
 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice.

 Ubuntu 18.04 Google Kernel Crypto
API Cryptographic Module

version 2.0

FIPS 140-2 Non-Proprietary Security Policy

Version 1.2

Last update: 2023-09-06

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 2 of 36

Table of Contents

1. Cryptographic Module Specification ... 5
1.1. Module Overview ... 5
1.2. Modes of Operation .. 8

2. Cryptographic Module Ports and Interfaces ... 10
3. Roles, Services and Authentication .. 11

3.1. Roles .. 11
3.2. Services ... 11
3.3. Algorithms .. 13

3.3.1. Ubuntu 18.04 LTS 64-bit Running on Intel® Xeon® CPU E5-2620v3 Processor 13
3.3.2. Non-Approved Algorithms ... 17

3.4. Operator Authentication ... 18
4. Physical Security .. 19
5. Operational Environment .. 20

5.1. Applicability .. 20
5.2. Policy .. 20

6. Cryptographic Key Management ... 21
6.1. Random Number Generation .. 21
6.2. Key Generation .. 22
6.3. Key Agreement / Key Transport / Key Derivation .. 22
6.4. Key Entry / Output .. 22
6.5. Key / CSP Storage .. 22
6.6. Key / CSP Zeroization ... 23

7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) 24
8. Self-Tests .. 25

8.1. Power-Up Tests ... 25
8.1.1. Integrity Tests ... 25
8.1.2. Cryptographic Algorithm Tests ... 25

8.2. On-Demand Self-Tests ... 28
8.3. Conditional Tests .. 28

9. Guidance ... 29
9.1. Crypto Officer Guidance .. 29

9.1.1. Module Installation .. 29
9.1.2. Operating Environment Configuration ... 29

9.2. User Guidance .. 30

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 3 of 36

9.2.1. AES-GCM IV .. 30
9.2.2. AES-XTS .. 30
9.2.3. Triple-DES encryption .. 30
9.2.4. Handling FIPS Related Errors ... 31

10. Mitigation of Other Attacks ... 32

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 4 of 36

Copyrights and Trademarks
Ubuntu and Canonical are registered trademarks of Canonical Ltd.

Linux is a registered trademark of Linus Torvalds.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 5 of 36

1. Cryptographic Module Specification
This document is the non-proprietary FIPS 140-2 Security Policy for version 2.0 of the Ubuntu 18.04
Google Kernel Crypto API Cryptographic Module �. It contains the security rules under which the
module must operate and describes how this module meets the requirements as specified in FIPS
PUB 140-2 (Federal Information Processing Standards Publication 140-2) for a Security Level 1��
software module.

This module validation is a re-branding of a software module that was previously validated under
Certificate #3647.

The following sections describe the cryptographic module and how it conforms to the FIPS 140-2
specification in each of the required areas.

1.1. Module Overview
The Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module � (hereafter referred to as “the
module”) is a software module running as part of the operating system kernel that provides general
purpose cryptographic services. The module provides cryptographic services to kernel applications
through a C language Application Program Interface (API) and to applications running in the user
space through an AF_ALG socket type interface. The module utilizes processor instructions to
optimize and increase the performance of cryptographic algorithms.

For the purpose of the FIPS 140-2 validation, the module is a software-only, multi-chip standalone
cryptographic module validated at overall security level 1��. The table below shows the security level
claimed for each of the eleven sections that comprise the FIPS 140-2 standard.

FIPS 140-2 Section Security
Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

Overall Level 1��

Table 1 - Security Levels

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 6 of 36

The table below enumerates the components that comprise the module with their location in the
target platform.

Description Components

Integrity test utility /usr/bin/sha512hmac

Integrity check HMAC file
for the integrity test utility.

/usr/bin/.sha512hmac.hmac

Static kernel binary /boot/vmlinuz-4.15.0-1001-gcp-fips�

Integrity check HMAC file
for static kernel binary

/boot/.vmlinuz-4.15.0-1001-gcp-fips�.hmac

Cryptographic kernel
object files

/lib/modules/4.15.0-1001-gcp-fips�/kernel/crypto/*.ko
/lib/modules/4.15.0-1001-gcp-fips�/kernel/arch/x86/crypto/*.ko

Table 2 - Cryptographic Module Components

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 7 of 36

The software block diagram below shows the module, its interfaces with the operational
environment and the delimitation of its logical boundary, comprised of all the components within
the BLUE box.

Figure 1 - Software Block Diagram

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 8 of 36

The module is aimed to run on a general purpose computer (GPC); the physical boundary of the
module is the tested platforms. Figure 2 shows the major components of a GPC.

Figure 2 - Cryptographic Module Physical Boundary

The module has been tested on the test platforms shown below.

