providers currently
registered on the local system and the configuration
information specified in the machine and domain
configuration tables, returning an ordered list of
references to one or more providers matching the
specified criteria.

https://msdn.microsoft.com/

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 35 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

BCryptAddContextFunctionProvider Adds a cryptographic function provider to the list of
providers that are supported by an existing CNG
context.

BCryptRegisterProvider Registers a CNG provider.

BCryptUnregisterProvider Unregisters a CNG provider.

BCryptUnregisterConfigChangeNotify Removes a CNG configuration change event handler.
This API differs slightly between User-Mode and Kernel-
Mode.

BCryptGetFipsAlgorithmMode
CngGetFipsAlgorithmMode

Determines whether the Kernel Mode Cryptographic
Primitives Library is operating in FIPS mode. Some
applications use the value returned by this API to alter
their own behavior, such as blocking the use of some
SSL versions.

EntropyRegisterCallback Registers the callback function that will be called in a
worker thread after every reseed that the system
performs. The callback is merely informational.

BCryptQueryProviderRegistration Retrieves information about a CNG provider.

BCryptEnumRegisteredProviders Retrieves information about the registered providers.

BCryptCreateContext Creates a new CNG configuration context.

BCryptDeleteContext Deletes an existing CNG configuration context.

BCryptEnumContexts Obtains the identifiers of the contexts in the specified
configuration table.

BCryptConfigureContext Sets the configuration information for an existing CNG
context.

BCryptQueryContextConfiguration Retrieves the current configuration for the specified
CNG context.

BCryptAddContextFunction Adds a cryptographic function to the list of functions
that are supported by an existing CNG context.

BCryptRemoveContextFunction Removes a cryptographic function from the list of
functions that are supported by an existing CNG
context.

BCryptEnumContextFunctions Obtains the cryptographic functions for a context in the
specified configuration table.

BCryptConfigureContextFunction Sets the configuration information for the cryptographic
function of an existing CNG context.

BCryptQueryContextFunctionConfiguration Obtains the cryptographic function configuration
information for an existing CNG context.

BCryptEnumContextFunctionProviders Obtains the providers for the cryptographic functions
for a context in the specified configuration table.

BCryptSetContextFunctionProperty Sets the value of a named property or a cryptographic
function in an existing CNG context.

BCryptQueryContextFunctionProperty Obtains the value of a named property for a
cryptographic function in an existing CNG context.

BCryptSetAuditingInterface Sets the auditing interface.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 36 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

4 Roles, Services and Authentication

4.1 Roles
The Kernel Mode Cryptographic Primitives Library is a kernel-mode driver that does not interact with the

user through any service therefore the module’s functions are fully automatic and not configurable. FIPS

140 validations define formal “User” and “Cryptographic Officer” roles. Both roles can use any of this

module’s services.

4.2 Services

The Kernel Mode Cryptographic Primitives Library services are:

1. Algorithm Providers and Properties – This module provides interfaces to register algorithm
providers

2. Random Number Generation
3. Key and Key-Pair Generation
4. Key Entry and Output
5. Encryption and Decryption
6. Hashing and Message Authentication
7. Signing and Verification
8. Secret Agreement and Key Derivation
9. Show Status

10. Self-Tests - The module provides a power-up self-tests service that is automatically executed

when the module is loaded into memory. See Self-Tests.

11. Zeroizing Cryptographic Material - See Cryptographic Key Management

4.2.1 Mapping of Services, Algorithms, and Critical Security Parameters

The following table maps the services to their corresponding algorithms and critical security parameters

(CSPs).

Service Algorithms CSPs

Algorithm Providers and
Properties

None None

Random Number Generation AES-256 CTR DRBG
ENT (P)

AES-CTR DRBG Seed
AES-CTR DRBG Entropy Input
AES-CTR DRBG V
AES-CTR DRBG Key

Key and Key-Pair Generation RSA, KAS-FFC, KAS-ECC, ECDSA,
RC2, RC4, DES, Triple-DES, AES,
and HMAC
(RC2, RC4, and DES cannot be
used in FIPS mode.)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Key Entry and Output SP 800-38F AES Key Wrapping
(128, 192, and 256)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 37 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Encryption and Decryption • Triple-DES with 2 key
(encryption disallowed) and 3
key in ECB, CBC, CFB8 and
CFB64 modes;

