
 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice.

 Ubuntu 18.04 Kernel Crypto API
Cryptographic Module

version 2.0

FIPS 140-2 Non-Proprietary Security Policy

Version 2.5

Last update: 2021-09-15

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 2 of 43

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 3 of 43

Table of Contents

1. Cryptographic Module Specification ... 6

1.1. Module Overview ... 6

1.2. Modes of Operation .. 10

2. Cryptographic Module Ports and Interfaces .. 11

3. Roles, Services and Authentication ... 12

3.1. Roles .. 12

3.2. Services ... 12

3.3. Algorithms ... 14

3.3.1. Ubuntu 18.04 LTS 64-bit Running on Intel® Xeon® CPU E5-2620v3 Processor 14

3.3.2. Ubuntu 18.04 LTS 64-bit Running on z System .. 19

3.3.3. Non-Approved Algorithms ... 24

3.4. Operator Authentication .. 25

4. Physical Security .. 26

5. Operational Environment ... 27

5.1. Applicability .. 27

5.2. Policy ... 27

6. Cryptographic Key Management... 28

6.1. Random Number Generation ... 29

6.2. Key Generation ... 29

6.3. Key Agreement / Key Transport / Key Derivation .. 29

6.4. Key Entry / Output .. 30

6.5. Key / CSP Storage .. 30

6.6. Key / CSP Zeroization .. 30

7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) .. 31

8. Self-Tests ... 32

8.1. Power-Up Tests ... 32

8.1.1. Integrity Tests ... 32

8.1.2. Cryptographic Algorithm Tests .. 32

8.2. On-Demand Self-Tests .. 35

8.3. Conditional Tests .. 35

9. Guidance ... 36

9.1. Crypto Officer Guidance ... 36

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 4 of 43

9.1.1. Module Installation .. 36

9.1.2. Operating Environment Configuration .. 36

9.2. User Guidance ... 37

9.2.1. AES-GCM IV .. 37

9.2.2. AES-XTS... 37

9.2.3. Triple-DES encryption... 38

9.2.4. Handling FIPS Related Errors .. 38

10. Mitigation of Other Attacks .. 39

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 5 of 43

Copyrights and Trademarks

Ubuntu and Canonical are registered trademarks of Canonical Ltd.

Linux is a registered trademark of Linus Torvalds.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 6 of 43

1. Cryptographic Module Specification

This document is the non-proprietary FIPS 140-2 Security Policy for version 2.0 of the Ubuntu 18.04 Kernel
Crypto API Cryptographic Module. It contains the security rules under which the module must operate and
describes how this module meets the requirements as specified in FIPS PUB 140-2 (Federal Information
Processing Standards Publication 140-2) for a Security Level 1 software module.

The following sections describe the cryptographic module and how it conforms to the FIPS 140-2 specification
in each of the required areas.

1.1. Module Overview

The Ubuntu 18.04 Kernel Crypto API Cryptographic Module (hereafter referred to as “the module”) is a
software module running as part of the operating system kernel that provides general purpose cryptographic
services. The module provides cryptographic services to kernel applications through a C language Application
Program Interface (API) and to applications running in the user space through an AF_ALG socket type interface.
The module utilizes processor instructions to optimize and increase the performance of cryptographic
algorithms.

For the purpose of the FIPS 140-2 validation, the module is a software-only, multi-chip standalone
cryptographic module validated at overall security level 1. The table below shows the security level claimed for
each of the eleven sections that comprise the FIPS 140-2 standard.

FIPS 140-2 Section Security
Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

Overall Level 1

Table 1 - Security Levels

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 7 of 43

The table below enumerates the components that comprise the module with their location in the target
platform.

Description Components

Integrity test utility /usr/bin/sha512hmac

Integrity check HMAC file for
the integrity test utility.

/usr/bin/.sha512hmac.hmac

Static kernel binary

/boot/vmlinuz-4.15.0.1011-fips

Integrity check HMAC file for
static kernel binary

/boot/.vmlinuz-4.15.0.1011-fips.hmac

Cryptographic kernel object
files

/lib/modules/4.15.0.1011-fips/kernel/crypto/*.ko

/lib/modules/4.15.0.1011-fips/kernel/arch/x86/crypto/*.ko

/lib/modules/4.15.0.1011-fips/kernel/arch/s390/crypto/*.ko

Table 2 - Cryptographic Module Components

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 8 of 43

The software block diagram below shows the module, its interfaces with the operational environment and the
delimitation of its logical boundary, comprised of all the components within the BLUE box.

Figure 1 - Software Block Diagram

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 9 of 43

The module is aimed to run on a general purpose computer (GPC); the physical boundary of the module is the
tested platforms. Figure 2 shows the major components of a GPC.

Figure 2 - Cryptographic Module Physical Boundary

The module has been tested on the test platforms shown below.

Test Platform Processor Processor
Architecture

Test Configuration

Supermicro SYS-5018R-WR Intel® Xeon® CPU
E5-2620v3

Intel x86 64 bits Ubuntu 18.04 LTS 64-bit
with/without AES-NI (PAA)

IBM z/VM running on IBM z/14 z14 z (s390) Ubuntu 18.04 LTS 64-bit on IBM
z/VM with/without CPACF (PAI)

Table 3 - Tested Platforms

Note: Per [FIPS 140-2_IG] G.5, the Cryptographic Module Validation Program (CMVP) makes no statement as to
the correct operation of the module or the security strengths of the generated keys when this module is ported
and executed in an operational environment not listed on the validation certificate.

