
Copyright © wolfSSL Inc., 2025 Page 1 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

wolfCrypt
FIPS 140-3 Non-Proprietary Security Policy

Document Version 1.0

 July 9, 2025

wolfSSL Inc.

10016 Edmonds Way
Suite C-300

Edmonds, WA 98020
wolfssl.com

+1 425-245-8247

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 2 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

Table of Contents

1 General ..4

1.1 Cryptographic Boundary ...4

2 Cryptographic Module Specification ...4

2.1 Cryptographic Boundary ...5

2.2 Modes of Operation, Security Rules, and Guidance ...6

2.3 Degraded Mode Operation ...7

2.4 Operational Environment ..7

2.5 Approved and Allowed Cryptographic Functionality ..8

3 Cryptographic Module Interfaces .. 11

4 Roles, Services, and Authentication... 11

4.1 Approved Services .. 12

5 Software/Firmware Security ... 15

5.1 Integrity Techniques ... 15

5.2 Initiate on Demand .. 15

5.3 Open-Source Parameters ... 15

6 Operational Environment ... 15

7 Physical Security .. 15

8 Non-Invasive Security ... 15

9 Sensitive Security Parameter Management ... 16

10 Self-Tests ... 18

10.1 Pre-Operational and Conditional Self-Tests ... 18

10.2 Operator Initiation of Self-Tests ... 20

11 Life-Cycle Assurance ... 21

11.1 Installation, Initialization, and Startup Procedures .. 21

11.1.1 Linux Installation ... 22
11.1.2 Windows 10 Installation .. 23
11.1.3 Linux Secure Startup.. 24
11.1.4 Windows 10 Secure Startup .. 24

11.2 Administrator Guidance ... 24

11.3 Non-Administrator Guidance ... 24

12 Mitigation of Other Attacks .. 24

References ... 25

Acronyms and Definitions ... 27

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 3 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

List of Tables

Table 1 – Security Levels ...4

Table 2 – Tested Operational Environments ...7

Table 3 – Approved Algorithms ..8

Table 4 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation .. 11

Table 5 – Ports and Interfaces ... 11

Table 6 – Roles, Service Commands, Input and Output .. 12

Table 7 – Approved Services .. 13

Table 8 – Non-Approved Services .. 15

Table 9 – SSPs .. 16

Table 10 – Non-Deterministic Random Number Generation Specification ... 18

List of Figures

Figure 1 – Module Block Diagram ...5

Figure 2 – Callback Example .. 21

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 4 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

1 General

This document defines the Security Policy for the wolfCrypt cryptographic module by wolfSSL Inc., hereafter
denoted the Module. The Module meets FIPS 140-3 overall Level 1 requirements, with security levels as
described below.

1.1 Cryptographic Boundary

The Module is a cryptography software library, defined as a software module per AS02.03 with a multi-chip
standalone embodiment. The Module is intended for use by U.S. and Canadian Federal agencies in addition to
other markets that require FIPS 140-3 validated cryptographic functionality. The Module version under validation
is Software Version v5.2.0.1.

The package/file name is wolfssl-5.7.2-commercial-fips-linuxv5.2.0.1.7z.

Table 1 – Security Levels

ISO/IEC 24759
Section 6.

[Number Below]

FIPS 140-3 Section Title Security Level

1 General 1

2 Cryptographic Module Specification 1

3 Cryptographic Module Interfaces 1

4 Roles, Services, and Authentication 1

5 Software/Firmware Security 1

6 Operational Environment 1

7 Physical Security N/A

8 Non-Invasive Security N/A

9 Sensitive Security Parameter Management 1

10 Self-Tests 1

11 Life-Cycle Assurance 1

12 Mitigation of Other Attacks N/A

In accordance with AS02.05, [ISO19790] §7.7 Physical Security is optional and does not apply to the Module.

In accordance with current CMVP policy, Non-Invasive Security is not applicable.

The Module does not implement attack mitigations outside the scope of [FIPS140-3].

2 Cryptographic Module Specification

The Module conforms to [FIPS140-3_IG] §D.C References to the Support of Industry Protocols: while it provides
[SP800-56Ar3] conformant schemes and API entry points oriented to TLS and SSH usage, the Module does not
contain the full implementation of TLS or SSH. The following caveat is required:

No parts of the TLS and SSH protocols, other than the approved cryptographic algorithms and KDFs, have been
tested byt the CAVP or CMVP.

The Module design corresponds to the Module security rules. Security rules enforced by the Module are
described in the appropriate context of this document.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 5 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

2.1 Cryptographic Boundary

Figure 1 depicts the Module operational environment with the cryptographic boundary highlighted in red
inclusive of all Module entry points (API calls). The physical perimeter of the module is the general purpose
computer on which the software module resides. No components are excluded from [FIPS140-3] requirements.
The pre-operational approved integrity test is performed over all components of the cryptographic boundary.