Test Platform Processor Processor
Architecture

Test Configuration

Supermicro SYS-5018R-WR Intel® Xeon®
CPU E5-2620v3

Intel x86 64
bits

Ubuntu 18.04 LTS 64-bit
with/without AES-NI (PAA)

Table 3 - Tested Platforms

Note: Per [FIPS 140-2_IG] G.5, the Cryptographic Module Validation Program (CMVP) makes no
statement as to the correct operation of the module or the security strengths of the generated keys
when this module is ported and executed in an operational environment not listed on the validation
certificate.

1.2. Modes of Operation
The module supports two modes of operation:

• FIPS mode (the Approved mode of operation): only approved or allowed security functions
with sufficient security strength can be used.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 9 of 36

• non-FIPS mode (the non-Approved mode of operation): only non-approved security
functions can be used.

The module enters FIPS mode after power-up tests succeed. Once the module is operational, the
mode of operation is implicitly assumed depending on the security function invoked and the
security strength of the cryptographic keys.

Critical security parameters used or stored in FIPS mode are not to be used in non-FIPS mode, and
vice versa.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 10 of 36

2. Cryptographic Module Ports and Interfaces
As a software-only module, the module does not have physical ports. For the purpose of the FIPS
140-2 validation, the physical ports are interpreted to be the physical ports of the hardware
platforms on which it runs.

The logical interfaces are the API through which kernel modules request services, and the AF_ALG
type socket that allows the applications running in the user space to request cryptographic services
from the module. The following table summarizes the four logical interfaces:

FIPS Interface Physical Port Logical Interface

Data Input Keyboard API input parameters from kernel
system calls, AF_ALG type socket.

Data Output Display API output parameters from kernel
system calls, AF_ALG type socket.

Control Input Keyboard API function calls, API input parameters
for control from kernel system calls,
AF_ALG type socket, kernel command
line.

Status Output Display API return codes, AF_ALG type socket,
kernel logs.

Power Input GPC Power Supply Port N/A

Table 4 - Ports and Interfaces

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 11 of 36

3. Roles, Services and Authentication

3.1. Roles
The module supports the following roles:

• User role: performs cryptographic services (in both FIPS mode and non-FIPS mode), key
zeroization, show status, and on-demand self-test.

• Crypto Officer role: performs module installation and initialization.

The User and Crypto Officer roles are implicitly assumed by the entity accessing the module
services.

3.2. Services
The module provides services to users that assume one of the available roles. All services are shown
in Table 5 and Table 6.

The table below shows the services available in FIPS mode. For each service, the associated
cryptographic algorithms, the roles to perform the service, and the cryptographic keys or Critical
Security Parameters and their access right are listed. The following convention is used to specify
access rights to a CSP:

• Create: the calling application can create a new CSP.

• Read: the calling application can read the CSP.

• Update: the calling application can write a new value to the CSP.

• Zeroize: the calling application can zeroize the CSP.

• n/a: the calling application does not access any CSP or key during its operation.

If the services involve the use of the cryptographic algorithms, the corresponding Cryptographic
Algorithm Validation System (CAVS) certificate numbers of the cryptographic algorithms can be
found in Table 7 of this security policy.

Service Algorithms Role Access Keys/CSP

Cryptographic Library Services

Symmetric Encryption
and Decryption

AES User Read AES key

Triple-DES User Read Triple-DES key

Random number
generation

DRBG User Read,
Update

Entropy input string,
Internal state

Message digest SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512, SHA3-224,
SHA3-256, SHA3-384,
SHA3-512

User N/A N/A

Message
authentication code

HMAC User Read HMAC key

CMAC with AES User Read AES key

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 12 of 36

Service Algorithms Role Access Keys/CSP

(MAC) CMAC with Triple-DES User Read Triple-DES key

Key wrapping (KTS1) AES User Read AES key

Encrypt-then-MAC
(authenc) operation
for IPsec

AES (CBC mode),
Triple-DES (CBC
mode), HMAC

User Read AES key, Triple-DES key,
HMAC key

Key encapsulation2 RSA User Read RSA key pair

Other Services

Error detection code crc32c3, crct10dif3 User N/A None

Data compression deflate3, lz43, lz4hc3,
lzo3, zlib3, 8423

User N/A None

Memory copy
operation

ecb(cipher_null)3 User N/A None

Show status N/A User N/A None

Zeroization N/A User Zeroize All CSPs

Self-Tests AES, Triple-DES, SHS,
SHA3, HMAC, RSA,
DRBG

User N/A None

Module installation N/A Crypto
Officer

N/A None

Module initialization N/A Crypto
Officer

N/A None

Table 5 - Services in FIPS mode of operation

The table below lists the services only available in non-FIPS mode of operation.