The platforms listed in the table below have not been tested as part of the FIPS 140-2 level 1 certification.
Canonical “vendor affirms” that these platforms are equivalent to the tested and validated platforms.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 10 of 43

Test Platform Processor Test Configuration

Lenovo ThinkSystem SR645 AMD EPYC 7642 48-Core Ubuntu 18.04 LTS 64-bit

Lenovo ThinkSystem SR645 AMD EPYC 7763 64-Core Ubuntu 18.04 LTS 64-bit

Supermicro SYS-1019P-WTR Intel(R) Xeon(R) Platinum
8171M CPU

Ubuntu 18.04 LTS 64-bit

Supermicro SYS-1019P-WTR Intel(R) Xeon(R) CPU E5 Ubuntu 18.04 LTS 64-bit

Dell Server SKU: DCS 9550 Xeon-Broadwell E5-2683-V4 Ubuntu 18.04 LTS 64-bit

Dell Server SKU: DCS 9550 Xeon-Broadwell E5-2650v4 Ubuntu 18.04 LTS 64-bit

Dell Server SKU: DCS 9650 Xeon-Skylake X-SP 6142 Ubuntu 18.04 LTS 64-bit

Supermicro Server SKU

2049U-TR4

Xeon-Cascade-Lake 6248 Ubuntu 18.04 LTS 64-bit

Supermicro Server SKU

2049U-TR4

Xeon-Cascade-Lake 8260-
Platinum

Ubuntu 18.04 LTS 64-bit

Supermicro Server SKU 2049U-
TR4

Xeon-Cascade-Lake 8280L-
Platinum

Ubuntu 18.04 LTS 64-bit

Lenovo Server SKU: SR645 AMD Milan 7763 Ubuntu 18.04 LTS 64-bit

Table 4 - Vendor Affirmed Platforms

1.2. Modes of Operation

The module supports two modes of operation:

• FIPS mode (the Approved mode of operation): only approved or allowed security functions with
sufficient security strength can be used.

• non-FIPS mode (the non-Approved mode of operation): only non-approved security functions can be
used.

The module enters FIPS mode after power-up tests succeed. Once the module is operational, the mode of
operation is implicitly assumed depending on the security function invoked and the security strength of the
cryptographic keys.

Critical security parameters used or stored in FIPS mode are not to be used in non-FIPS mode, and vice versa.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 11 of 43

2. Cryptographic Module Ports and Interfaces

As a software-only module, the module does not have physical ports. For the purpose of the FIPS 140-2
validation, the physical ports are interpreted to be the physical ports of the hardware platforms on which it
runs.

The logical interfaces are the API through which kernel modules request services, and the AF_ALG type socket
that allows the applications running in the user space to request cryptographic services from the module. The
following table summarizes the four logical interfaces:

FIPS Interface Physical Port Logical Interface

Data Input Keyboard API input parameters from kernel system
calls, AF_ALG type socket.

Data Output Display API output parameters from kernel system
calls, AF_ALG type socket.

Control Input Keyboard API function calls, API input parameters for
control from kernel system calls, AF_ALG
type socket, kernel command line.

Status Output Display API return codes, AF_ALG type socket,
kernel logs.

Power Input GPC Power Supply Port N/A

Table 5 - Ports and Interfaces

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 12 of 43

3. Roles, Services and Authentication

3.1. Roles

The module supports the following roles:

• User role: performs cryptographic services (in both FIPS mode and non-FIPS mode), key zeroization,
show status, and on-demand self-test.

• Crypto Officer role: performs module installation and initialization.

The User and Crypto Officer roles are implicitly assumed by the entity accessing the module services.

3.2. Services

The module provides services to users that assume one of the available roles. All services are shown in Table 6
and Table 7.

The table below shows the services available in FIPS mode. For each service, the associated cryptographic
algorithms, the roles to perform the service, and the cryptographic keys or Critical Security Parameters and
their access right are listed. The following convention is used to specify access rights to a CSP:

• Create: the calling application can create a new CSP.

• Read: the calling application can read the CSP.

• Update: the calling application can write a new value to the CSP.

• Zeroize: the calling application can zeroize the CSP.

• n/a: the calling application does not access any CSP or key during its operation.

If the services involve the use of the cryptographic algorithms, the corresponding Cryptographic Algorithm
Validation System (CAVS) certificate numbers of the cryptographic algorithms can be found in Table 8 and
Table 9 of this security policy.

Service Algorithms Role Access Keys/CSP

Cryptographic Library Services

Symmetric Encryption
and Decryption

AES User Read AES key

Triple-DES User Read Triple-DES key

Random number
generation

DRBG User Read,
Update

Entropy input string, Internal
state

Message digest SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512, SHA3-224,
SHA3-256, SHA3-384,
SHA3-512

User N/A N/A

Message authentication
code (MAC)

HMAC User Read HMAC key

CMAC with AES User Read AES key

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 13 of 43

Service Algorithms Role Access Keys/CSP

CMAC with Triple-DES User Read Triple-DES key

Key wrapping (KTS1) AES User Read AES key

Encrypt-then-MAC
(authenc) operation for
IPsec

AES (CBC mode), Triple-
DES (CBC mode), HMAC

User Read AES key, Triple-DES key,
HMAC key

Shared secret
computation

Diffie-Hellman
EC Diffie-Hellman

User Read Diffie-Hellman key pair
EC Diffie-Hellman key pair

Key encapsulation2 RSA User Read RSA key pair

Other Services

Error detection code crc32c3, crct10dif3 User N/A None

Data compression deflate3, lz43, lz4hc3, lzo3,
zlib3, 8423

User N/A None

Memory copy operation ecb(cipher_null)3 User N/A None

Show status N/A User N/A None

Zeroization N/A User Zeroize All CSPs

Self-Tests AES, Triple-DES, SHS,
SHA3, HMAC, RSA, DRBG

User N/A None

Module installation N/A Crypto
Officer

N/A None

Module initialization N/A Crypto
Officer

N/A None

Table 6 - Services in FIPS mode of operation

The table below lists the services only available in non-FIPS mode of operation.

Service Algorithms / Key sizes Role Access Keys/CSPs

Symmetric encryption and
decryption

AES-XTS with 192-bit key size User Read Symmetric key

2-key Triple-DES User Read 2-key Triple-DES key

1 Approved per IG D.9

2 Allowed per IG D.9

3 This algorithm does not provide any cryptographic attribute.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 14 of 43

Service Algorithms / Key sizes Role Access Keys/CSPs

Generic GCM encryption with
external IV
RFC4106 GCM encryption with
external IV

User Read AES key

Message digest GHASH outside the GCM context User N/A None

Message authentication
code (MAC)

HMAC with less than 112 bit keys User Read HMAC key

CMAC with 2-key Triple-DES User Read 2-key Triple-DES key

RSA sign/verify primitive
operations

RSA primitive operations listed in
Table 12

User Read RSA key pair

Shared secret
computation

Diffie-Hellman with key less than
2048 bits.
EC Diffie-Hellman with P-192
curve.

User Read Diffie-Hellman key pair
EC Diffie-Hellman key
pair

Key encapsulation RSA with key smaller than 2048
bits.

User Read RSA key pair

Key generation EC Key Generation User Read/
Write

EC key pair

Table 7 – Services in non-FIPS mode of operation

3.3. Algorithms

The algorithms implemented in the module are tested and validated by the CAVP for the following operating
environments:

• Ubuntu 18.04 LTS 64-bit running on Intel® Xeon® processor

• Ubuntu 18.04 LTS 64-bit running on z system.

