
Security Policy
MiniHSM, MiniHSM for nShield Edge F3 andMiniHSM for
Time StampMaster Clock in FIPS 140-2 level 3mode

Version: 5.0

Date: 25 April 2019

Copyright 2019 nCipher Security Limited. All rights reserved.

Copyright in this document is the property of nCipher Security Limited. It is not to be reproduced, mod-
ified, adapted, published, translated in anymaterial form (including storage in anymedium by electronic
meanswhether or not transiently or incidentally) in whole or in part nor disclosed to any third party
without the prior written permission of nCipher Security Limited neither shall it be used otherwise than for
the purpose for which it is supplied.

Words and logosmarked with ® or™ are trademarks of nCipher Security Limited or its affiliates in the EU
and other countries.

Mac andOS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Microsoft andWindows are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Information in this document is subject to change without notice.

nCipher Security Limitedmakes no warranty of any kind with regard to this information, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. nCipher Security
Limited shall not be liable for errors contained herein or for incidental or consequential damages con-
cerned with the furnishing, performance or use of thismaterial.

Where translations have beenmade in this document English is the canonical language.

Security Policy Page 2 of 50

Contents

1 Purpose 6

2 Ports and Interfaces 9

3 Roles 10

3.1 Unauthenticated 10

3.2 User 10

3.3 nShield Security Officer 10

3.4 Junior Security Officer 10

4 Services available to each role 12

4.1 Terminology 27

5 Keys 29

5.1 nShield Security Officer's key 29

5.2 Junior Security Officer's key 29

5.3 Long term signing key 29

5.4 Module signing key 30

5.5 Module keys 30

5.6 Logical tokens 30

5.7 Share keys 31

5.8 Impath keys 31

5.8.1 nShield Remote Administration Token Secure Channel 31

5.9 Key objects 32

5.10 Session keys 32

5.11 Archiving keys 32

5.12 Certificate signing keys 33

5.13 Firmware Integrity Key 33

5.14 Firmware Confidentiality Key 34

5.15 Master Feature Enable Key 34

5.16 DRBGKey 34

6 Rules 35

6.1 Identification and authentication 35

6.1.1 AccessControl 35

6.1.2 AccessControl List 35

Security Policy Page 3 of 50

6.1.3 Object re-use 36

6.1.4 Error conditions 36

6.1.5 Security Boundary 36

6.1.6 Status information 36

6.2 Procedures to initialize amodule to comply with FIPS 140-2 Level 3 37

6.2.1 Verifying themodule is in level 3mode 37

6.3 Return amodule to factory state 37

6.4 Create a new operator 38

6.5 Authorize the operator to create keys 38

6.6 Authorize an operator to act as a Junior Security Officer 38

6.7 Authenticate an operator to use a stored key 39

6.8 Authenticate an operator to create a new key 39

7 Physical security 40

7.1 Checking themodule 40

8 Strength of functions 41

8.1 Object IDs 41

8.2 Tokens 41

8.3 Key Blobs 41

8.4 Impaths 42

8.4.1 nShield Remote Administration Token Secure Channel 42

8.4.2 KDP key provisioning 43

8.4.3 Derived Keys 43

9 Self Tests 45

9.1 Firmware Load Test 45

10 Supported Algorithms 46

10.1 FIPS approved and allowed algorithms: 46

10.1.1 Symmetric Encryption 46

10.1.1.1 AES 46

10.1.1.2 Triple-DES 46

10.1.2 Hashing andMessage Authentication 46

10.1.2.1 AES CMAC 46

10.1.2.2 AES GMAC 46

10.1.2.3 HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC SHA-384 and 46

Page 4 of 50 Security Policy

HMAC SHA-512

10.1.2.4 SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 46

10.1.2.5 Triple-DESMAC 46

10.1.3 Signature 46

10.1.3.1 DSA 46

10.1.3.2 ECDSA 47

10.1.3.3 RSA 47

10.1.4 Key Establishment 47

10.1.4.1 Diffie-Hellman 47

10.1.4.2 Elliptic Curve Diffie-Hellman 47

10.1.4.3 RSA 47

10.1.4.4 AES 47

10.1.4.5 EC-MQV 47

10.1.5 KeyDerivation 47

10.1.6 Other 47

10.1.6.1 Deterministic RandomBit Generator 47

10.2 Non-FIPS approved algorithms 48

10.2.1 Symmetric 48

10.2.2 Asymmetric 48

10.2.3 Hashing andMessage Authentication 48

10.2.4 Keywrapping/Key transport 48

10.2.5 Non-deterministic entropy source 48

10.2.6 Other 48

Contact Us 49

Europe, Middle East, and Africa 49

Americas 49

Asia Pacific 49

Security Policy Page 5 of 50

1 Purpose

1 Purpose
nCipher MiniHSM tamper evident and tamper responsive Hardware SecurityModules provide support
for the widest range of cryptographic algorithms, application programming interfaces (APIs) and host
operating systems, enabling the devices to be used with virtually any business application—from identity
management, web services and database encryption to tokenization, PKI services and strong authen-
tication.

The following figure shows the nCipher MiniHSM cryptographicmodule:

nShield Edge is a stand alone securitymodule consisting of a fittedMiniHSM cryptographicmodule, a
smart card reader and a USB interface integrated in a single package, as shown in the figure below.

The Time StampMaster Clock (TSMC), which fits aMiniHSM cryptographicmodule, is a network appli-
ance for securely distributing accurate time throughout an organization. The TSMC is a trusted time

Security Policy Page 6 of 50

1 Purpose

source that enforces strong security policy to protect the root of trust for the time distribution network,
deploying an authenticated and secure time distribution protocol, DS/NTP, ensures the secure delivery
of auditable time tomultiple Time Stamp Server (TSS) devices from a single reference time source. The
following figure shows the TSMC appliance.

TheMiniHSMHardware SecurityModules are defined asmulti-chip embedded cryptographicmodules
as defined by FIPS PUB 140-2.

Unit ID
Model
Number

Real Time
Clock
(RTC)NVRAM

Secure Exe-
cution Envir-
onment
(SEE)

Potting
(epoxy
resin)

EMC clas-
sification

Crypto
Accelerator

Overall
FIPS
level

MiniHSM
nC4031Z-
10

Yes Optional Yes B None 3

nShield
Edge F3

nC4031U-
10

Yes Optional Yes B None 3

Time
Stamp
Master
Clock

TSMC200 Yes Optional Yes B None 3

All modules are supplied at build standard “N” or later to indicate that theymeet the latest EU regulations
regarding ROHS.

nCipher also supplymodules to third party OEM vendors for use in a range of security products.

Themodules run firmware provided by nCipher. There is the facility for the administrator to upgrade this
firmware. In order to determine that themodule is running the correct version of firmware they should
use theNew Enquiry service which reports the version of firmware currently loaded. The validated firm-
ware version is 2.61.1-3, .

Themodule can be initialized to comply with the requirements for Roles and Services at either level 2 or
level 3.

Page 7 of 50 Security Policy

1 Purpose

The initialization parameters are reported by theNew Enquiry andSign Module State services. An
operator can determine whichmode themodule is operating in using the KeySafe GUI or the command
line utilities supplied with themodule, or their own code - these operate outside the security boundary.

Themodulesmust be accessed by a customwritten application. Full documentation for the nCore API
can be downloaded from the nCipher web site.

Themodules have on-board non-volatile memory. There are services that enablememory to be alloc-
ated as files. Files have AccessControl Lists that determine what operations can be performed on their
contents. nShield modules have an on-board Real-time clock.

Themodule can be connected to a computer runningWindows operating systems.

Section Level

1. CryptographicModule Specification 3

2. CryptographicModule Ports and Interfaces 3

3. Roles, Services, and Authentication 3

4. Finite StateModel 3

5. Physical Security 3

6. Operational Environment N/A

7. Cryptographic KeyManagement 3

8. EMI/EMC 3

9. Self-Tests 3

10. Design Assurance 3

11. Mitigation of Other Attacks N/A

Overall FIPS Level 3

Security Policy Page 8 of 50

2 Ports and Interfaces

2 Ports and Interfaces
Themodule has the following physical ports:

l Set of 4 serial pins: RTS, CTS, data, ground (data input/output, control input, status output). The
services provided by themodule are transported through this interface.

l Set of 4 serial pins: RTS, CTS, data, ground (data input/output, control input, status output) for
connecting a smartcard reader.

l Clear pin (control input)

l Reset pin (control input)

l Mode pin (control input)

The actual physical connectors are outside the cryptographic boundary and the PCB traces coming from
those connectors transport the signals into themodule's cryptographic boundary.

Security Policy Page 9 of 50

3 Roles

3 Roles
Themodule defines the following roles: Unauthenticated, User, nShield Security Officer and Junior
Security Officer. The nShield Security Officer and Junior Security Officer roles are equivalent of FIPS
140-2 Crypto-Officer role.

3.1 Unauthenticated
All connections are initially unauthenticated.

An operator in the unauthenticated role does not have access to handles or tickets required to provide
access to the CSPs of authenticated users.

3.2 User
An operator assumes the user role by providing the required authority to carry out a service. The exact
accreditation required to perform each service is listed in the table of services.

In order to perform an operation on a stored key, the operator must first load the key blob. If the key blob
is protected by a logical token, the operator must first load the logical token by loading shares from smart
cards.

Once an operator in the user role has loaded a key they can then use this key to perform cryptographic
operations as defined by the AccessControl List (ACL) stored with the key.

Each key blob contains an ACL that determineswhat services can be performed on that key. This ACL
can require a certificate from an nShield Security Officer authorizing the action. Some actions including
writing tokens always require a certificate.

3.3 nShield Security Officer
The nShield Security Officer (NSO) is responsible for overall security of themodule.