Service Algorithms / Key sizes Role Access Keys

Symmetric encryption
and decryption

AES-XTS with 192-bit key size User Read Symmetric key

2-key Triple-DES User Read 2-key Triple-DES key

Generic GCM encryption with
external IV
RFC4106 GCM encryption with
external IV

User Read AES key

Message digest GHASH outside the GCM
context

User N/A None

1 Approved per IG D.9
2 Allowed per IG D.9
3 This algorithm does not provide any cryptographic attribute.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 13 of 36

Service Algorithms / Key sizes Role Access Keys

Message
authentication code
(MAC)

HMAC with less than 112 bit
keys

User Read HMAC key

CMAC with 2-key Triple-DES User Read 2-key Triple-DES key

RSA sign/verify
primitive operations

RSA primitive operations listed
in Table 9

User Read RSA key pair

Shared secret
computation

Diffie-Hellman
EC Diffie-Hellman

User Read Diffie-Hellman key pair
EC Diffie-Hellman key
pair

Key encapsulation RSA with key smaller than
2048 bits.

User Read RSA key pair

Key generation EC Key Generation User Read/
Write

EC key pair

Table 6 – Services in non-FIPS mode of operation

3.3. Algorithms
The algorithms implemented in the module are tested and validated by the CAVP for the following
operating environment:

• Ubuntu 18.04 LTS 64-bit running on Intel® Xeon® processor

The Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module� is compiled to use the support
from the processor and assembly code for AES, Triple-DES, SHA and GHASH4 operations to enhance
the performance of the module. Different implementations can be invoked by using the unique
algorithm driver names. All the algorithm execution paths have been validated by the CAVP.

3.3.1. Ubuntu 18.04 LTS 64-bit Running on Intel® Xeon® CPU E5-2620v3
Processor

On the platform that runs the Intel Xeon processor, the module supports the use of generic C
implementation for all the algorithms, the use of strict assembler for AES and Triple-DES core
algorithms, the use of strict assembler for Triple-DES (both core and modes), the use of AES-NI for
AES core algorithm and CLMUL for the GHASH algorithm, the use of AES-NI for AES (both core and
modes), the use of AVX, AVX2 and SSSE3 for SHA algorithm.

The following table shows the CAVS certificates and their associated information of the
cryptographic implementation in FIPS mode.

CAVP Cert Algorithm Standard Mode /
Method

Key Lengths,
Curves or

Moduli (in bits)

Use

Generic C
implementation for

AES [FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

4 The GHASH algorithm is used in GCM mode.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 14 of 36

CAVP Cert Algorithm Standard Mode /
Method

Key Lengths,
Curves or

Moduli (in bits)

Use

AES: #C755

Strict assembler for
AES core: #C758

Using AES-NI for AES
core and CLMUL for
GHASH: #C761

[SP800-38B] CMAC 128, 192, 256 MAC Generation
and Verification

[SP800-38C] CCM 128, 192, 256 Data Encryption
and Decryption

[SP800-38D] GCM
decryption
with external
IV

128, 192, 256 Data Decryption

[SP800-38D] GMAC 128, 192, 256 MAC Generation
and Verification

[SP800-38E] XTS 128, 256 Data Encryption
and Decryption
for Data Storage

[SP800-38F] KW 128, 192, 256 Key Wrapping
and Unwrapping

C implementation for
AES: #C756

Strict assembler for
AES core: #C759

AES-NI for AES core
and CLMUL for
GHASH: #C762

AES-NI for AES and
GHASH: #C765

[FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

[SP800-38D]
[RFC4106]

RFC4106 GCM
with internal
IV

128, 192, 256 Data Encryption

C implementation for
AES: #C757

Strict assembler for
AES core: #C760

AES-NI for AES core
and CLMUL for
GHASH: #C763

AES-NI for AES and
RFC4106 GCM: #C764

[FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

[SP800-38D]
[RFC4106]

RFC4106 GCM
decryption
with external
IV

128, 192, 256 Data Decryption

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 15 of 36

CAVP Cert Algorithm Standard Mode /
Method

Key Lengths,
Curves or

Moduli (in bits)

Use

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

DRBG [SP800-90A] Hash_DRBG:
SHA-1,
SHA-256,
SHA-384,
SHA-512
with/without
PR

N/A Deterministic
Random Bit
Generation

HMAC_DRBG:
SHA-1,
SHA-256,
SHA-384,
SHA-512
with/without
PR

Generic C
implementation for
AES: #C755

Strict assembler for
AES core: #C758

Using AES-NI for AES
core: #C761

CTR_DRBG:
AES-128,
AES-192,
AES-256
with DF,
with/without
PR

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

HMAC [FIPS198-1] SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

112 or greater Message
authentication
code

Generic C
implementation for
SHA: #C755

SHA3-224
SHA3-256
SHA3-384
SHA3-512

112 or greater Message
authentication
code

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 16 of 36

CAVP Cert Algorithm Standard Mode /
Method

Key Lengths,
Curves or

Moduli (in bits)

Use

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

RSA [FIPS186-4] PKCS#1v1.5
SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

1024, 2048,
3072

Digital Signature
Verification for
integrity tests

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

SHS [FIPS180-4] SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

N/A Message Digest

Generic C
implementation:
#C755

SHA3 [FIPS 202] SHA3-224
SHA3-256
SHA3-384
SHA3-512

N/A Message Digest

Generic C
implementation for
Triple-DES: #C755

Strict assembler for
Triple-DES core:
#C758

Triple-DES [SP800-67],
[SP800-38A]

