
Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 1 of 35

FIPS 140-2 Security Policy
SafeZone FIPS Cryptographic Module

Rambus Global Inc., Finnish branch
Sokerilinnantie 11 C

FI-02600 Espoo
Finland

Phone: +358 50 3560966

Rambus Inc.
1050 Enterprise Way

Sunnyvale
CA 94089

United States

2020-03-13

Revision C

Software Version 1.1.0

Document Number: FIPS-2020-1022

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 2 of 35

1 Introduction .. 4
1.1 Purpose .. 6
1.2 Security level .. 6
1.3 Glossary .. 7

2 Ports and Interfaces .. 8
3 Roles, Services, and Authentication .. 9

3.1 Roles and Services .. 10
3.1.1 User Role .. 10
3.1.2 Crypto-officer Role ... 10

3.2 Authentication Mechanisms and Strength .. 11
4 Secure Operation and Security Rules .. 12

4.1 Security Rules ... 12
4.2 Physical Security Rules ... 13
4.3 Secure Operation Initialization Rules ... 13

5 Definition of SRDIs (Security Relevant Data Items) Modes of Access 14
5.1 FIPS Approved and Allowed algorithms .. 14
5.2 Non-FIPS mode of operation .. 18
5.3 Cryptographic Keys, CSPs, and SRDIs .. 20
5.4 Access Control Policy ... 25
5.5 User Guide .. 30

5.5.1 NIST SP 800-108: Key Derivation Functions .. 30
5.5.2 NIST SP 800-132: Password-Based Key Derivation Function 30
5.5.3 NIST SP 800-38D: Galois/Counter Mode .. 30
5.5.4 NIST SP 800-90: Deterministic Random Bit Generator 31

5.5.4.1 iOS entropy source .. 31
5.5.4.2 <t-base-300 OS ... 31

6 Self Tests .. 33
6.1 Power-Up Self-Tests ... 33
6.2 Conditional Self tests .. 34

7 Mitigation of Other Attacks ... 35

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 3 of 35

Modification History

2020-03-13 Policy revision C: FIPS Lib 1.1.0 policy, added more vendor affirmed

platforms, updated vendor contact information
2015-05-27 Policy revision B: FIPS Lib 1.1.0 policy
2014-12-12 Policy revision A: FIPS Lib 1.1.0 policy, based on FIPS Lib 1.0.3 (A)
2014-05-12 Policy revision D: Revalidation
2014-05-07 Updated according to NIST SP 800-131A
2014-05-02 Added more vendor affirmed platforms
2014-04-25 Added several vendor affirmed platforms
2014-04-25 Added validated one platform: Samsung Galaxy Note 3 (ARMv7-a)
2013-12-31 Updated contact addresses
2013-03-15 Policy revision C: The original validation

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 4 of 35

FIPS 140-2 Security Policy

SafeZone FIPS Cryptographic Module

1 Introduction
SafeZone FIPS Cryptographic Module is a FIPS 140-2 Security Level 1 validated
software cryptographic module from Rambus. This module is a toolkit that provides
the most commonly used cryptographic primitives for a wide range of applications,
including primitives needed for VPN (Virtual Private Network), TLS (Transport
Layer Security), DAR (Data-At-Rest), and DRM (Digital Rights Management)
clients.

SafeZone FIPS Cryptographic Module is a software-based product with a custom,
small-footprint API (Application Programming Interface). The cryptographic module
has been designed to provide the necessary cryptographic capabilities for other
Rambus products. However, it can also be used stand-alone in custom-developed
products to provide the required cryptographic functionality.

The module is primarily intended for embedded products with a general-purpose
operating system.

Figure 1: SafeZone FIPS Cryptographic Module Cryptographic Boundary

For FIPS 140-2 purposes, SafeZone FIPS Cryptographic Module is classified as a
multi-chip standalone cryptographic module. Within the logical boundary of
SafeZone FIPS Cryptographic Module is the libsafezone-sw-fips.a/so object
code library, also known as SafeZone FIPS Lib. The physical cryptographic boundary

CPU

ROM RAM

Logical Cryptographic Boundary

SafeZone FIPS Lib

Data OutputPersistent
Storage

Peripherals

Physical Cryptographic Boundary

Remote Devices

Data Input

Control Input

Status Output

Power Supply

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 5 of 35

of the module is the enclosure of a general-purpose computing device executing the
application that embeds the SafeZone FIPS Cryptographic Module.

The SafeZone FIPS Cryptographic Module has been tested for validation on the
following platforms:

Processor / Tested Platform Operating System Version
ARMv6 / Raspberry Pi Linux1 / kernel 3.10

(single-user mode)
1.1.0

ARMv7-a / Arndale <t-base 300
(single-user mode)

1.1.0

ARMv7-a / Samsung Galaxy Note 3 Android 4.4
(single-user mode)

1.1.0

Intel Atom Z2560 / Samsung Galaxy Tab 3 10.1 Android 4.2
(single-user mode)

1.1.0

Apple A7 (64-bit) / iPad Mini with Retina
Display

iOS 7.1
(single-user mode)

1.1.0

Apple A7 (32-bit) / iPad Mini with Retina
Display

iOS 7.1
(single-user mode)

1.1.0

Intel Atom Z3740 with AES-NI / ASUS
Transformer

Linux / kernel 3.13
(single-user mode)

1.1.0

Intel Atom Z3740 (64-bit) / ASUS Transformer Linux / kernel 3.13
(single-user mode)

1.1.0

Intel Atom Z3740 (64-bit) with AES-NI / ASUS
Transformer

Linux / kernel 3.13
(single-user mode)

1.1.0

Compliance is maintained on platforms for which the binary executable remains
unchanged. The module has been confirmed by the vendor to be operational on the
following platforms. As allowed by the FIPS 140-2 Implementation Guidance G.5,
the validation status of the Cryptographic Module is maintained when operated in the
following additional operating environments:

Implementation Guidance G.5 Recompilation
Processor / Device Operating System

ARMv7-a / Nexus 5 Android 5.0-5.1 (single-user mode)
ARMv7-a / Nexus 6 Android 5.0-5.1 (single-user mode)
NVidia Tegra K1 (ARMv8-a; 64-bit) /
Nexus 9

Android 5.0 (single-user mode)

NVidia Tegra K1 (32-bit) / Nexus 9 Android 5.0 (single-user mode)
ARMv7-a / Fuji Xerox 000T789485 Wind River Linux 6.0

(single-user mode)
ARMv7-a (32-bit) Android 6.0
ARMv8-a (64-bit) Android 7.0-7.1

1Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. All other brands and
product names are trademarks or registered trademarks of their respective owners.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 6 of 35

ARMv8-a (64-bit) Android 8.0-8.1
ARMv8-a (64-bit) Android 9.0
ARMv8-a (64-bit) Android 10.0
ARMv8-a (64-bit) Yocto Linux 2.7
ARMv8-a (64-bit) Linux / kernel 4.9
ARMv8-a (64-bit) Linux / kernel 4.14
ARM926EJ-S Nucleus 3.0
Intel Xeon X86-32 PhotonOS 2.0
Intel Xeon X86-32 Ubuntu Linux 18.04
Intel Xeon X86-64 Ubuntu Linux 18.04
Intel Xeon X86-64 Yocto Linux 2.6
Intel Core X86-32 Ubuntu Linux 18.04
Intel Core X86-64 Ubuntu Linux 18.04
Intel Core X86-64 Yocto Linux 2.6
ARMv7-a (32-bit) / Raspberry Pi 3 Rasbian Linux / kernel 4.19

The CMVP makes no statement as to the correct operation of the module or the
security strengths of the generated keys when the specific operational environment is
not listed on the validation certificate.