The nShield Security Officer is identified by a key pair, referred to as KNSO. The hash of the public half of
this key is stored when the unit is initialized. Any operation involving amodule key or writing a token
requires a certificate signed by KNSO.

The nShield Security Officer is responsible for creating the authentication tokens (smart cards) for each
operator and ensuring that these tokens are physically handed to the correct person.

An operator assumes the role of NSOby loading the private half of KNSO and presenting the ObjectID
for this key to authorize a command.

3.4 Junior Security Officer
Where the nShield Security Officer want to delegate responsibility for authorizing an action they can cre-
ate a key pair and give this to their delegate who becomes a Junior Security Officer (JSO). An ACL can

Security Policy Page 10 of 50

3 Roles

then refer to this key, and the JSO is then empowered to sign the certificate authorizing the action. The
JSO's keys should be stored on a key blob protected by a token that is not used for any other purpose.

In order to assume the role of JSO, the operator loads the JSOkey and presents the ObjectID of this
key, and if required the certificate signed by KNSO that delegates authority to the key, to authorize a com-
mand.

A JSOcan delegate portions of their authority to a new operator in the sameway. The new operator will
be a JSO if they have authority they can delegate, otherwise theywill assume the user role.

Page 11 of 50 Security Policy

4 Services available to each role

4 Services available to each role
This section describes all the services supported by themodule. The functions available depend on
whether the operator has assumed the unauthenticated role, the user or junior security officer (JSO)
roles, or the nShield Security Officer (NSO) role. The reader can refer to the Terminology table at the
end of this section for an explanation of the terms used. For each operation it lists the supported
algorithms. Algorithms in square brackets are not under the operator's control. Algorithms used in
optional portions of a service are listed in italics.

Algorithmsmarked with an asterisk are not approved byNIST. In the approvedmode of oper-
ation these algorithms are disabled.

Key
Access

Description

Create Creates a in-memory object, but does not reveal value.

Erase
Erases the object frommemory, smart card or non-volatile memorywithout revealing
value

Export Discloses a value, but does not allow value to be changed.

Report Returns status information

Set Changes a CSP to a given value

Use Performs an operation with an existing CSP - without revealing or changing the CSP

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

Bignum Oper-

ation
Yes Yes Yes

Performs simple mathematical

operations.

No access to

keys or CSPs

Change Share

PIN
No

pass

phrase

pass

phrase

Updates the pass phrase used

to encrypt a token share. The

pass phrase supplied by the

operator is not used directly, it is

first hashed and then combined

with the module key. To achieve

this the command decrypts the

existing share using the old

share key derived from old pass

Sets the pass

phrase for a

share, uses

module key,

uses share key,

uses module

key, creates

share key, uses

new share key,

[SHA-1 and

AES or

Triple DES]

Security Policy Page 12 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

phrase, module key and smart

card identity. It then derives a

new share key based on new

pass phrase, module key and

smart card identity, erases old

share from smart card and

writes a new share encrypted

under the new share key.

exports encryp-

ted share,

erases old

share

Channel Open No
handle,

ACL

handle,

ACL

Opens a communication chan-

nel which can be used for bulk

encryption, decryption, signing

or hashing.

Uses a key

object

SHA-1, SHA-

224, SHA-

256, SHA-

384, SHA-

512

RSA, DSA,

ECDSA,

Triple DES

MAC, HMAC,

KCDSA*

Channel

Update
No handle handle

Performs encryption, decryption,

signing or hashing on a pre-

viously opened channel. The

operation and key are specified

in ChannelOpen.

Uses a key

object

SHA-1, SHA-

224, SHA-

256, SHA-

384, SHA-

512

RSA, DSA,

ECDSA,

Triple DES

MAC, HMAC,

KCDSA*

Clear Unit Yes Yes Yes

Causes the module to reset and

will trigger the Self-tests. Zero-

ises all loaded keys, tokens and

shares. Clear Unit does not

erase long term keys, such as

module keys.

Zeroizes

objects.
All

Create Buffer No cert Yes
Allocates an area of memory to

load data. If the data is encryp-
Uses a key

object

AES, Triple

DES

Page 13 of 50 Security Policy

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

ted, this service specifies the

encryption key and IV used. The

decrypt operation is performed

by LoadBuffer

Decrypt No
handle,

ACL

handle,

ACL

Decrypts a cipher text with a

stored key returning the plain

text.

Uses a key

object

AES, Triple

DES

Derive Key No
handle,

ACL

handle,

ACL

The DeriveKey service

provides functions that the FIPS

140-2 standard describes as

key wrapping and split know-

ledge - it does not provide key

derivation in the sense under-

stood by FIPS 140-2. Creates a

new key object from a variable

number of other keys already

stored on the module and

returns a handle for the new

key. This service can be used to

split, or combine, encryption

keys.

This service is used to wrap

keys according to the KDP so

that a key server can distribute

the wrapped key to micro-HSM

devices.

Uses a key

object, create a

new key object.

AES, AES

key wrap,

RSA, EC-DH,

EC-MQV,

Triple DES*,

TLS key

derivation*,

XOR, DLIES

(D/H plus

Triple DES or

D/H plus

AES),

Destroy No handle handle

Removes an object, if an object

has multiple handles as a result

of RedeemTicket service, this

removes the current handle.

Erases a

impath, logical

token, or any

key object.

All

Duplicate No
handle,

ACL

handle,

ACL

Creates a second instance of a

key object with the same ACL

and returns a handle to the new

instance.

Creates a new

key object.
All

Dynamic Slot
Create Asso- Yes Yes Yes Creates a slot association used No access to

keys or CSPs

Security Policy Page 14 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

ciation

to reserve and identify a

dynamic slot for use by this cli-

ent.

Dynamic Slot
Exchange
APDUs

No handle handle

Exchange Application Protocol

Data Units with the remote Java-

card.

Uses secure
channel integ-
rity and con-
fidentiality keys

[AES, AES-

CMAC,

ECDH,

ECDSA]

Dynamic Slots
Configure Yes Yes Yes

Instructs a module to recon-
figure itself to have the given
number of dynamic smartcard
slots.

No access to
keys or CSPs

Dynamic Slots
Configure
Query

Yes Yes Yes
Queries a module to determine
whether it has had its dynamic
slots configured.

No access to
keys or CSPs

Encrypt No
handle,

ACL

handle,

ACL

Encrypts a plain text with a

stored key returning the cipher

text.

Uses a key

object

AES,

Triple DES

Erase File No cert Yes

Removes a file, but not a logical

token, from a smart card or soft-

ware token.

No access to

keys or CSPs

Erase Share No cert Yes
Removes a share from a smart

card or software token.
Erases a share

Export No
handle,

ACL

handle,

ACL

If the unit has been initialized to

comply with FIPS 140-2 level 3

roles and services and key man-

agement, this service is only

available for public keys.

Exports a [pub-

lic] key object.

RSA, DSA,

ECDSA, Dif-

fie-Hellman,

El-Gamal

and ECDH

public keys

Fail Yes Yes Yes Causes the module to enter a
failure state.

No access to
keys or CSPs

Feature Enable No cert cert

Enables a service.

This requires a certificate

signed by the Master Feature

Enable key.

Uses the public

half of the

Master Feature

Enable Key

[DSA]

File Copy No cert, ACL ACL

Copies a file. You can only copy
files in their entirety. Requires
file copying permission, and per-
mission to create the file on the

No access to
keys or CSPs

Page 15 of 50 Security Policy

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

target device.

File Create No cert Yes

Creates a file on the given
device. The file is created with
the size given in the file argu-
ment, and is initially filled with
zeroes. The file must not exist.
This prevents overwriting and
race conditions.

No access to
keys or CSPs

File Op No cert, ACL ACL

Does an operation on a file, e.g.
read, write, delete. Requires
that the file's ACL permit the
operation.

No access to
keys or CSPs

Firmware

Authenticate
Yes Yes Yes

Reports firmware version. Per-

forms a zero knowledge chal-

lenge response protocol based

on HMAC that enables a oper-

ator to ensure that the firmware

in the module matches the firm-

ware supplied by nCipher.

The protocol generates a ran-

dom value to use as the HMAC

key.

No access to

keys or CSPs
HMAC

Foreign Token

Command
No handle handle

Sends an ISO-7816 command

to a smart card over the channel

opened by

ForeignTokenOpen.

No access to
keys or CSPs

Foreign Token

Open
No FE, cert FE

Opens a channel to foreign

smart card that accepts ISO-

7816 commands. This service

cannot be used if the smart card

has been formatted using

FormatToken. The channel is

closed when the card is

removed from the reader, or if

the handle is destroyed.

This service is feature enabled.

No access to
keys or CSPs

Format Token No cert Yes
Formats a smart card or soft-

ware token ready for use.

May use a mod-

ule key to cre-

ate challenge

[AES, Triple

DES]

Security Policy Page 16 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

response value

Generate Key No cert Yes

Generates a symmetric key of a

given type with a specified ACL

and returns a handle.

Optionally returns a certificate

containing the ACL.

The data generated by this oper-

ation is not a CSP until it has

been bound to an authorized

user by protecting it with a

token.

Creates a new

symmetric key

object. Sets the

ACL and Applic-

ation data for

that object.

Optionally uses

module signing

key and exports

the key gen-

eration cer-

tificate.

AES, Triple

DES

Generate Key

Pair
No cert Yes

Generates a key pair of a given

type with specified ACLs for

each half or the pair. Performs a

pair wise consistency check on

the key pair. Returns two key

handles.

Optionally returns certificates

containing the ACL.

The data generated by this oper-

ation is not a CSP until it has

been bound to an authorized

user by protecting it with a

token.