Figure 1 – Module Block Diagram

The source code files listed below result in the corresponding object files that comprise the wolfCrypt Module
boundary on each supported operating environment. The extensions of the object file can differ across the
environments.

• aes.c: AES algorithm

• aes_asm.s: AES assembler optimizations (Linux)

• aes_asm.asm: AES assembler optimizations (Windows 10)

• cmac.c: CMAC algorithm

• dh.c: Diffie-Hellman

• ecc.c: Elliptic curve cryptography

• fips.c: Pre-operational entry point and API calls

• fips_test.c: Power on self-tests

• hmac.c: HMAC algorithm

• kdf.c: TLS v1.2, v1.3, and SSH v2 KDFs

• random.c: DRBG algorithm

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 6 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

• rsa.c: RSA algorithm

• sha.c: SHA algorithm

• sha256.c: SHA2-256 algorithm

• sha256_asm.s: SHA2-256 assembler optimizations (Linux)

• sha512_asm.s: SHA2-512 assembler optimizations (Linux)

• sha512.c: SHA2-512 algorithm

• sha3.c: SHA-3 algorithm

• wolfcrypt_first.c: First function marking start of cryptographic boundary

• wolfcrypt_last.c: Last function marking end of cryptographic boundary

2.2 Modes of Operation, Security Rules, and Guidance

The Module supports an Approved mode of operation and a non-Approved mode of operation. Approved
algorithms are listed in Table 3. Non-Approved algorithms are listed in Table 4. The Module is a cryptographic
library providing primitives used by a calling application. The conditions for using the Module in the Approved
mode of operation are:

1. The Module is a cryptographic library, and it is intended to be used with a calling application. The calling
application is responsible for the usage of the primitives in the correct sequence.

2. The keys used by the Module for cryptographic purposes are determined by the calling application. The
calling application is required to provide keys in accordance with [SP800-140Dr2], and to destroy the key
structures via the corresponding Free calls after use.

3. With the Module installed and configured in accordance with [UG] instructions and Section 11 of this
document, only the algorithms listed in Table 3 (Approved algorithms) and Table 4 (non-Approved
algorithms) are available. The Approved mode of operation is invoked by calling the services listed in
Table 7 below. The module operates in the non-Approved mode when the service in Table 8 is invoked.
The Module is in the Approved mode if the following conditions for algorithm use are met:

a. Adherence to [FIPS140-3_IG] §C.H Key/IV Pair Uniqueness Requirements from SP 800-38D. The
Module supports both internal IV generation (for use with the [SP800-56Ar3] compliant KAS API
entry points) and external IV generation (for TLS KAS usage). For internal IV generation, the
Module complies with C.H scenario 2: users MUST specify an IV length of GCM_NONCE_MID_SZ
or greater for internal IV generation (specifying any length less than 96 bits means the Module is
no longer in an approved mode of operation). For internal IV generation, C.H requires the calling
application to use the Module’s internal approved DRBG to generate the random IV. For external
IV generation, the Module complies with C.H scenario 1(a), tested per option (ii) under
C.H TLS/DTLS 1.2 protocol IV generation. The Module performs a check for nonce_explicit
rollover, returning an error if that condition is encountered. The module is compatible with
TLS/DTLS 1.2 protocol and provides the primitives to support the AES-GCM ciphersuites from
[SP800-52r2] Section 3.3.1. If the module’s power is lost and then restored, the key used for the
AES GCM encryption/decryption shall be re-distributed. This condition is not enforced by the
module but is met implicitly. The module does not retain any state across reset or power-cycles:
AES-GCM key/IVs are not stored in non-volatile persistent memory (i.e., disk), hence no re-
connection can occur without a fresh key establishment operation and the associated SSPs.

b. ECDSA and RSA signature generation must be used with a SHA-2 or SHA-3 hash function.

c. RSA signature generation and encryption primitives must use RSA keys with k = 2048, 3072 or
4096 bits or greater. If RSA uses keys with k < 2048, the module enters the non-Approved mode.

d. The calling process shall adhere to all current [SP800-131Ar2] algorithm usage restrictions.

4. Manual key entry is not supported.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 7 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

5. The module does not support a non-compliant state. Once the module is compiled per the build
instructions defined in the wolfCrypt FIPS 140-3 User Guide, it is not possible for the module to be in a
non-compliant state.

6. Data output and control output are inhibited during self-tests, zeroisation, and error states.

The Module obtains the [FIPS140-3_IG] §D.F required key agreement assurances in accordance with [SP800-
56Ar3] Section 5.6.2. The module complies to [FIPS140-3_IG] §D.F Scenario 2, path 1.