The Ubuntu 18.04 Kernel Crypto API Cryptographic Module is compiled to use the support from the processor
and assembly code for AES, Triple-DES, SHA and GHASH4 operations to enhance the performance of the
module. Different implementations can be invoked by using the unique algorithm driver names. All the
algorithm execution paths have been validated by the CAVP.

3.3.1. Ubuntu 18.04 LTS 64-bit Running on Intel® Xeon® CPU E5-2620v3 Processor

On the platform that runs the Intel Xeon processor, the module supports the use of generic C implementation
for all the algorithms, the use of strict assembler for AES and Triple-DES core algorithms, the use of strict
assembler for Triple-DES (both core and modes), the use of AES-NI for AES core algorithm and CLMUL for the
GHASH algorithm, the use of AES-NI for AES (both core and modes), the use of AVX, AVX2 and SSSE3 for SHA
algorithm.

4 The GHASH algorithm is used in GCM mode.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 15 of 43

The following table shows the CAVS certificates and their associated information of the cryptographic
implementation in FIPS mode.

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

Generic C
implementation for
AES: #C755

Strict assembler for
AES core: #C758

Using AES-NI for AES
core and CLMUL for
GHASH: #C761

AES [FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

[SP800-38B] CMAC 128, 192, 256 MAC Generation
and Verification

[SP800-38C] CCM 128, 192, 256 Data Encryption
and Decryption

[SP800-38D] GCM
decryption with
external IV

128, 192, 256 Data Decryption

[SP800-38D] GMAC 128, 192, 256 MAC Generation
and Verification

[SP800-38E] XTS 128, 256 Data Encryption
and Decryption for
Data Storage

[SP800-38F] KW 128, 192, 256 Key Wrapping and
Unwrapping

C implementation for
AES: #C756

Strict assembler for
AES core: #C759

AES-NI for AES core
and CLMUL for
GHASH: #C762

AES-NI for AES and
GHASH: #C765

[FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

[SP800-38D]
[RFC4106]

RFC4106 GCM
with internal IV

128, 192, 256 Data Encryption

C implementation for
AES: #C757

[FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 16 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

Strict assembler for
AES core: #C760

AES-NI for AES core
and CLMUL for
GHASH: #C763

AES-NI for AES and
RFC4106 GCM: #C764

[SP800-38D]
[RFC4106]

RFC4106 GCM
decryption with
external IV

128, 192, 256 Data Decryption

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

DRBG [SP800-90A] Hash_DRBG:
SHA-1,
SHA-256,
SHA-384,
SHA-512
with/without
PR

N/A Deterministic
Random Bit
Generation

HMAC_DRBG:
SHA-1,
SHA-256,
SHA-384,
SHA-512
with/without
PR

Generic C
implementation for
AES: #C755

Strict assembler for
AES core: #C758

Using AES-NI for AES
core: #C761

CTR_DRBG:
AES-128,
AES-192,
AES-256
with DF,
with/without
PR

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 17 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

HMAC [FIPS198-1] SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

112 or greater Message
authentication code

Generic C
implementation for
SHA: #C755

SHA3-224
SHA3-256
SHA3-384
SHA3-512

112 or greater Message
authentication code

CVL #C755 KAS ECCCDH SP800-56A SHA-256 P-256 Share secret
computation

CVL #C755 KAS FCC SP800-56A SHA-224,
SHA-256

2048 Share secret
computation

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

RSA [FIPS186-4] PKCS#1v1.5
SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

1024, 2048,
3072

Digital Signature
Verification for
integrity tests

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 18 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

Generic C
implementation for
SHA: #C755

Using AVX for SHA:
#C766

Using AVX2 for SHA:
#C767

Using SSSE3 for SHA:
#C768

SHS [FIPS180-4] SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

N/A Message Digest

Generic C
implementation:
#C755

SHA3 [FIPS 202] SHA3-224
SHA3-256
SHA3-384
SHA3-512

N/A Message Digest

Generic C
implementation for
Triple-DES: #C755

Strict assembler for
Triple-DES core:
#C758

Triple-DES [SP800-67],
[SP800-38A]

ECB, CBC, CTR 192 Data Encryption
and Decryption

[SP800-67],
[SP800-38B]

CMAC 192 MAC Generation
and Verification

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 19 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

AES-GCM: #C755,
#C756, #C757, #C758,
#C759, #C760, #C761,
#C762, #C763, #C764,
#C765 (any GCM
implementation)

AES-CCM: #C755,
#C758, #C761 (any
CCM implementation)

AES-KW: #C755,
#C758, #C761 (any KW
implementation)

AES: #C755, #C756,
#C757, #C758, #C759,
#760, #C761, #C762,
#C763, #C764, #C765

Triple-DES: #C755,
#C758

HMAC: #C755, #C766,
#C767, #C768

KTS1 (AES) [FIPS 198-1]
[FIPS180-4]
[SP800-67]
[SP800-38A]
[SP800-38C]
[SP800-38D]
[SP800-38F]

AES-GCM

AES-CCM

AES-KW

AES-GCM

AES-CCM

AES-
CBC+HMAC-
SHA1

Triple-
DES+HMAC-
SHA1/224/256/
384/512

AES keys: 128,
192, 256 bits

Triple-DES keys:
192 bits

HMAC keys: 112
bits and larger

Key wrapping and
unwrapping

Table 8 – Cryptographic Algorithms Validation System (CAVS) certificates for the Intel® Xeon® Processor

3.3.2. Ubuntu 18.04 LTS 64-bit Running on z System

On the platform that runs the z system, the module supports the use of generic C implementation for all the
algorithms, and the use of CPACF for AES, Triple-DES, GHASH and SHA algorithms. If CPACF is available in the
operational environment, the module uses the support from CPACF automatically. Otherwise, the module uses
the C implementation of the algorithms.

The following table shows the CAVS certificates and their associated information of the cryptographic
implementation in FIPS mode.