Creates two

new key

objects. Sets

the ACL and

Application data

for those

objects. Option-

ally uses mod-

ule signing key

and exports two

key generation

certificates.

Diffie-Hell-

man, DSA,

ECDSA,

EC-DH,

EC-MQV,

RSA

Generate

Logical Token
No cert Yes

Creates a new logical token,

which can then be written as

shares to smart cards or soft-

ware tokens.

On creation the token is not a

CSP as it does not protect any

sensitive data.

Uses module

key. Creates a

logical token.

[AES or

Triple DES]

Get ACL No
handle,

ACL

handle,

ACL

Returns the ACL for a given

handle.

Exports the ACL

for a key object.

Get Application No handle, handle, Returns the application inform- Exports the

Page 17 of 50 Security Policy

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

Data ACL ACL ation stored with a key.
application data

of a key object.

Get Challenge Yes Yes Yes
Returns a random nonce that

can be used in certificates

No access to

keys or CSPs

Get Key Info No handle handle

Superseded by GetKeyIn-

foExtended, retained for com-

patibility.

Exports the

SHA-1 hash of

a key object

Get Key Info

Extended
No handle handle

Returns the hash of a key for

use in ACLs

Exports the

SHA-1 hash of

a key object

Get Logical
Token Info
Extended

No handle handle

Returns the token hash and

number of shares for a logical

token

Exports the

SHA-1 hash of

a logical token.

[SHA-1]

Get Logical

Token Info No handle handle

Returns the token hash and

number of shares for a logical

token

Exports the

SHA-1 hash of

a logical token.

[SHA-1]

Get Module

Keys
Yes Yes Yes

Returns a hashes of the nShield

Security Officer's key and all

loaded module keys.

Exports the

SHA-1 hash of

KNSO and mod-

ule keys.

[SHA-1]

Get Module

Long Term Key
Yes Yes Yes

Returns a handle to the public

half of the module's signing key.

this can be used to verify key

generation certificates and to

authenticate inter module paths.

Exports the pub-

lic half of the

module's long

term signing

key.

[DSA,

ECDSA]

Get Module

Signing Key
Yes Yes Yes

Returns the public half of the

module's signing key. This can

be used to verify certificates

signed with this key.

Exports the pub-

lic half of the

module's sign-

ing key.

[DSA]

Get Module
State Yes Yes Yes Returns unsigned data about

the current state of the module.
No access to
keys or CSPs

Get RTC Yes Yes Yes
Reports the time according to

the on-board real-time clock

No access to

keys or CSPs

Get Share ACL Yes Yes Yes Returns the access control list Exports the ACL

Security Policy Page 18 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

for a share

for a token

share on a

smart card.

Get Slot Info Yes Yes Yes

Reports status of the physical

token in a slot. Enables an oper-

ator to determine if the correct

token is present before issuing

a ReadShare command.

If the token was formatted with a

challenge response value, uses

the module key to authenticate

the smart card.

Uses a module

key if token is

formatted with a

challenge

response value.

[AES, Triple

DES]

Get Slot List Yes Yes Yes
Reports the list of slots available

from this module.

No access to

keys or CSPs

Get Ticket No handle handle

Gets a ticket - an invariant iden-

tifier - for a key. This can be

passed to another client which

can redeem it using

RedeemTicket to obtain a new

handle to the object,

Uses a key

object, logical

token, impath.

Hash Yes Yes Yes Hashes a value.
No access to

keys or CSPs

SHA-1, SHA-

224, SHA-

256, SHA-

384, SHA-

512

Impath Get Info No handle handle
Reports status information

about an impath

Uses an Impath,

exports status

information.

Impath Key

Exchange

Begin

FE FE FE

Creates a new inter-module

path and returns the key

exchange parameters to send to

the peer module.

Creates a set of

Impath keys

[DSA and Dif-

fie Hellman]

AES, Triple-

DES

Impath Key

Exchange Fin-

ish

No handle handle

Completes an impath key

exchange. Require the key

exchange parameters from the

Creates a set of

Impath keys.

[DSA and Dif-

fie Hellman,

AES, Triple

Page 19 of 50 Security Policy

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

remote module. DES]

Impath Receive No handle handle
Decrypts data with the Impath

decryption key.

Uses an Impath

key.

[AES or

Triple DES]

Impath Send No handle handle
Encrypts data with the impath

encryption key.

Uses an Impath

key.

[AES or

Triple DES]

Import No cert Yes

Loads a key and ACL from the

host and returns a handle.

The data generated by this oper-

ation is not a CSP until it has

been bound to an authorized

user by protecting it with a

token.

If the unit has been initialized to

comply with FIPS 140-2 level 3

roles and services and key man-

agement, this service is only

available for public keys.

Creates a new

key object to

store imported

key, sets the

key value, ACL

and App data.

Initialise Unit init init init

Initializes the module, returning

it to the factory state. This clears

all NVRAM files, all loaded keys

and all module keys and the

module signing key. This can

only be performed when the

module is in initialization mode.

It also generates a new KM0

and module signing key.

The only key that is not zeroized

is the long term signing key.

This key only serves to provide

a cryptographic identity for a

module that can be included in

a PKI certificate chain. nCipher

may issue such certificates to

indicate that a module is a genu-

Erases all keys,

Creates KM0

and KML

[DSA]

Security Policy Page 20 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

ine nShield module. This key is

not used to encrypt any other

data.

Insert Soft
Token Yes Yes Yes

Allocates memory on the mod-

ule that is used to store one or

more logical shares or other

Token data objects.

No access to

keys or CSPs

Load Blob No handle handle

Loads a key that has been

stored in a key blob. The oper-

ator must first have loaded the

token or key used to encrypt the

blob.

Uses module

key, logical

token, or archiv-

ing key, creates

a new key

object.

Triple DES

and SHA-1 or

AES, DH, or

RSA plus

AES, SHA-1,

and HMAC

SHA-256

(256 bit key)

or HMAC

SHA-1 (160

bit key)

Load Buffer No handle handle

Loads signed data into a buffer.

Several load buffer commands

may be required to load all the

data, in which case it is the

responsibility of the client pro-

gram to ensure they are sup-

plied in the correct order.

Requires the handle of a buffer

created by CreateBuffer.On a

MiniHSM this data can be read

from flash rather than over the

serial interface.

No access to

keys or CSPs

Load Logical

Token
yes yes yes

Allocates space for a new

logical token - the individual

shares can then be assembled

using ReadShare or

ReceiveShare. Once

assembled the token can be

used in LoadBlob or MakeBlob

Uses module

key

[AES or

Triple DES]

Page 21 of 50 Security Policy

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

commands.

Load User

Flash
monitor monitor monitor

Load a portion of data into the

user accessible flash area

No access to

keys or CSPs

Make Blob No
handle,

ACL

handle,

ACL

Creates a key blob containing

the key and returns it. The key

object to be exported may be

any algorithm.

Uses module

key, logical

token or archiv-

ing key, exports

encrypted key

object.

Triple DES

and SHA-1 or

AES, DH, or

RSA plus

AES, SHA-1,

and HMAC

SHA-256

(256 bit key)

or HMAC

SHA-1 (160

bit key)

Mod Exp Yes Yes Yes

Performs a modular expo-

nentiation on values supplied

with the command.

No access to

keys or CSPs

Mod Exp CRT Yes Yes Yes

Performs a modular expo-

nentiation on values, supplied

with the command using

Chinese Remainder Theorem.

No access to

keys or CSPs

Module Info Yes Yes Yes

Reports low level status inform-

ation about the module. This ser-

vice is designed for use in

nCipher' test routines.

No access to

keys or CSPs

New Enquiry Yes Yes Yes
Reports status information

(Show Status).

No access to

keys or CSPs

No Operation Yes Yes Yes

Does nothing, can be used to

determine that the module is

responding to commands.

No access to

keys or CSPs

NVMem Alloc-

ate
No cert Yes

Allocates an area of non-volatile

memory as a file and sets the

ACLs for this file.

This command can now be

No access to

keys or CSPs

Security Policy Page 22 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

used to write files protected by

an ACL to a smart card

NVMem Free No cert Yes

Frees a file stored in non-volat-

ile memory. This command can

now be used to write files pro-

tected by an ACL to a smart

card

No access to

keys or CSPs

NVMem List Yes Yes Yes

Reports a list of files stored in

the non-volatile memory or pro-

tected by an ACL on a smart

card.

No access to

keys or CSPs

NVMem Oper-

ation
No cert, ACL ACL

Performs an operation on a file

stored in non-volatile memory.

Operations include: read, write,

increment, decrement, etc.

This command can now be

used to write files protected by

an ACL to a smart card

No access to

keys or CSPs

Random num-

ber
Yes Yes Yes

Generates a random number for

use in a application using the

on-board random number gen-

erator.

There are separate services for

generating keys.

The random number services

are designed to enable an

application to access the ran-

dom number source for its own

purposes - for example an on-

line casino may use Gen-

erateRandom to drive its applic-

ations.

Uses DRBG key [AES]

Random prime Yes Yes Yes

Generates a random prime. This

uses the same mechanism as is

used for RSA and Diffie-Hell-

man key generation. The prim-

Uses DRBG key [AES]

Page 23 of 50 Security Policy

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

ality checking conforms to ANSI

X9.31.

Read File No Yes Yes

Reads a file, but not a logical

token, from a smart card or soft-

ware token.

This command can only read

files without ACLs.

Reads a file, but

not a logical

token, from a

smart card or

software token.

This command

can only read

files without

ACLs.

No access to

keys or CSPs

Read Share Yes Yes Yes

Reads a share from a physical

token.

Once sufficient shares have

been loaded recreates token-

may require several ReadShare

or ReceiveShare commands.