1.1 Purpose
The purpose of this document is to describe the secure operation of the SafeZone
FIPS Cryptographic Module including the initialization, roles, and responsibilities of
operating the product in a secure, in FIPS 140 mode of operation.

1.2 Security level
The cryptographic module meets the overall requirements applicable to Level 1
security of FIPS 140-2.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 7 of 35

Security Level
Security Requirements Specification Level
Cryptographic Module Specification 1
Module Ports and Interfaces 1
Roles, Services, and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 1
Self-Tests 1
Design Assurance 1
Mitigation of Other Attacks N/A

1.3 Glossary
Term/Acronym Description

AES Advanced Encryption Standard
API Application Programming Interface
CMVP Cryptographic Module Validation Program (FIPS 140)
CSP Critical Security Parameter
DEP Default Entry Point
DRM Digital Rights Management
DSS Digital Signature Standard
EC Elliptic Curve
FIPS Federal Information Processing Standard
IKE Internet Key Exchange
KEM Key-Encapsulation Mechanism (See NIST SP 800-56B)
KTS Key Transport Scheme
OAEP Optimal Asymmetric Encryption Padding
PRF Pseudo-Random Function
SHS Secure Hash Standard
SRDI Security Relevant Data Item
TLS Transport Layer Security
Triple-DES Triple Data Encryption Standard
VPN Virtual Private Network

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 8 of 35

2 Ports and Interfaces
As a software-only module, the SafeZone FIPS Cryptographic Module provides an
API logical interface for invocation of FIPS140-2 approved cryptographic functions.
The functions shall be called by the referencing application, which assumes the
operator role during application execution. The API, through the use of input
parameters, output parameters, and function return values, defines the four FIPS 140-
2 logical interfaces: data input, data output, control input and status output.

Logical
Interfaces

API

Data Input The data read from memory area(s) provided to the invoked function
via parameters that point to the memory area(s).

Control Input The API function invoked and function parameters designated as
control inputs.

Data Output The data written to memory area(s) provided to the invoked function
via parameters that point to the memory area(s).

Status Output The return value of the invoked API function.
Power
Interface

Not accessible via the API. The power interface is used as applicable
on the physical device.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 9 of 35

3 Roles, Services, and Authentication
The SafeZone FIPS Cryptographic Module supports the Crypto Officer and User
roles. The operator of the module will assume one of these two roles. Only one role
may be active at a time. The Crypto Officer role is assumed implicitly upon module
installation, uninstallation, initialization, zeroization, and power-up self-testing. If
initialization and self-testing are successful, a transition to the User role is allowed
and the User will be able to use all keys and cryptographic operations provided by the
module, and to create any CSPs (except Trusted Root Key CSPs which may only be
created in the Crypto Officer role).

The four unique run-time services given only to the Crypto Officer role are the ability
to initialize the module, to set-up key material for Trusted Root Key CSP(s), to
modify the entropy source, and to switch to the User role to perform any activities
allowed for the User role. The SafeZone FIPS Cryptographic Module does not
support concurrent operators.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 10 of 35

3.1 Roles and Services
The module does not authenticate the operator role.

3.1.1 User Role
The User role is assumed once the Crypto Officer role is finished with module
initialization and explicitly switches the role using the FL_LibEnterUserRole API
function. The User role is intended for common cryptographic use. The full list of
cryptographic services available to the User role is supplied in chapter 5 of this
document.

Service Description
All services except installation,
initialization, entropy source
nomination, and creation of Trusted
Root Key CSPs.

All standard cryptographic operations
of the module, such as symmetric
encryption, message authentication
codes, and digital signatures. The User
role may also allocate the key assets and
load values for any of these
cryptographic purposes.
The SafeZone FIPS Cryptographic
Module also provides a ‘Show Status’
service (API function FL_LibStatus)
that can be used to query the current
status of the cryptographic module. A
macro based on FL_LibStatus is
provided
(FL_IS_IN_APPROVED_MODE), which
returns true if the module is currently in
an approved mode of operation.

3.1.2 Crypto-officer Role
The Crypto Officer role can perform all the services allowed for the User role plus a
handful of additional ones. Separate from the run-time services of the module, the
tasks of installing and uninstalling the module to and from the host system imply the
role of a Crypto Officer. The four run-time services available only to the Crypto
Officer are initializing the module for use, creating key material for Trusted Root Key
CSPs, modifying the entropy source, and switching to the User role.

Service Description
All services allowed for User
role

See above.

Initialization Loading and preparing the module for use.
Trusted Root Key creation Load key material into the module for local

security purposes
(FL_RootKeyAllocateAndLoadValue).

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 11 of 35

Entropy Source Select the provider of the external entropy
source. (FL_RbgInstallEntropySource,
FL_RbgRequestSecurityStrength,
FL_RbgUseNonblockingEntropySource).

Switch to the User Role Uses the FL_LibEnterUserRole API
function to switch to User role.

Installation When the module is installed to a host system.
Uninstallation When the module is removed from a host

system.

3.2 Authentication Mechanisms and Strength
FIPS 140-2 Security Level 1 does not require role-based or identity-based operator
authentication. The SafeZone FIPS Cryptographic Module will not authenticate the
operator.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 12 of 35

4 Secure Operation and Security Rules
In order to operate the SafeZone FIPS Cryptographic Module securely, the operator
should be aware of the security rules enforced by the module and should adhere to the
rules for physical security and secure operation.

4.1 Security Rules
To operate the SafeZone FIPS Cryptographic Module securely, the operator of the
module must follow these instructions:

1. The operating environment that executes the SafeZone FIPS Cryptographic
Module must ensure single operator mode of operation to be compliant with the
requirements for the FIPS 140-2 Level 1.

2. The correct operation of the module depends on the Default Entry Point. It is not
allowed to prevent execution of the Default Entry Point (the function
FL_LibInit).

3. The operator must not call ptrace or strace functions, or run gdb or other
debugger when the module is in the FIPS mode.

4. If the hardware platform has a connector for an external debugger (for example
JTAG), that connector must not be used while the module is in FIPS mode.

5. The SafeZone FIPS Cryptographic Module keeps all CSPs and other protected
objects in Random Access Memory (RAM). The operator(s) must only use these
objects via the handles provided by the SafeZone FIPS Cryptographic Module. It
is not permissible to directly access these objects in the memory.

6. The operator must not call functions provided by the SafeZone FIPS
Cryptographic Module that are not explicitly specified in the appropriate guidance
document for User or Crypto Officer.

7. When using cryptographic services provided by the SafeZone FIPS Cryptographic
Module, the operator must follow the appropriate guidance for each cryptographic
algorithm. Although the cryptographic algorithms provided by the SafeZone FIPS
Cryptographic Module are recommended or allowed by NIST, secure operation of
these algorithms requires thorough understanding of the recommendations and
appropriate limitations.

8. The SafeZone FIPS Cryptographic Module aims to be flexible and therefore it
includes support for cryptographic algorithms or key lengths that were considered
secure until 2013 according to NIST SP 800-131A. It is the responsibility of the
SafeZone FIPS Cryptographic Module user to ensure that disallowed algorithms
or key lengths are not used.