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

Generic C
implementation for

AES [FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 20 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

AES: #C771

Using CPACF for AES
core: #C772

[SP800-38B] CMAC 128, 192, 256 MAC Generation
and Verification

[SP800-38C] CCM 128, 192, 256 Data Encryption
and Decryption

[SP800-38D] GCM
decryption with
external IV

128, 192, 256 Data Decryption

[SP800-38D] GMAC 128, 192, 256 MAC Generation
and Verification

[SP800-38E] XTS 128, 256 Data Encryption
and Decryption for
Data Storage

[SP800-38F] KW 128, 192, 256 Key Wrapping and
Unwrapping

Using CPACF for AES
and GHASH: #C775

AES [FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

[SP800-38C] CCM 128, 192, 256 Data Encryption
and Decryption

[SP800-38D] GCM
decryption with
external IV

128, 192, 256 Data Decryption

[SP800-38D] GMAC 128, 192, 256 MAC Generation
and Verification

[SP800-38E] XTS 128, 256 Data Encryption
and Decryption for
Data Storage

C implementation for
AES: #C770

CPACF for AES core:
#C774

CPACF for AES and
GHASH: #C777

[FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

[SP800-38D]
[RFC4106]

RFC4106 GCM
with internal IV

128, 192, 256 Data Encryption

C implementation for
AES: #C769

AES [FIPS197],
[SP800-38A]

ECB, CBC, CTR 128, 192, 256 Data Encryption
and Decryption

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 21 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

CPACF for AES core:
#C773

CPACF for AES and
GHASH: #C776

[SP800-38D]
[RFC4106]

RFC4106 GCM
decryption with
external IV

128, 192, 256 Data Decryption

Generic C
implementation for
SHA: #C771

Using CPACF for SHA:
#C772

DRBG [SP800-90A] Hash_DRBG:
SHA-1,
SHA-256,
SHA-384,
SHA-512
with/without
PR

N/A Deterministic
Random Bit
Generation

HMAC_DRBG:
SHA-1,
SHA-256,
SHA-384,
SHA-512
with/without
PR

Generic C
implementation for
AES: #C771

Using CPACF for AES
core: #C772

Using CPACF for AES:
#C775

CTR_DRBG:
AES-128,
AES-192,
AES-256
with DF,
with/without
PR

Generic C
implementation for
SHA: #C771

Using CPACF for SHA:
#C772

HMAC [FIPS198-1] SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

112 or greater Message
authentication code

Generic C
implementation for
SHA: #C771

SHA3-224
SHA3-256
SHA3-384
SHA3-512

CVL #C771 KAS ECCCDH SP800-56A SHA-256 P-256 Share secret
computation

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 22 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

CVL #C771 KAS FCC SP800-56A SHA-224,
SHA-256

2048 Share secret
computation

Generic C
implementation for
SHA: #C771

Using CPACF for SHA:
#C772

RSA [FIPS186-4] PKCS#1v1.5
SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

1024, 2048,
3072

Digital Signature
Verification for
integrity tests

Generic C
implementation for
SHA: #C771

Using CPACF for SHA:
#C772

SHS [FIPS180-4] SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

N/A Message Digest

Generic C
implementation:
#C771

SHA3 [FIPS 202] SHA3-224
SHA3-256
SHA3-384
SHA3-512

N/A Message Digest

Generic C
implementation for
Triple-DES: #C771

Using CPACF for
Triple-DES core:
#C772

Triple-DES [SP800-67],
[SP800-38A]

ECB, CBC, CTR 192 Data Encryption
and Decryption

[SP800-67],
[SP800-38B]

CMAC 192 MAC Generation
and Verification

Using CPACF for
Triple-DES: #C775

[SP800-67],
[SP800-38A]

ECB, CBC, CTR 192 Data Encryption
and Decryption

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 23 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

AES-GCM: #C769,
#C770, #C771, #C772,
#C773, #C774, #C775,
#C776, #C777 (any
GCM implementation)

AES-CCM: #C771,
#C772, #C775 (any
CCM implementation)

AES-KW: #C771,
#C772, #C775 (any KW
implementation)

AES: #C769, #C770,
#C771, #C772, #C773,
#C774, #C775, #C776,
#C777

Triple-DES: #C771,
#C772, #C775

HMAC: #C771, #C772

KTS1 (AES) [FIPS 198-1]
[FIPS180-4]
[SP800-67]
[SP800-38A]
[SP800-38C]
[SP800-38D]
[SP800-38F]

AES-GCM

AES-CCM

AES-KW

AES-GCM

AES-CCM

AES-
CBC+HMAC-
SHA1

Triple-
DES+HMAC-
SHA1/224/256/
384/512

AES keys: 128,
192, 256 bits

Triple-DES keys:
192 bits

HMAC keys: 112
bits and larger

Key wrapping and
unwrapping

Table 9 – Cryptographic Algorithms Validation System (CAVS) certificates for the z system

The CPACF provided by the IBM z system contains the complete AES, Triple-DES and SHA implementations. The
following table shows the CAVS certificates and their associated information of the algorithms tested directly
from the CPACF:

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

#C795 AES [FIPS197],
[SP800-38A]

ECB, CBC, CTR,
GCM, XTS

128, 192, 256 Data Encryption
and Decryption

#C795 SHS [FIPS180-4] SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

n/a Message Digest

5 Not all algorithms and block chaining from CPACF are used by the module.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 24 of 43

CAVP Cert Algorithm Standard Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use

#C795 Triple-DES [SP800-67],
[SP800-38A]

ECB, CBC, CTR 192 Data Encryption
and Decryption

Table 10 – Cryptographic Algorithms Validation System (CAVS) for CPACF

3.3.3. Non-Approved Algorithms

The following table describes the non-Approved but allowed algorithms in FIPS mode:

Algorithm Use

NDRNG
(based on Linux RNG and CPU-Jitter RNG)

The module obtains the entropy data from NDRNG to seed
the DRBG

Diffie-Hellman shared secret computation with
keys greater than 2048 bits up to 15360 or more.

Key Agreement; allowed per [FIPS140-2_IG] D.8

RSA encrypt/decrypt primitives with keys equal
or larger than 2048 bits up to 15360 or more

Key wrapping; allowed per [FIPS140-2_IG] D.9

Table 11 – FIPS-Allowed Cryptographic Algorithms

The table below shows the non-Approved cryptographic algorithms implemented in the module that are only
available in non-FIPS mode.

