SAMSUNG ## Samsung TCG Opal SSC Cryptographic Sub-Chip FIPS 140-3 Non-Proprietary Security Policy Document Version: 1.2 Last update: 2025-01-28 Prepared for: Samsung Electronics Co., Ltd. 1-1, Samsungjeonja-ro Hwaseong-si, Gyeonggi-do Korea, 18448 www.samsung.com Prepared by: atsec information security corporation 4516 Seton Center Pkwy Suite 250 Austin, TX 78759 www.atsec.com ## **Table of Contents** | 1. | . GEI | NERAL | 5 | |----|------------|--|----| | | 1.1 | Overview | 5 | | | 1.2 | SECURITY LEVELS | 5 | | 2. | . CR | YPTOGRAPHIC MODULE SPECIFICATION | 6 | | | 2.1 | DESCRIPTION | € | | | 2.2 | TESTED AND VENDOR AFFIRMED MODULE VERSION AND IDENTIFICATION | | | | 2.3
2.4 | EXCLUDED COMPONENTS | | | | 2.5 | ALGORITHMS | | | | 2.6 | SECURITY FUNCTION IMPLEMENTATIONS | 10 | | | 2.7 | ALGORITHM SPECIFIC INFORMATION | | | | 2.8
2.9 | RNG AND ENTROPY | | | | 2.10 | KEY ESTABLISHMENT | | | | 2.11 | Industry Protocols | | | 3. | . CR | YPTOGRAPHIC MODULE INTERFACES | 12 | | | 3.1 | Ports and Interfaces | 12 | | 4. | RO | LES, SERVICES, AND AUTHENTICATION | 13 | | | 4.1 | AUTHENTICATION METHODS | | | | 4.2 | ROLES | | | | 4.3
4.4 | APPROVED SERVICES Non-Approved Services | | | | 4.5 | EXTERNAL SOFTWARE AND FIRMWARE LOADED | | | 5. | . SO | FTWARE/FIRMWARE SECURITY | 19 | | | 5.1 | INTEGRITY TECHNIQUES | | | | 5.2 | INITIATE ON DEMAND | | | 6. | . OP | ERATIONAL ENVIRONMENT | 20 | | | 6.1 | OPERATIONAL ENVIRONMENT TYPE AND REQUIREMENTS | 20 | | 7. | . PH | YSICAL SECURITY | | | | 7.1 | MECHANISMS AND ACTIONS REQUIRED | 21 | | 8. | . NO | N-INVASIVE SECURITY | | | 9. | SEI | NSITIVE SECURITY PARAMETER MANAGEMENT | 23 | | | 9.1 | STORAGE AREAS | 23 | | | 9.2 | SSP Input-Output Methods | | | | 9.3
9.4 | SSP ZEROISATION METHODSSSPs | | | 16 | | LF-TESTS | | | | 10.1 | Pre-Operational Self-Tests | | | | 10.1 | CONDITIONAL SELF-TESTS | | | | 10.3 | Periodic Self-Tests | 28 | | | 10 4 | FRROR STATES | 28 | | 11. LIF | E-CYCLE | | | |-----------------------------|---|----|--| | 11.1 | Installation, Initialization and Startup Procedures | 29 | | | | | | | | 11.2 ADMINISTRATOR GUIDANCE | | | | | 13. ABI | BREVIATIONS | 31 | | | Table 1: Security Levels | 5 | |---|----| | Table 2: Hardware Operating Environments | 7 | | Table 3: Modes List and Description | 7 | | Table 4: Approved Algorithms | 8 | | TABLE 5: NON-APPROVED, NOT ALLOWED ALGORITHMS | 9 | | TABLE 6: ENTROPY | 10 | | Table 7: Key Generation | 10 | | TABLE 8: KEY ESTABLISHMENT | 11 | | Table 9: Ports and Interfaces | 12 | | Table 10: Authentication Methods | 13 | | Table 11: Roles | 13 | | TABLE 12: APPROVED SERVICES | 18 | | TABLE 13: NON-APPROVED SERVICES | 18 | | Table 14: Mechanisms and Actions Required | 21 | | Table 15: Storage Areas | 23 | | TABLE 16: SSP INPUT-OUTPUT | 23 | | Table 17: SSP Zeroisation Methods | 23 | | Table 18: SSP Information First | 25 | | TABLE 19: SSP INFORMATION SECOND | 26 | | Table 20: Pre-Operational Self-Tests | 27 | | Table 21: Conditional Self-Tests | 28 | | Table 22: Error States | 28 | | | | | FIGURE 1: BLOCK DIAGRAM | | | FIGURE 2 TESTED CONFIGURATION. | | #### 1.General #### 1.1 Overview This document is the non-proprietary FIPS 140-3 Security Policy of the Samsung TCG Opal SSC Cryptographic Sub-Chip cryptographic module (hereafter referred to as "the module"). This Security Policy contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for an overall Security Level 2 module. This Non-Proprietary Security Policy may be reproduced and distributed, but only whole, intact, and must include this notice. Other documentation is proprietary to their authors. Table 1 describes the individual security areas of FIPS 140-3, as well as the security levels of the module with respect to each of those individual areas. ## 1.2 Security Levels | ISO/IEC 24759 Section 6
[Subsection Num.