Uses pass

phrase, module

key, creates

share key, uses

share key, cre-

ates a logical

token.

[SHA-1, AES

or

Triple DES]

Receive Share No

handle,

encrypted

share

handle,

encrypted

share

Takes a share encrypted with

SendShare and a pass phrase

and uses them to recreate the

logical token. - may require sev-

eral ReadShare or

ReceiveShare commands

Uses an Impath

key, uses pass

phrase, module

key, creates

share key, uses

share key, cre-

ates a logical

token

[AES,

Triple DES]

Redeem Ticket No ticket ticket

Gets a handle in the current

name space for the object

referred to by a ticket created by

GetTicket.

Uses a key

object, logical

token, impath

Remove KM No cert Yes Removes a loaded module key.
Erases a mod-

ule key

Remove Soft Yes Yes Yes Removes a soft token. Copies No access to

Security Policy Page 24 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

Token
the updated shares to the host
and deletes them from the mod-
ule's memory.

keys or CSPs

Secure Exe-

cution Envir-

onment (SEE)

control

No cert cert

Support for SEE machines.

SEE machines are outside the

FIPS boundary.

No access to

keys or CSPs

Send Share No
handle,

ACL

handle,

ACL

Reads a logical token share

and encrypts it under an impath

key for transfer to another mod-

ule where it can be loaded

using ReceiveShare

Uses an impath

key, exports

encrypted

share.

[AES,

Triple DES]

Set ACL No
handle,

ACL

handle,

ACL

Sets the ACL for an existing key.

The existing ACL for the key

must allow the operation.

Sets the Access

Control List for

a key object

Set Application

Data
No

handle,

ACL

handle,

ACL
Stores information with a key.

Sets the applic-

ation data

stored with a

key object

Set KM No cert Yes
Loads a key object as a module

key.

Uses a key

object, sets a

module key

AES,

Triple DES

Set NSO Perm init init No

Designates a key hash as the

nShield Security Officer's Key

and sets the security policy to

be followed by the module. This

can only be performed while the

unit is in the initialization state.

Sets the identity

of the nShield

Security officer's

key.

[SHA-1 hash

of DSA key]

Set RTC No cert Yes Sets the real-time clock.
No access to

keys or CSPs

Sign No
handle,

ACL

handle,

ACL

Returns the digital signature or

MAC of plain text using a stored

key.

Uses a key

object

RSA, DSA,

ECDSA,

Triple DES

MAC, HMAC

Sign Module No handle, handle, Signs a certificate describing Uses the mod- [DSA]

Page 25 of 50 Security Policy

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

State ACL ACL
the modules security policy, as

set by SetNSOPerm.
ule signing key

Statistic Get

Value
Yes Yes Yes Reports a particular statistic.

No access to

keys or CSPs

Statistics Enu-

merate Tree
Yes Yes Yes Reports the statistics available.

No access to

keys or CSPs

Update Firm-

ware monitor monitor monitor

This service is used in the

update firmware service.

nCipher supply the LoadROM util-

ity for the administrator to use

for this service. This utility

issues the correct command

sequence to load the new firm-

ware.

The module will only be oper-

ating in a FIPS approved mode

if you install firmware that has

been validated by NIST / CSE.

Administrators who require FIPS

validation should only upgrade

firmware after NIST / CSE issue

a new certificate.

The monitor also checks that the

Version Sequence Number

(VSN) of the firmware is as high

or higher than the VSN of the

firmware currently installed.

Uses Firmware

Integrity Key

and Firmware

Confidentiality

Keys.

Sets Firmware

Integrity Key

and Firmware

Confidentiality

Keys.

[DSA, AES]

Verify No
handle,

ACL

handle,

ACL

Verifies a digital signature using

a stored key.

Uses a key

object.

RSA, DSA,

ECDSA,

Triple DES

MAC, HMAC

Verify Cer-
tificate Yes Yes Yes

Verifies a certificate. If the cer-

tificate (including any del-

egation chain) verifies correctly,

then the command succeeds.

Access to keys? [ECDSA pub-
lic keys]

Security Policy Page 26 of 50

4 Services available to each role

Command /

Service

Role

Description
Key/CSP

access
Key types

Unauth
JSO /

User
NSO

Write File No cert Yes

Writes a file, but not a logical

token, to a smart card or soft-

ware token.

Note these files do not have an

ACL, use the NVMEM com-

mands to create files with an

ACL.

No access to

keys or CSPs

Write Share No
cert,

handle
handle

Writes a new share to a smart

card or software token. The num-

ber of shares that can be cre-

ated is specified when the token

is created. All shares must be

written before the token is des-

troyed.

Sets pass

phrase, uses

module key, cre-

ates share,

uses pass

phrase and

module key, cre-

ates share key,

uses module

key, uses share

key, exports

encrypted

share.

[AES,

Triple DES,

SHA-1]

4.1 Terminology

Code Description

No The operator can not perform this service in this role.

yes The operator can perform this service in this role without further authorization.

handle

The operator can perform this service if they possess a valid handle for the resource: key,
channel, impath, token, buffers.

The handle is an arbitrary number generated when the object is created.

The handle for an object is specific to the operator that created the object.

Page 27 of 50 Security Policy

4.1 Terminology

Code Description

The ticket services enable an operator to pass an ID for an object they have created to
another operator.

ACL

AccessControl List. The operator can only perform this service with a key if the ACL for the
key permits this service. The ACLmay require that the operator present a certificate signed
by a Security Officer or another key.

The ACLmay specify that a certificate is required, in which case themodule verifies the sig-
nature on the certificate before permitting the operation.

pass
phrase

An operator can only load a share, or change the share PIN, if they possess the pass
phrase used to derive the share. Themodule keywith which the pass phrase was com-
binedmust also be present.

cert
An operator can only perform this service if they are in possession of a certificate from the
nShield Security Officer. This certificate will reference a key. Themodule verifies the sig-
nature on the certificate before permitting the operation.

FE
Feature Enable. This service is not available on all modules. It must be enabled using the
FeatureEnable service before it can be used.

encrypted
share

The ReceiveShare command requires a logical token share encrypted using an Impath
key created by the SendShare command.

ticket The RedeemTicket command requires the ticket generated by GetTicket.

init

These services are used to initialize themodule. They are only available when themodule is
in the initializationmode.To put themodule into initializationmode, either physicallymove
themode switch to the Initialization setting and use the Clear Unit command / service to
clear themodule, or invoke the Clear Unit command / service using a command line utility
specifying Initialization as a parameter. In order to restore themodule to operational mode
youmust put themode back to the Operational setting.

monitor

These services are used to reprogram themodule. They are only available when themod-
ule is in themonitor mode.To put themodule intomonitor mode youmust have physical
access to themodule and put themode switch into themonitor setting. In order to restore
themodule to operational mode you reinitialize themodule and then return it to operational
state.

Security Policy Page 28 of 50

5 Keys

5 Keys
For each type of key used by the nShield modules, the following section describes the access that an
operator has to the keys.

nShield modules refer to keys by their handle, an arbitrary number, or by its SHA-1 hash.

5.1 nShield Security Officer's key
The nShield Security officer's keymust be set as part of the initialization process. This is a public / private
key pair that the nShield Security Officer uses to sign certificates to authorize keymanagement and other
secure operations.

The SHA-1 hash of the public half of this key pair is stored in themodule FRAM .

The public half of this key is included as plain text in certificates.

Themodule treats anyone in possession of the private half of this key as the nShield Security Officer.

If you use the standard tools supplied by nCipher to initialize themodule, then this key is a DSA key
stored as a key blob protected by a logical token on the Administrator Card Set.

5.2 Junior Security Officer's key
Because the nShield Security Officer's key has several properties, it is good practice to delegate author-
ity to one or more Junior Security Officers, each with authority for defined operations.

To create a Junior Security Officer (JSO) the NSOcreates a certificate signing key for use as their JSO
key. This keymust be protected by a logical token in the samemanner as any other application key.

Then to delegate authority to the JSO, the nShield Security Officer creates a certificate containing an
AccessControl List specifying the authority to be delegated and the hash of the JSOkey to which the
powers are to be delegated.

The JSOcan then authorize the actions listed in the ACL - as if theywere the NSO - by presenting the
JSOkey and the certificate. If the JSO key is created with the Sign permission in its ACL, the JSOmay
delegate parts of their authority to another key. The holder of the delegate keywill need to present the
certificate signed by the NSOand the certificate signed by the JSO. If the JSO key only has UseAsCer-
tificate permissions, then they cannot delegate authority.

If you use the standard tools supplied by nCipher to initialize themodule, then this key is a DSA key
stored as a key blob protected by a logical token on the Administrator Card Set.

5.3 Long term signing key
The nShield modules store one 160-bit and one 256-bit random number in the FRAM .

Security Policy Page 29 of 50

5 Keys

The 160-bit number is combined with a discrete log group stored in themodule firmware to produce a
DSA key. The 256-bit number is used as the private exponent of a ECDSA key using the NIST P521
curve.

It can be used to sign amodule state certificate using the SignModuleState service and the public
value retrieved by the non-cryptographic service GetLongTermKey.

This is the only key that is not zeroized when themodule is initialized.

This key is not used to encrypt any other data. It only serves to provide a cryptographic identity for amod-
ule that can be included in a PKI certificate chain. nCipher may issue such certificates to indicate that a
module is a genuine nCipher module.

5.4 Module signing key
When the nShield module is initialized it automatically generates a 3072-bit DSA2 key pair that it uses to
sign certificates. Signatureswith this key use SHA-256. The private half of this pair is stored internally in
FRAMand never released. The public half is revealed in plaintext, or encrypted as a key blob. This key is
only ever used to verify that a certificate was generated by a specifiedmodule.