• AES-128, AES-192, and AES-
256 in ECB, CBC, CFB8,
CFB128, and CTR modes;

• AES-128, AES-192, and AES-
256 in CCM, CMAC, GCM12,
and GMAC modes;

• NIST SP XTS-AES XTS-128 and
XTS-256;

• SP 800-56B RSADP mod 2048

(AES-GCM encryption13, IEEE
1619-2007 XTS-AES, RC2, RC4,
RSA, and DES, which cannot be
used in FIPS mode)

Symmetric Keys
Asymmetric Public Keys
Asymmetric Private Keys

Hashing and Message
Authentication

• FIPS 180-4 SHS SHA-1, SHA-
256, SHA-384, and SHA-512;

• FIPS 180-4 SHA-1, SHA-256,
SHA-384, SHA-512 HMAC;

• AES-128, AES-192, and AES-
256 in CCM, CMAC, and
GMAC;

• MD5 and HMAC-MD5
(allowed in TLS and EAP-TLS);

• MD2 and MD4 (disallowed in
FIPS mode)

Symmetric Keys (for HMAC,
AES CCM, AES CMAC, and
AES GMAC)

Signing and Verification • FIPS 186-4 RSA (RSASSA-
PKCS1-v1_5 and RSASSA-PSS)
digital signature generation
and verification with 2048
and 3072 modulus;
supporting SHA-114, SHA-256,
SHA-384, and SHA-512

• FIPS 186-4 ECDSA with the
following NIST curves: P-256,
P-384, P-521

Asymmetric Public Keys
Asymmetric RSA Private Keys
Asymmetric ECDSA Public
Keys
Asymmetric ECDSA Private
keys

Secret Agreement and Key
Derivation

• KAS-FFC – SP 800-56Arev3
Diffie-Hellman Key
Agreement, Finite Field

DH Private and Public Values,

12 If the initialization vector was not generated according to IG A.5 Scenario 4, refer to section 7.3 Key Generation
for additional information about generating IVs.
13 Idem.
14 SHA-1 is only acceptable for legacy signature verification.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 38 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Cryptography (FFC); 2048-
4096 bit key size

• KAS-ECC – SP 800-56Arev3 EC
Diffie-Hellman Key
Agreement with the
following NIST curves: P-256,
P-384, P-521 and the FIPS
non-Approved curves listed
in Non-Approved Algorithms

• SP 800-56A rev3 KAS-FFC-SSC
key agreement (dhEphem,
dhOneFlow, and dhStatic;
KAS Roles: initiator,
responder), with domain
parameters FB, FC, and safe
primes (ffdhe2048, MODP-
2048)

• SP 800-56A rev3 KAS-ECC-SSC
key agreement
(ephemeralUnified; KAS
roles: initiator, responder),
with domain parameters P-
256 (hash functions SHA2-
256, SHA2-384, SHA2-512), P-
384 (hash functions SHA2-
384, SHA2-512), and P-521
(hash function SHA2-512)

• SP 800-108 Key Derivation
Function (KDF) CMAC-AES
(128, 192, 256), HMAC
(SHA1, SHA-256, SHA-384,
SHA-512)

• SP 800-132 PBKDF

• SP 800-135 IKEv1 and IKEv2
KDF primitives

• Legacy CAPI KDF (cannot be
used in FIPS mode)

• HKDF (cannot be used in FIPS
mode)

ECDH Private and Public
Values, Z, Key Derivation Key,
and TLS Pre-Master Secret

Show Status None None

Self-Tests See Section 8 Self-Tests for the
list of algorithms

None

Zeroizing Cryptographic Material None None

4.2.2 Mapping of Services, Export Functions, and Invocations

The following table maps the services to their corresponding export functions and invocations.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 39 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Service Export Functions Invocations

Algorithm Providers and
Properties

BCryptOpenAlgorithmProvider
BCryptCloseAlgorithmProvider
BCryptSetProperty
BCryptGetProperty
BCryptFreeBuffer

This service is executed
whenever one of these
exported functions is called.