2.3 Degraded Mode Operation

The Module implements a degraded mode of operation: when a CAST fails, the Module enters an error state.
The algorithm CAST status is set to FIPS_CAST_STATE_FAILED and the Module runs all CASTs prior to the first
operational use of any algorithm, regardless of the CAST having passed previously. Before exiting the error state,
the Module status (reported in the Show Status service) is set to FIPS_MODE_DEGRADED. Upon exiting the error
state, the Module enters the degraded mode of operation. The sequence of events is in accordance with
AS02.26. The algorithm that failed its CAST, initially triggering the error state, will no longer be available for use
in the degraded mode of operation and any algorithms that depend on that algorithm will also be unavailable for
use. To recover from the degraded mode operation, the CO shall power cycle or reload the Module (equivalent
to a power cycle).

2.4 Operational Environment

The TOEPP is the General Purpose Computer on which the module is running on.

Operational testing was performed for the following modifiable Operational Environments (with no restrictions
on operational environments configuration):

Table 2 – Tested Operational Environments

Operating System Hardware Platform Processor PAA/
Acceleration

1 Linux 4.4 (Ubuntu 16.04 LTS) Intel Ultrabook 2 in 1 Intel® Core™ i5-5300U CPU @2.30GHz x 4 PAA

2 Linux 4.4 (Ubuntu 16.04 LTS) Intel Ultrabook 2 in 1 Intel® Core™ i5-5300U CPU @2.30GHz x 4 None

3 Windows 10 Intel Ultrabook 2 in 1 Intel® Core™ i5-5300U CPU @2.30GHz x 4 PAA

4 Windows 10 Intel Ultrabook 2 in 1 Intel® Core™ i5-5300U CPU @2.30GHz x 4 None

A unique set of object files was compiled for each operating environment listed above, with a total of four (4)
sets. The Module conforms to [FIPS140-3_IG] §2.3.C Processor Algorithm Accelerators (PAA) and Processor
Algorithm Implementation (PAI). The Intel Processor AES-NI functions are identified by [FIPS140-3_IG] §2.3.C as a
known PAA.

No vendor affirmed operational environments are claimed for this validation of the Module.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 8 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

2.5 Approved and Allowed Cryptographic Functionality

The Module implements the Approved and allowed cryptographic functions listed in the table below. Equivalent
strength in bits is given for each key or algorithm type (as some algorithms do not use or produce keys). The
term s is used throughout to indicate security strength, following the notation used in the majority of the sources
(refer to the notes below Table 3). This table is referenced by Table 9 (SSPs).

Table 3 – Approved Algorithms

CAVP
Cert

Algorithm and
Standard

Mode/Method Description/Key Size(s)/
Key Strength(s)

Use/Function

A2461 AES
[FIPS197],
[SP800-38A]

AES-CBC, AES-CTR, AES-ECB,
AES-OFB

AES-128 (s = 128),
AES-192 (s = 192),
AES-256 (s = 256)

Encryption, decryption

A2461 AES
[SP800-38C],
[SP800-38D]

AES-CCM, AES-GCM AES-128 (s = 128),
AES-192 (s = 192),
AES-256 (s = 256)

Authenticated encryption,
authenticated decryption,
message authentication

A2461 AES
[SP800-38B]

AES-CMAC AES-128 (s = 128),
AES-192 (s = 192),
AES-256 (s = 256)

Message authentication
generation, verification

A2461 AES
[SP800-38D]

AES-GMAC AES-192 (s = 192),
AES-256 (s = 256)

Message authentication
generation, verification

Vendor
Affirmed

CKG
[SP800-133r2]

§4: Using the Output of a
Random Bit Generator
§5: Generation of Key Pairs for
Asymmetric-Key Algorithms
§6.2: Derivation of Symmetric
Keys

 N/A Cryptographic key
generation

A2461 DSA KeyGen
[FIPS186-4]

FFC key generation L = 2048, N = 256 (s = 112)
See Note 4 and Note 7

FFC key generation

A2461 ECDSA KeyGen
[FIPS186-4]

Secret generation mode: Extra
Bits

P-224 (s ~= 112),
P-256 (s ~= 128),
P-384 (s ~= 192),
P-521 (s ~= 256)
See Note 2

ECC key generation

A2461 ECDSA KeyVer
[FIPS186-4]

Public Key Validity P-192 (s < 112),
P-224 (s ~= 112),
P-256 (s ~= 128),
P-384 (s ~= 192),
P-521 (s ~= 256)
See Note 2

ECC public key validation
(curve P-192 is for legacy
use only)

A2461 ECDSA SigGen
[FIPS186-4]

SigGen (tested with SHA2-224,
SHA2-256, SHA2-384,
SHA2-512)

P-224 (s ~= 112),
P-256 (s ~= 128),
P-384 (s ~= 192),
P-521 (s ~= 256)
See Note 2