9. Some of the implemented cryptographic algorithms offer key lengths exceeding
the current NIST specifications. Such key lengths must not be used, unless
following newer guidance from NIST.

a. RSA Key Pair Generation provided by the module (FIPS 186-3 B.3.6) is
only FIPS-approved for RSA modulus sizes of 2048 bits and 3072 bits. It
is not permissible to generate keys using other RSA modulus sizes.

10. The Crypto Officer must ensure that the Trusted Root Key has sufficient entropy
to meet all FIPS 140-2 requirements for its usage in the module.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 13 of 35

4.2 Physical Security Rules
The physical device on which the SafeZone FIPS Cryptographic Module is executed
must follow the physical security rules applicable to the purpose of the device. The
SafeZone FIPS Cryptographic Module is software-based and does not provide
physical security.

4.3 Secure Operation Initialization Rules
The SafeZone FIPS Cryptographic Module must be linked with an application to
become executable. The software code of the module (the libsafezone-sw-
fips.a object code library or the libsafezone-sw-fips.so dynamically
loadable library) is linked with an end application producing an executable
application for the target platform. The application is installed in a platform-specific
way, e.g. when purchased from an application store for the platform. In some cases
there is no need for installation, e.g. when a mobile equipment vendor includes the
application with the equipment.

The SafeZone FIPS Cryptographic Module is loaded by loading an application that
links the library statically. The SafeZone FIPS Cryptographic Module is initialized
automatically upon loading. On some platforms the module is implemented as a
dynamically loadable module. In this case, the module is loaded as needed by the
dynamic linker.

The SafeZone FIPS Cryptographic Module does not support operator authentication
and thus does not require any authentication itself. The SafeZone FIPS Cryptographic
Module is by default in FIPS-approved mode once initialized. Usually, the module
does not require any special set-up or initialization except for installation.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 14 of 35

5 Definition of SRDIs (Security Relevant Data Items) Modes
of Access

This chapter specifies security relevant data items as well as the access control policy
that is enforced by the SafeZone FIPS Cryptographic Module.

Each SRDI is held in the asset store accompanied by a security usage policy. The
policy is set when the asset is allocated with
FL_RootKeyAllocateAndLoadValue, FL_AssetAllocate,
FL_AssetAllocateBasic, FL_AssetAllocateSamePolicy or
FL_AssetAllocateAndAssociateKeyExtra. When the asset is accessed for use
in a cryptographic operation, the policy is tested to ensure that the asset is eligible for
the requested use. A policy typically consists of the allowed algorithm(s), the
allowed strength of the algorithm, and the direction of the operation (encryption or
decryption).

5.1 FIPS Approved and Allowed algorithms
The SafeZone FIPS Cryptographic Module implements the following FIPS-approved
algorithms:

Algorithm Implementation Details Algorithm
Certificate(s)

RSA
FIPS 186-4
Signature Generation
Key Pair Generation

2048, and 3072 bit keys; PKCS #1
v1.5 and PSS; SHA-224, SHA-256,
SHA-384, SHA-512

RSA #1593

RSA
FIPS 186-4
Signature Validation

1024, 2048, and 3072 bit keys;
PKCS #1 v1.5 and PSS

RSA #1593

DSA
FIPS 186-4
Signature Generation
Domain Parameter
Generation
Key Pair Generation

P=2048/N=224, P=2048/N=256,
P=3072/N=256; SHA-224, SHA-
256, SHA-384, SHA-512

DSA #905

DSA
FIPS 186-4
Signature Validation
Domain Parameter
Validation

P=1024/N=160, P=2048/N=224,
P=2048/N=256, P=3072/N=256

DSA #905

ECDSA
FIPS 186-4
Signature Generation
Key Pair Generation

NIST P-224, P-256, P-384 and P-
521 curves; SHA-224, SHA-256,
SHA-384, SHA-512

ECDSA #567

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 15 of 35

Algorithm Implementation Details Algorithm
Certificate(s)

ECDSA
FIPS 186-4
Signature Validation
Public Key
Verification

NIST P-192, P-224, P-256, P-384
and P-521 curves

ECDSA #567

AES
FIPS 197,
NIST SP 800-38A

128, 192, 256 bit keys; ECB, CBC,
CTR mode

AES #3123

AES CCM
NIST SP 800-38C

128, 192, 256 bit keys AES #3123

AES GCM
NIST SP 800-38D

128, 192, 256 bit keys AES #3123

XTS-AES
NIST SP 800-38E

256, 512 bit keys
(128-bit or 256-bit encryption
strength)

AES #3123

Triple-DES
NIST SP 800-67

192 bit keys; ECB and CBC mode Triple-DES
#1793

CMAC
NIST SP 800-38B

128, 192, 256 bit keys AES #3123

HMAC
FIPS 198-1

112-512 bit keys; SHA-1, SHA-
224, SHA-256, SHA-384, SHA-
512

HMAC #1980

SHS
FIPS 180-3

SHA-1, SHA-224, SHA-256, SHA-
384, SHA-512; BYTE only

SHS #2599

DRBG
NIST SP 800-90

AES-128-CTR without df or reseed
AES-256-CTR with df and reseed

DRBG #634,
DRBG #637

KTS (KEM
NIST SP 800-56B)

2048, 3072 bit keys; RSA-KEM-
KWS-basic (section 9.3.3); vendor
affirmed; key-wrapping; key
establishment methodology
provides 112 bits or 128 bits of
encryption strength

N/A, Vendor-
affirmed

KTS (OAEP
NIST SP 800-56B)

2048, 3072 bit keys; RSA-OAEP
(section 9.2.3); vendor affirmed;
key-wrapping; key establishment
methodology provides 112 bits or
128 bits of encryption strength

N/A, Vendor-
affirmed

PBKDF
NIST SP 800-132

with SHA-1, SHA-256 N/A, Vendor-
affirmed

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 16 of 35

Algorithm Implementation Details Algorithm
Certificate(s)

KDF
NIST SP 800-108

112-512 bit keys; SHA-1, SHA-
224, SHA-256, SHA-384, SHA-
512, AES-CMAC; counter,
feedback and double pipeline
modes

KBKDF #37,
KBKDF #38,
KBKDF #39,
KBKDF #40

Key derivation
methodology

provides
between 112 and

256 bits of
encryption
strength.

Application Specific
Key Derivation
Functions
NIST SP 800-
135rev1

IKEv1 Key Derivation Functions
IKEv2 Key Derivation Functions
TLS 1.0/1.1 Key Derivation
Functions
TLS 1.2 Key Derivation Functions

CVL #385

FFC Diffie-Hellman
primitive;
A part of NIST SP
800-56A

Key Agreement Primitives;
2048, 3072 bit modular Diffie-
Hellman groups

CVL #384
Key

establishment
methodology
provides 112

bits or 128 bits
of encryption

strength.