ECB, CBC, CTR 192 Data Encryption
and Decryption

[SP800-67],
[SP800-38B]

CMAC 192 MAC Generation
and Verification

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 17 of 36

CAVP Cert Algorithm Standard Mode /
Method

Key Lengths,
Curves or

Moduli (in bits)

Use

AES-GCM: #C755,
#C756, #C757, #C758,
#C759, #C760, #C761,
#C762, #C763, #C764,
#C765 (any GCM
implementation)

AES-CCM: #C755,
#C758, #C761 (any
CCM implementation)

AES-KW: #C755,
#C758, #C761 (any
KW implementation)

AES: #C755, #C756,
#C757, #C758, #C759,
#760, #C761, #C762,
#C763, #C764, #C765

Triple-DES: #C755,
#C758

HMAC: #C755, #C766,
#C767, #C768

KTS1 (AES) [FIPS 198-1]

[FIPS180-4]

[SP800-67]

[SP800-38A]

[SP800-38C]

[SP800-38D]

[SP800-38F]

AES-GCM

AES-CCM

AES-KW

AES-GCM

AES-CCM

AES-
CBC+HMAC-
SHA1

Triple-
DES+HMAC-
SHA1/224/256/
384/512

AES keys: 128,
192, 256 bits

Triple-DES
keys: 192 bits

HMAC keys:
112 bits and
larger

Key wrapping and
unwrapping

Table 7 – Cryptographic Algorithms Validation System (CAVS) certificates for the Intel® Xeon® Processor

3.3.2. Non-Approved Algorithms

The following table describes the non-Approved but allowed algorithms in FIPS mode:

Algorithm Use

NDRNG

(based on Linux RNG and CPU-Jitter RNG)

The module obtains the entropy data from NDRNG to
seed the DRBG

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 18 of 36

Algorithm Use

RSA encrypt/decrypt primitives with keys
equal or larger than 2048 bits up to 15360 or
more

Key wrapping; allowed per [FIPS140-2_IG] D.9

Table 8 – FIPS-Allowed Cryptographic Algorithms

The table below shows the non-Approved cryptographic algorithms implemented in the module
that are only available in non-FIPS mode.

Algorithm Implementation Name Use

AES-XTS “xts” 192-bit keys

2-key Triple-DES “des3_ede”,
”cmac(des3_ede)”

Data Encryption / Decryption

Generic GCM encryption with
external IV

“gcm(aes)” with external IV Data Encryption

RFC4106 GCM encryption with
external IV

“rfc4106(gcm(aes))” with
external IV

Data Encryption (Certs.
#C757, #C760, #C763, #C764)

GHASH “ghash” Hashing outside the GCM
mode

HMAC with less than 112 bits key “hmac” Message Authentication Code

RSA primitive operations “rsa” RSA sign/verify primitive
operations
RSA encrypt/decrypt (key
transport) with keys smaller
than 2048 bits

Diffie-Hellman “dh” Shared secret computation

EC Diffie-Hellman “ecdh” Shared secret computation

EC Key Generation “ecdh” EC Key Generation
CAVS Cert. #C755

Table 9 - Non-Approved Cryptographic Algorithms and Modes

Note: Calling any algorithm, mode or combination using any of the above listed non-Approved items
will cause the module to enter non-FIPS mode implicitly.

3.4. Operator Authentication
The module does not implement user authentication. The role of the user is implicitly assumed
based on the service requested.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 19 of 36

4. Physical Security
The module is comprised of software only and therefore this security policy does not make any
claims on physical security.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 20 of 36

5. Operational Environment

5.1. Applicability
The module operates in a modifiable operational environment per FIPS 140-2 level 1 specifications.
The module runs on a commercially available general-purpose operating system executing on the
hardware specified in Table 3 - Tested Platforms.

5.2. Policy
The operating system is restricted to a single operator; concurrent operators are explicitly excluded.

The application that requests cryptographic services is the single user of the module.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 21 of 36

6. Cryptographic Key Management
The following table summarizes the Critical Security Parameters (CSPs) that are used by the
cryptographic services implemented in the module:

Name CSP Type Generation Entry and Output Zeroization

AES key 128, 192, 256
AES key

N/A The key is passed into
the module via API input
parameters in plaintext.

crypto_free_cipher()
crypto_free_ablkcipher()
crypto_free_blkcipher()
crypto_free_skcipher()
crypto_free_aead()

Triple-DES key 192 bits
Triple-DES
key

HMAC key HMAC key
greater than
112 bits

N/A The key is passed into
the module via API input
parameters in plaintext.

crypto_free_shash()
crypto_free_ahash()

Entropy input
string

Random
number

Obtained
from NDRNG

None crypto_free_rng()

DRBG internal
state (V, C for
Hash; V, C, Key for
HMAC and CTR)

DRBG internal
state

During DRBG
initialization

None crypto_free_rng()

RSA Key Transport
private key

RSA private
key equal or
greater than
2048 bits

None Keys are passed into the
module via API input
parameters in plaintext.

crypto_free_kpp()

Table 10 - Life cycle of Critical Security Parameters (CSP)

The following table summarizes the asymmetric public keys that are used by the cryptographic
services implemented in the module:

Name Public Key
Type

Generation Entry and Output Zeroization

RSA public key RSA public
key equal or
greater than
2048 bits

None Keys are passed into the
module via API input
parameters in plaintext.

crypto_free_kpp()

Table 11 - Life cycle of asymmetric public keys

The following sections describe how CSPs, in particular cryptographic keys, are managed during its
life cycle.