Below] | FIPS 140-3 Section Title | Security
Level | |---|--|-------------------| | 1 | General | 2 | | 2 | Cryptographic Module Specification | 2 | | 3 | Cryptographic Module Interfaces | 2 | | 4 | Roles, Services, and Authentication | 2 | | 5 | Software/Firmware Security | 2 | | 6 | Operational Environment | N/A | | 7 | Physical Security | 2 | | 8 | Non-invasive Security | N/A | | 9 | Sensitive Security Parameter
Management | 2 | | 10 | Self-tests | 2 | | 11 | Life-cycle Assurance | 2 | | 12 | Mitigation of Other Attacks | N/A | | | Overall | 2 | Table 1: Security Levels ## 2. Cryptographic Module Specification ## 2.1 Description **Purpose and Use:** The Samsung TCG Opal SSC Cryptographic Sub-Chip (referred to as "the module" in the rest of this document) is a hardware cryptographic module which provides FIPS 140-3 certified security functionality to Samsung's TCG Opal SEDs. Module Type: Hardware Module Embodiment: Single Chip **Module Characteristics**: The sub-chip hardware is contained within the Samsung S4LV006A01 SSD controller found within a Samsung TCG Opal SEDs. **Cryptographic Boundary:** The cryptographic boundary of the module consists of following components: - S-Core. - A dedicated OTP on the SoC for the S-Core - A set of fuses on the SoC which are dedicated to the S-Core - Sub-Chip's main firmware and bootloader. Figure 1: Block Diagram Figure 2 Tested Configuration. #### 2.2 Tested and Vendor Affirmed Module Version and Identification **Tested Module Identification - Hardware:** Hardware Version(s): S01 **Software Version(s):** The module does not contain a software component. Firmware Version(s): SS0100 | Model and/or Part | Hardware | Firmware | Processor | |-------------------|----------|----------|-----------| | Number | Version | Version | | | S4LV006A01 | S01 | SS0100 | ARM SC000 | Table 2: Hardware Operating Environments Note: S4LV006A01 refers to the SoC on which the sub-chip cryptographic module runs on. ## 2.3 Excluded Components The vendor does not claim any excluded components within the module's boundary. ## 2.4 Modes of Operation #### **Modes List and Description:** | Name | Description | Туре | Status Indicator | |----------------------|--|---------|--| | Approved
Mode | Automatically entered whenever an approved service is requested | FIPS | Equivalent to the indicator of the requested service | | Non-approved
Mode | Automatically entered whenever a non-approved service is requested | nonFIPS | Equivalent to the indicator of the requested service | Table 3: Modes List and Description #### Mode change instructions and status indicators: After passing all pre-operational self-tests and cryptographic algorithm self-tests executed on startup, the module automatically transitions to the approved mode. The module automatically switches between the approved and non-approved modes depending on the services requested by the operator. The status indicator of the mode of operation is equivalent to the indicator of the service that was requested. For each service the module provides a response message that includes the service indicator for the requested service. Output "1" suggests that the service is approved and the output "0" suggests that the service is non-approved. #### 2.5 Algorithms #### **Approved Algorithms:** | Cert ¹ | Algorithm and Standard | Mode/Method | Key Size/
Strength | Use/Function | |-------------------|--|--|---------------------------------|--| | A4252 | AES [FIPS 197, SP 800-38A] | ECB | 256 bits / 256 bits | Encryption | | A4252 | AES [FIPS 197, SP 800-38D] | GCM (internal IV)
Section 8.2.2 of SP 800-
38D | 256 bits / 256 bits | Authenticated
Encryption/Decryption | | A4252 | ECDSA key generation
[FIPS 186-4] | Appendix B.4.2 Testing Candidates | P-384 / 192 bits | key generation | | A4252 | ECDSA signature
verification [FIPS 186-4] | Using SHA2-384 | P-384 / 192 bits | signature verification | | A4252 | HMAC [FIPS 198-1] | SHA2-256 | 112-512 bits / 112-
256 bits | Message Authentication
Code | | A4252 | KAS-ECC-SSC
[SP 800-56Arev3] | staticUnified | P-384 / 192 bits | Shared secret computation | | A4252 | KDA [SP 800-56Crev2] | One step no counter | 256 bits / 256 bits | Key derivation | | A4252 | KDF [SP 800-108] | Counter using HMAC-
SHA2-256 | 256 bits | Key derivation | | A4252 | SHS [FIPS 180-4] | SHA2-256,