5.5 Module keys
Module keys are AES or Triple DES used to protect tokens. The nShield modules generates the first
module key KM0 when it is initialized. Thismodule key is guaranteed never to have been known outside
thismodule. KM0 is an AES key. The nShield Security Officer can load further module keys. These can
be generated by themodule or may be loaded from an external source. Setting a key as amodule key
stores the key in FRAM .

Module keys can not be exported once they have been assigned asmodule keys. Theymay only be
exported on a key blob when they are initially generated.

5.6 Logical tokens
A logical token is an AES or Triple DES key used to protect key blobs. Logical tokens are associated with
module keys. The key type depends on the key type of themodule key.

When you create a logical token, youmust specify parameters, including the total number of shares, and
the number or shares required to recreate the token, the quorum. The total number can be any integer
between 1 and 64 inclusive. The quorum can be any integer from 1 to the total number.

A logical token is always generated randomly, using the on-board random number generator.

While loaded in themodule logical tokens are stored in the object store.

Tokens keys are never exported from themodule, except on physical tokens or software tokens.When a
logical token is exported the logical token - the key data plus the token parameters - is first encrypted with
amodule key. Then the encrypted token is split into shares using the Shamir Threshold Sharing
algorithm, even if the total number of shares is one. Each share is then encrypted using a share key
(whichmay require knowledge of a passphrase to derive - see Share keys) and written to a physical

Page 30 of 50 Security Policy

5.7 Share keys

token - a smart card - or a software token. Logical tokens can be shared between one or more physical
token. The properties for a token define how many shares are required to recreate the logical token.
Shares can only be generated when a token is created. The firmware prevents a specific share from
being writtenmore than once.

Logical tokens are not used for key establishment.

5.7 Share keys
A share key is used to protect a logical token share when they are written to a smart card or software
token that is used for authentication. The share key is created by creating amessage comprised of a
secret prefix, Module key, Share number, smart card unique id and an optional 20 bytes supplied by the
operator (expected to be the SHA-1 hash of a pass phrase entered into the application), and using this
as the input to a PRNG to form a unique key used to encrypt the share - this is either an AES or Triple
DES key depending on the key type of the logical token which is itself determined by the key type of the
module key. This key is not stored on themodule. It is recalculated every time share is loaded. The share
data includes aMAC, if theMAC does not verify correctly the share is rejected.

The share key is not used directly to protect CSPs nor is the Share Key itself considered a CSP. It is
used for authentication only. The logical token needs to be reassembled from the shares using Shamir
Threshold Sharing Scheme and then be decrypted using themodule key. Only then can the logical token
be used to decrypt application keys.

5.8 Impath keys
An impath is a secure channel between twomodules.

To set up an impath twomodules perform a key-exchange, using 3072-bit Diffie-Hellman.

Currently symmetric keys are AES or Triple DES. AES is used if bothmodules use 2.50.16 or later firm-
ware, Triple DES is used where the other module is running older firmware. The four keys are used for
encryption, decryption, MAC creation, MAC validation. The protocol ensures that the keyModule 1 uses
for encryption is used for decryption bymodule 2. All impath keys are stored as objects in the object store
in SRAM.

5.8.1 nShield Remote Administration Token Secure Channel

A Secure Channel is a secure channel between a Remote Administration token (Javacard) and amod-
ule.

To set up a secure channel twomodules perform a key-exchange, using Elliptical Curve Diffie-Hellman
with P-521 curves, to negotiate a 256-bit AES encryption andMAC keys used to protect the channel.

The key exchange parameters for eachmodule are signed by that module’s signing key. Once themod-
ules have validated the signatures themodule derives four symmetric keys for cryptographic operations
using an approved SP 800-108 KeyDerivation Function.

Currently symmetric keys are AES-256. The four keys are used for encryption, decryption, MAC cre-
ation, MAC validation. The protocol ensures that the remote administration token key used for encryption

Security Policy Page 31 of 50

5 Keys

is used for decryption by themodule. All secure channel keys are stored as objects in the object store in
SRAM.

5.9 Key objects
Keys used for encryption, decryption, signature verification and digital signatures are stored in themod-
ule as objects in the object store in RAM. All key objects are identified by a random identifier that is spe-
cific to the operator and session.

All key objects are stored with an Access control List or ACL. The ACL specifies what operations can be
performedwith this key.Whenever an operator generates a key or imports a key in plain text theymust
specify a valid ACL for that key type. The ACL can be changed using the SetACL service. The ACL can
only bemademore permissive if the original ACL includes the ExpandACL permission.

Key objectsmay be exported as key blobs if their ACL permits this service. Each blob stores a single key
and an ACL. The ACL specifies what operations can be performedwith this copy of the key. The ACL
stored with the blobmust be at least as restrictive as the ACL associated with the key object fromwhich
the blob was created.When you load a key blob, the new key object takes its ACL from the key blob.
Working key blobs are encrypted under a logical token. Key objectsmay also be exported as key blobs
under an archiving key. The key blob can be stored on the host disk or in themodule NVRAM.

Key objects can only be exported in plain text if their ACL permits this operation. If themodule has been
initialized to comply with FIPS 140-2 level 3 roles and services and keymanagement the ACL for a
private or secret key cannot include the export as plain service. An operator may pass a key reference to
another operator using the ticketingmechanism. The GetTicketmechanism takes a key identifier and
returns a ticket. This ticket refers to the key identifier - it does not include any key data. A ticket can be
passed as a byte block to the other operator who can then use the RedeemTicket service to obtain a
key identifier for the same object that is valid for their session. As the new identifier refers to the same
object the second operator is still bound by the original ACL.

5.10 Session keys
Keys used for a single session are generated as required by themodule. They are stored along with their
ACL as objects in the object store. Thesemay be of any supported algorithm.

5.11 Archiving keys
It is sometimes necessary to create an archive copy of a key, protected by another key. Keysmay be
archived using:

l Three-key Triple DES keys (used for unwrapping legacy keys and wrapping public keys only).

l A combination of three-key Triple DES and RSA keys (unwrapping legacy keys only).

In this case a random 3-Key Triple DES key is created which is used to encrypt working key and
then this key is wrapped by the RSA key.

l A key encapsulationmechanism using RSA.

Page 32 of 50 Security Policy

5.12 Certificate signing keys

3072-bit RSA is used to establish a secret fromwhich encryption keys are generated. The holders
of the public and private halves of the RSA keymust already exist in themodule as operators.

The keys generated are either AES or Triple-DES keys, for the purpose of protecting other keys.
AES is used by default as of firmware version 2.50.16. (with Triple-DES available for legacy pur-
poses).

Once the key agreement process is complete, themodule uses an additional keyed hashing pro-
cess to protect the integrity of the nCore Key object to be archived, which is comprised of the key
type, key value and AccessControl List. This process usesHMAC SHA-256 by default. (with
HMAC SHA-1 available for legacy purposes).

l A key encapsulationmechanism using Diffie Hellman:

3072-bit Diffie-Hellman, which is allowed for use in the Approvedmode, is used to establish a
secret fromwhich encryption keys are generated. Both parties in the Diffie-Hellman key agree-
ment process exist in themodule as operators. The keys generated are either AES or Triple-DES
keys, for the purpose of protecting other keys. AES is used by default as of firmware version
2.50.16. (with Triple-DES available for legacy purposes). Please note that the Diffie-Hellman
private keymust be stored externally on the smartcard, if the archived keys are to be retrieved at a
later time.

Once the key agreement process is complete, themodule uses an additional keyed hashing pro-
cess to protect the integrity of the nCore Key object to be archived, which is comprised of the key
type, key value and AccessControl List. This process usesHMAC SHA-256 by default. (with
HMAC SHA-1 available for legacy purposes).

Although provided by the firmware, this option is currently not used by any nCipher tools. Other
third party applications external to themodule, may take advantage of this option, at the discretion
of the developer.

When a key is archived in this way it is stored with its ACL.

When you generate or import the archiving key, youmust specify the UseAsBlobKey option in the
ACL. The archiving key is treated as any other key object.

When you generate or import the key that you want to archive youmust specify the Archival options in
the ACL. This options can specify the hash(es) of the allowed archiving key(s). If you specify a list of
hashes, no other keymay be used.

5.12 Certificate signing keys
The ACL associated with a key object can call for a certificate to be presented to authorize the action.
The required key can either be the nShield Security Officer's key or any other key. Keys are specified in
the ACL by an identifying key SHA-1 hash. The key type is also specified in the ACL although DSA is
standard, any signing algorithmmay be used, all nCipher tools use DSA.

Certain services can require certificates signed by the nShield Security Officer.

5.13 Firmware Integrity Key
All firmware is signed using a 3072-bit DSA2 key pair. Signatureswith this key use SHA-256.

Security Policy Page 33 of 50

5 Keys

Themodule checks the signature before new firmware is written to flash. A module only installs new firm-
ware if the signature decrypts and verifies correctly.

The private half of this key is stored at nCipher.

The public half is included in all firmware. The firmware is stored in flashmemorywhen themodule is
switched off, this is copied to RAMas part of the start up procedure.

5.14 Firmware Confidentiality Key
All firmware is encrypted using AES to prevent casual decompilation.

The encryption key is stored at nCipher' offices and is in the firmware.

The firmware is stored in flashmemorywhen themodule is switched off, this is copied to RAMas part of
the start up procedure.

5.15 Master Feature Enable Key
For commercial reasons not all devices in the nShield family of HSMs offer all services. Certain services
must be enabled separately. In order to enable a service the operator presents a certificate signed by the
Master Feature Enable Key.

TheMaster Feature Enable Key is a DSA key pair. The private half of this key pair is stored at nCipher'
offices. The public half of the key pair is included in the firmware. The firmware is stored in flashmemory
when themodule is switched off, this is copied to RAMas part of the start up procedure.