ECC signature generation

A2461 ECDSA SigVer
[FIPS186-4]

SigVer (tested with SHA-1,
SHA2-224, SHA2-256,
SHA2-384, SHA2-512)

P-192 (s < 112),
P-224 (s ~= 112),
P-256 (s ~= 128),
P-384 (s ~= 192),
P-521 (s ~= 256)
See Note 2

ECC signature verification.
(verification with SHA-1
and curve P-192 is for
legacy use only)

A2461 Hash DRBG
[SP800-90Ar1]

No prediction resistance SHA2-256 (s = 256) Random bit generation

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 9 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

CAVP
Cert

Algorithm and
Standard

Mode/Method Description/Key Size(s)/
Key Strength(s)

Use/Function

A2461 HMAC-SHA-1
[FIPS198-1]

Generate HMAC-SHA-1 MAC,
with SHA-1 mode

SHA-1 (s = 160) Generation, verification,
message authentication

A2461 HMAC-SHA2
[FIPS198-1]

Generate HMAC-SHA2 MAC
with the listed SHA2 modes

SHA2-224 (s = 224),
SHA2-256 (s = 256),
SHA2-384 (s = 384),
SHA2-512 (s = 512)

Generation, verification,
message authentication

A2461 HMAC-SHA3
[FIPS198-1]

Generate HMAC-SHA3 MAC
with the listed SHA3 modes

SHA3-224 (s = 224),
SHA3-256 (s = 256),
SHA3-384 (s = 384),
SHA3-512 (s = 512)

Generation, verification,
message authentication

A2461 KAS-ECC-SSC
[SP800-56Ar3]

Scheme: ephemeralUnified
KAS Role: Initiator, responder

P-256 (s ~= 128),
P-384 (s ~= 192),
P-521 (s ~= 256)
See Note 2 and Note 3

Shared secret
computation

A2461 KAS-FFC-SSC
[SP800-56Ar3]

Scheme: dhEphem
KAS Role: Initiator, responder

ffdhe2048 (s = 112),
ffdhe3072 (112 ≤ s ≤ 128),
ffdhe4096 (112 ≤ s ≤ 152),
ffdhe6144 (112 ≤ s ≤ 176),
ffdhe8192 (112 ≤ s ≤ 200)
See Note 5

Shared secret
computation

CVL
A2461

KDF SSH
[SP800-135r1]

Derivation of key blocks for the
listed AES cipher key types and
hash algorithms

AES-128 (s = 128),
AES-192 (s = 192),
AES-256 (s = 256);
SHA-1 (s = 160),
SHA2-256 (s = 256),
SHA2-384 (s = 384),
SHA2-512 (s = 512)

Key derivation for use
with the SSH v2 protocol

CVL
A2461

KDF TLS
[SP800-135r1]

TLS key derivation using the
listed hash algorithms

SHA2-256 (s = 256),
SHA2-384 (s = 384),
SHA2-512 (s = 512)

Key derivation for use
with the TLS v1.2 protocol

CVL
A2461

RSA Decryption
Primitive
[SP800-56Br2]

RSA primitive operations only
(no claims of key transport)

k = 2048 (s ~= 112)
See Note 6

Key transport primitive
RSADP

Vendor
Affirmed

RSA Encryption
Primitive
[SP800-56Br2]

RSA primitive operations only
(no claims of key transport)

k=2048 (s ~= 112),
k=3072 (s ~= 128),
k=4096 (s ~= 152)
See Note 6

Key transport primitive
RSAEP

A2461 RSA KeyGen
[FIPS186-4]

Key generation mode: B.3.3
Primality tests per Table C.2,
with listed moduli

k=2048 (s ~= 112),
k=3072 (s ~= 128),
k=4096 (s ~= 152)
See Note 4, Note 6, and Note 10

Key generation

A2461

RSA SigGen
[FIPS186-4]

Signature types: PKCS 1.5 and
PKCSPSS tested with the listed
moduli and the following hash
algorithms: SHA2-224,
SHA2-256, SHA2-384,
SHA2-512

k=2048 (s ~= 112),
k=3072 (s ~= 128),
k=4096 (s ~= 152)
See Note 4, Note 6, and Note 10

Signature generation

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 10 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

CAVP
Cert

Algorithm and
Standard

Mode/Method Description/Key Size(s)/
Key Strength(s)

Use/Function

Signature types: PKCS 1.5 and
PKCSPSS with the listed moduli
and the following hash
algorithms: SHA3-224,
SHA3-256, SHA3-384,
SHA3-512 (no ACVP testing is
currently available, See Note 9)

A2461 RSA SigVer
[FIPS186-4]