ECC CDH primitive;
A part of NIST SP
800-56A

Key Agreement Primitives;
NIST P-224, P-256, P-384 and P-
521 curves

CVL #384
Key

establishment
methodology

provides
between 112 and

256 bits of
encryption
strength.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 17 of 35

Algorithm Implementation Details Algorithm
Certificate(s)

KTS (NIST SP 800-
38F
Key Wrapping)

Key Wrapping function KW
CIPH=AES; 128, 192, 256 bit keys
Key Wrapping function KWP
CIPH=AES; 128, 192, 256 bit keys

KTS (AES Cert.
#3123)

Key
establishment
methodology

provides
between 128 and

256 bits of
encryption

strength

The cryptographic module supports the following non-approved algorithms in the
approved mode of operation as allowed:

Algorithm Algorithm Type Utilization

RSA Encryption
(PKCS #1 v1.5)

Key Transport;
2048, 3072 bit keys

(RSA Cert.
#1593)

Key establishment
methodology

provides 112 bits or
128 bits of

encryption strength.

MD5 Message Digest;
This function is only allowed
as a part of an approved key
transport scheme (e.g. TLS 1.0
or TLS 1.1).

/dev/random Non-Approved RBG An entropy source
for NIST SP 800-90

DRBG.

/dev/urandom Non-Approved RBG An entropy source
for NIST SP 800-90

DRBG.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 18 of 35

<t-base-300 RNG Non-Approved RBG An entropy source

for NIST SP 800-90
DRBG.

The SafeZone FIPS Cryptographic Module is intended for products where FIPS 140-
2 approved algorithms are used. Rambus also provides solutions for customers that
need software or hardware based implementations for non-approved cryptographic
algorithms, such as Camellia and C2. However, to ensure that SafeZone FIPS
Cryptographic Module remains the most convenient solution for products required to
be FIPS 140-2 approved, it does not implement these algorithms.

5.2 Non-FIPS mode of operation

In the end of 2013, some of algorithms previously allowed by the NIST were
disallowed. This was because 80-bits of security was considered no longer sufficient.
See document NIST SP 800-131A for details. The SafeZone FIPS Cryptographic
Module implements additional key lengths for some of these algorithms (RSA, DSA,
ECDSA) for compatibility with applications previously using these key sizes. These
no longer approved key sizes shall only be used in non-FIPS mode of operation.

The non-FIPS validated algorithms and key sizes supported by the module are:

Algorithm Implementation Details Reason for algorithm
being no longer
allowed in FIPS mode.

RSA
FIPS 186-2
Signature Generation

1024, 1536, 2048, 3072, and
4096 bit keys; PKCS #1 v1.5
and PSS

Transition from FIPS
186-2 to 186-4.

RSA
FIPS 186-4
Signature Generation
Key Pair Generation

1024 bit keys; PKCS #1 v1.5
and PSS

Key length used
provides less than 112

bits of encryption
strength

DSA
FIPS 186-4
Signature Generation
Domain Parameter
Generation
Key Pair Generation

P=1024/N=160 Key length used
provides less than 112

bits of encryption
strength

ECDSA
FIPS 186-2/4
Signature Generation
Key Pair Generation

NIST P-192 curve Key length used
provides less than 112

bits of encryption
strength

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 19 of 35

Algorithm Implementation Details Reason for algorithm
being no longer
allowed in FIPS mode.

ECDSA
FIPS 186-2
Signature Generation

NIST P-224, P-256, P-384
and P-521 curves

Transition from FIPS
186-2 to 186-4.

HMAC
FIPS 198-1

80-104 bit keys; SHA-1,
SHA-224, SHA-256, SHA-
384, SHA-512

Key length used
provides less than 112

bits of encryption
strength.

KTS
(KEM
NIST SP 800-56B)

1024, 1536, bit keys; RSA-
KEM-KWS-basic; key-
wrapping

Key establishment
methodology provides
less than 112 bits of
encryption strength

KTS (OAEP
NIST SP 800-56B)

1024, 1536 bit keys; RSA-
OAEP; key-wrapping

Key establishment
methodology provides
less than 112 bits of
encryption strength

KDF
NIST SP 800-108

80-104 bit keys; SHA-1,
SHA-224, SHA-256, SHA-
384, SHA-512, AES-CMAC;
counter, feedback and double
pipeline modes

Key derivation
methodology provides
less than 112 bits of
encryption strength.

FFC Diffie-Hellman
primitive;

Key Agreement Primitives;
1024 bit modular Diffie-
Hellman groups

Key establishment
methodology provides
less than 112 bits of
encryption strength.

ECC CDH primitive;
A part of NIST SP
800-56A

Key Agreement Primitives;
NIST P-192 curves

Key establishment
methodology provides
less than 112 bits of
encryption strength.

RSA Encryption
(PKCS #1 v1.5)

Key Transport;
1024, 1536 bit keys

Key establishment
methodology provides
less than 112 bits of
encryption strength.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 20 of 35

5.3 Cryptographic Keys, CSPs, and SRDIs
While operating in a FIPS-compliant manner, the asset store within the SafeZone
FIPS Cryptographic Module may contain the following security relevant data items
(depending on which keys will be used by the user):

ID Algorithm Size Description Origin Storage Zeroization
Method

General Keys/CSPs
AES
Encryption
Key

AES
including
modes
ECB, CBC,
and CTR

128, 192, 256
bits

Key created for the
purposes of
encrypting and/or
decrypting data using
AES algorithm

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

AES CCM
Encryption
Key

AES CCM 128, 192, 256
bits

Key created for the
purposes of
authenticated
encryption and/or
decryption of data
using AES and CCM
algorithms

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

AES GCM
Encryption
Key

AES GCM 128, 192, 256
bits

Key created for the
purposes of
authenticated
encryption and/or
decryption of data
using AES and GCM
algorithms

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

XTS-AES
Encryption
Key

XTS-AES 256, 512 bits Key created for the
purposes of
encrypting and/or
decrypting data using
AES algorithm in
XTS mode

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Triple-DES
Encryption
Key

Triple-DES 192 bits Key created for the
purposes of
encrypting and/or
decrypting data using
Triple-DES algorithm

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

CMAC Key CMAC +
AES

128, 192, 256
bits

Key created for the
purposes of
generating and
verifying CMAC
authentication codes

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

CMAC Verify
Key

CMAC +
AES

128, 192, 256
bits

Key created for the
purpose of verifying
CMAC authentication
codes

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 21 of 35

ID Algorithm Size Description Origin Storage Zeroization
Method

KDF Key
Derivation key

NIST SP
800-108 +
HMAC or
CMAC

112-512 bits Key created for the
purpose of deriving
other keys as specified
in NIST SP 800-108
or IKEv1/IKEv2 key
derivation specified in
NIST SP 800-135.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

TLS-PRF
Key
Derivation Key

NIST SP
800-135

112-512 bits Key created for the
purpose of key
derivation using
TLS1.0/TLS1.2 key
derivation function
presented in NIST SP
800-135.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

HMAC Key HMAC +
SHS

112-512 bits Key created for the
purposes of
generating and
verifying HMAC
authentication codes

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

HMAC Verify
Key

HMAC +
SHS

112-512 bits Key created for the
purpose of verifying
HMAC authentication
codes

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

RSA Signing
Key

RSA Private
Key (CRT)

2048, 3072 bits
(modulus size)

Private key for the
purpose of signing
data using RSA with
PKCS #1v1.5 or PSS
padding.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

DSA Signing
Key

DSA Private
Key

P=2048/N=224,
P=2048/N=256,
P=3072/N=256

Private key for the
purpose of signing
data using DSA
algorithm.
Includes associated
domain parameters.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

