

Security Policy
nToken

Page 2 of 36 Security Policy

Version: 4.6
Date: 29 October 2019

Copyright © 2019 nCipher Security Limited. All rights reserved.

Copyright in this document is the property of nCipher Security Limited. It is not to be reproduced, modified,
adapted, published, translated in any material form (including storage in any medium by electronic means
whether or not transiently or incidentally) in whole or in part nor disclosed to any third party without the prior
written permission of nCipher Security Limited neither shall it be used otherwise than for the purpose for which
it is supplied.

Words and logos marked with ® or ™ are trademarks of nCipher Security Limited or its affiliates in the EU and
other countries.

Information in this document is subject to change without notice.

nCipher Security Limited makes no warranty of any kind with regard to this information, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. nCipher Security
Limited shall not be liable for errors contained herein or for incidental or consequential damages concerned
with the furnishing, performance or use of this material.

Where translations have been made in this document English is the canonical language.

nCipher Security Limited
Registered Office: One Station Square,
Cambridge, CB1 2GA, United Kingdom
Registered in England No. 11673268

Security Policy Page 3 of 36

Contents
1 Purpose ... 5

1.1 Initializing the nToken .. 6

1.2 Using the nToken ... 7

2 Ports and Interfaces .. 8

3 Roles ... 9

3.1 Unauthenticated ... 9

3.2 User ... 9

3.3 Administrator .. 9

4 Services available to each role .. 10

4.1 Terminology ... 20

5 Keys ... 21

5.1 Long term signing key .. 21

5.2 Module signing key .. 21

5.3 Module Keys .. 21

5.4 Key objects .. 21

5.5 Archiving keys .. 22

5.6 Firmware Integrity Key ... 22

5.7 Firmware Confidentiality Key .. 23

5.8 Master Feature Enable Key.. 23

5.9 DRBG Key ... 23

6 Rules .. 24

6.1 Identification and authentication ... 24

6.1.1 Access Control .. 24

6.1.2 Access Control List ... 24

6.1.3 Object re-use .. 25

6.1.4 Error conditions ... 25

6.1.5 Security Boundary ... 25

6.1.6 Status information ... 25

6.2 Operating a level 2 module in FIPS mode ... 25

7 Physical security ... 27

Page 4 of 36 Security Policy

7.1 Checking the module ... 27

8 Strength of functions .. 28

8.1 Object IDs ... 28

8.2 Key Blobs ... 28

8.3 Feature Enable certificates .. 28

8.4 Firmware Images ... 28

8.5 Impath authentication ... 29

8.6 Derived Keys ... 29

9 Self Tests ... 30

10 Supported Algorithms ... 31

10.1 FIPS approved and allowed algorithms: ... 31

10.1.1 Symmetric Encryption .. 31

10.1.2 Hashing and Message Authentication ... 31

10.1.3 Signature .. 32

10.1.4 Key Establishment .. 32

10.1.5 Other ... 33

10.2 Non-FIPS Approved Algorithms ... 33

10.2.1 Symmetric ... 34

10.2.2 Asymmetric ... 34

10.2.3 Hashing and Message Authentication ... 34

10.2.4 Other ... 34

Contact Us .. 35

Security Policy Page 5 of 36

1 Purpose
nToken is a FIPS 140-2 level 2 module designed to protect a DSA key used to authenticate a host
computer to an nShield Connect.

This authentication is made by signing a nonce message to prove to the nShield Connect that the session
was instigated by a client running on the host. Though it inherits additional restricted HSM capabilities
from the nShield family.

The nShield nToken Hardware Security Modules are defined as multi-chip embedded cryptographic
modules as defined by FIPS PUB 140-2.

Unit ID Model
Number

Real Time
Clock
(RTC)
NVRAM

Secure
Execution
Environment
(SEE)

Potting
(epoxy
resin)

EMC
classification

Crypto
Accelerator

nToken nC2023E-
000

No No Yes A No

All modules are now supplied at build standard “N” to indicate that they meet the latest EU regulations
regarding ROHS.

The modules run firmware provided by nCipher Security. There is the facility for the factory to upgrade
this firmware. In order to determine that the module is running the correct version of firmware they
should use the New Enquiry service which reports the version of firmware currently loaded. The
validated firmware version is 2.51.10-2 and 2.55.1-2.

The modules must be accessed by a custom written application. Full documentation for the nCore API can
be downloaded from the nCipher web site.

Page 6 of 36 Security Policy

The module can be connected to a computer running one of the following operating systems:

• Windows
• Solaris
• HP-UX
• AIX
• Linux x86 / x64

Windows was used to test the module for this validation.

Section Level

1. Cryptographic Module Specification 2

2. Cryptographic Module Ports and Interfaces 2

3. Roles, Services, and Authentication 2

4. Finite State Model 2

5. Physical Security 3

6. Operational Environment N/A

7. Cryptographic Key Management 2

8. EMI/EMC 3

9. Self-Tests 2

10. Design Assurance 2

11. Mitigation of Other Attacks N/A

Overall FIPS Level 2

1.1 Initializing the nToken
When the module is put in Initialisation mode using the Mode switch, it generates a random AES 256 bit
key for use as a module key. This key is stored in the module's EEPROM encrypted under a Boardkey
and is never revealed. This step is usually performed in the nCipher factory.

In order to enrol an nToken into an nShield Connect, the administrator runs the initunit and nTokenEnrol
utilities on the host computer.

The following steps are performed:

1. The initunit utility calls the Generate Key service in the nToken module to generate a DSA key
pair.

2. Once the key pair is generated inside the nToken module, the initunit utility exports the private
key in a Key Blob protected by the module key (AES 256 bit), using the Make Blob service from
the nToken module, and stores the Key Blob in the host's hard disk. The public key is exported
in plaintext using the Export service and is also stored in the host computer's hard disk.

3. initunit exports a certificate containing the public key and the nToken's Electronic Serial Number
to the nShield Connect.