Algorithm Implementation Name Use

AES-XTS “xts” 192-bit keys

2-key Triple-DES “des3_ede”, ”cmac(des3_ede)” Data Encryption / Decryption

Generic GCM encryption with external
IV

“gcm(aes)” with external IV Data Encryption

RFC4106 GCM encryption with external
IV

“rfc4106(gcm(aes))” with
external IV

Data Encryption (Certs. #C757,
#C760, #C763, #C764, #C669,
#C673, #C676)

GHASH “ghash” Hashing outside the GCM mode

HMAC with less than 112 bits key “hmac” Message Authentication Code

RSA primitive operations “rsa” RSA sign/verify primitive
operations
RSA encrypt/decrypt (key
transport) with keys smaller than
2048 bits

Diffie-Hellman with keys less than 2048 “dh” Shared secret computation

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 25 of 43

EC Diffie-Hellman with P-192 curve “ecdh” Shared secret computation

EC Key Generation “ecdh” EC Key Generation
CAVS Certs. #C755 and #C771

Table 12 - Non-Approved Cryptographic Algorithms and Modes

Note: Calling any algorithm, mode or combination using any of the above listed non-Approved items will cause
the module to enter non-FIPS mode implicitly.

3.4. Operator Authentication

The module does not implement user authentication. The role of the user is implicitly assumed based on the
service requested.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 26 of 43

4. Physical Security

The module is comprised of software only and therefore this security policy does not make any claims on
physical security.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 27 of 43

5. Operational Environment

5.1. Applicability

The module operates in a modifiable operational environment per FIPS 140-2 level 1 specifications. The module
runs on a commercially available general-purpose operating system executing on the hardware specified in
Table 3 - Tested Platforms.

5.2. Policy

The operating system is restricted to a single operator; concurrent operators are explicitly excluded.

The application that requests cryptographic services is the single user of the module.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 28 of 43

6. Cryptographic Key Management

The following table summarizes the Critical Security Parameters (CSPs) that are used by the cryptographic
services implemented in the module:

Name CSP Type Generation Entry and Output Zeroization

AES key 128, 192, 256
AES key

N/A The key is passed into the
module via API input
parameters in plaintext.

crypto_free_cipher()

crypto_free_ablkcipher()

crypto_free_blkcipher()

crypto_free_skcipher()

crypto_free_aead()

Triple-DES key 192 bits Triple-
DES key

HMAC key HMAC key
greater than
112 bits

N/A The key is passed into the
module via API input
parameters in plaintext.

crypto_free_shash()

crypto_free_ahash()

Entropy input string Random
number

Obtained from
NDRNG

None crypto_free_rng()

DRBG internal state
(V, C for Hash; V, C,
Key for HMAC and
CTR)

DRBG internal
state

During DRBG
initialization

None crypto_free_rng()

Diffie-Hellman
private key

Diffie-Hellman
private key
equal or greater
than 2048 bits

None Keys are passed into the
module via API input
parameters in plaintext.

crypto_free_kpp()

EC Diffie-Hellman
private key

EC Diffie-
Hellman private
key using P-256

None Keys are passed into the
module via API input
parameters in plaintext.

crypto_free_kpp()

RSA Key Transport
private key

RSA private key
equal or greater
than 2048 bits

None Keys are passed into the
module via API input
parameters in plaintext.

crypto_free_kpp()

Table 13 - Life cycle of Critical Security Parameters (CSP)

The following table summarizes the asymmetric public keys that are used by the cryptographic services
implemented in the module:

Name Public Key Type Generation Entry and Output Zeroization

Diffie-Hellman public
key

Diffie-Hellman
public key equal
or greater than
2048 bits

None Keys are passed into the
module via API input
parameters in plaintext.

crypto_free_kpp()

EC Diffie-Hellman
public key

EC Diffie-
Hellman public

None Keys are passed into the
module via API input

crypto_free_kpp()

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 29 of 43

key using P-256 parameters in plaintext.

RSA public key RSA public key
equal or greater
than 2048 bits

None Keys are passed into the
module via API input
parameters in plaintext.

crypto_free_kpp()

Table 14 - Life cycle of asymmetric public keys

The following sections describe how CSPs, in particular cryptographic keys, are managed during its life cycle.

6.1. Random Number Generation

The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for the creation of
random numbers. In addition, the module provides a Random Number Generation service to calling
applications.

The DRBG supports the Hash_DRBG, HMAC_DRBG and CTR_DRBG mechanisms. The DRBG is initialized during
module initialization; the module loads by default the DRBG using the HMAC_DRBG mechanism with SHA-256
without prediction resistance.

To seed the DRBG, the module uses a Non-Deterministic Random Number Generator (NDRNG) as the entropy
source. The NDRNG is based on the Linux RNG and the CPU-Jitter RNG (both within the module’s logical
boundary). The NDRNG provides sufficient entropy to the DRBG during initialization (seed) and reseeding
(reseed).

The module performs conditional self-tests on the output of NDRNG to ensure that consecutive random
numbers do not repeat, and performs DRBG health tests as defined in section 11.3 of [SP800-90A].

6.2. Key Generation

The module does not provide any dedicated key generation service for symmetric keys. However, the Random
Number Generation service can be called by the user to obtain random numbers which can be used as key
material for symmetric algorithms or HMAC.

6.3. Key Agreement / Key Transport / Key Derivation

The module provides SP 800-38F compliant key wrapping using AES with GCM, CCM, and KW block chaining
modes, as well as a combination of AES-CBC for encryption/decryption and HMAC for authentication. The
module also provides SP 800-38F compliant key wrapping using a combination of Triple-DES-CBC for
encryption/decryption and HMAC for authentication.

According to Table 2: Comparable strengths in [SP 800-57], the key sizes of AES provides the following security
strength in FIPS mode of operation:

• AES: key wrapping provides between 128 and 256 bits of encryption strength.

• Triple-DES: key wrapping provides 112 bits of encryption strength.

The module supports Diffie-Hellman and EC Diffie-Hellman shared secret primitive computation:

• Diffie-Hellman: shared secret computation provides between 112 and 256 bits of encryption strength.

• EC Diffie-Hellman: shared secret computation provides 128 bits of encryption strength.

The module also supports the RSA key transport key establishment methodology:

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 30 of 43

• RSA key transport: key establishment methodology provides between 112 and 256 bits of encryption
strength.

6.4. Key Entry / Output

The module does not support manual key entry. The keys are provided to the module via API input parameters
in plaintext form. This is allowed by [FIPS140-2_IG] IG 7.7, according to the “CM Software to/from App
Software via GPC INT Path” entry on the Key Establishment Table.

6.5. Key / CSP Storage

Symmetric and asymmetric keys are provided to the module by the calling application via API input
parameters, and are destroyed by the module when invoking the appropriate API function calls.