ECDSA
Signing Key

ECDSA
Private Key

P-224,
P-256,
P-384,
P-521

Private key for the
purpose of signing
data using ECDSA
algorithm

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

AES Key-
Wrapping Key

AES 128, 192, 256
bits

Key created for the
purposes of data or
key wrapping and
unwrapping using
NIST SP 800-38F
algorithm

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Diffie-Hellman
Private Value

Diffie-
Hellman

P=2048/N=224,
P=2048/N=256,
P=3072/N=256

Private value for the
purpose of key
agreement using
Diffie-Hellman
algorithm.
Includes associated
domain parameters.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 22 of 35

ID Algorithm Size Description Origin Storage Zeroization
Method

EC Diffie-
Hellman
Private Value

EC Diffie-
Hellman

P-224,
P-256,
P-384,
P-521

Private value for the
purpose of key
agreement using
Elliptic Curve Diffie-
Hellman algorithm.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

KTS (KEM)
Unwrapping
Key

RSA Private
Key (CRT)

2048, 3072 bits Private key for the
purpose of
transporting keys
using RSA with KEM
as specified in NIST
SP 800-56B

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

KTS (OAEP)
Unwrapping
Key

RSA Private
Key (CRT)

2048, 3072 bits Private key for the
purpose of
transporting keys
using RSA with
OAEP as specified in
NIST SP 800-56B

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

KTS (PKCS #1
v1.5) RSA
Unwrapping
Key

RSA Private
Key (CRT)

2048, 3072 bits Private key for the
purpose of
transporting keys
using RSA with
PKCS #1 v1.5
padding (also known
as RSA Encryption)

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Trusted Keys

Trusted Root
Key

NIST SP
800-108
KDF

256 bits Key used for deriving
other keys as per
NIST SP 800-108.
Can only derive
‘Trusted KDK’ and
‘Trusted KEKDK’
keys.

Crypto Officer Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Trusted KDK NIST SP
800-108
KDF

256 bits Key used for deriving
other keys as per
NIST SP 800-108.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Trusted
KEKDK

NIST SP
800-108
KDF
+
AES
(Key Wrap)

256 bits Key used for
wrapping keys with
combination of NIST
SP800-108 KDF and
AES Key Wrap.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Other CSPs

DRBG CTR-
128 state: Key

CTR_DRBG
128-bits
with
derivation
function

128 bits

Key for DRBG used
for random number
and key/key pair
generation purposes.

Entropy source Plaintext
in RAM

Power Off,
FL_LibUnInit

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 23 of 35

ID Algorithm Size Description Origin Storage Zeroization
Method

DRBG CTR-
128 state: V

CTR_DRBG
128-bits
with
derivation
function

128 bits

V value for DRBG
used for random
number and key/key
pair generation
purposes.

Entropy source Plaintext
in RAM

Power Off,
FL_LibUnInit

DRBG CTR-
256 state: Key

CTR_DRBG
256-bits
with
derivation
function

256 bits

Key for DRBG used
for random number
and key/key pair
generation purposes.

Entropy source Plaintext
in RAM

Power Off,
FL_LibUnInit

DRBG CTR-
256 state: V

CTR_DRBG
256-bits
with
derivation
function

128 bits

V value for DRBG
used for random
number and key/key
pair generation
purposes.

Entropy source Plaintext
in RAM

Power Off,
FL_LibUnInit

Public Keys

Software
Integrity Public
Key

ECDSA /
Verify

NIST P-224 Public key used by
Power-on Software
Integrity to ensure the
integrity of the
Cryptographic
Module.

Embedded in the
software

Plaintext
in
persistent
storage

none

RSA
Verification
Key

RSA Public
Key

1024, 2048,
3072 bits
modulus size

Public key for the
purpose of verifying
signed data using
RSA with PKCS #1
v1.5 or PSS padding.
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

DSA
Verification
Key

DSA Public
Key

P=1024/N=160,
P=2048/N=224,
P=2048/N=256,
P=3072/N=256

Public key for the
purpose of verifying
signed data using
DSA algorithm.
Includes associated
domain parameters.
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

ECDSA
Verification
Key

ECDSA
Public Key

P-192,
P-224,
P-256,
P-384,
P-521

Public key for the
purpose of verifying
signed data using
ECDSA algorithm.
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 24 of 35

ID Algorithm Size Description Origin Storage Zeroization
Method

Diffie-Hellman
Public Value

Diffie-
Hellman

P=2048/N=224,
P=2048/N=256,
P=3072/N=256

Public value for the
purpose of key
agreement using the
Diffie-Hellman
algorithm.
Includes associated
domain parameters.
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

EC Diffie-
Hellman Public
Value

EC Diffie-
Hellman

P-224,
P-256,
P-384,
P-521

Public value for the
purpose of key
agreement using the
Elliptic Curve Diffie-
Hellman algorithm.
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

KTS (KEM)
Wrapping Key

RSA Public
Key

2048, 3072 bits Public key for the
purpose of
transporting keys
using RSA with KEM
as specified in NIST
SP 800-56B.
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

KTS (OAEP)
Wrapping Key

RSA Public
Key

2048, 3072 bits Public key for the
purpose of
transporting keys
using RSA with
OAEP as specified in
NIST SP 800-56B.
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

KTS (PKCS #1
v1.5) RSA
Wrapping Key

RSA Public
Key

2048, 3072 bits Public key for the
purpose of
transporting keys
using RSA with
PKCS #1 v1.5
padding (also known
as RSA Encryption).
Not considered
sensitive or CSP.

Crypto Officer,
User

Plaintext
in RAM

Power-off,
FL_AssetFree,
FL_LibUnInit

All the cryptographic keys and other security relevant materials handled by the
module can be zeroized by using the cryptographic module, with the exception of the
Software Integrity Public Key that is used in the self-test to validate the module.

There are three ways to zeroize a key: individual keys can be explicitly zeroized using
the FL_AssetFree function call, all keys are zeroized once the module is
uninitialized (FL_LibUnInit) or encounters error state, and (as all the keys handled
by the module except the Software Integrity Public key are stored in RAM memory),
the keys can also be zeroized by turning the power off.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 25 of 35

The main difference between normal and Trusted Keys is that Trusted Keys do not
allow the User role to pick the key material to use, but the keys can only be derived
from the trusted root key provided by the Crypto Officer role. The primary use of
trusted keys is wrapping and unwrapping other keys for purposes of persistent storage
outside the SafeZone FIPS Cryptographic Module. Trusted Keys do not provide any
additional security for FIPS purposes. They merely are identifiers for the keys derived
from the trusted root key.

5.4 Access Control Policy
The module allows controlled access to the SRDIs contained within it. The following
table defines the access that an operator or an application has to each SRDI while
operating the SafeZone FIPS Cryptographic Module in a given role performing a
specific service (command). The permissions are categorized as a set of four separate
permissions: read [R] (the SRDI can be read by this operation), write [W] (the SRDI
can be written by this operation), execute [X] (the SRDI can be used in this
operation), and delete [D] (the SRDI will be zeroized by this operation). If no
permission is listed, then an operator outside the SafeZone FIPS Cryptographic
Module has no access to the SRDI.

The operations are presented in the following tables: for secret keys, private keys,
public keys, and none (operations which do not affect any of SRDI). The operations
which are not appropriate for a specific key type have been omitted.