4. nTokenEnrol is used to display the SHA-1 hash of the DSA public key on the host computer's
display, to enable the administrator to key the value into the nShield Connect front panel and
writes the public key and nToken ESN to a configuration file that is used to enrol the nToken
into an nShield Connect.

Security Policy Page 7 of 36

During impath set-up, the hardserver attached to the nToken signs its setup message with the key. It
also includes the public key in the message. Hence the nShield Connect can verify that the hardserver
it's talking to is attached to the nToken it was told about.

1.2 Using the nToken
The nToken is used when a operator wishes to open a connection from a host application to an nShield
Connect. When the operator attempts to open such a connection, the host server containing the nToken
obtains a nonce from the nShield Connect and has the nToken sign a message containing this nonce to
confirm the identity of the computer the application is running on. The host server sends this message to
the nShield Connect. The nShield Connect verifies the signature with the nToken's public key and can
then determine whether the host is authorized.

Although the nToken uses the same firmware image as nShield modules, nToken modules are factory
configured so that they can only perform a limited subset of operations. See nCipher Master Feature
Enable Key for more details.

The host server uses the Show Status service to determine which attached modules are nToken modules
and which are nShields. If the operator requests a service that the nToken cannot perform, the server
ensures the command is routed to an nShield and not an nToken.

Page 8 of 36 Security Policy

2 Ports and Interfaces
The module has the following physical ports:

• PCIe bus (data input/output, control input, status output and power). The services provided by
the module are transported through this interface.

• Status LED (status output)
• Clear button (control input)
• Mode switch traces (control input)

The New Enquiry command provides the status interface.

Security Policy Page 9 of 36

3 Roles
The module has three roles that are implicitly assumed for all services: unauthenticated, user and
administrator.

3.1 Unauthenticated
Connections are initially unauthenticated.

An operator in the unauthenticated role does not have access to handles or tickets required to provide
access to the CSPs of authenticated users.

3.2 User
The User role performs cryptographic operations using keys retrieved from key blobs.

To assume the User role, the operator loads a valid key blob, which is the authentication factor. If the
key blob loads correctly, the module returns a ObjectID, which is a handle for the key ready to be used
for cryptographic operations inside the module.

3.3 Administrator
The Administrator role is responsible for the module feature enabling capability. It corresponds to the
FIPS crypto officer.

To assume the Administrator role, the operator presents a valid nCipher signed Feature Enable
Certificate.

After the module has been feature enabled to operate as an nToken, there is no further requirement for
the administrator role to interact with the module and all further services interaction is performed by
Unauthenticated or User Role.

Page 10 of 36 Security Policy

4 Services available to each role
This section describes all the services supported by the module. The role that is assumed when carrying
out the service is identified.

Note: No additional initialization is required to operate in the Approved or non-Approved mode. The
module can alternate service by service between Approved and non-Approved modes of operation
based on the cryptographic functions selected for each service. For each Service, the Approved and non-
Approved use of cryptographic functions is identified. For the list of Approved algorithms and key sizes,
See Supported Algorithms on page 31.

Key
Access

Description

Create Creates a in-memory object, but does not reveal value.

Erase Erases the object from memory, smart card or non-volatile memory without revealing
value

Export Discloses a value, but does not allow value to be changed.

Report Returns status information

Set Changes a CSP to a given value

Use Performs an operation with an existing CSP - without revealing or changing the CSP

Security Policy Page 11 of 36

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Bignum
Operation

Yes Yes Yes Performs simple
mathematical
operations.

No access
to keys or
CSPs

None. None.

Channel
Open

handle,
ACL

handle
, ACL

handle
, ACL

Opens a
communication
channel which can be
used for bulk
encryption,
decryption, signing
or hashing.

Uses a
key object

Encryption/Decryptio
n: AES all key sizes,
Triple-DES 3-Key.
Signature: DSA and
ECDSA with
compliant key sizes.
Hash: SHA-1, SHA-
256, SHA- 384,
SHA-512
Message auth:
HMAC with SHA1,
SHA-256, SHA-384,
SHA-512

Encryption/Decryptio
n: Triple-DES 2-Key,
DES, ArcFour, Aria,
Camellia, SEED
Signature: RSA all
key sizes; DSA and
ECDSA with non-
compliant key sizes;
KCDSA.
Hash: HAS-160,
MD5, RIPEMD160.
Message auth:
HMAC with HAS-160,
MD5 and
RIPEMD160

Channel
Update

handle handle handle Performs encryption,
decryption, signing
or hashing on a
previously opened
channel. The
operation and key
are specified in
ChannelOpen.

Uses a
key object

As above. As above.

Clear Unit Yes Yes Yes Causes the module
to reset and will
trigger the Self-tests.
Erases all loaded
keys. Clear Unit
does not erase long
term keys, such as
module keys, these
are stored encrypted
or wrapped.

Erases
objects.

None. None.

Create
Buffer

No cert Yes Allocates an area of
memory to load data.
If the data is
encrypted, this
service specifies the
encryption key and
IV used. The decrypt
operation is
performed by
LoadBuffer

Uses a
key object

Decryption: AES all
key sizes, Triple-
DES 3-Key.

Decryption: DES,
ElGamal, ArcFour,
Aria, Camellia,
SEED

Decrypt handle,
ACL

handle
, ACL

handle
, ACL

Decrypts a cipher
text with a stored key
returning the plain
text.

Uses a
key object

Decryption: AES and
Triple-DES all key
sizes

Decryption: DES,
ElGamal, ArcFour,
Aria, Camellia,
SEED

Page 12 of 36 Security Policy

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Derive Key handle,
ACL

handle
, ACL

handle
, ACL

Creates a new key
object from a
variable number of
other keys already
stored on the module
and returns a handle
for the new key. This
service can be used
to split, or combine,
encryption keys.
This service is used
to wrap keys
according to the KDP
so that a key server
can distribute the
wrapped key to
micro-HSM devices.
The DeriveKey
service does not
provide key
derivation in the
sense understood by
FIPS 140-2.

Uses a
key object,
create a
new key
object.