Signature types: PKCS 1.5 and
PKCSPSS tested with the listed
moduli and the following hash
algorithms: SHA-1, SHA2-224,
SHA2-256, SHA2-384,
SHA2-512

k=1024 (s ≤ 112),
k=2048 (s ~= 112),
k=3072 (s ~= 128),
k=4096 (s ~= 152)
See Note 4 and Note 6

Signature verification
(verification with SHA-1
and modulus length
k=1024 is for legacy use
only)

 Signature types: PKCS 1.5 and
PKCSPSS with the listed moduli
and the following hash
algorithms: SHA3-224,
SHA3-256, SHA3-384,
SHA3-512 (no ACVP testing is
currently available, See Note 9)

A2461 SHA-1
[FIPS180-4]

SHA-1 mode listed at right SHA-1 (s = 160)
See Note 1

Message digest
generation

A2461 SHA2
[FIPS180-4]

SHA2 modes listed at right SHA2-224 (s = 224),
SHA2-256 (s = 256),
SHA2-384 (s = 384),
SHA2-512 (s = 512)
See Note 1

Message digest
generation

A2461 SHA3
[FIPS202]

SHA3 modes listed at right
See Note 9

SHA3-224 (s = 224),
SHA3-256 (s = 256),
SHA3-384 (s = 384),
SHA3-512 (s = 512)
See Note 1

Message digest
generation

CVL
A2461

TLS v1.2 KDF
[RFC7627]

TLS [RFC7627] key derivation
with Extended Master Secret
(EMS) support, using the listed
hash algorithms

SHA2-256 (s = 256),
SHA2-384 (s = 384),
SHA2-512 (s = 512)

Key derivation for use
with the TLS v1.2 protocol

CVL
A2461

TLS v1.3 KDF
[RFC8446]

KDF running modes: DHE, PSK,
PSK-DHE, using the listed
HMAC algorithms

HMAC-SHA2-256 (s = 256),
HMAC-SHA2-384 (s = 384)

Key derivation for use
with the TLS v1.3 protocol

Note 1: Preimage resistance strength applies to hash algorithms used in DRBG, KDFs. Described also in [SP800-57P1r5] Table
3.

Note 2: Elliptic curve strengths are annotated as approximate (i.e., s ~=) since [SP800-186] Table 1 provides approximate
security strengths.

Note 3: Approved elliptic curves for ECC key agreement are given in [SP800-56Ar3] Table 24.

Note 4: In Digital Signature applications, security strength is primarily associated with the asymmetric key pair specification.
The hash function used must have equivalent strength equal to or greater than the security strength of the associated key
pair.

Note 5: Approved key types for FFC key agreement are given in [SP800-56Ar3] Tables 25, 26. The group notation of Table 26
is used for consistency with CAVP algorithm listings and ACVP capability registration.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 11 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

Note 6: Estimated security strengths of common RSA moduli are given in [SP800-56Br2] Table 4. IFC key types approved for
Digital Signature Generation and Verification are given also in [SP800-57P1r5] Table 2. Equivalent strengths are annotated as
approximate (i.e., s ~=) since [SP800-56Br2] Table 4 provides approximate security strengths.

Note 7: Security strength for L=2048/N=256 is determined in accordance with [FIPS140-3_IG] D.B Strength of SSP
Establishment Methods as y = min(x, N/2), where x is 112 and therefore y = min(112, 128) = 112.

Note 8: The Module is compliant with [FIPS140-3_IG] C.F. extending prime generation and signature generation techniques
to the RSA modulus sizes not listed in [FIPS186-4]. With regards to primality testing the Module tests p and q (no auxiliary
primes) with 8 rounds of MR Test Only regardless of p and q size. 8 Rounds is three more rounds than the minimum required
when p and q are 1024-bits respectively and double the rounds required when p and q are 1536-bits (or greater) respectively.
The minimum requirements come from in [FIPS186-5] Table B.1 as related to using a prime generation method that does not
rely on the use of auxiliary primes. The Module does more than the minimum required rounds in all cases of p and q size.

Note 9: SHA3 was CAVP tested as standalone functions. SHA3 has not been CAVP tested with ECDSA or RSA as no CAVP testing
is currently available. This meets the use and testing requirements in [FIPS140-3_IG] C.C.

Note 10: The Module cannot generate signatures in the Approved mode using a 1024-bit key and cannot generate 1024-bit
keys. The Module can verify signatures signed with a 1024-bit key.

Reference sources for the strengths provided in Table 3 are as follows:

• AES (AES-128, AES-192, AES-256): [SP800-57P1r5] Table 2.

• ECC (P-192, P-224, P-256, P-384, P-521): [SP800-186] Table 1.

• FFC (L=1024/N=160, L=2048/N=224, L=2048/N=256, L=3072/N=256): [SP800-57P1r5] Table 2.

• FFC (ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192): [SP800-56Ar3] Table 26.