Random Number Generation BcryptGenRandom
SystemPrng
EntropyRegisterSource
EntropyUnregisterSource
EntropyProvideData
EntropyPoolTriggerReseedForIum

This service is executed
whenever one of these
exported functions is called.

Key and Key-Pair Generation BCryptGenerateSymmetricKey
BCryptGenerateKeyPair
BCryptFinalizeKeyPair
BCryptDuplicateKey
BCryptDestroyKey

This service is executed
whenever one of these
exported functions is called.

Key Entry and Output BCryptImportKey
BCryptImportKeyPair
BCryptExportKey

This service is executed
whenever one of these
exported functions is called.

Encryption and Decryption BCryptEncrypt
BCryptDecrypt

This service is executed
whenever one of these
exported functions is called.

Hashing and Message
Authentication

BCryptCreateHash
BCryptHashData
BCryptDuplicateHash
BCryptFinishHash
BCryptDestroyHash
BCryptHash
BCryptCreateMultiHash
BCryptProcessMultiOperations

This service is executed
whenever one of these
exported functions is called.

Signing and Verification BCryptSignHash
BCryptVerifySignature

This service is executed
whenever one of these
exported functions is called.

Secret Agreement and Key
Derivation

BCryptSecretAgreement
BCryptDeriveKey
BCryptDestroySecret
BCryptKeyDerivation
BCryptDeriveKeyPBKDF2

This service is executed
whenever one of these
exported functions is called.

Show Status All Exported Functions This service is executed upon
completion of an exported
function.

Self-Tests DriverEntry This service is executed upon
startup of this module.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 40 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Zeroizing Cryptographic Material BCryptDestroyKey
BCryptDestroySecret

This service is executed
whenever one of these
exported functions is called.

4.2.3 Non-Approved Services

The following table lists other non-security relevant or non-approved APIs exported from the crypto

module.

Function Name Description

BCryptDeriveKeyCapi Derives a key from a hash value. This function is provided
as a helper function to assist in migrating from legacy
Cryptography API (CAPI) to CNG.

BCRYPT_KDF_HKDF Derives a key from a hash value. This function is provided
to support potential enhancements to Windows.

SslDecryptPacket
SslEncryptPacket
SslExportKey
SslFreeObject
SslImportKey
SslLookupCipherLengths
SslLookupCipherSuiteInfo
SslOpenProvider
SslIncrementProviderReferenceCount
SslDecrementProviderReferenceCount

Supports Secure Sockets Layer (SSL) protocol
functionality. These functions are non-approved.

4.3 Authentication
The module does not provide authentication. Roles are implicitly assumed based on the services that are

executed.

5 Finite State Model

5.1 Specification
The following diagram shows the finite state model for the Kernel Mode Cryptographic Primitives

Library:

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 41 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6 Operational Environment
The operational environment for the Kernel Mode Cryptographic Primitives Library is the Windows 10

operating system running on a supported hardware platform.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 42 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6.1 Single Operator
The Kernel Mode Cryptographic Primitives Library is loaded into kernel memory as part of the boot

process and before the logon component is initialized. The “single operator” for the module is the

Windows Kernel.

6.2 Cryptographic Isolation
In the Windows operating system, all kernel-mode modules, including CNG.SYS, are loaded into the

Windows Kernel (ntoskrnl.exe) which executes as a single process. The Windows operating system

environment enforces process isolation from user-mode processes including memory and CPU

scheduling between the kernel and user-mode processes.

6.3 Integrity Chain of Trust
Windows uses several mechanisms to provide integrity verification depending on the stage in the boot

sequence and also on the hardware and configuration. The following diagram describes the Integrity

Chain of trust for each supported configuration for the following versions:

• Windows 11 build 10.0.22000

• Windows Server 2022 build 10.0.20348

• Windows 10 version 20H2 build 10.0.19042

• Windows Server version 20H2 build 10.0.19042

• Windows 10 version 21H1 build 10.0.19043

• Windows Server Azure Edition build 10.0.20348

• Azure Host 2021 build 10.0.20348

• Azure Stack HCI version 21H2 build 10.0.20348

• Azure Virtual Desktop version 21H1 build 10.0.19043

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 43 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 44 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Note: TCB Launcher was not tested for Windows 10 version 1903

The integrity of the the Kernel Mode Cryptographic Primitives Library module is checked by the

Windows OS Loader, Windows Resume, or TCB Launcher before it is loaded into ntoskrnl.exe.