SHA2-384 | N/A | Hashing | | A4135 | AES [FIPS 197, SP 800-38A] | ECB | 256 bits / 256 bits | Encryption | | A4135 | CTR_DRBG [SP 800-90A] | AES-256 with derivation function | 256 bits / 256 bits | Random number generation | Table 4: Approved Algorithms #### **Vendor Affirmed Algorithms:** The module implements Cryptographic Key Generation (CKG), as a vendor affirmed algorithm compliant to SP 800-133r2, Section 4 and Section 5.2. See section 2.9 for details. #### Non-approved, Allowed Algorithms: The module does not implement any non-approved algorithms that could be used in an approved mode of operation. #### Non-Approved, Allowed Algorithms with No Security Claimed: The module does not implement any non-approved algorithms that could be used in an approved mode of operation. #### Non-Approved, Not-Allowed Algorithms: | Name | Use and Function | |-------------|---| | AES-XTS | Used for <i>Decrypt Firmware</i> to decrypt FW provided by H-Core | | | Used for <i>Verify Decrypt Firmware</i> together with ECDSA signature verification to decrypt and verify signature of FW provided by H-Core | | RSA Encrypt | Used for Get Dump Key to encrypt the AES-XTS dump key | ¹ The CAVP certs also list ECB decryption and ECDSA signature generation algorithm which is not used by the module. | ECDSA verification with AES XTS Used for Verify Decrypt Firmware toget | Their with AES-ATS decryption | |--|-------------------------------| | decryption to verify a signature of and encrypted F | W provided by H-Core | Table 5: Non-Approved, Not Allowed Algorithms ## 2.6 Security Function Implementations | Name | Туре | Description | Properties | Algorithms/CAVP Cert | |-----------------------|------|-------------|---|------------------------------------| | ECDH Key
agreement | KAS | | P-384 curve providing 192 bits of security strength | KAS-ECC-SSC / A4252
KDA / A4252 | | AES GCM | KTS | | 256-bit key providing 256 bits of security strength | AES GCM / A4252 | Table 5A: Security Function Implementation #### 2.7 Algorithm Specific Information The ECDSA algorithm as implemented by the module conforms to FIPS 186-4, which has been superseded by FIPS 186-5 on February 3, 2024. For the current module context, FIPS 186-4 can still be used in the approved mode. See IG C.K for details. #### 2.8 RNG and Entropy #### **Entropy Information:** | Name | Туре | Operational
Environment | Sample Size | Entropy Per Sample | Conditioning
Component | |-----------------------------|----------|----------------------------|-------------|--------------------|---------------------------| | Samsung TRNG
(Cert. E81) | Physical | See Table 2 | 1 Bit | 0.5 Bits | None | Table 6: Entropy #### **RNG Information:** The module implements SP 800-90ARev1 CTR_DRBG that with AES-256 as the block cipher and has a derivation function. The CTR_DRBG is provided with a 256-bit nonce and 512-bits of entropy input from the entropy source, which provides 256-bit of entropy. ## 2.9 Key Generation | Name | Туре | Properties | |---------------------------|------|--| | ECDSA key pair generation | CKG | EC Curve: P-384; Security strength: 192 bits
Method: FIPS 186-4 Appendix B.4.2 Testing Candidates
Compliant to SP 800-133r2, Section 5.2 | | Symmetric key generation | CKG | Symmetric key generated using SP 800-90ARev1 DRBG Compliant to SP 800-133r2, Section 4 | Table 7: Key Generation ## 2.10 Key Establishment | Name | Туре | Properties | |-----------------------|--------------|--| | ECDH Key
agreement | with SP 800- | Curves: P-384; Security strength: 192 bits
KDF: One Step KDF with no counter
Compliant with SP 800-56Ar3 and IG D.F Scenario 2 (2) | | AES Key Transport | GCM | AES GCM using 256 bit Key | |-------------------|-----|--------------------------------------| | | | Compliant with IG D.G and SP 800-38F | Table 8: Key Establishment ## **2.11 Industry Protocols** The module does not implement any industry protocols. ## 3. Cryptographic Module Interfaces #### 3.1 Ports and Interfaces | Physical Port | Logical Interface | Data That Passes | |---------------|-------------------|--------------------| | Mailbox/DMA | Data Input | Input Parameters | | DMA | Data Output | Output parameters | | Mailbox | Control Input | Command Input | | Mailbox | Status Output | Status information | | Power Port | Power Input | N/A | Table 9: Ports and Interfaces This module does not have a Control Output interface. ## 4. Roles, Services, and Authentication #### **4.1 Authentication Methods** | Method | Description | Security | Strength Per | Strength | |----------------------|--|---|---|--| | Name | | Mechanism | Attempt | Per Minute | | Key-
Based
KDF | Operator keys that are necessary to access authenticated commands, are access controlled using 256-bit Credential Protection Key (CPK) which is derived from SP 800-108 KDF using Authority ID, Password and KDK_CPK i.e. key derivation key for CPK. Only the operator with valid Authority ID and Password (minimum of 8 bytes) can lead to derivation of valid CPK which will allow the operator to access the authenticated commands. The module does not support concurrent operators and it does not maintain any authentication results across power cycle. | The module
waits for
750ms after a
failed attempt. | Probability of success: 1/2 ⁶⁴ | Probability of
success:
80/2 ⁶⁴ | Table 10: Authentication Methods #### 4.2 Roles | Name | Туре | Authentication Methods | |--------------------|------|------------------------| | SysID | СО | Key-Based KDF | | AdminSP.SID | СО | Key-Based KDF | | AdminSP.Admin1 | СО | Key-Based KDF | | LockingSP.Admin1~4 | СО | Key-Based KDF | | LockingSP.User1~9 | User | Key-Based KDF | Table 11: Roles ## **4.3 Approved Services** | Name | Descriptio
n | Indicator | Inputs | Outputs | Security
Functions | Role | SSP Access | |----------------------------------|---|-----------|------------------------|-------------------------------------|---|-----------------|--| | Show Status | Provide the module versioning information and current status of the module | 1 | None | Module
versioning
information | None | N/A | None | | Create
Namespace | Create
Namespace | 1 | None | Success/
Failure | AES-GCM,
ECDH Key
Agreement,
CTR_DRBG,
SHA,
HMAC | SysID | EWGZ: [CK, PK, SK]; EWZ: [KEK, KPK]; E: [SMK, KMK, REK] | | Delete
Namespace | Delete
Namespace | 1 | Namespace
Selection | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC | SysID | EWGZ:
[MEK];
EWZ: [KEK,
KPK];
E: [SMK,
KMK, REK] | | Format NVM | Cryptograph
ically erase
a specific
Namespace'
s MEK | 1 | None | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC | SysID | EWGZ:
[MEK];
EWZ: [KEK,
KPK];
E: [SMK,
KMK, REK] | | Permanent
Write
Protection | Enable
NVMe write
protection | 1 | None | Success/
Failure | AES-GCM,
HMAC | SysID | EWZ: [KPK,
KEK];
E: [SMK,
KMK, REK] | | Sanitize | Erase all
MEKs and
generate
new MEK to
support
NVMe
Sanitize | 1 | None | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC | SysID | EWGZ:
[MEK];
EWZ: [KEK,
KPK];
E: [SMK,
KMK, REK] | | Crypto
Erase | Erase all
MEKs and
generate
new MEK to
support
NVMe
CryptoErase | 1 | None | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC | SysID | EWGZ:
[MEK];
EWZ: [KEK,
KPK];
E: [SMK,
KMK, REK] | | Activate | Make
AdminSP to
transition to
the
Manufacture
d ² state | 1 | PIN | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC,
ECDH Key
Agreement,
KBKDF,
SHA | AdminSP.SI
D | EWGZ: [KPK, MEK, CPK, KDK_CPK, KDK_KPK]; EWZ: [PIN]; WGZ: [SK, PK]; E: [REK, SMK, KMK] | | Name | Descriptio
n | Indicator | Inputs | Outputs | Security
Functions | Role | SSP Access | |------------|--|-----------|---|---------------------|--|---|---| | Reactivate | Support TCG
SUM
method that
change to
"Single User
Mode" from
TCG Opal
feature set
spec. | 1 | PIN | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC,
ECDH Key
Agreement,
KBKDF, SHA | AdminSP.SI
D
AdminSP.Ad
min1 | EWGZ:
[KPK, MEK,
CPK,
KDK_CPK,
KDK_KPK];
EWZ: [PIN];
WGZ: [SK,
PK];
E: [REK,
SMK, KMK] | | Assign | Support TCG
CNL method
to couple
LockingObje
ct from
NSGlobal
Range | 1 | Target
Namespace,
Target
Locking
Object | Success/
Failure | AES-GCM,
ECDH Key
Agreement,
CTR_DRBG,
SHA, HMAC | LockingSP.A
dmin1~4
LockingSP.U
ser1~9 | EWGZ:
[MEK, CK,
PK, SK];
EGZ: [KEK,
KPK];
E: [REK,
SMK, KMK] | | Deassign | Support TCG
CNL method
to decouple
LockingObje
ct from
NSGlobal
Range | 1 | Target
Namespace,
Target
Locking
Object | Success/
Failure | AES-GCM,
ECDH Key
Agreement,
CTR_DRBG,
SHA, HMAC | LockingSP.A
dmin1~4
LockingSP.U
ser1~9 | EWGZ:
[MEK, CK,
PK, SK];
EGZ: [KEK,
KPK];
E: [REK,
SMK, KMK] | | Erase | Support TCG
SUM
method to
crypto
erase.
EraseGlobal
crypto erase
MEK which
assign to
Global
Range | 1 | Target
Namespace | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC,
ECDH Key
Agreement,
KBKDF, SHA | LockingSP.A
dmin1~4
LockingSP.U
ser1~9 | EWGZ:
[MEK, CPK,
KDK_CPK,
KDK_CPK,
PK, SK];
EWZ: [KPK];
EZ: [PIN];
E: [REK,
SMK, KMK] | | Genkey | Support TCG
method to
crypto
erase.
GenkeyNon
Global
crypto erase
MEK which
assign to
Global
Range | 1 | Target
Namespace | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC | LockingSP.A
dmin1~4
LockingSP.U
ser1~9 | EWGZ:
[MEK];
EWZ: [KEK,
KPK];
E: [REK,
SMK, KMK] | | Grant | Support TCG
method that
grants a
User's
authority to
another
authority | 1 | Target
Authority | Success/
Failure | AES-GCM,
ECDH Key
Agreement,
CTR_DRBG,
SHA, HMAC | LockingSP.A
dmin1~4
LockingSP.U
ser1~9 | EWGZ: [CK, PK, SK]; EWZ: [KEK, KPK]; E: [REK, SMK, KMK] | | Random | Provides random number | 1 | None | DRBG
Output | CTR_DRBG | N/A | DRBG
Output | | Name | Descriptio
n | Indicator | Inputs | Outputs | Security
Functions | Role | SSP Access | |--------------------------------|--|-----------|----------------------------|---------------------|--|---|---| | | from the module | | | | | | | | Revert | Support TCG
method to
make a TCG
state to
Manufacture
d ²
inactivate
state with
password | 1 | PIN | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC,
KBKDF, SHA | AdminSP.SI
D
AdminSP.Ad
min1 | EWGZ:
[KEK, KPK,
MEK, CPK,
KDK_CPK,
KDK_KPK];
WGZ: [SK,
PK];
EZ: [PIN];
E: [REK,
SMK, KMK] | | RevertWithP
SID | Support TCG
method to
make a TCG
state to
Manufacture
d ²
inactivate
state with
PSID | | PIN | Success/
Failure | AES-GCM,
CTR_DRBG,
HMAC,
KBKDF, SHA | SysID | EWGZ: [KEK, KPK, MEK, CPK, KDK_CPK, KDK_KPK]; WGZ: [SK, PK]; EZ: [PIN]; E: [REK, SMK, KMK] | | RevertSP | Clear state