• IFC (k=1024, k=2048, k=3072, k=4096): [SP800-56Br2] Table 4.

• SHA-1, SHA2 (SHA2-224, SHA2-256, SHA2-384, SHA2-512): [SP800-107] Table 1.

• SHA3 (SHA3-224, SHA3-256, SHA3-384, SHA3-512): [SP800-57P1r5] Table 3.

Table 4 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

Algorithm/Function Use/Function

RSA SigGen using 1024 bit keys RSA Signature Generation

The Module does not implement the following:

• Non-Approved Algorithms Allowed in the Approved Mode of Operation.

• Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed.

3 Cryptographic Module Interfaces

Table 5 defines the Module’s [FIPS140-3] logical interfaces; the Module does not interact with physical ports.

Table 5 – Ports and Interfaces

Physical Port Logical Interface Data that Passes over Port/Interface

N/A: Internal (call stack) Control In API entry point: stack frame including non-sensitive parameters

N/A: Internal (call stack) Control Out API call parameters passed by reference for structures allocated by
wolfCrypt

N/A: Internal (call stack) Data In API call parameters passed by reference or value for cryptographic service
input

N/A: Internal (call stack) Data Out API call parameters passed by reference for cryptographic service output

N/A: Internal (call stack) Status Out API return value: enumerated status resulting from call execution

4 Roles, Services, and Authentication

The Module supports the Cryptographic Officer (CO) operator role, and does not support multiple concurrent
operators, a maintenance role or bypass capability.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 12 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

The Module does not provide an authentication or identification method of its own. The CO role is implicitly
identified by the service requested.

The cryptographic module does not support loading software from an external source.

4.1 Approved Services

All services implemented by the Module are listed in Table 6. The calling application may use the Show status
service (wolfCrypt_GetStatus_fips call) to determine the status of the Module. A return code of
FIPS_MODE_NORMAL means the Module is in a state without errors; the return code FIPS_MODE_DEGRADED
means a CAST has failed – see also §2.3 above.

See [UG] for additional information on the cryptographic services listed in this section.

Table 6 – Roles, Service Commands, Input and Output

Role Service Input Output

CO Digital signature Sign: signing key; message
Verify: signature value; flags; sizes

Status return; Signature value
Status return

CO Generate key pair FFC, ECC: curve identifier
RSA: modulus size

Status return; general digital signature
private and public keys

CO Key agreement Key structs (key agreement keys); flags Status return; key agreement shared secret

CO Key derivation Key agreement shared secret; flags Status return; derived keying material

CO Key transport
primitives

Decrypt primitive: Key structs; encapsulated
keying material; flags

Status return; keying material

CO Keyed hash Keyed hash key Status return; Tag value

CO Message digest Message; flags Status return; Hash value

CO Random DRBG struct (RGB_State); RBG_Seed Status return; Random value

CO Self-test Flags Status return

CO Show status None Status return (includes Module version)

CO Symmetric cipher Encryption or decryption key; flags; plaintext or
ciphertext

Status return; Plaintext or ciphertext

CO Zeroise FreeRNG destroys the DRBG struct (RGB_State),
and is used on module shutdown for the internal
DRBG. Key structures allocated by the caller are
zeroized by the Free call corresponding to the
allocated structure.

Status return

Table 7 describes Module service access to SSPs. In each cell below, the following annotations indicate the type
of access by the Module service:

• G = Generate: The Module generates or derives the SSP.

• R = Read: The SSP is read from the Module (e.g. the SSP is output).

• W = Write: The SSP is updated, imported, or written to the Module.

• E = Execute: The Module uses the SSP in performing a cryptographic operation.

• Z = Zeroise: The Module zeroises the SSP.

The text ‘--’ indicates the table cell contents are intentionally not present.

• f – return a zero on success, or a negative value for error code.

• t - returns FIPS_MODE_INIT (0), FIPS_MODE_NORMAL (1), or FIPS_MODE_FAILED (3)

• k – return a size on success, or a negative value for error code. For k = 1024 for RSA SigGen, the module
is in the non-Approved mode.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 13 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

Table 7 – Approved Services

Service Description Approved Security
Functions

Keys and/or SSPs Roles Access
Rights to
Keys and/or
SSPs

Indicator

Digital
signature

Generate or verify
digital signatures

ECDSA SigGen, ECDSA
SigVer, RSA SigGen, RSA
SigVer

DS_SGK/ECC
DS_SVK/ECC
DS_SGK/IFC
DS_SVK/IFC

CO E,W
E,W
E,W
E,W

k

Generate key
pair†

Generate
asymmetric key pairs

ECDSA KeyGen, ECDSA
KeyVer, RSA KeyGen, DSA
KeyGen

GKP_Private/ECC
GKP_Public/ECC
GKP_Private/IFC
GKP_Public/IFC
GKP_Private/FFC
GKP_Public/FFS