Windows binaries include a SHA-256 hash of the binary signed with the 2048 bit Microsoft RSA code-

signing key (i.e., the key associated with the Microsoft code-signing certificate). The integrity check uses

the public key component of the Microsoft code signing certificate to verify the signed hash of the

binary.

7 Cryptographic Key Management
The Kernel Mode Cryptographic Primitives Library module uses the following critical security parameters

(CSPs) for FIPS Approved security functions:

Security Relevant Data Item Description

Symmetric encryption/decryption
keys

Keys used for AES or Triple-DES encryption/decryption. Key sizes
for AES are 128, 192, and 256 bits, and key sizes for Triple-DES are
192 and 128 bits.

HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, and
HMAC-SHA512; key length: 112-2048, increment 8.

Asymmetric ECDSA Public Keys Keys used for the verification of ECDSA digital signatures. Curve
sizes are P-256, P-384, and P-521.

Asymmetric ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures. Curve
sizes are P-256, P-384, and P-521.

Asymmetric RSA Public Keys Keys used for the verification of RSA digital signatures. Key sizes
are 2048 and 3072 bits. These keys can be produced using RSA
Key Generation.

Asymmetric RSA Private Keys Keys used for the calculation of RSA digital signatures. Key sizes
are 2048 and 3072 bits. These keys can be produced using RSA
Key Generation.

AES-CTR DRBG Entropy Input A secret value that is at least 256 bits and maintained internal to
the module that provides the entropy material for AES-CTR DRBG
output15

AES-CTR DRBG Seed A 384 bit secret value maintained internal to the module that
provides the seed material for AES-CTR DRBG output16

AES-CTR DRBG V A 128 bit secret value maintained internal to the module that
provides the entropy material for AES-CTR DRBG output17

15 Microsoft Common Criteria Windows Security Target, Page 29.
16 Recommendation for Random Number Generation Using Deterministic Random Bit Generators, NIST SP 800-90A
Revision 1, page 49.
17 Ibid.

http://www.commoncriteriaportal.org/files/epfiles/Windows%2010%20AU%20and%20Server%202016%20GP%20OS%20Security%20Target%20-%20Public.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 45 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

AES-CTR DRBG Key A 256 bit secret value maintained internal to the module that
provides the entropy material for AES-CTR DRBG output18

DH Private and Public values Private and public values used for KAS-FFC key establishment. Key
sizes are 2048 to 4096 bits.

ECDH Private and Public values Private and public values used for KAS-ECC key establishment.
Curve sizes are P-256, P-384, and P-521 and the ones listed in
section 2.3.

Z Shared secret input for KDFs and shared secret calculation output
for SP 800-56Ar3 key agreement. Key size for KAS-FFC is 2048-
4096 bits (input key size 2048, 3072, or 4096 bits); curves for KAS-
ECC include P-256, P-384, and P-521 (input key size 256, 384, or
521 bits).

Key Derivation Key Internal key for two-step KDFs. 256 or 384 bits.

TLS Pre-Master Secret Shared secret input to the TLS KDF. Input size is dependent on the
key exchange method of the chosen TLS cipher suite: for
TLS_ECDHE_*, see the ECDH curve sizes listed above; for
TLS_DHE_*, see the DH key sizes listed above; for TLS_RSA_*, the
pre-master secret size is 384 bits.

7.1 Access Control Policy
The Kernel Mode Cryptographic Primitives Library module allows controlled access to the security

relevant data items contained within it. The following table defines the access that a service has to

each. The permissions are categorized as a set of four separate permissions: read (r), write (w), execute

(x), delete (d). If no permission is listed, the service has no access to the item.