of TCG
Service
Provider(SP)
i.e. it causes
the SP to
revert to its
factory ²
state. | 1 | PIN,
Target SP | Success/Fail
ure | AES-GCM,
CTR_DRBG,
KBKDF, SHA | LockingSP.A
dmin1~4 | EWGZ: [KPK, MEK, CPK, KDK_CPK, KDK_KPK]; WGZ: [SK, PK]; EWZ: [PIN, KEK]; E: [REK, SMK, KMK] | | SetC_PIN | Set PIN | 1 | PIN,
New PIN | Success/
Failure | CTR_DRBG,
AES-GCM,
ECDH Key
Agreement,
KBKDF,
SHA, HMAC | All roles | EWGZ: [KPK, MEK, CPK, KDK_CPK, KDK_KPK]; WGZ: [SK, PK]; EWZ: [PIN, KEK]; E: [REK, SMK, KMK] | | SetRange | Set Range
for using
TCG | 1 | Target
Range | Success/
Failure | AES-GCM,
HMAC | LockingSP.A
dmin1~4
LockingSP.U
ser1~9 | EWZ: [KPK,
KEK, MEK];
E: [REK,
SMK, KMK] | | Authenticat
e ^{3*} | Load the
KPK for
authority
and decrypt | 1 | Authority
Index,
PIN | Success/
Failure | CTR_DRBG,
AES-GCM,
ECDH Key
Agreement, | All roles | EWGZ:
[KPK, MEK,
CPK,
KDK_CPK, | $^{^{2}}$ Manufactured or Factory state refers to TCG Opal SSC's policy state, not a FIPS 140-3 module state. ^{3* &}quot;authenticate" and "deauthenticate" services are not functions used to comply with FIPS authentication requirements but instead used as part of the TCG Opal SSC specification's commands. | Name | Descriptio
n | Indicator | Inputs | Outputs | Security
Functions | Role | SSP Access | |---|--|-----------|------------|---------------------|-----------------------|-----------|--| | | related
encryption
keys. | | | | KBKDF,
SHA, HMAC | | KDK_KPK];
WGZ: [SK,
PK];
EWZ: [PIN,
KEK];
E: [REK,
SMK, KMK] | | Deauthentic ate ^{3*} | Zeroise the
KPK for
authority
and zeroise
related
encryption
keys. | 1 | None | Success/
Failure | N/A | All roles | Z : [KPK] | | TperReset | Reset the lock state information | 1 | None | Success/
Failure | AES-GCM,
HMAC | SysID | EWZ: [KPK,
KEK, MEK];
E: [REK,
SMK, KMK] | | VerifyFW | Verify
Firmware | 1 | None | Success/
Failure | ECDSA,
SHA-384 | SysID | EWZ : [FW Verification Key] | | Prevent FW
Rollback ⁴ | Update the
Anti-
Rollback
index | 1 | None | Success/
Failure | None | SysID | None | | Revoke FW
verification
key ⁴ | Revoke the ECDSA FW verification key of Firmware integrity by updating the key index pointer stored in OTP | 1 | None | Success/
Failure | None | SysID | None | | SHA Digest | Provide to
generate
the SHA
digest | 1 | Input Data | Hash | SHA-256 | N/A | None | | Revoke Root
Encryption
Key | Revoke REK
and
Generate
new REK | 1 | None | Success/
Failure | CTR_DRBG | SysID | WZ : [REK] | | OTP
Zeroisation | Zeroises
root key in
OTP | None | None | Success/
Failure | None | SysID | Z: [Root
Key] | . ⁴ These services are only indicated for use within the firmware update process. If any of these services are called during operation of the module outside of a firmware update process, the module will fail to verify the firmware during boot, resulting in halting during boot and becoming unavailable for use. Also note that use of any firmware version other than the one specific in Table 2 is not part of validated module. | Name | Descriptio
n | Indicator | Inputs | Outputs | Security
Functions | Role | SSP Access | |------------------------|--|-----------|--------|-----------------|-----------------------|-----------|---------------------------------------| | On demand
self-test | Module
reset by
setting the
SFR
SW_RST12 | None | None | Module
reset | None | All roles | Z: All SSPs in volatile memory | Table 12: Approved Services ## **4.4 Non-Approved Services** | Name | Description | Input | Output | Indicator | Algorithm
Accessed | Role | |----------------------------|--|-----------------------|--|-----------|-----------------------------|------------------------------| | Decrypt
Firmware | Decrypt FW
provided by H-
Core | Firmware
location | Decrypted firmware | 0 | AES-XTS in S-
Core | N/A
(Unauthenticat
ed) | | Verify Decrypt
Firmware | Verify and
Decrypt
Firmware ⁵
provided by H-
Core | Firmware
location | Decrypted
firmware if
verification is
successful else
error. | 0 | ECDSA, SHA-
384, AES-XTS | N/A
(Unauthenticat
ed) | | Get Dump Key | Module generates AES XTS dump key using DRBG and then exports it after encrypting with RSA | N/A | Dump key with
RSA | 0 | CTR_DRBG,
RSA encrypt | N/A
(Unauthenticat
ed) | | Clear Dump
Key | Removes
dump key
stored in the
module | N/A | Success/
error | 0 | None | N/A
(Unauthenticat
ed) | | Dump
Encryption | Encrypts the
dump data
provided by H-
Core using
dump key | Dump data
location | Encrypted
dump data | 0 | AES-XTS in S-
Core | N/A
(Unauthenticat