SafeZone FIPS Cryptographic
Module

SRDI/Role/Service Access Policy

Secret Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

A
ES

 E
nc

ry
pt

io
n

K
ey

A

ES
 C

CM
 E

nc
ry

pt
io

n
K

ey

A
ES

 G
CM

 E
nc

ry
pt

io
n

K
ey

X

TS
-A

ES
 E

nc
ry

pt
io

n
K

ey

Tr
ip

le
- D

ES
 E

nc
ry

pt
io

n
K

ey

CM
A

C
K

ey

CM
A

C
V

er
ify

 K
ey

K

D
F

K
ey

 D
er

iv
at

io
n

ke
y

TL
S-

PR
F

K
ey

 D
er

iv
at

io
n

ke
y

H
M

A
C

K
ey

H

M
A

C
V

er
ify

 K
ey

A

ES
 K

ey
- W

ra
pp

in
g

K
ey

Tr

us
te

d
Ro

ot
 K

ey

Tr
us

te
d

K
D

K

Tr
us

te
d

K
EK

D
K

D

RB
G

 st
at

e:
 K

ey
 /

V

Role/Service
User role or Crypto Officer Role
Zeroize (FL_LibUnInit) D D D D D D D D D D D D D D D D
Create Key (FL_AssetAllocate,
FL_AssetAllocateBasic,
FL_AssetAllocateSamePolicy,
FL_AssetAllocateAndAssociateKeyExtra,
FL_AssetLoadValue, FL_AssetLoadMultipart,
FL_AssetLoadMultipartConvertBigInt)

 W W W W W W W W W W W W

Copy Key (FL_AssetCopy) W W W W W W W W W W W W
Delete Key (FL_AssetFree) D D D D D D D D D D D D D D
Examine Key (FL_AssetShow, FL_AssetCheck)
Generate Key (FL_AssetLoadRandom) W W W W W W W W W W W W XW
Bulk Encryption/Decryption (FL_CipherInit,
FL_CipherContinue, FL_CipherFinish) X X X

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 26 of 35

SafeZone FIPS Cryptographic
Module

SRDI/Role/Service Access Policy

Secret Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

A
ES

 E
nc

ry
pt

io
n

K
ey

A

ES
 C

CM
 E

nc
ry

pt
io

n
K

ey

A
ES

 G
CM

 E
nc

ry
pt

io
n

K
ey

X

TS
- A

ES
 E

nc
ry

pt
io

n
K

ey

Tr
ip

le
-D

ES
 E

nc
ry

pt
io

n
K

ey

CM
A

C
K

ey

CM
A

C
V

er
ify

 K
ey

K

D
F

K
ey

 D
er

iv
at

io
n

ke
y

TL
S-

PR
F

K
ey

 D
er

iv
at

io
n

ke
y

H
M

A
C

K
ey

H

M
A

C
V

er
ify

 K
ey

A

ES
 K

ey
- W

ra
pp

in
g

K
ey

Tr

us
te

d
R

oo
t K

ey

Tr
us

te
d

K
D

K

Tr
us

te
d

K
EK

D
K

D

RB
G

 st
at

e:
 K

ey
 /

V

Role/Service
Authenticated Encryption/Decryption with
Associated Data (FL_EncryptAuthInitRandom,
FL_EncryptAuthInitDeterministic,
FL_CryptAuthInit2, FL_CryptGcmAadContinue,
FL_CryptGcmAadFinish,
FL_CryptAuthContinue, FL_EncryptAuthFinish,
FL_EncryptAuthPacketFinish,
FL_DecryptAuthFinish)

 X X

MAC Generation (FL_MacGenerateInit,
FL_MacGenerateContinue,
FL_MacGenerateFinish)

 X X

MAC Verification (FL_MacVerifyInit,
FL_MacGenerateContinue,
FL_MacGenerateFinish)

 X X X X

DRBG Random Number Generation
(FL_RbgGenerateRandom) XW

DRBG Reseeding (FL_RbgReseed) XW
Key Derivation (FL_KeyDeriveKdk) W W W W W W W XW W W W W
TLS-PRF Key Derivation (FL_KeyDeriveKdk,
FL_DeriveTlsPrf) W W W W W W W W XW W W W
IKEv1 Key Derivation (FL_IkePrfExtract,
FL_IKEv1ExtractSKEYID_DSA,
FL_IKEv1ExtractSKEYID_PSK,
FL_IKEv1ExtractSKEYID_PKE,
FL_IKEv1DeriveKeyingMaterial)

 W W W W W W W XW W W W W

IKEv2 Key Derivation (FL_IkePrfExtract,
FL_IKEv2ExtractSKEYSEED,
FL_IKEv2ExtractSKEYSEEDrekey,
FL_IKEv2DeriveDKM)

 W W W W W W W XW W W W W

AES Key Wrapping (FL_AssetsWrapAes,
FL_AssetsWrapAes38F) R R R R R R R R R R R XR
AES Key Unwrapping (FL_AssetsUnwrapAes,
FL_AssetsUnwrapAes38F) W W W W W W W W W W W XW

AES Data Wrapping (FL_CryptKw) X
AES Data Unwrapping (FL_CryptKw) X
Trusted Root Key Derivation
(FL_TrustedKdkDerive,
FL_TrustedKekdkDerive)

 X W W

Trusted KDK Key Derivation
(FL_TrustedKeyDerive) W W W W W W W W W W W W X

Trusted Key Wrapping (FL_AssetWrapTrusted) R R R R R R R R R R R R X

2 Function may only be used to begin AES-CCM encryption operation or to continue multipacket operation
with deterministic IV. In particular, the function shall not be used to initialize AES-GCM encryption.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 27 of 35

SafeZone FIPS Cryptographic
Module

SRDI/Role/Service Access Policy

Secret Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

A
ES

 E
nc

ry
pt

io
n

K
ey

A

ES
 C

CM
 E

nc
ry

pt
io

n
K

ey

A
ES

 G
CM

 E
nc

ry
pt

io
n

K
ey

X

TS
- A

ES
 E

nc
ry

pt
io

n
K

ey

Tr
ip

le
-D

ES
 E

nc
ry

pt
io

n
K

ey

CM
A

C
K

ey

CM
A

C
V

er
ify

 K
ey

K

D
F

K
ey

 D
er

iv
at

io
n

ke
y

TL
S-

PR
F

K
ey

 D
er

iv
at

io
n

ke
y

H
M

A
C

K
ey

H

M
A

C
V

er
ify

 K
ey

A

ES
 K

ey
- W

ra
pp

in
g

K
ey

Tr

us
te

d
R

oo
t K

ey

Tr
us

te
d

K
D

K

Tr
us

te
d

K
EK

D
K

D

RB
G

 st
at

e:
 K

ey
 /

V

Role/Service
Trusted Key Unwrapping
(FL_AssetUnwrapTrusted) W W W W W W W W W W W W X

PBKDF2 Key Derivation (FL_KeyDerivePbkdf2) W W W W W W W W W W W W
Crypto-officer Role
Entropy Source Installation
(FL_RbgInstallEntropySource,
FL_RbgRequestSecurityStrength,
FL_RbgUseNonblockingEntropySource)