5.16 DRBG Key
DBRGstands for Deterministic RandomBit Generator.

Themodule uses the CTR_DRBG fromSP 800-90A with a 256-bit AES key. This key is seeded from
the on board entropy source whenever themodule is initialized and is reseeded according to SP 800-
90A with a further 1024 bits of entropy after every 2048-bytes of output.

This key is only ever used by the DRBG. It is never exposed outside themodule.

The DRBG internal state is contained within the DRBGmechanism boundary and is not accessed by
non-DRBG functions or by other instances of anyDRBG.

For CTR DRBG, the values of V and Key (SP 800-90A) are the ’secret values’ of the internal
state.

Page 34 of 50 Security Policy

6 Rules

6 Rules
6.1 Identification and authentication
Communication with themodules is performed via a server program running on the host machine, using
standard inter process communication, using sockets in UNIX operating systems, named pipes under
Windows.

In order to use themodule the operator must first log on to the host computer and start an nShield
enabled application. The application connects to the hardserver, this connection is given a client ID, a 32-
bit arbitrary number.

Before performing any service the operator must present the correct authorization.Where several
stages are required to assemble the authorization, all the stepsmust be performed on the same con-
nection. The authorization required for each service is listed in the section "Services available to each
role" on page 12. An operator cannot access any service that accessesCSPswithout first presenting a
smart card, or software token.

The nShield modules perform identity based authentication. Each individual operator is given a smart
card that holds their authentication data - the logical token share - in an encrypted form. All operations
require the operator to first load the logical token from their smart card.

6.1.1 Access Control

Keys are stored on the host computer's hard disk in an encrypted format, known as a key blob. In order
to load a key the operator must first load the token used to encrypt this blob.

Tokens can be divided into shares. Each share can be stored on a smart card or software token on the
computer's hard disk. These shares are further protected by encryption with a pass phrase and amodule
key. Therefore an operator can only load a key if they possess the physical smart cards containing suf-
ficient shares in the token, the required pass phrases and themodule key are loaded in themodule.

Module keys are stored in FRAM in themodule. They can only be loaded or removed by the nShield
Security Officer, who is identified by a public key pair created when themodule is initialized. It is not pos-
sible to change the nShield Security Officer's keywithout re-initializing themodule, which clears all the
module keys, thus preventing access to all other keys.

The key blob also contains an AccessControl List that specifies which services can be performedwith
this key, and the number of times these services can be performed. These can be hard limits or per
authorization limits. If a hard limit is reached that service can no longer be performed on that key. If a per-
authorization limit is reached the operator must reauthorize the key by reloading the token.

All objects are referred to by handle. Handles are cross-referenced to ClientIDs. If a command refers
to a handle that was issued to a different client, the command is refused. Services exist to pass a handle
between ClientIDs.

6.1.2 Access Control List

All key objects have an AccessControl List (ACL). The operator must specify the ACLwhen they gen-
erate or import the key. The ACL lists every operation that can be performedwith the key - if the

Security Policy Page 35 of 50

6 Rules

operation is not in the ACL themodule will not permit that operation. In particular the ACL can only be
altered if the ACL includes the SetACL service. The ACL is stored with the keywhen it is stored as a
blob and applies to the new key object created when you reload the blob.

The ACL can specify limits on operations - or groups of operations - thesemay be global limits or per
authorization limits. If a global limit is exceeded then the key cannot be used for that operation again. If a
per authorization limit is exceeded then the logical token protecting the keymust be reloaded before the
key can be reused.

An ACL can also specify a certifier for an operation. In this case the operator must present a certificate
signed by the keywhose hash is in the ACLwith the command in order to use the service.

An ACL can also specify a host service identifier. In which case the ACL is onlymet if the hardserver
appends thematching Service name. This feature is designed to provide a limited level of assurance and
relies on the integrity of the host, it offers no security if the server is compromised or not used.

ACL design is complex - operators will not normally need to write ACLs themselves. nCipher provide
tools to generate keyswith strong ACLs.

6.1.3 Object re-use

All objects stored in themodule are referred to by a handle. Themodule'smemorymanagement func-
tions ensure that a specificmemory location can only be allocated to a single handle. The handle also
identifies the object type, and all of themodules enforce strict type checking.When a handle is released
thememory allocated to it is actively zeroed.

6.1.4 Error conditions

If themodule cannot complete a command due to a temporary condition, themodule returns a command
blockwith no data and with the status word set to the appropriate value. The operator can resubmit the
command at a later time. The server program can record a log of all such failures.

If themodule encounters an unrecoverable error it enters the error state. This is indicated by the change
in voltage on the LED pin causing the LED connected to this pin to flash in theMorse pattern SOS. As
soon as the unit enters the error state all processors stop processing commands and no further replies
are returned. In the error state the unit does not respond to commands. Recorded error status codes
may be queried without interaction with themodule. The unit must be reset.

6.1.5 Security Boundary

The physical security boundary is the plastic jig that contains the potting on both sides of the PCB.

All cryptographic components are covered by potting.

Some components are excluded from FIPS 140-2 validation as they are not security relevant see "Ports
and Interfaces" on page 9.

6.1.6 Status information

Themodule has an LED pin that indicates the overall state of themodule. This pin must be connected to
an external LED.

Page 36 of 50 Security Policy

6.2 Procedures to initialize amodule to comply with FIPS 140-2 Level 3

Themodule also returns a statusmessage in the reply to every command. This indicates the status of
that command.

There are a number of services that report status information.

6.2 Procedures to initialize a module to comply with FIPS
140-2 Level 3
The nShield enabled applicationmust perform the following services, for more information refer to the
nShield User Guide.

Put themodule into initializationmode by calling the Initialize Unit command.

Use either the graphical user interface KeySafe or the command line tool new-world. Using either tool
youmust specify the number of cards in the Administrator Card Set and the encryption algorithm to use,
Triple-DES or AES. To ensure that themodule is in Level 3mode youmust

Using Keysafe select the option “FIPS 140 Mode level 3 compliant” = Yes ; or

Using new-world specify the -F flag in the command line

The tool prompts you to insert cards and to enter a pass phrase for each card.

When you have created all the cards, put themodule back into operational mode as described in
Chapter 4.

6.2.1 Verifying the module is in level 3 mode

An operator can verify that themodule is operating in level 3mode by verifying the following:

Keysafe displays “Strict FIPS 140-2 Level 3 = Yes” in the information panel for that module.

The command line tool nfkminfo include StrictFIPS in the list of flags for themodule

6.3 Return a module to factory state
1. Put themode switch into the initialization position Pull the Initialization pin high and restart themod-

ule.

2. Use the Initialise command to enter the Initialization state.

3. Load a random value to use as the hash of the nShield Security Officer's key.

4. Set nShield Security Officer service to set the nShield Security Officer's key and the operational
policy of themodule.

5. Put themode switch into the operational position Pull the Initialization pin low and restart themod-
ule.

6. After this operation themodulemust be initialized correctly before it can be used in a FIPS
approvedmode.

Placing themodule in factory state:

Security Policy Page 37 of 50

6 Rules

l destroys any loaded Logical tokens, Share Keys, Impath keys, Key objects, Session keys

l erases the current Module Signing Key and generates a fresh one.

l erases all current Module Keys, except theWell KnownModule Key

l Generates a new Module Key Zero

l sets nShield Security Officer's key to a known value

l this prevents themodule from loading any keys stored a key blobs as it no longer possesses the
decryption key.

Returning themodule to factory state does not erase the Firmware Confidentiality Key, the Long Term
Signing Key or the public halves of the Firmware Integrity Key, of theMaster Feature Enable Key: as
these provide the cryptographic identity of themodule and control loading firmware.

nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate
these steps.

6.4 Create a new operator
1. Create a logical token.

2. Write one or more shares of this token onto software tokens.

3. For each key the operator will require, export the key as a key blob under this token.

4. Give the operator any pass phrases used and the key blob.

nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate
these steps.

6.5 Authorize the operator to create keys
1. Create a new key, with an ACL that only permits UseAsCertificate.

2. Export this key as a key blob under the operator's token.

3. Create a certificate signed by the nShield Security Officer's key that:

l includes the hash of this key as the certifier.

l authorizes the action OriginateKey depending on the type of key required.

4. Give the operator the key blob and certificate.

nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate
these steps.

6.6 Authorize an operator to act as a Junior Security Officer
1. Generate a logical token to use to protect the Junior Security Officer's key.

2. Write one or more shares of this token onto software tokens

3. Create a new key pair,

4. Give the private half an ACL that permits Sign and UseAsSigningKey.

Page 38 of 50 Security Policy

6.7 Authenticate an operator to use a stored key

5. Give the public half an ACL that permits ExportAsPlainText

6. Export the private half of the Junior Security Officer's key as a key blob under this token.

7. Export the public half of the Junior Security Officer's key as plain text.

8. Create a certificate signed by the nShield Security Officer's key includes the hash of this key as the
certifier

l authorizes the actions GenerateKey, GenerateKeyPair

l authorizes the actions GenerateLogicalToken, WriteShare and MakeBlob, these
may be limited to a particular module key.

9. Give the Junior Security Officer the software token, any pass phrases used, the key blob and cer-
tificate.

nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate
these steps.

6.7 Authenticate an operator to use a stored key
1. Use the LoadLogicalToken service to create the space for a logical token.

2. Use the ReadShare service to read each share from the software token.

3. Use the LoadBlob service to load the key from the key blob.

The operator can now perform the services specified in the ACL for this key.

To assume nShield Security Officer role load the nShield Security Officer's key using this procedure. The
nShield Security Officer's key can then be used in certificates authorising further operations.

nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate
these steps.