ed) | Table 13: Non-Approved Services #### 4.5 External Software and Firmware Loaded The module loads its firmware component from outside of the sub-chip boundary during module start up. The module uses firmware load test described in Section 5.1 to ensure the firmware's validity. ©2025 Samsung Electronics Co., Ltd., and atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. ⁵ Note: the firmware does not pertain to the module. ## 5. Software/Firmware Security #### 5.1 Integrity Techniques The module's firmware component (i.e., main firmware and bootloader) is in executable form and is verified with ECDSA signature verification using P-384 ECDSA curve and SHA-384 by the ROM code. The corresponding firmware verification key (i.e., ECDSA public key) used for verification is stored in the ROM and its key index is stored in the OTP memory within the subchip. During the module startup time the firmware component is loaded from outside of the module's sub-chip boundary. The firmware provides the "key index" of the public key stored in the OTP. The module reads this key index and its corresponding public key, which is then used to perform signature verification, i.e., the firmware load test required per IG 2.3.B. Only when the signature verification is successful the firmware component is loaded, and the module proceeds to boot. If the signature verification fails, the module enters Power on Error state. The module does not provide any data output until the firmware load test is successful. #### 5.2 Initiate on Demand The integrity tests can be invoked on demand by module reset. ## **6.Operational Environment** ## 6.1 Operational Environment Type and Requirements The module has a non-modifiable operational environment; therefore, this section is not applicable. ## 7. Physical Security The module is hosted in a single chip that forms the physical perimeter of the module. The SoC is enclosed within production grade components. At the time of manufacturing, the module is embedded into its host SoC (shown in Figure 2), preventing visibility into the module's internal circuitry. In addition, the layer process which embeds the module into the SoC prevents tampering of the module's physical components without leaving tamper evidence. The module is intended to be deployed within a storage device which itself is made from production grade, commercially available components. The storage device's enclosure surrounds the module's SoC. ## 7.1 Mechanisms and Actions Required | Mechanism | Inspection Frequency | Inspection Guidance | |------------------------|----------------------|---------------------| | Tamper evident coating | N/A | N/A | Table 14: Mechanisms and Actions Required ## 8. Non-Invasive Security This module does not implement a non-invasive security technique. ## 9. Sensitive Security Parameter Management ## 9.1 Storage Areas | Storage Area Name | Description | Persistence Type | |----------------------------|--|------------------| | Registers | The module has internal registers that may store SSPs for use by the module. | Dynamic | | S-Core Dedicated OTP (OTP) | Stores Root Keys | Static | | S-Core ROM (SROM) | Stores Firmware Verification Key | Static | | S-Core RAM (SRAM) | S-Core exclusive RAM | Dynamic | Table 15: Storage Areas #### 9.2 SSP Input-Output Methods | Name | From | То | Format Type | Distribution Type | Entry Type | |---------|--------|--------|-------------|--|------------| | Mailbox | H-Core | Module | Plaintext | N/A per IG 2.3.B as transfer is only between the sub-chip module and the components residing on the same SoC | Electronic | | DMA | NAND | Module | Encrypted | Automated | Electronic | Table 16: SSP Input-Output #### 9.3 SSP Zeroisation Methods All data output via data output interface is inhibited until completion of zeroization. | Zeroisation
Method | Description | Rationale | Operator Initiation | |------------------------|--|-----------|---| | Module reset | Loss of volatile SSP data stores upon power down. | N/A | Powering off the module | | Mailbox
Zeroisation | Writing zeroes over the SSP that is used within a service. | N/A | Performed automatically by the module as part of each service that receives an SSP as input | | OTP Zeroisation | Zeroising Root key stored in OTP. | N/A | Call to OTP Zeroisation service | Table 17: SSP Zeroisation Methods #### **9.4 SSPs** | Name | Descriptio
n | Size -
Strength | Type -
Catego
ry | Generated
By | Establish
ed By | Used By | |------------------------|---|-----------------------|------------------------|-----------------|--------------------|----------| | DRBG
Internal State | Internal
state of
DRBG | N/A | CSP | CTR_DRBG | N/A | CTR_DRBG | | DRBG Seed | Derived
from
entropy
input per SP
800-
90ARev1 | 256 bits/
256 bits | CSP | CTR_DRBG | N/A | CTR_DRBG | | Name | Descriptio
n | Size -
Strength | Type -
Catego
ry | Generated
By | Establish
ed By | Used By | |---------------|---|--|------------------------|---|---|---| | Entropy Input | Output from
Entropy
source | 512 bits/
256 bits | CSP | ENT (P) | N/A | CTR_DRBG | | Password | Operator
provided
password | 64-256-
bits / 64
bits - 256
bits | CSP | N/A | N/A | All authenticated
services listed in Table
12 | | СРК | Credential
Protection
Key | 256-bit /
256-bits | CSP | Derived
using SP
800-108
KBKDF | Encrypted