6.1. Random Number Generation
The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for the
creation of random numbers. In addition, the module provides a Random Number Generation
service to calling applications.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 22 of 36

The DRBG supports the Hash_DRBG, HMAC_DRBG and CTR_DRBG mechanisms. The DRBG is
initialized during module initialization; the module loads by default the DRBG using the
HMAC_DRBG mechanism with SHA-256 without prediction resistance.

To seed the DRBG, the module uses a Non-Deterministic Random Number Generator (NDRNG) as
the entropy source. The NDRNG is based on the Linux RNG and the CPU-Jitter RNG (both within the
module’s logical boundary). The NDRNG provides sufficient entropy to the DRBG during
initialization (seed) and reseeding (reseed).

The module performs conditional self-tests on the output of NDRNG to ensure that consecutive
random numbers do not repeat, and performs DRBG health tests as defined in section 11.3 of
[SP800-90A].

6.2. Key Generation
The module does not provide any dedicated key generation service for symmetric keys. However,
the Random Number Generation service can be called by the user to obtain random numbers which
can be used as key material for symmetric algorithms or HMAC.

6.3. Key Agreement / Key Transport / Key Derivation
The module provides SP 800-38F compliant key wrapping using AES with GCM, CCM, and KW block
chaining modes, as well as a combination of AES-CBC for encryption/decryption and HMAC for
authentication. The module also provides SP 800-38F compliant key wrapping using a combination
of Triple-DES-CBC for encryption/decryption and HMAC for authentication.

According to Table 2: Comparable strengths in [SP 800-57], the key sizes of AES provides the
following security strength in FIPS mode of operation:

• AES: key wrapping provides between 128 and 256 bits of encryption strength.

• Triple-DES: key wrapping provides 112 bits of encryption strength.

The module also supports the RSA key transport key establishment methodology:

• RSA key transport: key establishment methodology provides between 112 and 256 bits of
encryption strength.

6.4. Key Entry / Output
The module does not support manual key entry. The keys are provided to the module via API input
parameters in plaintext form. This is allowed by [FIPS140-2_IG] IG 7.7, according to the “CM
Software to/from App Software via GPC INT Path” entry on the Key Establishment Table.

6.5. Key / CSP Storage
Symmetric and asymmetric keys are provided to the module by the calling application via API input
parameters and are destroyed by the module when invoking the appropriate API function calls.

The module does not perform persistent storage of keys. The keys and CSPs are stored as plaintext
in the RAM. The only exceptions are the HMAC key and the RSA public key used for the Integrity
Tests, which are stored in the module and rely on the operating system for protection.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 23 of 36

6.6. Key / CSP Zeroization
The memory occupied by keys is allocated by regular memory allocation operating system calls.
Memory is automatically overwritten with “zeroes” and deallocated when the cipher handler is
freed.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 24 of 36

7. Electromagnetic Interference/Electromagnetic Compatibility
(EMI/EMC)
The test platforms listed in Table 3 - Tested Platforms have been tested and found to conform to
the EMI/EMC requirements specified by 47 Code of Federal Regulations, FCC PART 15, Subpart B,
Unintentional Radiators, Digital Devices, Class A (i.e., Business use). These devices are designed to
provide reasonable protection against harmful interference when the devices are operated in a
commercial environment. They shall be installed and used in accordance with the instruction
manual.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 25 of 36

8. Self-Tests
FIPS 140-2 requires that the module performs power-up tests to ensure the integrity of the module
and the correctness of the cryptographic functionality at start up. In addition, the module performs
conditional test for NDRNG. If any self-test fails, the kernel panics and the module enters the error
state. In error state, no data output or cryptographic operations are allowed. See section 9.2.4 for
details to recover from the error state.

8.1. Power-Up Tests
The module performs power-up tests when the module is loaded into memory, without operator
intervention. Power-up tests ensure that the module is not corrupted and that the cryptographic
algorithms work as expected.

While the module is executing the power-up tests, services are not available, and input and output
are inhibited. The module will not return the control to the calling application until the power-up
tests are completed successfully.

8.1.1. Integrity Tests

The module verifies its integrity through the following mechanisms:

• All kernel object (*.ko) files are signed with a 4096-bit RSA private key and SHA-512. Before
these kernel objects are loaded into memory, the module performs RSA signature
verification by using the RSA public key from the X.509 certificates that are compiled into
the module’s binary. If the signature cannot be verified, the kernel panics to indicate that the
test fails and the module enters the error state.