Kernel Mode Cryptographic
Primitives Library crypto
module

Service Access Policy

Sy
m

m
et

ri
c

en
cr

yp
ti

o
n

/d
ec

ry
p

ti
o

n
 k

ey
s

H
M

A
C

 k
ey

s

A
sy

m
m

et
ri

c
EC

D
SA

 P
u

b
lic

 k
ey

s

A
sy

m
m

et
ri

c
EC

D
SA

 P
ri

va
te

 k
ey

s

A
sy

m
m

et
ri

c
R

SA
 P

u
b

lic
 K

ey
s

A
sy

m
m

et
ri

c
R

SA
 P

ri
va

te
 K

ey
s

A
ES

-C
TR

D

R
B

G

Se
ed

,
A

ES
-C

TR

D
R

B
G

En
tr

o
p

y
In

p
u

t,
 A

ES
-C

TR
 D

R
B

G
 V

, &
 A

ES
-

C
TR

 D
R

B
G

 k
ey

D
H

 P
u

b
lic

 a
n

d
 P

ri
va

te
 v

al
u

e
s

EC
D

H
 P

u
b

lic
 a

n
d

 P
ri

va
te

 v
al

u
es

Z K
ey

 D
er

iv
at

io
n

 K
ey

TL
S

P
re

-M
as

te
r

Se
cr

et

Algorithm Providers and
Properties

Random Number
Generation

 x

Key and Key-Pair
Generation

wd wd wd wd wd wd x
w
d

wd

18 Ibid.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 46 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Key Entry and Output rw rw rw rw rw rw rw rw

Encryption and Decryption x

Hashing and Message
Authentication

 wx

Signing and Verification x x x x x

Secret Agreement and Key
Derivation

 x x x rw rw r

Show Status

Self-Tests

Zeroizing Cryptographic

Material wd wd wd wd wd wd wd
w
d

wd wd wd wd

7.2 Key Material

When the Kernel Mode Cryptographic Primitives Library is loaded in the Windows 10 operating system

kernel, no keys exist within it. A kernel module is responsible for importing keys into the Kernel Mode

Cryptographic Primitives Library or using the Kernel Mode Cryptographic Primitives Library’s functions to

generate keys.

7.3 Key Generation

The Kernel Mode Cryptographic Primitives Library can create and use keys for the following algorithms:

RSA, KAS-FFC, KAS-ECC, ECDSA, RC2, RC4, DES, Triple-DES, AES, and HMAC. However, RC2, RC4, and DES

cannot be used in FIPS mode.

Random keys can be generated by calling the BCryptGenerateSymmetricKey() and

BCryptGenerateKeyPair() functions. Random data generated by the BCryptGenRandom() function is

provided to BCryptGenerateSymmetricKey() function to generate symmetric keys. DES, Triple-DES, and

AES keys. When the operator chooses to have this cryptographic module generate initialization vectors

for AES GCM mode in accordance with FIPS 140-2 Implementation Guidance A.5 scenario 4, then the call

BCryptGenerateSymmetricKey() must set dwFlags to 0x00000020.

Asymmetric key-pairs are generated following the techniques given in SP 800-56Arev3 (Section 5.8).

RSA and ECDSA keys and key-pairs are generated following the techniques given in FIPS 186-4. KAS-FFC

and KAS-ECC keys and key-pairs are generated following the techniques given in SP 800-56Arev3.

Keys generated while not operating in the FIPS mode of operation cannot be used in FIPS mode, and

vice versa.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 47 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

7.4 Key Establishment

The Kernel Mode Cryptographic Primitives Library can use FIPS-Approved KAS-FFC and KAS-ECC key

agreement, RSA key transport and manual methods to establish keys. Alternatively, the module can also

use Approved KDFs to derive key material from a specified secret value or password.

The Kernel Mode Cryptographic Primitives Library can use the following FIPS-Approved key derivation

functions (KDF) from the common secret that is established during the execution of KAS-FFC and KAS-

ECC key agreement algorithms:

• BCRYPT_KDF_SP80056A_CONCAT. This KDF supports the Concatenation KDF as specified in SP
800-56Arev3 (Section 5.8).

• BCRYPT_KDF_HMAC. This KDF supports the IPsec IKEv1 key derivation that is non-Approved but
is an allowed legacy implementation in FIPS mode when used to establish keys for IKEv1 as per
scenario 4 of IG D.8.

The Kernel Mode Cryptographic Primitives Library can use the following FIPS-Approved key derivation
functions (KDF) from a specified secret or password:

• BCRYPT_SP80056A_CONCAT_ALGORITHM. This KDF supports the Concatenation KDF as
specified in SP 800-56Arev3 (Section 5.8).