Key Establishment:
AES all key sizes;
Triple-DES 3-Key in
CBC mode; DH,
ECDH and ECMQV
using compliant key
sizes.
Key Derivation: KDF
AES-CTR

Key establishment:
AES KW;
AES CMAC in CTR
mode KDF (SP 800-
108); Triple- DES 2-
Key; RSA key
encapsulation, DH,
ECDH and ECMQV
using non- compliant
key sizes; PKCS #8,
SSL/TLS master key
derivation, XOR key
split, DLIES (D/H
plus Triple-DES or
D/H plus AES), Aria,
Arc Four, Camellia,
DES, SEED

Destroy handle handle handle Removes an object,
if an object has
multiple handles as
a result of
RedeemTicket
service, this
removes the current
handle.

Erases
any key
object.

None. None.

Duplicate handle,
ACL

handle
, ACL

handle
, ACL

Creates a second
instance of a key
object with the same
ACL and returns a
handle to the new
instance.

Creates a
new key
object.

None. None.

Encrypt handle,
ACL

handle
, ACL

handle
, ACL

Encrypts a plain text
with a stored key
returning the cipher
text.

Uses a
key object

Encryption: AES all
key sizes; Triple-
DES 3-Key

Encryption:
Triple-DES 2-Key,
DES, RSA, El
Gamal, Aria, Arc
Four, Camellia,
SEED

Export handle,
ACL

handle
, ACL

handle
, ACL

If the unit is
operating in FIPS
level 2 mode this
operation is only
available for public
keys – see
Operating a level 2
module in FIPS
mode on page 25.

Exports a
public key
object.

None. None.

Security Policy Page 13 of 36

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Feature
Enable

No No Yes Enables a service.
This requires a
certificate signed by
the Master Feature
Enable key.

Uses the
public half
of the
Master
Feature
Enable
Key

Signature
verification: DSA
1024-bit

None.

Firmware
Authentic
ate

Yes Yes Yes Reports firmware
version. Performs a
zero knowledge
challenge response
protocol based on
HMAC that enables
a operator to ensure
that the firmware in
the module matches
the firmware
supplied by nCipher.
The protocol
generates a random
value to use as the
HMAC key.

No access
to keys or
CSPs

N/A HMAC with Tiger
hash.

Generate
Key

Yes Yes Yes Generates a
symmetric key of a
given type with a
specified ACL and
returns a handle.
Optionally returns
a certificate
containing the ACL.

Creates a
new
symmetric
key object.
Sets the
ACL and
Application
data for
that object.
Optionally
uses
module
signing
key and
exports
the key
generation
certificate.

Key gen using
DRBG: AES all key
sizes; Triple-
DES 3-Key

Key gen using
DRBG: Triple-DES
2-Key, DES,
ArcFour, Aria,
Camellia, SEED

Page 14 of 36 Security Policy

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Generate
Key Pair

Yes Yes Yes Generates a key pair
of a given type with
specified ACLs for
each half or the pair.
Performs a pair wise
consistency check
on the key pair.
Returns two key
handles.
Optionally returns
certificates
containing the ACL.

Creates
two new
key
objects.
Sets the
ACL and
Application
data for
those
objects.
Optionally
uses
module
signing
key and
exports
two key
generation
certificates

Key gen using
DRBG: DSA and
ECDSA all approved
key sizes

Key gen using
DRBG: RSA all key
sizes; DSA and
ECDSA with non-
compliant key sizes;
KCDSA all key
sizes.

Get ACL handle,
ACL

handle
, ACL

handle
, ACL

Returns the ACL for
a given handle.

Exports
the ACL
for a key
object.

None None

Get
Application
Data

handle,
ACL

handle
, ACL

handle
, ACL

Returns the
application
information stored
with a key.

Exports
the
application
data of a
key object.

None None

Get
Challenge

Yes Yes Yes Returns a random
nonce that can be
used in certificates

No access
to keys or
CSPs

DRBG None

Get Key
Info

handle handle handle Superseded by
GetKeyInfoExtende
d, retained for
compatibility.

Exports
the SHA- 1
hash of a
key object

Hash: SHA-1 None

Get Key
Info
Extended

handle handle handle Returns the hash of
a key for use in
ACLs

Exports
the SHA- 1
hash of a
key object

Hash: SHA-1 None

Get Module
Keys

Yes Yes Yes Returns a hashes of
all loaded module
keys.

Exports
the SHA- 1
hash of
module
keys.

Hash: SHA-1 None

Security Policy Page 15 of 36

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Get Module
Long Term
Key

Yes Yes Yes Returns a handle to
the public half of the
module's signing
key. this can be
used to verify key
generation
certificates and to
authenticate inter
module paths.

Exports
the public
half of the
module's
long term
signing
key.

None None

Get Module
Signing Key

Yes Yes Yes Returns the public
half of the module's
signing key. This can
be used to verify
certificates signed
with this key.

Exports
the public
half of the
module's
signing
key.

None None

Get Slot List Yes Yes Yes Reports the list of
slots available from
this module.

No access
to keys or
CSPs

None None

Get Ticket handle handle handle Gets a ticket - an
invariant identifier -
for a key. This can
be passed to another
client which can
redeem it using
RedeemTicket to
obtain a new handle
to the object,

Uses a
key object.

None None

Hash Yes Yes Yes Hashes a value. No
access to
keys or
CSPs

SHA-1, SHA-256,
SHA-384, SHA-
512

HAS-160, MD5,
RIPEMD-160,
Tiger

Import Yes Yes Yes
Loads a key and
ACL from the host
and returns a
handle.

If the unit is
operating in FIPS
mode at level 2, this
operation must only
be used for public
keys - see
Operating a level
2 module in FIPS
mode on page 25.

Creates a
new key
object to
store
imported
key, sets
the key
value,
ACL and
App data.

None None

Page 16 of 36 Security Policy

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Initialise
Unit

init init init
Initialises the
module, returning it
to the factory state.
This clears all
loaded keys and all
module keys and the
module signing key.
This can only be
performed when the
module is in
initialisation mode,
using the Mode
selector.