6.8 Authenticate an operator to create a new key
1. If you have not already loaded your operator token, load it as above.

2. Use the LoadBlob service to load the authorization key from the key blob.

3. Use the KeyId returned to build a signing key certificate.

4. Present this certificate with the certificate supplied by the nShield Security Officer with the Gen-
erateKey, GenerateKeyPair or MakeBlob command.

nCipher supply a graphical user interface KeySafe and a command line tool new-world that automate
these steps.

Security Policy Page 39 of 50

7 Physical security

7 Physical security
All security critical components of themodule are covered by epoxy resin.

Themodule hardness testing was only performed at a single temperature and no assurance is provided
for Level 3 hardness conformance at any other temperature.

Themodule has a clear button. Pressing this button puts themodule into the self-test state, clearing all
stored key objects, logical tokens and impath keys and running all self-tests. The long term security crit-
ical parameters, nShield Security Officer's key, module keys andmodule signing key can be cleared by
returning themodule to the factory state, as described above.

7.1 Checking the module
To ensure physical security, make the following checks regularly:

l Examine the epoxy resin security coating for obvious signs of damage.

l The smart card reader is directly plugged into themodule or into a port provided by any appliance
in which themodule is integrated and the cable has not been tampered with. Where themodule is
in an appliance the security of this connectionmay be protected by the seals or other tamper evid-
ence provided by the appliance.

Security Policy Page 40 of 50

8 Strength of functions

8 Strength of functions
8.1 Object IDs
Connections are identified by a ClientID, a random 32 bit number.

Objects are identified by an ObjectID again this is a random 32 bit number.

In order to randomly gain access to a key loaded by another operator you would need to guess two ran-
dom 32 bit numbers. There are 264 possibilities thereforemeets the 1 in a 106 requirement.

Themodule can process about 216 commands per minute - therefore the chance of succeeding within a
minute is 216 / 264 = 2-48 which is significantly less than the required chance of 1 in 105 (~2-17)

8.2 Tokens
If an operator chooses to use a logical token with only one share, no pass phrase and leaves the smart
card containing the share in the slot then another operator could load the logical token. Themodule does
not have any idea as to which operator inserted the smart card. This can be prevented by:

l not leaving the smart card in the reader

l if the smart card is not in the reader, they can only access the logical token by correctly guessing
the ClientID and ObjectID for the token.

l requiring a pass phrase
When loading a share requiring a pass phrase the operator must supply the SHA-1 hash of the
pass phrase. The hash is combined with amodule key, share number and smart card id to recre-
ate the key used to encrypt the share. If the attacker has no knowledge of the pass phrase they
would need tomake 280 attempts to load the share. Themodule enforces a five seconds delay
between failed attempts to load a share.

l requiringmore than one share
If a logical token requires shares frommore than one smart card the attacker would have to
repeat the attack for each share required.

Logical tokens are either 3-Key Triple DES keys or 256-bit AES keys. Shares are encrypted under a
combination of amodule key, share number and card ID. If you could construct a logical token share of
the correct formwithout knowledge of themodule key and the exact mechanism used to derive the share
key the chance that it would randomly decrypt into a valid token are 2-168 or 2-256.

8.3 Key Blobs
Key blobs are used to protect keys outside themodule. There are two formats of blob - indirect and dir-
ect.

If themodule is configured with AESmodule key, the blobs used for token andmodule key protected
keys take a 256 bit AES key and a nonce and uses SHA-1 to derive a AES encryption key, used for
encryption and a HMAC SHA-1 key, used for integrity.

Security Policy Page 41 of 50

8 Strength of functions

If themodule is configured with Triple DESmodule key, the blobs used for token andmodule key pro-
tected keys use Triple DES and SHA-1 for encryption and integrity.

If themodule is initialized in a fresh security world, the blobs used for key-recovery and for pass-phrase
recovery take the public half of a 3072-bit RSA key and a nonce as the input, and uses SHA-256 to
derive a 256-bit AES encryption key, used for encryption and a HMAC SHA-256 key, used for integrity.

If themodule is enrolled into an old security world created before the release of 2.50.16 firmware, the
blobs used for key-recovery and for pass-phrase recovery take the public half of a 1024-bit RSA key and
a nonce as the input, and uses SHA-1 to derive a 3-Key triple-DES or 256-bit AES encryption key -
depending on the option selected for themodule key - and a HMAC SHA-1 key, used for integrity. This
mode of operation is non-approved.

The firmware also supports key blobs based on an integrated encryption scheme using Diffie Hellman to
establish amaster secret and HMAC SHA-256 for integrity and AES in CBC mode for encryption, or
HMAC SHA-1 for integrity and Triple DES in CBC mode for encryption. However, this option is currently
not used by any nCipher tools.

All schemes used in SP 800-131A compliant security worlds offer at least 112-bits of security. Legacy
security worlds, which offer at least 80-bits of security, operate in non-approvedmode.

8.4 Impaths
Impaths protect the transfer of encrypted shares betweenmodules.

When negotiating an Impath, provided bothmodules use 2.50.16 or later firmware, themodule verifies a
3072-bit DSA signatureswith SHA-256 hashes to verify the identity of the other module. It then uses
3072-bit Diffie-Hellman key exchange to negotiate a 256-bit AES encryption andMAC keys used to pro-
tect the channel. This provides aminimumof 128-bits of security for the encrypted channel.

Otherwise, bothmodules use 1024-bit DSA signatures to verify the identity of the other module. Then
they perform a 1024-bit Diffie-Hellman key exchange to negotiate a 3-Key triple-DES encryption keys
used to protect the channel. This provides aminimumof 80-bits of security for the encrypted channel.
Themodule will be operating in a non-approvedmodewhen 1024-bit DSA signatures are used.

The shares sent over the channel are still encrypted using their share key, decryption only
takes place on the receivingmodule.

8.4.1 nShield Remote Administration Token Secure Channel

The Secure Channel protects the transfer of encrypted shares between a Remote Administration token
andmodule.

When negotiating a Secure Channel themodule verifies a ECDSA P-521 signature with SHA-512
hashes to verify the identity of the other module.

It then uses ECDH key exchange to negotiate 256-bit AES encryption andMAC keys used to protect the
channel. This provides aminimumof 256-bits of security for the encrypted channel.

Page 42 of 50 Security Policy

8.4.2 KDP key provisioning

The shares sent over the channel are still encrypted using their share key, decryption only
takes place on the receivingmodule.

8.4.2 KDP key provisioning

The KDP protocol used to transfer keys from amodule to amicro HSMuses 1024-bit DSA signatures to
identify the end point and a 2048-bit Diffie-Hellman key exchange to negotiate the Triple-DES or AES
keys used to encrypt the keys in transit providing aminimumof 100-bits of security for the encrypted
channel.

8.4.3 Derived Keys

The nCore API provides a range of key derivation and wrapping options that an operator can choose to
make use of in their protocols.

For any key, thesemechanisms are only available if the operator explicitly enabled them in the key's ACL
when they generated or imported the key.

The ACL can specify not only themechanism to use but also the specific keys that may be used if these
are known.

Mechanism Use Notes

KeySplitting
Splits a symmetric key
into separate com-
ponents for export

Components are raw byte blocks.

SSL/TLS
master key
derivation

Setting up an SSL/TLS
session

Non-compliant. The protocols SSL, TLS shall not be used
when operated in FIPS mode. In particular, none of the keys
derived using this key derivation function can be used in the
Approvedmode.

KeyWrap-
ping

Encrypts one key object
with another to allow the
wrapped key to be
exported.

May use approved or allowedmechanisms that accept a byteb-
lock.

The operator must ensure that they chose a wrapping key that
has an equivalent strength to the key being transported.

The operator must ensure that they chose a wrapping key that
has an equivalent strength to the key being transported.

Keywrapping using Triple-DES is non-compliant.

Secure
Channel
KeyDeriv-
ation

Derivation of encryption
and authentication keys
for the secure channel

NIST SP 800-108 KDF

Security Policy Page 43 of 50

8 Strength of functions

In level 3mode you can only use keywrapping and key establishment mechanisms that use approved
algorithms.

Page 44 of 50 Security Policy

9 Self Tests

9 Self Tests
When power is applied to themodule it enters the self test state. Themodule also enters the self test
state whenever the unit is reset, by pressing the clear button or by sending the Clear Unit command.

In the self test state themodule clears themain RAM, thus ensuring any loaded keys or authorization
information is removed and then performs its self test sequence, which includes:

l An operational test on hardware components

l An integrity check on the firmware, verification of a SHA-1 hash

l A statistical check on the random number generator

l Known answer checks as required by FIPS 140-2.

l Verification of aMAC on FRAM contents to ensure it is correctly initialized.

This sequence takes a few seconds after which themodule enters the Pre-Maintenance,
Pre-Initialization, Uninitialized or Operational state; depending on the position of themode switch and
the validity of the FRAM contents.

Themodule also runs continuous random number generator tests on the hardware entropy source and
the approved AES-256 based DRBG. If either fail, it enters the error state.

When firmware is updated, themodule verifies a DSA signature on the new firmware image before it is
written to flash.

Themodule also performs pairwise-consistency checkswhen generating asymmetric key-pairs.

In the error state, there is a change in voltage on the LED pin causing the LED connected to this pin to
repeatedly flash theMorse pattern SOS, followed by a status code indicating the error. All other inputs
and outputs are disabled.

9.1 Firmware Load Test
When new firmware is loaded, themodule reads the candidate image into workingmemory. It then per-
forms the following tests on the image before it replaces the current application:

l The image contains a valid signature which themodule can verify using the Firmware Integrity Key

l The image is encrypted with the Firmware Confidentiality Key stored in themodule.

l The Version Security Number for the image is at least as high as the stored value.