Import and
export
(AES GCM)
to NAND | All authenticated
services listed in Table
12 | | СК | Common
Key i.e.,
ECDH
shared
secret | P-384 /
192 bits | CSP | SP 800-
56Arev3
Shared
secret
computation | N/A | Grant | | KDK_KPK | Key
Derivation
Key for the
KPK | 256-bits /
256-bits | CSP | CTR_DRBG | Encrypted
Import and
export
(AES GCM)
to NAND | All authenticated
services listed in Table
12 | | KDK_CPK | Key
Derivation
Key for the
CPK | 256-bits /
256-bits | CSP | CTR_DRBG | Encrypted
Import and
export
(AES GCM)
to NAND | All authenticated
services listed in Table
12 | | KPK | Key
Protection
Key | 256-bits /
256-bits | CSP | KBKDF | N/A | All authenticated
services listed in Table
12 | | SK | ECDSA
private Key | P-384 /
192 bits | CSP | FIPS 186-4
EC key
generation | Encrypted
Import and
export
(AES GCM)
to NAND | Grant | | PK | ECDSA
Public Key | P-384 /
192 bits | PSP | FIPS 186-4
EC key
generation | Encrypted
Import and
export
(AES GCM)
to NAND | Grant | | GRK | Grant Key
(AES GCM
Key) | 256-bits /
256-bits | CSP | N/A | SP 800-
56ARev3
ECDH key
agreement | Grant | | KEK | Key
Encryption
Key
(AES GCM
Key) | 256-bits / 256-bits | CSP | CTR_DRBG | Encrypted
Import and
export
(AES GCM)
to NAND | CreateNamespace, DeleteNamespace, FormatNVM, PermanentWriteProtect ion, Sanitze, CryptoErase, Assign, Deassign, Genkey, | ©2025 Samsung Electronics Co., Ltd., and atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. | Name | Descriptio
n | Size -
Strength | Type -
Catego
ry | Generated
By | Establish
ed By | Used By | |----------|---|------------------------|------------------------|--|---|---| | | | | | | | Grant,
Revert,
RevertWithPSID,
RevertSP,
Authenticate | | MEK | Media
Encryption
Key
(AES GCM
Key) | 256-bits /
256-bits | CSP | CTR_DRBG | Encrypted
Import and
export
(AES GCM)
to NAND | DeleteNamespace, FormatNVM, Sanitize, CryptoErase, Activate, Reactivate, Assign, Deassign, Erase, Genkey, Revert, RevertWithPSID, RevertSP, SetRange, Authenticate, TperReset | | REK | Root
Encryption
Key
(AES GCM
Key) | 256-bits /
256-bits | CSP | Derived
from Root
key using
KBKDF | N/A | All authenticated
services listed in Table
12 | | Root Key | Stored in
the OTP
during
manufacturi
ng
(key
derivation
key) | 256-bits /
256-bits | CSP | N/A, loaded
at
manufacturi
ng | N/A | All authenticated
services listed in Table
12 | | SMK | Service
metadata
Mac Key
(HMAC key) | 256-bits /
256-bits | CSP | Derived
from Root
key using
KBKDF | N/A | Module Startup | | КМК | Secret Key
metadata
Mac Key
(HMAC key) | 256-bits /
256-bits | CSP | Derived
from Root
key using
KBKDF | N/A | All authenticated
services listed in Table
12 | Table 18: SSP Information First | Name | Input -
Output | Storage | Storge Duration | Zeroisation Type | Related SSPs | |---------------------------|-------------------|--------------|--------------------|------------------|--| | DRBG
Internal
State | N/A | HW registers | Until Module reset | Module reset | DRBG seed, entropy input,
MEK, KEK, SK, KDK_CPK,
KDK_KPK | | DRBG
Seed | N/A | HW registers | | | DRBG internal state,
entropy input, MEK, KEK,
SK, KDK_CPK, KDK_KPK | | Entropy
Input | N/A | HW registers | Until Module reset | Module reset | DRBG seed, DRBG internal state | | Name | Input -
Output | Storage | Storge Duration | Zeroisation Type | Related SSPs | |----------|-------------------|---------|-----------------------|---------------------|---------------------| | Password | Mailbox | SRAM | For the duration of | Overwrite | CPK, KPK | | СРК | DMA | SRAM | the service | Mailbox Zeroisation | KDK_CPK, Password | | CK | N/A | SRAM | | Overwrite | GRK | | KDK_KPK | DMA | SRAM | | Mailbox Zeroisation | KPK, Password | | KDK_CPK | - | SRAM | _ | | CPK, Password | | KPK | N/A | SRAM | _ | | KDK_KPK, Password | | SK | DMA | SRAM | _ | | GRK | | PK | - | SRAM | _ | | GRK | | GRK | N/A | SRAM | | | SK, PK, CK | | KEK | DMA | SRAM | For the duration of | Mailbox Zeroisation | MEK SK, PK, CK, GRK | | MEK | DMA | SRAM | the service | | KEK | | REK | N/A | SRAM | | | Root Key, KMK, SMK | | Root Key | N/A | ОТР | Until OTP zeroisation | OTP zeroisation | REK | | SMK | DMA | SRAM | Until Module reset | Mailbox Zeroisation | REK | | KMK | DMA | SRAM | | | REK | Table 19: SSP Information Second ## 10. Self-Tests ## 10.1 Pre-Operational Self-Tests | Algorithm | Implementa
tion | Test
Properties | Test Method | Test Type | Indicator | Details | |-----------|--------------------|------------------------|---------------------------|-----------------------|-----------------------|---------------------------------------| | ECDSA | Firmware | P-384 with
SHA2-384 | Signature
Verification | Firmware
Integrity | Module is operational | Verifies Main
FW and
Bootloader | Table 20: Pre-Operational Self-Tests #### 10.2 Conditional Self-Tests | Algorithm | Implementatio
n | Test
Propertie
s | Test
Method | Test
Typ