CO G,W
G,W
G,W
G,W
G,W
G,W

f

Key
agreement†

DH key agreement
primitives

KAS-ECC-SSC, KAS-FFC-SSC KAS_Private/ECC
KAS_Public/ECC
KAS_Private/FFC
KAS_Public/FFC
KAS_SS/ECC
KAS_SS/FFC

CO E,W
E,W
E,W
E,W
G,R
G,R

f

Key
derivation†

Derive keying
material from a
shared secret

KDF SSH, KDF TLS,
TLS v1.2 KDF RFC7627,
TLS v1.3 KDF

KAS_SS/ECC
KAS_SS/FFC
KD_DKM,
KTS_SS/IFC

CO E,W
E,W
G,R
E,W

f

Key transport
primitives ‡

Encapsulate or
decapsulate key
material on behalf of
the calling process

RSA Decryption Primitive,
RSA Encryption Primitive

KTS_KDK/IFC
KTS_KEK/IFC
KTS_SS/IFC

CO E,
E,
R

f

Keyed hash Generate or verify
message integrity

AES-CMAC, AES-GMAC,
HMAC-SHA-1,
HMAC-SHA2-224,
HMAC-SHA2-256,
HMAC-SHA2-384,
HMAC-SHA2-512,
HMAC-SHA3-224,
HMAC-SHA3-256,
HMAC-SHA3-384,
HMAC-SHA3-512

KH_Key/AES-CMAC
KH_Key/AES-GMAC
KH_Key/HMAC

CO E,W
E,W
E,W

f

Message digest Generate a message
digest

SHA-1, SHA2-224, SHA2-
256, SHA2-384, SHA2-512,
SHA3-224, SHA3-256,
SHA3-384, SHA3-512

-- CO -- f

Random Generate random
bits using the DRBG

CKG, Hash DRBG RBG_Seed
RBG_State
Entropy Input

CO E,W
E,G
E,W

f

Self-test Perform the
designated self-test

-- -- CO -- f

Show status Provide Module
status (includes
Module version)

-- -- CO -- t

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 14 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

Service Description Approved Security
Functions

Keys and/or SSPs Roles Access
Rights to
Keys and/or
SSPs

Indicator

Symmetric
cipher

Encrypt or decrypt
data, including AEAD
modes (CCM, GCM)

AES-CBC, AES-CCM,
AES-CTR, AES-ECB,
AES-GCM, AES-OFB

SC_EDK/AES CO E,W f

Zeroise wc_FreeRng_fips()
destroys RNG CSPs

All functions zeroise
CSPs using function
ForceZero()
(overwriting with
zeroes) within the
function scope after
use

Caller stack cleanup
is the duty of the
application

GPC restart/power-
cycle clears all CSPs
in RAM

-- Entropy Input
RBG_State
DS_SGK/ECC
DS_SGK/IFC
GKP_Private/ECC
GKP_Private/IFC
KAS_Private/ECC
KAS_Private/FFC
KAS_SS/ECC
KAS_SS/FFC
KH_Key/AES-CMAC
KH_Key/AES-GMAC
KH_Key/HMAC
RBG_Seed
SC_EDK/AES

CO Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

f

Note that the caller provides the KAS_Private and KAS_Public keys for shared secret computation; the caller’s
exchange and assurance of SSPs with the remote participant is outside the scope of the Module.

† Consistent with [FIPS140-3_IG] §9.5.A, available only if the private_key_read_enable property is set to TRUE.

‡ Not claiming key transport, but the RSADP and RSAEP are available for interoperation with peers using the TLS
protocol stack without an approved cryptography implementation.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 15 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

Table 8 – Non-Approved Services

Service Description Algorithms Accessed Role Indicator

Digital
signature

Generate digital
signatures

RSA SigGen using 1024 bit
keys

CO 1024

5 Software/Firmware Security

5.1 Integrity Techniques

The Module uses HMAC-SHA2-256 with a 256-bit key (HMAC Cert. #A2461) as the approved integrity technique.
The object files from section 2 are linked into the library. The code section is delimited by two functions that do
not perform any actions; they are used only for their addresses. The constant data section is delimited by two
constant arrays of unused data; they are only used for their addresses. The code is first added to the hash, then
the constant data is added to the hash. The verify hash stored in the code is excluded from the HMAC-SHA2-256
calculation. The calculated HMAC is compared to the HMAC stored in the constant data section.

Before the integrity technique is executed, the Module performs an HMAC-SHA2-256 KAT.

5.2 Initiate on Demand

The operator can initiate the integrity test on demand by reloading the Module.