It also generates a
new KM0 and
module signing key.

The only key that is
not zeroized is the
long term signing
key. This key only
serves to provide a
cryptographic
identity for a module
that can be included
in a PKI certificate
chain. nCipher may
issue such
certificates to
indicate that a
module is a genuine
nShield module.
This key is not used
to encrypt any other
data.

If the Module
signing key is
believed to have
been compromised,
the module must be
re-initialised via this
service.

Erases all
keys,
Creates
KM0 and
KML

Key gen using
DRBG: AES 256-
bit and DSA 3072-
bit

None

Load Blob No handl
e

handl
e

Loads a key that has
been stored in a key
blob. The operator
must first have
loaded the key used
to encrypt the blob.

Uses
module
key, or
archiving
key,
creates a
new key
object.

Decryption: AES
256-bit

Message auth:
HMAC-SHA-1

Key establishment:
RSA, DLIES

Security Policy Page 17 of 36

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Load
Buffer

No handl
e

handl
e

Loads signed data
into a buffer.

Several load buffer
commands may be
required to load all
the data, in which
case it is the
responsibility of the
client program to
ensure they are
supplied in the
correct order.

Requires the handle
of a buffer created
by CreateBuffer.

No
access to
keys or
CSPs

None None

Make Blob No handl
e,
ACL

handl
e,
ACL

Creates a key blob
containing the key
and returns it. The
key object to be
exported may be
any algorithm.

Uses
module
key,
archiving
key,
exports
encrypted
key
object.

Encryption:AES
256-bit

Message auth:
HMAC-SHA-1

Key establishment:
RSA, DLIES

Mod Exp Yes Yes Yes Performs a modular
exponentiation on
values supplied with
the command.

No
access to
keys or
CSPs

None None

Mod Exp
CRT

Yes Yes Yes Performs a
CRT modular
exponentiation
on values
supplied with
the command.

No
access to
keys or
CSPs

None None

Module
Info

Yes Yes Yes Reports low level
status information
about the module.
This service is
designed for use in
nCipher’s test
routines.

No
access to
keys or
CSPs

None None

New
Enquiry

Yes Yes Yes Reports status
information (Show
Status).

No
access to
keys or
CSPs

None None

Page 18 of 36 Security Policy

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

No
Operation

Yes Yes Yes Does nothing, can
be used to
determine that the
module is
responding to
commands.

No
access to
keys or
CSPs

None None

Random
number

Yes Yes Yes Generates a random
number for use in a
application using the
on-board random
number generator.

There are separate
services for
generating keys.

The random number
services are
designed to enable
an application to
access the random
number source for
its own purposes -
for example an on-
line casino may use
GenerateRandom
to drive its
applications.

Uses

DRBG

Key

DRBG None

Random
prime

Yes Yes Yes Generates a
random prime. This
uses the same
mechanism as is
used for RSA and
DH key generation.
The primality
checking conforms
to ANSI X9.31.

Uses
DRBG
key

DRBG None

Redeem
Ticket

ticket ticket ticket Gets a handle in
the current name
space for the object
referred to by a
ticket created by
GetTicket.

Uses a
key
object

None None

Set ACL handl
e,
ACL

handl
e,
ACL

handl
e,
ACL

Sets the ACL for an
existing key. The
existing ACL for the
key must allow the
operation.

Sets the
Access
Control
List for a
key object

None None

Security Policy Page 19 of 36

Command /
Service

Role
Description

Key/CS P
access

Approved

Unaut
h

User Admin Non-approved

Set
Application
Data

handl
e,
ACL

handl
e,
ACL

handl
e,
ACL

Stores information
with a key.

Sets the
applicatio
n data
stored
with a
key
object

None None

Sign handl
e,
ACL

handl
e,
ACL

handl
e,
ACL

Returns the digital
signature or MAC of
plain text using a
stored key.

Uses a
key
object

Signature: DSA
and ECDSA with
compliant key
sizes.

Message auth: AES
CMAC and AES
GMAC all key sizes;
Triple- DES 3-Key
MAC;

HMAC with SHA1,
SHA-256, SHA-384,
SHA-512

Signature: RSA all
key sizes; DSA and
ECDSA with non-
compliant key sizes;
KCDSA.

Message auth:
Triple-DES 2-Key;
HMAC with HAS-
160, MD5,
RIPEMD160, Tiger

Sign
Module
State

handl
e,
ACL

handl
e,
ACL

handl
e,
ACL

Signs a certificate
describing the
modules security
policy.

Uses the
module
signing
key

Signature: DSA
3072-bit

None

Statistic
Get Value

Yes Yes Yes Reports a
particular
statistic.

No
access to
keys or
CSPs

None None

Statistics
Enumerate
Tree

Yes Yes Yes Reports the
statistics
available.

No
access to
keys or
CSPs

None None

Verify handl
e,
ACL

handl
e,
ACL

handl
e,
ACL

Verifies a digital
signature or MAC
using a stored key.
The key used is a
key that is stored in
the module.

Uses a
key
object.

Signature: DSA
and ECDSA all
key sizes.

Message auth:
AES CMAC and
AES GMAC all
key sizes; Triple-
DES MAC all key
sizes; HMAC with
SHA1, SHA-256,
SHA-384, SHA-
512

Signature: RSA and
KCDSA all key sizes.

Message auth:
HMAC with HAS-
160, MD5,
RIPEMD160, Tiger

Page 20 of 36 Security Policy

4.1 Terminology
Code Description

No The operator can not perform this service in this role.

yes The operator can perform this service in this role without further authorization.

handle The operator can perform this service if they possess a valid handle for the resource:
key, channel, buffers.

The handle is an arbitrary number generated when the object is created. The handle for an
object is specific to the operator that created the object. The ticket services enable an
operator to pass an ID for an object they have created to another operator.