• BCRYPT_SP800108_CTR_HMAC_ALGORITHM. This KDF supports the counter-mode variant of
the KDF specified in SP 800-108r1 (Section 4.1) with HMAC as the underlying PRF.

• BCRYPT_PBKDF2_ALGORITHM. This KDF supports the Password Based Key Derivation Function
specified in SP 800-132 (Section 5.3).

In addition, the industry standard KDF, HKDF (CNG flag BCRYPT_KDF_HKDF), and the legacy proprietary
CryptDerive Key KDF, (BCRYPT_CAPI_KDF_ALGORITHM, described at https://docs.microsoft.com/en-
us/windows/win32/api/wincrypt/nf-wincrypt-cryptderivekey). Cannot be used in a FIPS-Approved
mode.

7.4.1 NIST SP 800-132 Password Based Key Derivation Function (PBKDF)

There are two options presented in NIST SP 800-132, pages 8 – 10, that are used to derive the Data

Protection Key (DPK) from the Master Key. With the Kernel Mode Cryptographic Primitives Library, it is

up to the caller to select the option to generate/protect the DPK. For example, DPAPI uses option

2a. The Kernel Mode Cryptographic Primitives Library provides all the building blocks for the caller to

select the desired option.

The Kernel Mode Cryptographic Primitives Library supports the following HMAC hash functions as

parameters for PBKDF:

• SHA-1 HMAC

• SHA-256 HMAC

• SHA-384 HMAC

• SHA-512 HMAC

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptderivekey
https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptderivekey

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 48 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Keys derived from passwords, as described in SP 800-132, may only be used for storage applications. In
order to run in a FIPS Approved manner, strong passwords must be used and they may only be used for
storage applications. The password/passphrase length is enforced by the caller of the PBKDF interfaces
when the password/passphrase is created and not by this cryptographic module.19

7.4.2 NIST SP 800-38F AES Key Wrapping

As outlined in FIPS 140-2 IG, D.2 and D.9, AES key wrapping serves as a form of key transport, which in

turn is a form of key establishment. This implementation of AES key wrapping is in accordance with NIST

SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping.

7.5 Key Entry and Output

Keys can be both exported and imported out of and into the Kernel Mode Cryptographic Primitives

Library via BcryptExportKey(), BcryptImportKey(), and BcryptImportKeyPair() functions.

Symmetric key entry and output can also be done by exchanging keys using the recipient’s asymmetric

public key via BcryptSecretAgreement() and BcryptDeriveKey() functions.

Exporting the RSA private key by supplying a blob type of BCRYPT_PRIVATE_KEY_BLOB,

BCRYPT_RSAFULLPRIVATE_BLOB, or BCRYPT_RSAPRIVATE_BLOB to BcryptExportKey() is not allowed in

FIPS mode.

7.6 Key Storage

The Kernel Mode Cryptographic Primitives Library does not provide persistent storage of keys.

7.7 Key Archival

The Kernel Mode Cryptographic Primitives Library does not directly archive cryptographic keys. A user

may choose to export a cryptographic key (cf. “Key Entry and Output” above), but management of the

secure archival of that key is the responsibility of the user. All key copies inside the Kernel Mode

Cryptographic Primitives Library are destroyed and their memory location zeroized after used. It is the

caller’s responsibility to maintain the security of keys when the keys are outside the Kernel Mode

Cryptographic Primitives Library.

7.8 Key Zeroization

All keys are destroyed and their memory location zeroized when the operator calls BcryptDestroyKey()

or BcryptDestroySecret() on that key handle.

19 The probability of guessing a password is determined by its length and complexity, an organization should define
a policy for these based based their threat model, suh as the example guidance in NIST SP800-63b, Appendix A.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 49 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

8 Self-Tests

8.1 Power-On Self-Tests
The Kernel Mode Cryptographic Primitives Library module implements Known Answer Test (KAT)

functions when the module is loaded into ntoskrnl.exe at boot time and the default driver entry point,

DriverEntry, is called.