 W

Create Trusted Root Key
(FL_RootKeyAllocateAndLoadValue) W

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

Private Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

RS
A

 S
ig

ni
ng

 K
ey

D

SA
 S

ig
ni

ng
 K

ey

EC
D

SA
 S

ig
ni

ng
 K

ey

D
iff

ie
- H

el
lm

an
 P

riv
at

e
V

al
ue

EC

 D
iff

ie
- H

el
lm

an
 P

riv
at

e
V

al
ue

K

TS
 (K

EM
) U

nw
ra

pp
in

g
K

ey

K
TS

 (O
A

EP
) U

nw
ra

pp
in

g
K

ey

K
TS

 (P
K

CS
 #

1
v1

.5
) R

SA

U
nw

ra
pp

in
g

K
ey

D

RB
G

 st
at

e:
 K

ey
 /

V

Role/Service
User role or Crypto Officer Role
Zeroize (FL_LibUnInit) D D D D D D D D D
Create Key
(FL_AssetAllocate, FL_AssetAllocateBasic,
FL_AssetAllocateSamePolicy,
FL_AssetAllocateAndAssociateKeyExtra, FL_AssetLoadValue,
FL_AssetLoadMultipart, FL_AssetLoadMultipartConvertBigInt)

 W W W W W W W W

Copy Key (FL_AssetCopyValue) W W W W W W W W
Delete Key (FL_AssetFree) D D D D D D D D
Examine Key (FL_AssetShow, FL_AssetCheck)

Generate Key (FL_AssetLoadRandom) X
W

Generate Key Pair (FL_AssetGenerateKeyPair) W W W W W W W W X
W

DSA/Diffie-Hellman Domain Parameter and Key Pair Generation
(FL_AssetGenerateKeyPair) W W X

W

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 28 of 35

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

Private Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

RS
A

 S
ig

ni
ng

 K
ey

D

SA
 S

ig
ni

ng
 K

ey

EC
D

SA
 S

ig
ni

ng
 K

ey

D
iff

ie
-H

el
lm

an
 P

riv
at

e
V

al
ue

EC

 D
iff

ie
- H

el
lm

an
 P

riv
at

e
V

al
ue

K

TS
 (K

EM
) U

nw
ra

pp
in

g
K

ey

K
TS

 (O
A

EP
) U

nw
ra

pp
in

g
K

ey

K
TS

 (P
K

CS
 #

1
v1

.5
) R

SA

U
nw

ra
pp

in
g

K
ey

D

RB
G

 st
at

e:
 K

ey
 /

V

Role/Service
Signature Generation (FL_HashSignFips186, FL_HashSignPkcs1,
FL_HashSignPkcs1Pss) X X X X

W
AES Key Wrapping (FL_AssetsWrapAes, FL_AssetsWrapAes38F) R R R R R R R R
AES Key Unwrapping (FL_AssetsUnwrapAes,
FL_AssetsUnwrapAes38F) W W W W W W W W

Trusted Key Wrapping (FL_AssetWrapTrusted) R R R R R R R R
Trusted Key Unwrapping (FL_AssetUnwrapTrusted) W W W W W W W W
PBKDF2 Key Derivation (FL_KeyDerivePbkdf2) W W W W W W W W
Diffie-Hellman Key Agreement (FL_DeriveDh) X
Elliptic Curve Diffie-Hellman Key Agreement (FL_DeriveDh) X

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

Public Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

So
ftw

ar
e

In
te

gr
ity

 P
ub

lic
 K

ey

RS
A

 V
er

ifi
ca

tio
n

K
ey

D
SA

 V
er

ifi
ca

tio
n

K
ey

EC
D

SA
 V

er
ifi

ca
tio

n
K

ey

D
iff

ie
-H

el
lm

an
 P

ub
lic

 V
al

ue

EC
 D

iff
ie

-H
el

lm
an

 P
ub

lic
 V

al
ue

K
TS

 (K
EM

) W
ra

pp
in

g
K

ey

K
TS

 (O
A

EP
) W

ra
pp

in
g

K
ey

K
TS

 (P
K

CS
 #

1
v1

.5
) R

SA

W
ra

pp
in

g
K

ey

D
RB

G
 st

at
e:

 K
ey

 /
V

Role/Service
User role or Crypto-Officer Role
Zeroize (FL_LibUnInit) D D D D D D D D D
On-demand self-test (FL_LibSelfTest) X
Create Key (FL_AssetAllocate, FL_AssetAllocateBasic,
FL_AssetAllocateSamePolicy,
FL_AssetAllocateAndAssociateKeyExtra,
FL_AssetLoadValue, FL_AssetLoadMultipart,
FL_AssetLoadMultipartConvertBigInt)

 W W W W W W W W

Copy Key (FL_AssetCopyValue) W W W W W W W W
Delete Key (FL_AssetFree) D D D D D D D D
Examine Key (FL_AssetShow, FL_AssetCheck) RX RX RX RX RX RX RX RX

Generate Key Pair (FL_AssetGenerateKeyPair) W W W W W W W W X
W

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 29 of 35

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

Public Keys

Se
cu

rit
y

Re
le

va
nt

 D
at

a
Ite

m

So
ftw

ar
e

In
te

gr
ity

 P
ub

lic
 K

ey

RS
A

 V
er

ifi
ca

tio
n

K
ey

D
SA

 V
er

ifi
ca

tio
n

K
ey

EC
D

SA
 V

er
ifi

ca
tio

n
K

ey

D
iff

ie
- H

el
lm

an
 P

ub
lic

 V
al

ue

EC
 D

iff
ie

- H
el

lm
an

 P
ub

lic
 V

al
ue

K
TS

 (K
EM

) W
ra

pp
in

g
K

ey

K
TS

 (O
A

EP
) W

ra
pp

in
g

K
ey

K
TS

 (P
K

CS
 #

1
v1

.5
) R

SA

W
ra

pp
in

g
K

ey

D
RB

G
 st

at
e:

 K
ey

 /
V

Role/Service
DSA/Diffie-Hellman Domain Parameter and Key Pair
Generation (FL_AssetGenerateKeyPair) W W X

W
Public Key Validation (FL_AssetCheck) X X X X X X X X
DSA/Diffie-Hellman Domain Parameter Verification
(FL_AssetCheck) X X
Signature Verification
(FL_HashVerifyFips186, FL_HashVerifyPkcs1,
FL_HashVerifyRecoverPkcs1, FL_HashVerifyPkcs1Pss)

 X X X

Diffie-Hellman Key Agreement (FL_DeriveDh) X
Elliptic Curve Diffie-Hellman Key Agreement
(FL_DeriveDh) X

Crypto-officer Role
Module Initialization (FL_LibInit)
(This function is automatically invoked upon loading the
module)

 X X
W

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

 Services not using any SRDI

Role/Service
User role or Crypto Officer Role
Show Status (FL_LibStatus)
Digest Generation (FL_HashInit, FL_HashContinue, FL_HashFinish, FL_HashFinishKeep, FL_HashSingle)

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 30 of 35

SafeZone FIPS Cryptographic Module

SRDI/Role/Service Access Policy

 Non-FIPS 140-2 Security Relevant Services

Role/Service
Services provided for convenience which offer no FIPS 140-2 Security Relevant Functions
Show Version (FL_LibVersion)
Test DRBG (FL_RbgTestVector)
Check Free Space in Key Store (FL_AssetStoreStatus)

5.5 User Guide
Some of the FIPS Publications or NIST Special Publications require that the
Cryptographic Module Security Policy mentions important configuration items for
those algorithms. The user of the module shall observe these rules.

5.5.1 NIST SP 800-108: Key Derivation Functions
All three key derivation functions, Counter Mode, Feedback Mode and Double-
Pipeline Iteration Mode are supported.