ACL
Access Control List. The operator can only perform this service with a key if the ACL for the
key permits this service. The ACL may require that the operator present a certificate signed
by a Security Officer or another key.
The ACL may specify that a certificate is required, in which case the module verifies the
signature on the certificate before permitting the operation.

FE Feature Enable. This service is not available on all modules. It must be enabled using the
FeatureEnable service before it can be used.

ticket The RedeemTicket command requires the ticket generated by GetTicket.

Security Policy Page 21 of 36

5 Keys
For each type of key used by the nToken, the following section describes the access that an operator has
to the keys.

nShield modules refer to keys by their handle, an arbitrary number, or by its SHA-1 hash.

5.1 Long term signing key
The nToken stores one 160-bit and one 256-bit random number in the EEPROM .

The 160-bit number is combined with a discrete log group stored in the module firmware to produce a
DSA key. The 256-bit number is used as the private exponent of a ECDSA key using the NIST P521 curve.

It can be used to sign a module state certificate using the SignModuleState service and the public value
retrieved by the non-cryptographic service GetLongTermKey.

This is the only key that is not zeroized when the module is initialised.

This key is not used to encrypt any other data. It only serves to provide a cryptographic identity for a
module that can be included in a PKI certificate chain. nCipher may issue such certificates to indicate that
a module is a genuine nCipher module.

5.2 Module signing key
When the nShield module is initialised it automatically generates a 3072-bit DSA key pair that it uses to
sign certificates. Signatures with this key use SHA-256. The private half of this pair is stored internally in
EEPROM and never released. The public half is revealed in plaintext, or encrypted as a key blob. This
key is only ever used to verify that a certificate was generated by a specified module.

5.3 Module Keys
Module Keys are AES 256 bit or 3-Key Triple DES . The module generates the first Module Key KM0
when it is initialised. This Module Key is guaranteed never to have been known outside this M0 module.

Module Keys can not be exported once they have been assigned as Module Keys. They may only be
exported on a key blob when they are initially generated.

5.4 Key objects
Keys used for encryption, decryption, signature verification and digital signatures are stored in the module
as objects in the object store in RAM. All key objects are identified by a random identifier that is specific
to the operator and session.

Page 22 of 36 Security Policy

All key objects are stored with an Access control List or ACL. The ACL specifies what operations can be
performed with this key. Whenever an operator generates a key or imports a key in plain text they must
specify a valid ACL for that key type. The ACL can be changed using the SetACL service. The ACL can
only be made more permissive if the original ACL includes the ExpandACL permission.

Key objects may be exported as key blobs if their ACL permits this service. Each blob stores a single
key and an ACL. The ACL specifies what operations can be performed with this copy of the key. The
ACL stored with the blob must be at least as restrictive as the ACL associated with the key object from
which the blob was created. When you load a key blob, the new key object takes its ACL from the key
blob. Working key blobs are encrypted under the Module Key. Key objects may also be exported as key
blobs under an archiving key. The key blob can be stored on the host disk.

Key objects can only be exported in plain text if their ACL permits this operation. An operator may pass a
key reference to another operator using the ticketing mechanism. The GetTicket mechanism takes a
key identifier and returns a ticket. This ticket refers to the key identifier - it does not include any key
data. A ticket can be passed as a byte block to the other operator who can then use the RedeemTicket
service to obtain a key identifier for the same object that is valid for their session. As the new identifier
refers to the same object the second operator is still bound by the original ACL.

When the nToken is enrolled it generates a DSA key pair used for signature generation known as the
Authentication key. This is a key object as described above.

5.5 Archiving keys
It is sometimes necessary to create an archive copy of a key, protected by another key. Keys may be
archived using the following mechanisms.

Note: Established keys may not be used in an Approved mode if the keys were established with the
help of a key establishment algorithm using a non-approved algorithm or a non-compliant key size. See
Services available to each role on page 10, and see Supported Algorithms on page 31.

• Three-key Triple DES or AES keys (used for unwrapping legacy keys and wrapping public keys
only).

• A combination of three-key Triple DES and RSA keys (non-approved).
• A key encapsulation mechanism using RSA (non-approved).
• A hybrid key encapsulation mechanism using Diffie Hellman (DLIES, non-approved).

When a key is archived in this way it is stored with its ACL.

When you generate or import the archiving key, you must specify the UseAsBlobKey option in the ACL.
The archiving key is treated as any other key object.

When you generate or import the key that you want to archive you must specify the Archival options in
the ACL. This options can specify the hash(es) of the allowed archiving key(s). If you specify a list of
hashes, no other key may be used.

5.6 Firmware Integrity Key
All firmware is signed using a 3072-bit DSA key pair. Signatures with this key use SHA-256.

Security Policy Page 23 of 36

The module checks the signature before new firmware is written to flash. A module only installs new
firmware if the signature decrypts and verifies correctly.

The private half of this key is stored at nCipher.

The public half is included in all firmware. The firmware is stored in flash memory when the module is
switched off, this is copied to RAM as part of the start up procedure.

5.7 Firmware Confidentiality Key
All firmware is encrypted using AES to prevent casual decompilation. The encryption key is stored at
nCipher’s offices and is in the firmware.

The firmware is stored in flash memory when the module is switched off, this is copied to RAM as part of
the start up procedure.

5.8 Master Feature Enable Key
For commercial reasons not all devices in the nShield family of HSMs offer all services. Certain
services must be enabled separately. The nToken in particular is a very restricted member of the nShield
family. In order to enable a service the operator presents a certificate signed by the Master Feature
Enable Key.

The Master Feature Enable Key is a DSA key pair. The private half of this key pair is stored at nCipher’s
offices. The public half of the key pair is included in the firmware. The firmware is stored in flash memory
when the module is switched off, this is copied to RAM as part of the start up procedure.

5.9 DRBG Key
DBRG stands for Deterministic Random Bit Generator.

The module uses the CTR_DRBG from SP800-90 with a 256-bit AES key. This key is seeded from the on
board entropy source whenever the module is initialised and is reseeded according to SP800-90 with a
further 1024 bits of entropy after every 2048-bytes of output.