Only if all three tests pass is the new firmware written to permanent storage.

Updating the firmware clears the nShield Security Officer's key and all storedmodule keys. Themodule
will not re-enter operational mode until the administrator has correctly re-initialized it.

Note that if themodule's firmware is updated to a different version, this results in the loss of the current
CMVP validation of themodule.

Security Policy Page 45 of 50

10 Supported Algorithms

10 Supported Algorithms
10.1 FIPS approved and allowed algorithms:
10.1.1 Symmetric Encryption
10.1.1.1 AES

Certificate #3419

ECB, CBC, GCM (externally generated IVs are non-compliant) and CMAC modes

10.1.1.2 Triple-DES

Certificate #1930

ECB and CBC modes (encryption with two-key Triple DES is non-compliant)

10.1.2 Hashing and Message Authentication
10.1.2.1 AES CMAC

AES Certificate #3419

10.1.2.2 AES GMAC

AES Certificate #3419

10.1.2.3 HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC SHA-384 and
HMAC SHA-512

Certificate #2177

10.1.2.4 SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512

Certificate #2825

10.1.2.5 Triple-DES MAC

Triple-DES Certificate #1930 vendor affirmed

(MAC generation with two-key Triple DES is non-compliant)

10.1.3 Signature
10.1.3.1 DSA

Certificate #963

FIPS 186-4: Signature generation and verification (Signature generation is non-compliant for SHA-1,
and for keys less than 2,048 bits.)

Modulus 1024-bits, Sub-group 160-bits

Modules 2048-bits, Sub-group 224-bits

Modules 2048-bits, Sub-group 256-bits

Modules 3072-bits, Sub-group 256-bits

Security Policy Page 46 of 50

10 Supported Algorithms

10.1.3.2 ECDSA

Certificate #686

FIPS 186-4: Signature generation and verification (Signature generation is non-compliant for SHA-1,
and for values of n less than 224 bits, and for the curves P-192 K-163 and B-163.)

P-192 P-224 P-256 P-384 P-521 K-163 K-233 K-283 K-409 K-571 B-163 B-233 B-283 B-409 and
B-571 Curves

10.1.3.3 RSA

Certificate #1751

FIPS 186-4: Key generation; RSASSA PKCS1_V1_5 and RSASSA-PSS signature generation and veri-
fication (Signature generation with SHA-1 or keys sizes 1024 bits or 4096 bits is non-compliant.)

Modulus 1024 - 4096 bits with SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512

10.1.4 Key Establishment
10.1.4.1 Diffie-Hellman

Diffie-Hellman (CVLCert. #515, key agreement; key establishment methodology provides between 112
and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength)

10.1.4.2 Elliptic Curve Diffie-Hellman

EC Diffie-Hellman (CVLCert. #515, key agreement; key establishment methodology provides between
112 and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength)

10.1.4.3 RSA

RSA (keywrapping, key establishment methodology provides between 112 and 256 bits of encryption
strength; non-compliant less than 112 bits of encryption strength)

10.1.4.4 AES

KTS (Cert. #3419, keywrapping; key establishment methodology provides between 128 and 256 bits of
encryption strength)

10.1.4.5 EC-MQV

ECMQV (key agreement; key establishment methodology provides between 112 and 256 bits of encryp-
tion strength; non-compliant less than 112 bits of encryption strength)

10.1.5 Key Derivation

SP 800-108 KeyDerivation #57 in Counter Mode.

10.1.6 Other
10.1.6.1 Deterministic Random Bit Generator

Certificate #824

SP 800-90A using Counter mode of AES-256

Page 47 of 50 Security Policy

10.2 Non-FIPS approved algorithms

10.2 Non-FIPS approved algorithms

Algorithmsmarked with an asterisk are not approved byNIST. If themodule is initialized into
the approvedmode of operation, these algorithms are disabled.

10.2.1 Symmetric

l Aria*

l Arc Four (compatible with RC4)*

l Camellia*

l CAST-256 (RFC2612)*

l DES*

l SEED (Korean Data Encryption Standard) - requires Feature Enable activation*

10.2.2 Asymmetric

l El Gamal * (encryption using Diffie-Hellman keys)

l KCDSA (Korean Certificate-based Digital Signature Algorithm) - requires Feature Enable activ-
ation*

l RSA encryption and decryption* (SameRSA implementation as used for keywrapping)

10.2.3 Hashing and Message Authentication

l HAS-160 - requires Feature Enable activation*

l MD5 - requires Feature Enable activation*

l RIPEMD 160*

l Tiger*

l HMAC (MD5, RIPEMD160, Tiger)*

10.2.4 Key wrapping/Key transport

Triple-DES CBC mode* (keywrapping; non-compliant)

10.2.5 Non-deterministic entropy source

Non-deterministic entropy source, used to seed approved random bit generator.

10.2.6 Other

SSL*/TLS master key derivation (non-compliant). The protocols SSL, TLS shall not be used when oper-
ated in FIPS mode. In particular, none of the keys derived using this key derivation function can be used
in the Approvedmode.

PKCS #8 padding*.

Security Policy Page 48 of 50

Contact Us

Contact Us
Web site: https://www.ncipher.com
Support: https://help.ncipher.com
Email Support: support@ncipher.com
Online documentation: All of our user guides can be accessed via the Support Portal

You can also contact our Support team by telephone, using the following numbers:

Europe, Middle East, and Africa

United Kingdom: +44 1223 723 711
One Station Square
Cambridge
CB1 2GA

Americas

Toll Free: +1 833 425 1990
Fort Lauderdale: +1 954 953 5229

SawgrassCorporate Center, Building A
13800 Northwest 14th Street,
Suite 130,
Sunrise, FL 33323

Asia Pacific

Hong Kong: +852 3461 3088
10/F, V-Point,
18 Tang Lung Street
CausewayBay
Hong Kong

Security Policy Page 49 of 50

About nCipher Security

Today’s fast moving digital environment enhances customer satisfaction, gives competitive advantage and improves
operational efficiency. It alsomultiplies the security risks. nCipher Security, a leader in the general purpose hardware
securitymodule (HSM) market, empowersworld-leading organizationsbydelivering trust, integrity and control to their
business critical information and applications.

Our cryptographic solutions secure emerging technologies– cloud, IoT, blockchain, digital payments – and helpmeet
new compliancemandates, using the same proven technology that global organizationsdepend on today to protect
against threats to their sensitive data, network communicationsand enterprise infrastructure.We deliver trust for your
business critical applications, ensuring the integrity of your data and putting you in complete control – today, tomorrow,
at all times. www.ncipher.com

	1 Purpose
	2 Ports and Interfaces
	3 Roles
	3.1 Unauthenticated
	3.2 User
	3.3 nShield Security Officer
	3.4 Junior Security Officer

	4 Services available to each role
	4.1 Terminology

	5 Keys
	5.1 nShield Security Officer's key
	5.2 Junior Security Officer's key
	5.3 Long term signing key
	5.4 Module signing key
	5.5 Module keys
	5.6 Logical tokens
	5.7 Share keys
	5.8 Impath keys
	5.8.1 nShield Remote Administration Token Secure Channel

	5.9 Key objects
	5.10 Session keys
	5.11 Archiving keys
	5.12 Certificate signing keys
	5.13 Firmware Integrity Key
	5.14 Firmware Confidentiality Key
	5.15 Master Feature Enable Key
	5.16 DRBG Key

	6 Rules
	6.1 Identification and authentication
	6.1.1 Access Control
	6.1.2 Access Control List
	6.1.3 Object re-use
	6.1.4 Error conditions
	6.1.5 Security Boundary
	6.1.6 Status information

	6.2 Procedures to initialize a module to comply with FIPS 140-2 Level 3
	6.2.1 Verifying the module is in level 3 mode

	6.3 Return a module to factory state
	6.4 Create a new operator
	6.5 Authorize the operator to create keys
	6.6 Authorize an operator to act as a Junior Security Officer
	6.7 Authenticate an operator to use a stored key
	6.8 Authenticate an operator to create a new key

	7 Physical security
	7.1 Checking the module

	8 Strength of functions
	8.1 Object IDs
	8.2 Tokens
	8.3 Key Blobs
	8.4 Impaths
	8.4.1 nShield Remote Administration Token Secure Channel
	8.4.2 KDP key provisioning
	8.4.3 Derived Keys

	9 Self Tests
	9.1 Firmware Load Test

	10 Supported Algorithms
	10.1 FIPS approved and allowed algorithms:
	10.1.1 Symmetric Encryption
	10.1.1.1 AES
	10.1.1.2 Triple-DES

	10.1.2 Hashing and Message Authentication
	10.1.2.1 AES CMAC
	10.1.2.2 AES GMAC
	10.1.2.3 HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC SHA-384 and HMAC SHA‑512
	10.1.2.4 SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512
	10.1.2.5 Triple-DES MAC

	10.1.3 Signature
	10.1.3.1 DSA
	10.1.3.2 ECDSA
	10.1.3.3 RSA

	10.1.4 Key Establishment
	10.1.4.1 Diffie-Hellman
	10.1.4.2 Elliptic Curve Diffie-Hellman
	10.1.4.3 RSA
	10.1.4.4 AES
	10.1.4.5 EC-MQV

	10.1.5 Key Derivation
	10.1.6 Other
	10.1.6.1 Deterministic Random Bit Generator

	10.2 Non-FIPS approved algorithms
	10.2.1 Symmetric
	10.2.2 Asymmetric
	10.2.3 Hashing and Message Authentication
	10.2.4 Key wrapping/Key transport
	10.2.5 Non-deterministic entropy source
	10.2.6 Other

	Contact Us
	Europe, Middle East, and Africa
	Americas
	Asia Pacific