The module does not perform persistent storage of keys. The keys and CSPs are stored as plaintext in the RAM.
The only exceptions are the HMAC key and the RSA public key used for the Integrity Tests, which are stored in
the module and rely on the operating system for protection.

6.6. Key / CSP Zeroization

The memory occupied by keys is allocated by regular memory allocation operating system calls. Memory is
automatically overwritten with “zeroes” and deallocated when the cipher handler is freed.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 31 of 43

7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

The test platforms listed in Table 3 - Tested Platforms have been tested and found to conform to the EMI/EMC
requirements specified by 47 Code of Federal Regulations, FCC PART 15, Subpart B, Unintentional Radiators,
Digital Devices, Class A (i.e., Business use). These devices are designed to provide reasonable protection against
harmful interference when the devices are operated in a commercial environment. They shall be installed and
used in accordance with the instruction manual.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 32 of 43

8. Self-Tests

FIPS 140-2 requires that the module performs power-up tests to ensure the integrity of the module and the
correctness of the cryptographic functionality at start up. In addition, the module performs conditional test for
NDRNG. If any self-test fails, the kernel panics and the module enters the error state. In error state, no data
output or cryptographic operations are allowed. See section 9.2.4 for details to recover from the error state.

8.1. Power-Up Tests

The module performs power-up tests when the module is loaded into memory, without operator intervention.
Power-up tests ensure that the module is not corrupted and that the cryptographic algorithms work as
expected.

While the module is executing the power-up tests, services are not available, and input and output are
inhibited. The module will not return the control to the calling application until the power-up tests are
completed successfully.

8.1.1. Integrity Tests

The module verifies its integrity through the following mechanisms:

• All kernel object (*.ko) files are signed with a 4096-bit RSA private key and SHA-512. Before these
kernel objects are loaded into memory, the module performs RSA signature verification by using the
RSA public key from the X.509 certificates that are compiled into the module’s binary. If the signature
cannot be verified, the kernel panics to indicate that the test fails and the module enters the error
state.

• The integrity of the static kernel binary (/boot/vmlinuz-4.15.0.1011-fips file) is ensured with the HMAC-
SHA-512 value stored in the .hmac file (/boot/.vmlinuz-4.15.0.1011-fips.hmac file) that was computed
at build time. At run time, the module invokes the sha512hmac utility to calculate the HMAC value of
the static kernel binary file, and then compares it with the pre-stored one. If the two HMAC values do
not match, the kernel panics to indicate that the test fails and the module enters the error state.

• The Integrity of the sha512hmac utility (i.e. /usr/bin/sha512hmac) is ensured with the HMAC-SHA-512
value stored in the .hmac file (i.e. /usr/bin/.sha512hmac.hmac) that was computed at build time. At
run time, the utility itself calculates the HMAC value of the utility, and then compares it with the pre-
stored one. If the two HMAC values do not match, the kernel panics to indicate that the test fails and
the module enters the error state.

Both the RSA signature verification and HMAC-SHA-512 algorithms are approved algorithms implemented in
the module.

8.1.2. Cryptographic Algorithm Tests

The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the Approved
mode of operation, using the Known Answer Tests (KAT) shown in the following table:

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 33 of 43

Algorithm Power-Up Tests

AES • KAT of AES in ECB mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in ECB mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in CBC mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in CBC mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in CTR mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in CTR mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in GCM mode with 128, 192 and 256 bit keys, encryption

• KAT of AES in GCM mode with 128, 192 and 256 bit keys, decryption

• KAT of AES in CCM mode with 128 bit key, encryption

• KAT of AES in CCM mode with 128 bit key, decryption

• KAT of AES in KW mode with 128 bit key, encryption

• KAT of AES in KW mode with 256 bit key, decryption

• KAT of AES in XTS mode with 128 and 256 bit keys, encryption

• KAT of AES in XTS mode with 128 and 256 bit keys, decryption

• KAT of AES in CMAC mode with 128 and 256 bit keys

Triple DES • KAT of 3-key Triple-DES in ECB mode, encryption

• KAT of 3-key Triple-DES in ECB mode, decryption

• KAT of 3-key Triple-DES in CBC mode, encryption

• KAT of 3-key Triple-DES in CBC mode, decryption

• KAT of 3-key Triple-DES in CTR mode, encryption

• KAT of 3-key Triple-DES in CTR mode, decryption

• KAT of 3-key Triple-DES in CMAC mode

SHS • KAT of SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512

SHA3 • KAT of SHA3-224, SHA3-256, SHA3-384, SHA3-512

HMAC • KAT of HMAC-SHA-1

• KAT of HMAC-SHA-224

• KAT of HMAC-SHA-256

• KAT of HMAC-SHA-384

• KAT of HMAC-SHA-512

• KAT of HMAC-SHA3-224

• KAT of HMAC-SHA3-256

• KAT of HMAC-SHA3-384

• KAT of HMAC-SHA3-512

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 34 of 43

Algorithm Power-Up Tests

DRBG • KAT of Hash_DRBG with SHA-256, with and without PR

• KAT of HMAC_DRBG with SHA-256, with and without PR

• KAT of CTR_DRBG with AES-128, AES-192, AES-256, without PR

• KAT of CTR_DRBG with AES-128 with PR

RSA • KAT of RSA signature verification is covered by the integrity tests which is allowed
by [FIPS140-2_IG] IG 9.3

Diffie-Hellman • KAT of Z primitive computation with 2048 bits

EC Diffie-Hellman • KAT of Z primitive computation with P-256 curve

Table 15- Self-Tests

For the KAT, the module calculates the result and compares it with the known value. If the answer does not
match the known answer, the KAT is failed and the module enters the Error state.