The Kernel Mode Cryptographic Primitives Library performs the following power-on (startup) self-tests:

• HMAC (SHA-1, SHA-256, and SHA-512) Known Answer Tests

• Triple-DES encrypt/decrypt ECB Known Answer Tests

• AES-128 encrypt/decrypt ECB Known Answer Tests

• AES-128 encrypt/decrypt CCM Known Answer Tests

• AES-128 encrypt/decrypt CBC Known Answer Tests

• AES-128 CMAC Known Answer Test

• AES-128 encrypt/decrypt GCM Known Answer Tests

• XTS-AES encrypt/decrypt Known Answer Tests

• RSA sign/verify Known Answer Tests using RSA_SHA256_PKCS1 signature generation and
verification

• ECDSA sign/verify Known Answer Tests on P256 curve

• KAS-FFC secret agreement Known Answer Test with 2048-bit key

• KAS-ECC secret agreement Known Answer Test on P256 curve

• SP 800-90A AES-256 counter mode DRBG Known Answer Tests (instantiate, generate and
reseed)

• SP800-90B startup health tests (APT/RCT)

• SP 800-108 KDF Known Answer Test

• SP 800-132 PBKDF Known Answer Test

• SHA-256 Known Answer Test

• SHA-512 Known Answer Test

• SP800-135 TLS 1.0/1.1 KDF Known Answer Test

• SP800-135 TLS 1.2 KDF Known Answer Test

• IKE SP800_135 KDF Known Answer Test

In any self-test fails, the Kernel Mode Cryptographic Primitives Library module does not load, an error

code is returned to ntoskrnl.exe, and the computer will fail to boot.

8.2 Conditional Self-Tests
The Kernel Mode Cryptographic Primitives Library performs pair-wise consistency checks upon each

invocation of RSA, KAS-ECC, and ECDSA key-pair generation and import as defined in FIPS 140-2.

KAS-FFC and KAS-ECC key usage assurances are performed according to NIST SP 800-56Arev3 sections

5.5.2, 5.6.2, and 5.6.3.

A Continuous Random Number Generator Test (CRNGT) and the DRBG health tests are performed for SP

800-90A AES-256 CTR DRBG.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 50 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The Entropy Source conducts Adaptive Proportion (APT) and Repetition Count (RCT) tests according to

SP 800-90B.

When BCRYPT_ENABLE_INCOMPATIBLE_FIPS_CHECKS flag (required by policy) is used with

BCryptGenerateSymmetricKey, then the XTS-AES Key_1 ≠ Key_2 check is performed in compliance with

FIPS 140-2 IG A.9.

If the conditional self-test fails the function returns the status code STATUS_INTERNAL_ERROR.

9 Design Assurance
The secure installation, generation, and startup procedures of this cryptographic module are part of the

overall operating system secure installation, configuration, and startup procedures for the Windows 10

operating system.

The Windows 10 operating system must be pre-installed on a computer by an OEM, installed by the

end-user, by an organization’s IT administrator, or updated from a previous Windows 10 version

downloaded from Windows Update.

An inspection of authenticity of the physical medium can be made by following the guidance at this

Microsoft web site: https://www.microsoft.com/en-us/howtotell/default.aspx

The installed version of Windows 10 must be verified to match the version that was validated. See

Appendix A – How to Verify Windows Versions and Digital Signatures for details on how to do this.

For Windows Updates, the client only accepts binaries signed by Microsoft certificates. The Windows

Update client only accepts content whose SHA-2 hash matches the SHA-2 hash specified in the

metadata. All metadata communication is done over a Secure Sockets Layer (SSL) port. Using SSL

ensures that the client is communicating with the real server and so prevents a spoof server from

sending the client harmful requests. The version and digital signature of new cryptographic module

releases must be verified to match the version that was validated. See Appendix A – How to Verify

Windows Versions and Digital Signatures for details on how to do this.