e | Indic. | Details | Conditions | |-----------------------|--------------------|------------------------------------|------------------|------------------|---|---|-------------------| | ECDSA | Firmware | P-384 with
SHA2-384 | KAT | CAS
T | Module is operationa | Before
firmware
integrity
check | Module
Startup | | AES-GCM ⁶ | | AES-256 | KAT | CAS
T | | Encrypt/
Decrypt | | | SHA2-256 | | N/A | KAT | CAS
T | | Hashing | | | SHA2-384 | | N/A | KAT | CAS
T | | Hashing | | | НМАС | | SHA2-256 | KAT | CAS
T | | Message
authenticatio
n | | | CTR_DRBG | Hardware | AES-256 | KAT | CAS
T | | Random
number
generation ⁷ | | | KBKDF | Firmware | HMAC
SHA2-256 | KAT | CAS
T | | Key
Derivation | | | ECDH SSC | | P-384 | KAT | CAS
T | | Shared
secret
computation | | | One step KDF
(KDA) | | SHA-256 | KAT | CAS
T | | Key
Derivation | | | ENT (P) | Hardware | SP 800-
90B
Startup
Tests | 1024
samples | RCT
&
APT | Entropy
source is
operationa
I | Entropy
source start-
up test | Boot Up | | | | SP 800-
90B | Continuousl
y | RCT
&
APT | | Entropy
source | Continuousl
y | $^{^6}$ Even though the module implements AES ECB mode, it is not available as a standalone service and therefore does not include any self-test. ECB encryption is only used internally by module's AES GCM and DRBG algorithm which have their own self-test. ⁷ Including *instantiate*, *generate*, and *reseed* function per section 11.3 of SP 800-90A DRBG. | Algorithm | Implementatio
n | Test
Propertie
s | Test
Method | Test
Typ
e | Indic. | Details | Conditions | |-----------|--------------------|------------------------|----------------|------------------|-------------------------------------|--|-------------------| | | | Continuou
s Tests | | | | continuous
test | | | ECDSA | Firmware | SHA2-256 | PCT | CAS
T | Key
generatio
n
successful | Per SP 800-
56ARev3
section
5.6.2.1.4 b | Key
Generation | Table 21: Conditional Self-Tests #### 10.3 Periodic Self-Tests The module does not implement any periodic self-tests. #### 10.4 Error States | Name | Description | Conditions | Recovery Method | Indicator | |----------------------------|--|---|---|--| | Power ON
Error State | The module is not operational. All data output is inhibited. | pre-operational test
or CAST failure | Power cycle or Internal
Reset Signal | the module is not
started, and no
services are
available. | | Operational
Error state | The module does not provide any crypto operation. All data output is inhibited. Only status output is allowed. | PCT or runtime
health test failure | Power cycle or Internal
Reset Signal | FIPS_FAIL message
in Show Status
Service | Table 22: Error States ## 11. Life-Cycle Assurance ## 11.1 Installation, Initialization and Startup Procedures The vendor uses trusted delivery courier to dispatch the SoC that hosts the module. The Crypto officer should verify the package and the received SoC to verify that there is no tamper evidence present. #### 11.2 Administrator Guidance The Crypto officer shall power up the module and call the "Show Status" service to verify the following output is provided. This confirms that the SoC is running a FIPS validated module that has booted successfully passing the pre-operational self-tests. - Tested Configuration: S4LV006A01 - Hardware Version: S01- Firmware Version: SS0100 #### 11.3 Non-Administrator Guidance The module generates GCM IV internally in compliance with scenario 2 of IG C.H. The IV length is 96 bits, and the IV value is obtained from the SP 800-90ARev1 approved DRBG implemented by the module. ## 12. Mitigation of Other Attacks The module does not provide additional mitigations against other types of attacks. ## 13. Abbreviations **AES** Advanced Encryption Standard **CAVP** Cryptographic Algorithm Validation Program **CMVP** Cryptographic Module Validation Program **CK** Common Key CPK Credential Protection Key CSP Critical Security Parameter **CTR** Counter Mode **DRBG** Deterministic Random Bit Generator **DTRNG** Deterministic True Random Number Generator **ECB** Electronic Code Book **ENT** NIST SP 800-90B Compliant Entropy Source Federal Information Processing Standards **GCM** Galois Counter Mode **GRK** Grant Key **HMAC** Hash Message Authentication Code **KAT** Known Answer Test **KDF** Key Derivation Function **KDK_CPK** Key Derivation Key for CPK **KDK_KPK** Key Derivation Key for KPK **KMK** Secret Key metadata Mac Key **KPK** Key Protection Key **NVM** Non-Volatile Memory **OTP** One Time Programmable **PK** Public Key **PKE** Public Key Encryption **PSP** Public Security Parameter **ROM** Read Only Memory **RSA** Rivest, Shamir, Addleman SED Self-Encrypting Device SHA Secure Hash Algorithm **SHS** Secure Hash Standard **SID** Security ID | SK | Secret key | |-----|--| | SoC | System on Chip | | SSC | Security Subsystem Class | | SSP | Sensitive Security Parameter | | TCG | Trusted Computing Group | | XTS | XEX-based Tweaked-codebook mode with ciphertext stealing | | | |