This key is only ever used by the DRBG. It is never exposed outside the module.

The DRBG internal state is contained within the DRBG mechanism boundary and is not accessed by non-
DRBG functions or by other instances of any DRBG.

Note: For CTR DRBG, the values of V and Key (SP 800-90) are the ’secret values’ of the internal
state.

Page 24 of 36 Security Policy

6 Rules

6.1 Identification and authentication
Communication with the module is performed via a server program running on the host machine, using
standard inter process communication, using sockets in UNIX operating systems, named pipes under
Windows.

In order to use the module the operator must first log on to the host computer and start an nShield
enabled application. The application connects to the hardserver, this connection is given a client ID, a
32-bit arbitrary number.

The User role is authenticated by presenting a valid key blob to the module.

The Administrator role is authenticated by presenting a signed Feature Enable certificate to the module.

Before performing any service the operator must present the correct authorization. Where several
stages are required to assemble the authorization, all the steps must be performed on the same
connection. The authorization required for each service is listed in the section Services available to
each role on page 10.

6.1.1 Access Control
Module keys are stored in EEPROM in the module.

The key blob also contains an Access Control List that specifies which services can be performed with
this key, and the number of times these services can be performed. These can be hard limits or per
authorization limits. If a hard limit is reached that service can no longer be performed on that key.

All objects are referred to by handle. Handles are cross-referenced to ClientIDs. If a command refers to
a handle that was issued to a different client, the command is refused. Services exist to pass a handle
between ClientIDs.

6.1.2 Access Control List
All key objects have an Access Control List (ACL). The operator must specify the ACL when they
generate or import the key. The ACL lists every operation that can be performed with the key - if the
operation is not in the ACL the module will not permit that operation. In particular the ACL can only be
altered if the ACL includes the SetACL service. The ACL is stored with the key when it is stored as a
blob and applies to the new key object created when you reload the blob.

The ACL can specify limits on operations - or groups of operations - these may be global limits or per
authorization limits. If a global limit is exceeded then the key cannot be used for that operation again.

An ACL can also specify a certifier for an operation. In this case the operator must present a certificate
signed by the key whose hash is in the ACL with the command in order to use the service.

Security Policy Page 25 of 36

An ACL can also specify a host service identifier. In which case the ACL is only met if the hardserver
appends the matching Service name. This feature is designed to provide a limited level of assurance
and relies on the integrity of the host, it offers no security if the server is compromised or not used.

ACL design is complex - operators will not normally need to write ACLs themselves. nCipher provide
tools to generate keys with strong ACLs.

6.1.3 Object re-use
All objects stored in the module are referred to by a handle. The module's memory management functions
ensure that a specific memory location can only be allocated to a single handle. The handle also
identifies the object type, and all of the modules enforce strict type checking. When a handle is released
the memory allocated to it is actively zeroed.

6.1.4 Error conditions
If the module cannot complete a command due to a temporary condition, the module returns a command
block with no data and with the status word set to the appropriate value. The operator can resubmit the
command at a later time. The server program can record a log of all such failures.

If the module encounters an unrecoverable error it enters the error state. This is indicated by the status
LED flashing in the Morse pattern SOS. As soon as the unit enters the error state all processors stop
processing commands and no further replies are returned. In the error state the unit does not respond to
commands. Recorded error status codes may be queried without interaction with the module. The unit
must be reset.

6.1.5 Security Boundary
The cryptographic boundary is the PCIe card.

6.1.6 Status information
The module has a status LED that indicates the overall state of the module.

The module also returns a status message in the reply to every command. This indicates the status of
that command.

There are a number of services that report status information.

6.2 Operating a level 2 module in FIPS mode
To be operating in Level 2 FIPS Mode, only FIPS Approved cryptography can be used in FIPS Mode.
Use of any Non-FIPS Approved algorithms, except for those for which the CMVP allowed in FIPS Mode
(See Supported Algorithms Section), means that the module would not be operating in FIPS Mode.

In order to comply with FIPS mode the operator must not generate private or secret keys with the
ExportAsPlain ACL entry; nor should they use the Import service to import such keys in plain text.

Page 26 of 36 Security Policy

An operator can verify that a key was generated correctly using the nfkmverify utility supplied by
nCipher. This utility checks the ACL stored in the key-generation certificate.

Security Policy Page 27 of 36

7 Physical security
All security critical components of the module are covered by epoxy resin.

The module has a clear button. Pressing this button puts the module into the self-test state, clearing all
stored key objects and running all self-tests. The long term security critical parameters, module keys and
module signing key can be cleared by returning the module to the factory state, as described above.

7.1 Checking the module
To ensure physical security, make the following checks regularly:

• Examine the epoxy resin security coating for obvious signs of damage.

Page 28 of 36 Security Policy

8 Strength of functions

8.1 Object IDs
The following analysis describes the strength of a session.

Connections are identified by a ClientID, a random 160 bit number.

Objects are identified by an ObjectID again this is a random 32 bit number.

In order to gain access to a key loaded by another operator a random 160 bit and a random 32 bit

number would need to be guessed. There are 2192 possibilities therefore meets the 1 in a 106

requirement.

The module can process about 216 commands per minute - therefore the chance of succeeding within

a minute is 216 / 2192 = 2-176 which is significantly less that the required chance of 1 in 105 (~2-17)

8.2 Key Blobs
Key blobs are used to protect keys outside the module.

The blobs used for module key protected keys take a 256 bit AES key and a nonce and uses SHA-1 to
derive a AES encryption key, used for encryption and a HMAC SHA-1 key, used for integrity. It provides a
strength of 128 bits.

An attacker would be required to guess, at a minimum, the MAC value can have a key size of 160, 256 or
512 bits. At a minimum, this requires guessing a 160 bit HMAC key, which gives a probability of 2^-160.
This probability is less than one in 1,000,000 that a random attempt will succeed and one in 100,000 that
a random attempt will succeed or a false acceptance will occur during a one-minute period.