The KATs cover the different cryptographic implementations available in the operating environment. The
following implementations are being self-tested during boot:

• aes-generic6, aes-asm7, aes-aesni8

• des3_ede-generic, des3_ede-asm

• sha1-generic, sha1-avx9, sha1-avx210, sha1-ssse3

• sha224-avx, sha224-avx2, sha224-ssse3

• sha256-generic, sha256-avx, sha256-avx2, sha256-ssse3

• sha384-generic, sha384-avx, sha384-avx2, sha384-ssse3

• sha512-generic, sha512-avx, sha512avx2, sha512-ssse3

• sha3-224-generic, sha3-256-generic, sha3-384-generic, sha3-512-generic

• hmac(sha3-224-generic), hmac(sha3-256-generic), hmac(sha3-384-generic), hmac(sha3-512-generic)

• hmac(sha1-generic), hmac(sha1-avx2)

• hmac(sha224-avx2)

• hmac(sha256-generic), hmac(sha256-avx2)

• hmac(sha384-avx2)

• hmac(sha512-generic), hmac(sha512-avx2)

• rsa-generic

6 generic = C implementation

7 asm = assembly implementation

8 aesni = AES-NI implementation

9 avx = Advanced Vector eXtention for Intel processor

10 avx2 = Advanced Vector eXtension 2 for Intel processor

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 35 of 43

• dh-generic

• ghash-generic, ghash-clmulni11

• drbg_pr_ctr_aes128, drbg_pr_ctr_aes192, drbg_pr_ctr_aes256, drbg_nopr_hmac_sha256,
drbg_nopr_sha256, drbg_pr_ctr_aes128, drbg_hmac_sha256, drbg_pr_sha256

8.2. On-Demand Self-Tests

On-Demand self-tests can be invoked by power cycling the module or rebooting the operating system. During
the execution of the on-demand self-tests, services are not available and no data output or input is possible.

8.3. Conditional Tests

The module performs the Continuous Random Number Generator Test (CRNGT) shown in the following table:

Algorithm Conditional Test

NDRNG • CRNGT

Table 16 - Conditional Tests

11 clmulni = AES-NI implementation of GHASH

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 36 of 43

9. Guidance

9.1. Crypto Officer Guidance

The binaries of the module are contained in the Debian packages for delivery. The Crypto Officer shall follow
this Security Policy to configure the operational environment and install the module to be operated as a FIPS
140-2 validated module.

The following Debian packages are used to install the FIPS validated module:

Processor Architecture Debian packages

x86_64 fips-initramfs_0.0.10_amd64.deb

linux-image-4.15.0-1011-fips_4.15.0-1011.12_amd64.deb

linux-modules-4.15.0-1011-fips_4.15.0-1011.12_amd64.deb

linux-modules-extra-4.15.0-1011-fips_4.15.0-1011.12_amd64.deb

z System fips-initramfs_0.0.10_s390x.deb

linux-image-4.15.0-1011-fips_4.15.0-1011.12_s390x.deb

linux-modules-4.15.0-1011-fips_4.15.0-1011.12_s390x.deb

linux-modules-extra-4.15.0-1011-fips_4.15.0-1011.12_s390x.deb

Table 17 – Debian packages

9.1.1. Module Installation

The Crypto Officer can install the Debian packages containing the module listed in Table 16 using a normal
packaging tool such as Advanced Package Tool (APT). All the Debian packages are associated with hashes for
integrity check. The integrity of the Debian package is automatically verified by the packaging tool during the
installation of the module. The Crypto Officer shall not install the Debian package if the integrity of the Debian
package fails.

To download the FIPS validated version of the module, please email "sales@canonical.com" or contact a
Canonical representative, https://www.ubuntu.com/contact-us.

9.1.2. Operating Environment Configuration

To configure the operating environment to support FIPS, the following shall be performed with root privileges:

(1) Add fips=1 to the kernel command line.

• For x86_64 and Power systems, create the file /etc/default/grub.d/99-fips.cfg with the content:
GRUB_CMDLINE_LINUX_DEFAULT="$GRUB_CMDLINE_LINUX_DEFAULT fips=1".

• For z system, edit /etc/zipl.conf file and append the "fips=1" in the parameters line for the specified
boot image.

(2) If /boot resides on a separate partition, the kernel parameter bootdev=UUID=<UUID of partition> must
also be appended in the aforementioned grub or zipl.conf file. Please see the following Note for more
details.

(3) Update the boot loader.

mailto:sales@canonical.com
https://www.ubuntu.com/contact-us

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 37 of 43

• For the x86_64 system, execute the update-grub command.

• For the z system, execute the zipl command.

(4) Execute the reboot command to reboot the system with the new settings.

The operating environment is now configured to support FIPS operation. The Crypto Officer should check the
existence of the file, /proc/sys/crypto/fips_enabled, and that it contains "1". If the file does not exist or does
not contain “1”, the operating environment is not configured to support FIPS and the module will not operate
as a FIPS validated module properly.

Note: If /boot resides on a separate partition, the kernel parameter bootdev=UUID=<UUID of partition> must
be supplied. The partition can be identified with the df /boot command. For example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdb2 241965 127948 101525 56% /boot

The UUID of the /boot partition can be found by using the grep /boot /etc/fstab command. For example:

$ grep /boot /etc/fstab

/boot was on /dev/sdb2 during installation

UUID=cec0abe7-14a6-4e72-83ba-b912468bbb38 /boot ext2 defaults 0 2

Then, the UUID shall be added in the /etc/default/grub. For example:

GRUB_CMDLINE_LINUX_DEFAULT="quiet bootdev=UUID=cec0abe7-14a6-4e72-83ba-b912468bbb38
fips=1"

9.2. User Guidance

For detailed description of the Linux Kernel Crypto API, please refer to the user documentation [KC API
Architecture].

In order to run in FIPS mode, the module must be operated using the FIPS Approved services, with their
corresponding FIPS Approved and FIPS allowed cryptographic algorithms provided in this Security Policy (see
section 3.2 Services). In addition, key sizes must comply with [SP800-131A].

9.2.1. AES-GCM IV

In case the module’s power is lost and then restored, the key used for the AES-GCM encryption or decryption
shall be redistributed.

The module generates the IV internally randomly, which is compliant with provision 2) of IG A.5.

When a GCM IV is used for decryption, the responsibility for the IV generation lies with the party that performs
the AES-GCM encryption therefore there is no restriction on the IV generation.

9.2.2. AES-XTS

As specified in [SP800-38E], the AES algorithm in XTS mode was designed for the cryptographic protection of
data on storage devices. Thus it can only be used for the disk encryption functionality offered by dm-crypt (i.e.
the hard disk encryption schema). For dm-crypt, the length of a single data unit encrypted with the XTS-AES is
at most 65536 bytes (64KB of data), which does not exceed 2²⁰ AES blocks (16MB of data).

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 38 of 43

To meet the requirement stated in [FIPS140-2_IG] IG A.9, the module implements a check to ensure that the
two AES keys used in XTS-AES algorithm are not identical.

Note: AES-XTS shall be used with 128 and 256-bit keys only. AES-XTS with 192-bit keys is not an Approved
service.