• The integrity of the static kernel binary (/boot/vmlinuz-4.15.0-1001-gcp-fips� file) is ensured
with the HMAC-SHA-512 value stored in the .hmac file (/boot/.vmlinuz-4.15.0-1001-gcp-
fips�.hmac file) that was computed at build time. At run time, the module invokes the
sha512hmac utility to calculate the HMAC value of the static kernel binary file, and then
compares it with the pre-stored one. If the two HMAC values do not match, the kernel panics
to indicate that the test fails and the module enters the error state.

• The Integrity of the sha512hmac utility (i.e. /usr/bin/sha512hmac) is ensured with the HMAC-
SHA-512 value stored in the .hmac file (i.e. /usr/bin/.sha512hmac.hmac) that was computed
at build time. At run time, the utility itself calculates the HMAC value of the utility, and then
compares it with the pre-stored one. If the two HMAC values do not match, the kernel panics
to indicate that the test fails and the module enters the error state.

Both the RSA signature verification and HMAC-SHA-512 algorithms are approved algorithms
implemented in the module.

8.1.2. Cryptographic Algorithm Tests

The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the
Approved mode of operation, using the Known Answer Tests5 (KAT) shown in the following table:

5 The module also implements Diffie-Hellman and EC Diffie-Hellman "Z" computation KAT. However these algorithms are non-
approved.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 26 of 36

Algorithm Power-Up Tests

AES • KAT of AES in ECB mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in ECB mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in CBC mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in CBC mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in CTR mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in CTR mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in GCM mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in GCM mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in CCM mode with 128 bit key, encryption

• KAT of AES in CCM mode with 128 bit key, decryption

• KAT of AES in KW mode with 128 bit key, encryption

• KAT of AES in KW mode with 256 bit key, decryption

• KAT of AES in XTS mode with 128 and 256 bit keys, encryption

• KAT of AES in XTS mode with 128 and 256 bit keys, decryption

• KAT of AES in CMAC mode with 128 and 256 bit keys

Triple DES • KAT of 3-key Triple-DES in ECB mode, encryption
• KAT of 3-key Triple-DES in ECB mode, decryption

• KAT of 3-key Triple-DES in CBC mode, encryption

• KAT of 3-key Triple-DES in CBC mode, decryption

• KAT of 3-key Triple-DES in CTR mode, encryption

• KAT of 3-key Triple-DES in CTR mode, decryption

• KAT of 3-key Triple-DES in CMAC mode

SHS • KAT of SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512

SHA3 • KAT of SHA3-224, SHA3-256, SHA3-384, SHA3-512

HMAC • KAT of HMAC-SHA-1

• KAT of HMAC-SHA-224

• KAT of HMAC-SHA-256

• KAT of HMAC-SHA-384

• KAT of HMAC-SHA-512

• KAT of HMAC-SHA3-224

• KAT of HMAC-SHA3-256

• KAT of HMAC-SHA3-384

• KAT of HMAC-SHA3-512

DRBG • KAT of Hash_DRBG with SHA-256, with and without PR
• KAT of HMAC_DRBG with SHA-256, with and without PR

• KAT of CTR_DRBG with AES-128, AES-192, AES-256, without PR

• KAT of CTR_DRBG with AES-128 with PR

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 27 of 36

Algorithm Power-Up Tests

RSA • KAT of RSA signature verification is covered by the integrity tests which is
allowed by [FIPS140-2_IG] IG 9.3

Table 12- Self-Tests

For the KAT, the module calculates the result and compares it with the known value. If the answer
does not match the known answer, the KAT is failed and the module enters the Error state.

The KATs cover the different cryptographic implementations available in the operating
environment. The following implementations are being self-tested during boot:

• aes-generic6, aes-asm7, aes-aesni8

• des3_ede-generic, des3_ede-asm

• sha1-generic, sha1-avx9, sha1-avx210, sha1-ssse3

• sha224-avx, sha224-avx2, sha224-ssse3

• sha256-generic, sha256-avx, sha256-avx2, sha256-ssse3

• sha384-generic, sha384-avx, sha384-avx2, sha384-ssse3

• sha512-generic, sha512-avx, sha512avx2, sha512-ssse3

• sha3-224-generic, sha3-256-generic, sha3-384-generic, sha3-512-generic

• hmac(sha3-224-generic), hmac(sha3-256-generic), hmac(sha3-384-generic), hmac(sha3-512-
generic)

• hmac(sha1-generic), hmac(sha1-avx2)

• hmac(sha224-avx2)

• hmac(sha256-generic), hmac(sha256-avx2)

• hmac(sha384-avx2)

• hmac(sha512-generic), hmac(sha512-avx2)