5.5.2 NIST SP 800-132: Password-Based Key Derivation Function
The key derived using NIST SP 800-132 shall only be used for storage purposes.

Both options presented in NIST SP 800-132 for deriving the Data Protection Key
from the Master Key are supported.

The SafeZone FIPS Lib does not limit the length of the passphrase used in NIST SP
800-132 PBKDF key derivation. The upper bound for the strength of passwords
usually used is between 5 or 6 bits per character. Thus, for security over 64 bits, the
passwords must generally be longer than 12 characters.

5.5.3 NIST SP 800-38D: Galois/Counter Mode
The FIPS 140-2 Implementation Guidance A.5 applies to AES-GCM usage with this
module.

Item 1 in IG A.5 forbids using external IV for encryption via the
FL_CryptAuthInit function. However, the FL_CryptAuthInit function is still
used for decryption and the FL_CryptAuthInit function is used for subsequent
encryption operations for operation sequences started with the
FL_EncryptAuthInitDeterministic function.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 31 of 35

The operator must use the FL_EncryptAuthInitRandom function if random IV
generation (IG A.5 item 2) is required, or in case of deterministic IV generation (IG
A.5 item 3), the FL_EncryptAuthInitDeterministic function.

Note: If IV is generated internally in a deterministic manner, then FIPS 140-2
Implementation Guidance A.5: Item B3 applies: In case a module’s power is lost and
then restored, the key used for the AES GCM encryption/decryption must be re-
distributed.

5.5.4 NIST SP 800-90: Deterministic Random Bit Generator
The module generates cryptographic keys whose strengths are modified by available
entropy. No assurance of the minimum strength of the generated keys is given by the
module. Depending on the platform, the module provides access to different entropy
sources.

By default, the SafeZone FIPS Cryptographic Module DRBG uses /dev/random as
the entropy source on platforms that provide such an entropy device. This entropy
generation path is merely a convenience default. The quality of entropy coming from
/dev/random is not measured by the SafeZone FIPS Cryptographic Module.

It is possible to use function FL_RbgUseNonblockingEntropySource to
configure /dev/urandom as the entropy source. When using /dev/urandom as the
entropy source, the module assumes the quality of the entropy source to be 128 bits.
The difference between /dev/random and /dev/urandom is that when the entropy
source does not know if there is sufficient entropy available, /dev/random will
block and /dev/urandom will generate pseudo-random values based on available
entropy. The quality of entropy coming from /dev/urandom is not measured by the
SafeZone FIPS Cryptographic Module.

If Crypto Officer uses /dev/random or /dev/urandom as entropy source, it is up
to Crypto Officer to configure it suitably to provide reasonable security. Crypto
Officer can provide an entropy function which overrides the default entropy source.

5.5.4.1 iOS entropy source
iOS operating system (e.g. Apple iPad and iPhone devices) /dev/random and
/dev/urandom entropy sources use the Yarrow random number generator. Yarrow
includes SHA-1 (160 bits) as a part of its operation and thus entropy generated by the
RNG can be considered to be at most 160 bits.

The module generates cryptographic keys whose strengths are modified by available
entropy. The encryption strength of the generated cryptographic keys is at most 160
bits.

5.5.4.2 <t-base-300 OS
On <t-base-300 operating environment, devices /dev/random and /dev/urandom
are not available. The <t-base-300 API provides function

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 32 of 35

tlApiRandomGenerateData, which generates cryptographically secure random
numbers when generator type TLAPI_ALG_SECURE_RANDOM is requested. The
cryptographic module uses this function to obtain entropy. The quality of entropy
coming from the function is not measured by the SafeZone FIPS Cryptographic
Module.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 33 of 35

6 Self Tests

6.1 Power-Up Self-Tests
The SafeZone FIPS Cryptographic Module includes the following power-up self
tests:

• Software Integrity Test (using ECDSA Verify with NIST P-224)
• KAT test for SHA-1
• KAT test for SHA-512
• KAT test for HMAC SHA-256
• KAT test for AES encryption (CBC, 128-bit key)
• KAT test for AES decryption (CBC, 128-bit key)
• KAT test for AES encryption (CCM, 128-bit key)
• KAT test for AES decryption (CCM, 128-bit key)
• KAT test for AES encryption (GCM, 128-bit key)
• KAT test for AES decryption (GCM, 128-bit key)
• KAT test for AES encryption (XTS, 128-bit key strength)
• KAT test for AES decryption (XTS, 128-bit key strength)
• KAT test for CMAC, 192-bit key
• KAT test for Triple-DES encryption (CBC, 192-bit key)
• KAT test for Triple-DES decryption (CBC, 192-bit key)
• KAT for RSA 2048-bit (PKCS #1 v1.5)
• KAT for DSA (signing P=2048/N=256; verification P=1024/N=160)
• KAT for ECDSA Signing (NIST P-224)
• KAT for KTS: RSA Key Wrapping 2048-bit (RSA-OAEP)
• KAT for Diffie-Hellman
• KAT for EC Diffie-Hellman
• AES-CTR-256 DRBG self-test

The self-tests are invoked automatically upon loading the SafeZone FIPS
Cryptographic Module. The initialization function FL_LibInit is executed via DEP
(default entry point) as specified in FIPS 140-2 Implementation Guidance 9.10.

Any error during the power-up self tests will result in a module transition to the error
state. There are two possible ways to recover from the error state:

• Reinitializing the module with the API function sequences FL_LibUnInit
and FL_LibInit.

• Power-cycling the device and reinitialize the module with the API function
FL_LibInit.

The FL_LibStatus API function can be used to obtain the module status. It returns
FL_STATUS_INIT when the module has not yet been initialized and
FL_STATUS_ERROR when the module is in error state.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 34 of 35

As it is recommended to self-test cryptographic components (like DRBG) frequently,
the module provides the capability to invoke the self-tests manually (on demand) with
the FL_LibSelfTest API function. The important difference between the manually
invoked self-tests and the automatically invoked self-tests when initializing the
module is that the manually invoked self-tests will not cause zeroization of the key
material currently loaded in the module, providing the tests execute successfully.

In general, if a self-test fails, the module will transition to the error state and the
return value (status) of the invoked API function will be something other than
FLR_OK, depending on the current situation.

6.2 Conditional Self tests
The SafeZone FIPS Cryptographic Module contains the following conditional self-
tests:

• Pair-wise consistency check for key pairs created for digital signature purposes
(DSA, FIPS 186-3)

• Pair-wise consistency check for key pairs created for digital signature purposes
(RSA, FIPS 186-3)

• Pair-wise consistency check for key pairs created for digital signature purposes
(ECDSA, FIPS 186-3)

• Continuous random number generator test.
• Continuous random number generator test for non-Approved RBG

/dev/random.
• Continuous random number generator test for non-Approved RBG

/dev/urandom.

The conditional self-tests for manual key entry and software/firmware load or bypass
are not provided, as these are not applicable.

Any error during the conditional self tests will result in a module transition to the
error state. The ways to recover from the error state are listed in section 6.1.

Non-proprietary security policy. This document may be freely distributed in its entirety without modification.
Page 35 of 35

7 Mitigation of Other Attacks
The module contains an implementation of the RSA algorithm with data independent
processing time for signing and decryption operations. This makes it harder to attack
the RSA implementation via timing attacks.

The module does not mitigate other attacks outside the scope of FIPS 140-2.