10 Mitigation of Other Attacks
The following table lists the mitigations of other attacks for this cryptographic module:

Algorithm Protected Against Mitigation

SHA1

Timing Analysis Attack Constant time implementation

Cache Attack Memory access pattern is independent of any confidential data

SHA2 Timing Analysis Attack Constant time implementation

https://www.microsoft.com/en-us/howtotell/default.aspx

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 51 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Protected Against Mitigation

 Cache Attack Memory access pattern is independent of any confidential data

Triple-DES Timing Analysis Attack Constant time implementation

AES

Timing Analysis Attack Constant time implementation

Cache Attack Memory access pattern is independent of any confidential data

Protected against cache attacks only when used with AES NI

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 52 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

11 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 2

Mitigation of Other Attacks 1

12 Additional Details
For the latest information on Microsoft Windows, check out the Microsoft web site at:

https://www.microsoft.com/en-us/windows

For more information about FIPS 140 validations of Microsoft products, please see:

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

https://www.microsoft.com/en-us/windows
https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 53 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

13 Appendix A – How to Verify Windows Versions and Digital Signatures

13.1 How to Verify Windows Versions
The installed version of Windows 10 OEs must be verified to match the version that was validated using

the following method:

1. In the Search box type "cmd" and open the Command Prompt desktop app.
2. The command window will open.
3. At the prompt, enter "ver”.
4. The version information will be displayed in a format like this:

Microsoft Windows [Version 10.0.xxxxx]

If the version number reported by the utility matches the expected output, then the installed version
has been validated to be correct.

13.2 How to Verify Windows Digital Signatures
After performing a Windows Update that includes changes to a cryptographic module, the digital

signature and file version of the binary executable file must be verified. This is done like so:

1. Open a new window in Windows Explorer.
2. Type “C:\Windows\” in the file path field at the top of the window.
3. Type the cryptographic module binary executable file name (for example, “CNG.SYS”) in the

search field at the top right of the window, then press the Enter key.
4. The file will appear in the window.
5. Right click on the file’s icon.
6. Select Properties from the menu and the Properties window opens.
7. Select the Details tab.
8. Note the File version Property and its value, which has a number in this format: xx.x.xxxxx.xxxx.
9. If the file version number matches one of the version numbers that appear at the start of this

security policy document, then the version number has been verified.
10. Select the Digital Signatures tab.
11. In the Signature list, select the Microsoft Windows signer.
12. Click the Details button.
13. Under the Digital Signature Information, you should see: “This digital signature is OK.” If that

condition is true, then the digital signature has been verified.

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 54 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

14 Appendix B – References
This table lists the specifications for each elliptic curve in section 2.3

Curve Specification

brainpoolP160r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP192r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP192t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP224r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP224t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP256r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP256t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP320r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP320t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP384r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP384t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP512r1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

brainpoolP512t1 http://www.ecc-brainpool.org/download/Domain-parameters.pdf

ec192wapi http://www.gbstandards.org/GB_standards/GB_standard.asp?id=900
(The GB standard is available here for purchase)

nistP192 http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

nistP224 http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

numsP256t1 https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/curvegen.pdf

numsP384t1 https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/curvegen.pdf

numsP512t1 https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/curvegen.pdf

secP160k1 http://www.secg.org/sec2-v2.pdf

secP160r1 http://www.secg.org/sec2-v2.pdf

secP160r2 http://www.secg.org/sec2-v2.pdf

secP192k1 http://www.secg.org/sec2-v2.pdf

secP192r1 http://www.secg.org/sec2-v2.pdf

secP224k1 http://www.secg.org/sec2-v2.pdf

secP224r1 http://www.secg.org/sec2-v2.pdf

secP256k1 http://www.secg.org/sec2-v2.pdf

secP256r1 http://www.secg.org/sec2-v2.pdf

secP384r1 http://www.secg.org/sec2-v2.pdf

secP521r1 http://www.secg.org/sec2-v2.pdf

wtls12 http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-
20010406-a.pdf

wtls7 http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-
20010406-a.pdf

wtls9 http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-
20010406-a.pdf

http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.gbstandards.org/GB_standards/GB_standard.asp?id=900
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/curvegen.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-261-wtls-20010406-a.pdf

Kernel Mode Cryptographic Primitives Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 55 of 55
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Curve Specification

x962P192v1 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P192v2 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P192v3 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P239v1 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P239v2 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P239v3 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

x962P256v1 https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_d
ate=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title=
(The ANSI X9.62 standard is available here for purchase)

https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title
https://global.ihs.com/doc_detail.cfm?&item_s_key=00325725&item_key_date=941231&input_doc_number=ANSI%20X9%2E62&input_doc_title