• rsa-generic

• ghash-generic, ghash-clmulni11

• drbg_pr_ctr_aes128, drbg_pr_ctr_aes192, drbg_pr_ctr_aes256, drbg_nopr_hmac_sha256,
drbg_nopr_sha256, drbg_pr_ctr_aes128, drbg_hmac_sha256, drbg_pr_sha256

6 generic = C implementation
7 asm = assembly implementation
8 aesni = AES-NI implementation
9 avx = Advanced Vector eXtention for Intel processor
10 avx2 = Advanced Vector eXtension 2 for Intel processor
11 clmulni = AES-NI implementation of GHASH

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 28 of 36

8.2. On-Demand Self-Tests
On-Demand self-tests can be invoked by power cycling the module or rebooting the operating
system. During the execution of the on-demand self-tests, services are not available and no data
output or input is possible.

8.3. Conditional Tests
The module performs the Continuous Random Number Generator Test (CRNGT) shown in the
following table:

Algorithm Conditional Test

NDRNG • CRNGT

Table 13 - Conditional Tests

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 29 of 36

9. Guidance

9.1. Crypto Officer Guidance
The binaries of the module are contained in the Debian packages for delivery. The Crypto Officer
shall follow this Security Policy to configure the operational environment and install the module to
be operated as a FIPS 140-2 validated module.

The following Debian packages are used to install the FIPS validated module:

Processor
Architecture

Debian packages

x86_64 fips-initramfs_0.0.10��_amd64.deb
linux-image-4.15.0-1001-gcp-fips_4.15.0-1001.1+signed1_amd64.deb
linux-image-hmac-4.15.0-1001-gcp-fips_4.15.0-1001.1+signed1_amd64.deb
linux-modules-4.15.0-1001-gcp-fips_4.15.0-1001.1_amd64.deb
linux-modules-extra-4.15.0-1001-gcp-fips_4.15.0-1001.1_amd64.deb

Table 14 – Debian packages

9.1.1. Module Installation

The Crypto Officer can install the Debian packages containing the module listed in Table 14 using a
normal packaging tool such as Advanced Package Tool (APT). All the Debian packages are associated
with hashes for integrity check. The integrity of the Debian package is automatically verified by the
packaging tool during the installation of the module. The Crypto Officer shall not install the Debian
package if the integrity of the Debian package fails.

To download the FIPS validated version of the module, please email "sales@canonical.com" or
contact a Canonical representative, https://www.ubuntu.com/contact-us.

9.1.2. Operating Environment Configuration

To configure the operating environment to support FIPS, the following shall be performed with root
privileges:

(1) Add fips=1 to the kernel command line.

• For the x86_64 system, create the file /etc/default/grub.d/99-fips.cfg with the content:
GRUB_CMDLINE_LINUX_DEFAULT="$GRUB_CMDLINE_LINUX_DEFAULT fips=1".

(2) If /boot resides on a separate partition, the kernel parameter bootdev=UUID=<UUID of
partition> must also be appended in the aforementioned grub or zipl.conf file. Please see the
following Note for more details.

(3) Update the boot loader.

• For the x86_64 system, execute the update-grub command.

(4) Execute the reboot command to reboot the system with the new settings.

The operating environment is now configured to support FIPS operation. The Crypto Officer should
check the existence of the file, /proc/sys/crypto/fips_enabled, and that it contains "1". If the file
does not exist or does not contain “1”, the operating environment is not configured to support FIPS
and the module will not operate as a FIPS validated module properly.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 30 of 36

Note: If /boot resides on a separate partition, the kernel parameter bootdev=UUID=<UUID of
partition> must be supplied. The partition can be identified with the df /boot command. For
example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdb2 241965 127948 101525 56% /boot

The UUID of the /boot partition can be found by using the grep /boot /etc/fstab command. For
example:

$ grep /boot /etc/fstab

/boot was on /dev/sdb2 during installation

UUID=cec0abe7-14a6-4e72-83ba-b912468bbb38 /boot ext2 defaults 0 2

Then, the UUID shall be added in the /etc/default/grub. For example:

GRUB_CMDLINE_LINUX_DEFAULT="quiet bootdev=UUID=cec0abe7-14a6-4e72-83ba-b912468bbb38
fips=1"

9.2. User Guidance
For detailed description of the Linux Kernel Crypto API, please refer to the user documentation [KC
API Architecture].

In order to run in FIPS mode, the module must be operated using the FIPS Approved services, with
their corresponding FIPS Approved and FIPS allowed cryptographic algorithms provided in this
Security Policy (see section 3.2 Services). In addition, key sizes must comply with [SP800-131A].

9.2.1. AES-GCM IV

In case the module’s power is lost and then restored, the key used for the AES-GCM encryption or
decryption shall be redistributed.

The module generates the IV internally randomly, which is compliant with provision 2) of IG A.5.

When a GCM IV is used for decryption, the responsibility for the IV generation lies with the party
that performs the AES-GCM encryption therefore there is no restriction on the IV generation.