8.3 Feature Enable certificates
Feature enable certificates are signed using a 1024 bit DSA private key under the control of nCipher.
The module performs a digital signature verification of the certificate, which provides a strength of 80 bits.
Considering this strength, the probability is 2^-80, which is less than one in 1,000,000 that a random
attempt will succeed and one in 100,000 that a random attempt will succeed or a false acceptance will
occur during a one-minute period.

8.4 Firmware Images
Firmware images are signed using 3072-bit DSA with SHA-256, providing at least a 128-bit symmetric
equivalent security level.

Security Policy Page 29 of 36

8.5 Impath authentication
The nToken module is used to authenticate the host computer by signing a nonce with a DSA 3072 or 1024
bit key . In the approved mode of operation, 1024-bit key size is not allowed.

8.6 Derived Keys
The nCore API provides a range of key derivation and wrapping options that an operator can choose to
make use of in their protocols.

For any key, these mechanisms are only available if the operator explicitly enabled them in the key's ACL
when they generated or imported the key.

The ACL can specify not only the mechanism to use but also the specific keys that may be used if these
are known.

Mechanism Use Notes

Key Splitting Splits a symmetric key into
separate components for export

Components are raw byte blocks.

PKCS8 wrapping Encrypts a private key encoded
in PKCS8 format using any
supported symmetric algorithm.

Non-approved mode.

PKCS8 unwrapping Decrypts a private key encoded
in PKCS8 format using any
supported symmetric algorithm.

Non-approved mode.

SSL/TLS master key derivation Setting up a SSL/TLS session Non-compliant. The protocols
SSL, TLS shall not be used when
operated in FIPS mode. In
particular, none of the keys
derived using this key derivation
function can be used in the
Approved mode.

Key Wrapping Encrypts one key object with
another to allow the wrapped key
to be exported.

May use any supported
encryption mechanism that
accepts a byteblock.

The operator must ensure

that they chose a wrapping key
that has an equivalent strength
to the key being transported.

The operator must ensure

that they chose a wrapping key
that has an equivalent strength to
the key being transported.

In Approved mode you can use key wrapping and key establishment mechanisms with all supported
algorithms.

Page 30 of 36 Security Policy

9 Self Tests
When power is applied to the module it enters the self test state. The module also enters the self test state
whenever the unit is reset, by pressing the clear button or by sending the Clear Unit command.

In the self test state the module clears the main RAM, thus ensuring any loaded keys or authorization
information is removed and then performs its self test sequence, which includes:

• An operational test on hardware components
• An integrity check on the firmware, verification of a SHA-1 hash
• Power-up self-test for the SP 800-90A DRBG
• Statistical tests on the entropy source (monobit, poker, runs and long runs tests)
• Known answer checks as required by FIPS 140-2:

• SHA-1, SHA-1 HMAC, SHA-224 HMAC, SHA-256 HMAC, SHA-384 HMAC, SHA-512
HMAC,

• DES, Triple-DES, AES,
• AES CMAC, AES CBC MAC, Triple-DES CBC MAC,
• DSA, RSA,
• AES CTR based DRBG,
• Primitive Z for DH and ECDH.

• ECDSA pair-wise consistency test
• Verification of a MAC on EEPROM contents to ensure it is correctly initialised.

The module also runs continuous random number generator tests on the NDRNG and the approved
SP800-90A DRBG. If either fail, it enters the error state.

When firmware is updated, the module verifies a DSA signature on the new firmware image before it is
written to flash.

The module also performs pairwise-consistency checks when generating asymmetric key-pairs.

In the error state, the module’s LED repeatedly flashes the Morse pattern SOS, followed by a status code
indicating the error. All other inputs and outputs are disabled.

Note that if the module's firmware is updated to a different version, this results in the loss of the current
CMVP validation of the module.

Security Policy Page 31 of 36

10 Supported Algorithms

10.1 FIPS approved and allowed algorithms:
This section describes the Approved or allowed cryptographic algorithms supported by the

Cryptographic Module.

10.1.1 Symmetric Encryption
AES

Certificate #2122

Key sizes: 128, 192, 256 bits.

ECB, CBC and GCM (internally generated IV).

Triple-DES

Certificate #1349

ECB and CBC modes.

Key sizes: 2-Key (112 bits, decryption only), 3-Key (168 bits).

After 2^28 encryption operations, the Triple-DES key must not be used for any further encryption
operations.

10.1.2 Hashing and Message Authentication
AES CMAC

AES Certificate #2122

Key sizes: 128, 192, 256 bits.

AES GMAC

AES Certificate #2122

Key sizes: 128, 192, 256 bits.

HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC SHA-384 and HMAC SHA-512

Certificate #1292

Key sizes greater or equal than 112 bits

Page 32 of 36 Security Policy

SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512

Certificate #1844

Triple-DES MAC

Triple-DES Certificate #1349 vendor affirmed.

Key sizes: 2-Key (112 bits, MAC verification only), 3-Key (168 bits).

After 2^28 encryption operations, the Triple-DES key must not be used for any further encryption
operations.

10.1.3 Signature
DSA

Certificate #664

FIPS 186-4: Signature generation and verification

Modulus 2048-bits Sub-group 224-bits SHA-224

Modulus 2048-bits Sub-group 256-bits SHA-256

Modulus 3072-bits Sub-group 256-bits SHA-256

ECDSA

Certificate #318

FIPS 186-4: Signature generation and verification.

The following curves are supported: P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B- 233, B-
283, B-409 and B-571.

10.1.4 Key Establishment
Diffie-Hellman

Diffie-Hellman (CVL Cert. #27, key agreement; key establishment methodology provides 112 or 128
bits of encryption strength; non-compliant less than 112 bits of encryption strength)

Modulus 2048-bits, Sub-group 224-bits

Modulus 2048-bits, Sub-group 256-bits

Modulus 3072-bits, Sub-group 256-bits

Elliptic Curve Diffie-Hellman

EC Diffie-Hellman (CVL Cert. #27; key establishment methodology provides 112, 128, 192 or 256 bits of
encryption strength; non-compliant less than 112 bits of encryption strength)

Security Policy Page 33 of 36

The following curves are supported: P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B- 233,
B-283, B-409 and B-571.