9.2.3. Triple-DES encryption

Data encryption using the same three-key Triple-DES key shall not exceed 216 Triple-DES 64-bit blocks (2GB of
data), in accordance to [SP800-67] and [FIPS140-2_IG] IG A.13.

9.2.4. Handling FIPS Related Errors

When the module fails any self-test, it will panic the kernel and the operating system will not load. Errors
occurred during the self-tests transition the module into the error state. The only way to recover from this
error state is to reboot the system. If the failure persists, the module must be reinstalled by the Crypto Officer
following the instructions as specified in section 9.1.

The kernel dumps self-test success and failure messages into the kernel message ring buffer. The user can use
dmesg to read the contents of the kernel ring buffer. The format of the ring buffer (dmesg) output for self-test
status is:

alg: self-tests for %s (%s) passed

Typical messages are similar to "alg: self-tests for xts(aes) (xts(aes-x86_64)) passed" for each algorithm/sub-
algorithm type.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 39 of 43

10. Mitigation of Other Attacks

The module does not implement mitigation of other attacks.

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 40 of 43

Appendix A. Glossary and Abbreviations

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

API Application Program Interface

APT Advanced Package Tool

CAVP Cryptographic Algorithm Validation Program

CAVS Cryptographic Algorithm Validation System

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining-Message Authentication Code

CLMUL Carry-less Multiplication

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CPACF CP Assist for Cryptographic Function

CRNGT Continuous Random Number Generator Test

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption Standard

DF Derivation Function

DSA Digital Signature Algorithm

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

EMI/EMC Electromagnetic Interference/Electromagnetic Compatibility

FCC Federal Communications Commission

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

GPC General Purpose Computer

HMAC Hash Message Authentication Code

IG Implementation Guidance

KAT Known Answer Test

KDF Key Derivation Function

KW Key Wrap

LPAR Logical Partitions

MAC Message Authentication Code

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 41 of 43

NIST National Institute of Science and Technology

NDRNG Non-Deterministic Random Number Generator

PAA Processor Algorithm Acceleration

PAI Processor Algorithm Implementation

PCT Pair-wise Consistency Test

PR Prediction Resistance

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SSSE3 Supplemental Streaming SIMD Extensions 3

XTS XEX-based Tweaked-codebook mode with ciphertext Stealing

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 42 of 43

Appendix B. References

FIPS140-2 FIPS PUB 140-2 - Security Requirements For Cryptographic Modules

May 2001

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

FIPS140-2_IG Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation
Program

December 3, 2019

http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf

FIPS180-4 Secure Hash Standard (SHS)
March 2012
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
July 2013
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
July 2008
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

KC API Architecture Kernel Crypto API Architecture
2016
http://www.chronox.de/crypto-API/crypto/architecture.html

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1
February 2003
http://www.ietf.org/rfc/rfc3447.txt

RFC4106 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)
June 2005
https://tools.ietf.org/html/rfc4106

RFC6071 IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap
February 2011
https://tools.ietf.org/html/rfc6071

RFC7296 Internet Key Exchange Protocol Version 2 (IKEv2)
October 2014
https://tools.ietf.org/html/rfc7296

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://www.chronox.de/crypto-API/crypto/architecture.html
http://www.ietf.org/rfc/rfc3447.txt
https://tools.ietf.org/html/rfc4106
https://tools.ietf.org/html/rfc6071
https://tools.ietf.org/html/rfc7296

Ubuntu 18.04 Kernel Crypto API Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

 © 2021 Canonical Ltd. / atsec information security

 This document can be reproduced and distributed only whole and intact, including this copyright notice. 43 of 43

SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of Operation
Methods and Techniques
December 2001
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication
May 2005
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block Cipher Modes of
Operation: the CCM Mode for Authentication and Confidentiality
May 2004
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC

November 2007

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

SP800-38E NIST Special Publication 800-38E - Recommendation for Block Cipher Modes of
Operation: The XTS AES Mode for Confidentiality on Storage Devices
January 2010
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block Cipher Modes of
Operation: Methods for Key Wrapping
December 2012
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800-67 NIST Special Publication 800-67 Revision 1 - Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher
January 2012
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

SP800-90A NIST Special Publication 800-90A - Revision 1 - Recommendation for Random Number
Generation Using Deterministic Random Bit Generators
June 2015
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

SP800-131A NIST Special Publication 800-131A Revision 1- Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths
November 2015
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

	Ubuntu 18.04 Kernel Crypto API Cryptographic Module
	Ubuntu 18.04 Kernel Crypto API Cryptographic Module
	version 2.0
	FIPS 140-2 Non-Proprietary Security Policy
	Version 2.5
	Last update: 2021-09-15
	Prepared by:
	atsec information security corporation
	9130 Jollyville Road, Suite 260
	Austin, TX 78759
	www.atsec.com
	Copyrights and Trademarks
	1. Cryptographic Module Specification
	1.1. Module Overview
	1.2. Modes of Operation

	2. Cryptographic Module Ports and Interfaces
	3. Roles, Services and Authentication
	3.1. Roles
	3.2. Services
	3.3. Algorithms
	3.3.1. Ubuntu 18.04 LTS 64-bit Running on Intel® Xeon® CPU E5-2620v3 Processor
	3.3.2. Ubuntu 18.04 LTS 64-bit Running on z System
	3.3.3. Non-Approved Algorithms

	3.4. Operator Authentication

	4. Physical Security
	5. Operational Environment
	5.1. Applicability
	5.2. Policy

	6. Cryptographic Key Management
	6.1. Random Number Generation
	6.2. Key Generation
	6.3. Key Agreement / Key Transport / Key Derivation
	6.4. Key Entry / Output
	6.5. Key / CSP Storage
	6.6. Key / CSP Zeroization

	7. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	8. Self-Tests
	8.1. Power-Up Tests
	8.1.1. Integrity Tests
	8.1.2. Cryptographic Algorithm Tests

	8.2. On-Demand Self-Tests
	8.3. Conditional Tests

	9. Guidance
	9.1. Crypto Officer Guidance
	9.1.1. Module Installation
	9.1.2. Operating Environment Configuration

	9.2. User Guidance
	9.2.1. AES-GCM IV
	9.2.2. AES-XTS
	9.2.3. Triple-DES encryption
	9.2.4. Handling FIPS Related Errors

	10. Mitigation of Other Attacks
	Appendix A. Glossary and Abbreviations
	Appendix B. References