9.2.2. AES-XTS

As specified in [SP800-38E], the AES algorithm in XTS mode was designed for the cryptographic
protection of data on storage devices. Thus it can only be used for the disk encryption functionality
offered by dm-crypt (i.e. the hard disk encryption schema). For dm-crypt, the length of a single data
unit encrypted with the XTS-AES is at most 65536 bytes (64KB of data), which does not exceed 2²⁰
AES blocks (16MB of data).

To meet the requirement stated in [FIPS140-2_IG] IG A.9, the module implements a check to ensure
that the two AES keys used in XTS-AES algorithm are not identical.

Note: AES-XTS shall be used with 128 and 256-bit keys only. AES-XTS with 192-bit keys is not an
Approved service.

9.2.3. Triple-DES encryption

Data encryption using the same three-key Triple-DES key shall not exceed 216 Triple-DES 64-bit
blocks (2GB of data), in accordance to [SP800-67] and [FIPS140-2_IG] IG A.13.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 31 of 36

9.2.4. Handling FIPS Related Errors

When the module fails any self-test, it will panic the kernel and the operating system will not load.
Errors occurred during the self-tests transition the module into the error state. The only way to
recover from this error state is to reboot the system. If the failure persists, the module must be
reinstalled by the Crypto Officer following the instructions as specified in section 9.1.

The kernel dumps self-test success and failure messages into the kernel message ring buffer. The
user can use dmesg to read the contents of the kernel ring buffer. The format of the ring buffer
(dmesg) output for self-test status is:

alg: self-tests for %s (%s) passed

Typical messages are similar to "alg: self-tests for xts(aes) (xts(aes-x86_64)) passed" for each
algorithm/sub-algorithm type.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 32 of 36

10. Mitigation of Other Attacks
The module does not implement mitigation of other attacks.

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 33 of 36

Appendix A. Glossary and Abbreviations
AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

API Application Program Interface

APT Advanced Package Tool

CAVP Cryptographic Algorithm Validation Program

CAVS Cryptographic Algorithm Validation System

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining-Message Authentication Code

CLMUL Carry-less Multiplication

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CRNGT Continuous Random Number Generator Test

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption Standard

DF Derivation Function

DSA Digital Signature Algorithm

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

EMI/EMC Electromagnetic Interference/Electromagnetic Compatibility

FCC Federal Communications Commission

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

GPC General Purpose Computer

HMAC Hash Message Authentication Code

IG Implementation Guidance

KAT Known Answer Test

KDF Key Derivation Function

KW Key Wrap

MAC Message Authentication Code

NIST National Institute of Science and Technology

NDRNG Non-Deterministic Random Number Generator

PAA Processor Algorithm Acceleration

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 34 of 36

PCT Pair-wise Consistency Test

PR Prediction Resistance

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SSSE3 Supplemental Streaming SIMD Extensions 3

XTS XEX-based Tweaked-codebook mode with ciphertext Stealing

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 35 of 36

Appendix B. References

FIPS140-2 FIPS PUB 140-2 - Security Requirements For Cryptographic Modules
May 2001
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

FIPS140-2_IG Implementation Guidance for FIPS PUB 140-2 and the Cryptographic
Module Validation Program
December 3, 2019
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

FIPS180-4 Secure Hash Standard (SHS)
March 2012
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
July 2013
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
July 2008
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

KC API Architecture Kernel Crypto API Architecture
2016
http://www.chronox.de/crypto-API/crypto/architecture.html

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1
February 2003
http://www.ietf.org/rfc/rfc3447.txt

RFC4106 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security
Payload (ESP)
June 2005
https://tools.ietf.org/html/rfc4106

RFC6071 IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap
February 2011
https://tools.ietf.org/html/rfc6071

RFC7296 Internet Key Exchange Protocol Version 2 (IKEv2)
October 2014
https://tools.ietf.org/html/rfc7296

Ubuntu 18.04 Google Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2023 Canonical Ltd. / atsec information security
 This document can be reproduced and distributed only whole and intact, including this copyright notice. 36 of 36

SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher
Modes of Operation Methods and Techniques
December 2001
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block Cipher
Modes of Operation: The CMAC Mode for Authentication
May 2005
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block Cipher
Modes of Operation: the CCM Mode for Authentication and Confidentiality
May 2004
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC
November 2007
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

SP800-38E NIST Special Publication 800-38E - Recommendation for Block Cipher
Modes of Operation: The XTS AES Mode for Confidentiality on Storage
Devices
January 2010
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block Cipher
Modes of Operation: Methods for Key Wrapping
December 2012
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800-67 NIST Special Publication 800-67 Revision 1 - Recommendation for the Triple
Data Encryption Algorithm (TDEA) Block Cipher
January 2012
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

SP800-90A NIST Special Publication 800-90A - Revision 1 - Recommendation for
Random Number Generation Using Deterministic Random Bit Generators
June 2015
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

SP800-131A NIST Special Publication 800-131A Revision 1- Transitions:
Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths
November 2015
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