AES

AES (Cert. #2122; key establishment methodology provides between 128 and 256 bits of encryption
strength)

Key sizes: 128, 192, 256 bits.

CBC mode.

Triple-DES

Triple-DES (Cert. #1349, key wrapping; key establishment methodology provides 112 bits of encryption
strength; non-compliant less than 112 bits of encryption strength).

CBC mode.

Key sizes: 2-Key (112 bits, key unwrap only), 3-Key (168 bits).

After 2^28 encryption operations, the Triple-DES key must not be used for any further encryption
operations

EC-MQV

ECMQV (key agreement; key establishment methodology provides 112, 128, 192 or 256 bits of encryption
strength; non-compliant less than 112 bits of encryption strength)

The following curves are supported: P-224, P-256, P-384, P-521, K-233, K-283, K-409, K-571, B- 233, B-
283, B-409 and B-571.

10.1.5 Other
Deterministic Random Bit Generator

Certificate #232

SP 800-90A compliant using AES-CTR with AES-256 SP800-133 CKG, vendor affirmed

Non-deterministic entropy source

Allowed non-deterministic entropy source, used to seed approved random bit generator.

10.2 Non-FIPS Approved Algorithms
This section describes the non-approved or non-compliant algorithms supported by the Cryptographic
Module. If used, the module will not be operating in the approved mode of operation.

Keys that have been established with the help of a key establishment algorithm of a non- compliant
strength are also non-compliant.

Page 34 of 36 Security Policy

10.2.1 Symmetric
• Aria
• Arc Four (compatible with RC4)
• Camellia
• CAST 6 (RFC2612)
• DES
• 2-Key Triple-DES encryption, MAC generation (112 bit key size)
• SEED (Korean Data Encryption Standard) - requires Feature Enable activation
• SP800-38F, AES KW (non-compliant)
• AES CMAC (non-compliant)
• AES GCM with externally supplied IV
• SP800-108 KDF with AES CMAC in Counter Mode KDF (non-compliant)

10.2.2 Asymmetric
• El Gamal (encryption using Diffie-Hellman keys)
• KCDSA (Korean Certificate-based Digital Signature Algorithm) - requires Feature Enable

activation
• RSA encryption, decryption, sign and key encapsulation (modulus 1024 supported)
• DSA digital signature generation with SHA-1 or key size less than 2048 bits
• ECDSA digital signature generation with SHA-1 or curves P-192, K-163 or B-163
• ECDH with curves P-192, K-163 or B-163
• ECMQV with curves P-192, K-163 or B-163
• DH with key size p < 2048 bits or q < 224 bits
• DLIES

10.2.3 Hashing and Message Authentication
• HAS-160 - requires Feature Enable activation
• MD5 - requires Feature Enable activation
• RIPEMD 160
• Tiger
• HMAC (MD5, RIPEMD160, Tiger) or key size less than 112 bits

10.2.4 Other
• SSL/TLS master key derivation
• PKCS#8

Security Policy Page 35 of 36

Contact Us
Web site: https://www.ncipher.com

Help Centre: https://help.ncipher.com

Email Support: support@ncipher.com

Contact Support Numbers: https://www.ncipher.com/services/support/contact-support

https://www.ncipher.com/
https://ncipher.zendesk.com/hc/en-us/categories/360001306412-Customer-Service
mailto:support@ncipher.com

Search: nCipherSecurity

TRUST. INTEGRITY. CONTROL.

About nCipher Security

nCipher Security, an Entrust Datacard company, is a leader in the general-purpose hardware
security module (HSM) market, empowering world-leading organizations by delivering trust, integrity
and control to their business critical information and applications. Today’s fast-moving digital
environment enhances customer satisfaction, gives competitive advantage and improves operational
efficiency – it also multiplies the security risks. Our cryptographic solutions secure emerging
technologies such as cloud, IoT, blockchain, and digital payments and help meet new compliance
mandates. We do this using our same proven technology that global organizations depend on today
to protect against threats to their sensitive data, network communications and enterprise
infrastructure. We deliver trust for your business critical applications, ensure the integrity of your data
and put you in complete control – today, tomorrow, always. www.ncipher.com

http://www.ncipher.com/

	1 Purpose
	1.1 Initializing the nToken
	1.2 Using the nToken

	2 Ports and Interfaces
	3 Roles
	3.1 Unauthenticated
	3.2 User
	3.3 Administrator

	4 Services available to each role
	4.1 Terminology

	5 Keys
	5.1 Long term signing key
	5.2 Module signing key
	5.3 Module Keys
	5.4 Key objects
	5.5 Archiving keys
	5.6 Firmware Integrity Key
	5.7 Firmware Confidentiality Key
	5.8 Master Feature Enable Key
	5.9 DRBG Key

	6 Rules
	6.1 Identification and authentication
	6.1.1 Access Control
	6.1.2 Access Control List
	6.1.3 Object re-use
	6.1.4 Error conditions
	6.1.5 Security Boundary
	6.1.6 Status information

	6.2 Operating a level 2 module in FIPS mode

	7 Physical security
	7.1 Checking the module

	8 Strength of functions
	8.1 Object IDs
	8.2 Key Blobs
	8.3 Feature Enable certificates
	8.4 Firmware Images
	8.5 Impath authentication
	8.6 Derived Keys

	9 Self Tests
	10 Supported Algorithms
	10.1 FIPS approved and allowed algorithms:
	10.1.1 Symmetric Encryption
	10.1.2 Hashing and Message Authentication
	10.1.3 Signature
	10.1.4 Key Establishment
	10.1.5 Other

	10.2 Non-FIPS Approved Algorithms
	10.2.1 Symmetric
	10.2.2 Asymmetric
	10.2.3 Hashing and Message Authentication
	10.2.4 Other

	Contact Us