5.3 Open-Source Parameters

While the Module is not “open-source” since it is only shipped under a commercial license, the open-source
practice of source code delivery with a commercial license is standard for the Module. While not required to do
so, the Module will abide by [ISO19790] §B.2.5. Please see details in the wolfCrypt FIPS 140-3 User Guide [UG]
for the OEs listed on the validation certificate. Details will include information about compiler, compiler
configuration settings and methods to compile the source code into an executable form in an approved mode of
operation. See also §11.1 below.

6 Operational Environment

Table 2 lists the operational environments on which the Module was tested. The module runs on a modifiable
operating environment. The operational environment that is designed to accept functional changes that may
contain non-controlled software.

For Linux builds, the configure script provided with the package detects the environment and sets the required
flags. On Windows, a header file is provided to set the required flags.

7 Physical Security

N/A. The Module does not implement physical security.

8 Non-Invasive Security

N/A. The Module does not implement non-invasive security mechanisms.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 16 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

9 Sensitive Security Parameter Management

All Sensitive Security Parameters (SSPs) used by the Module are described in this section, arranged for
consistency with Table 7. The text ‘--’ indicates the table cell contents are intentionally not present.

Table 9 – SSPs

Key/SSP
Name/Type

Strength1
Security Function and Cert
Number

G
e

n
e

ra
ti

o
n

Im
p

o
rt

/E
xp

o
rt

Es
ta

b
lis

h
m

e
n

t

St
o

ra
ge

Ze
ro

is
ati

o
n

Use & Related Keys

DS_SGK/ECC 112, 128, 192,
256

ECDSA SigGen #A2461 -- IE1 -- S1 Z1 SigGen (private) key; related to
DS_SVK/ECC

DS_SVK/ECC <112, 112,
128, 192, 256

ECDSA SigVer #A2461 -- IE1 -- S1 Z1 SigVer (public) key, related to
DS_SGK/ECC; key type with security
strength <112 bits (P-192) used only for
legacy signature verification

DS_SGK/IFC 112, 128, 152 RSA SigGen #A2461 -- IE1 -- S1 Z1 SigGen (private) key, related to
DS_SVK/IFC

DS_SVK/IFC <112, 112,
128, 152

RSA SigVer #A2461 -- IE1 -- S1 Z1 SigVer (public) key, related to
DS_SGK/IFC; key type with security
strength <112 bits (k=1024) used only
for legacy signature verification

GKP_Private/ECC 112, 128, 192,
256

ECDSA KeyGen #A2461,
ECDSA KeyVer #A2461

G2

IE2 -- S1 Z1 General ECDSA (private) key, related to
GKP_Public/ECC

GKP_Public/ECC <112, 112,
128, 192, 256

ECDSA KeyGen #A2461,
ECDSA KeyVer #A2461

G2 IE2 -- S1 Z1 General ECDSA (public) key, related to
GKP_Private/ECC; key type with
security strength <112 bits (P-192)
used only for legacy public key
validation (KeyVer)

GKP_Private/FFC 112 DSA KeyGen #A2461 G3 IE2 -- S1 Z1 General DSA (private) key, related to
GKP_Public/FFC

GKP_Public/FFC 112 DSA KeyGen #A2461 G3 IE2 -- S1 Z1 General DSA (public) key, related to
GKP_Private/FFC

GKP_Private/IFC 112, 128, 152 RSA KeyGen #A2461 G1 IE2 -- S1 Z1 General RSA (private) key, related to
GKP_Public/IFC

GKP_Public/IFC 112, 128, 152 RSA KeyGen #A2461 G1 IE2 -- S1 Z1 General RSA (public) key, related to
GKP_Private/IFC

KAS_Private/ECC 128, 192, 256 KAS-ECC-SSC #A2461 -- IE1 -- S1 Z1 Key pair component used for shared
secret generation

KAS_Public/ECC 128, 192, 256 KAS-ECC-SSC #A2461 -- IE1 -- S1 Z1 Peer key pair component used for
shared secret generation

KAS_Private/FFC 112 ≤ s ≤ 200 KAS-FFC-SSC #A2461 -- IE1 -- S1 Z1 Key pair component used for shared
secret generation

KAS_Public/FFC 112 ≤ s ≤ 200 KAS-FFC-SSC #A2461 -- IE1 -- S1 Z1 Peer key pair component used for
shared secret generation

KAS_SS/ECC 128, 192, 256 KAS-ECC-SSC #A2461 -- -- E2

S1 Z1 Shared secret calculation z output
value (for KDF)

KAS_SS/FFC 112 ≤ s ≤ 200 KAS-FFC-SSC #A2461 -- -- E1 S1 Z1 Shared secret calculation z output
value (for KDF)

1 Strength is provided in bits. Please refer to Table 3 and the notes below it for the strength provenance (traceability to
applicable standards and special publications).

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 17 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

Key/SSP
Name/Type

Strength1
Security Function and Cert
Number

G
e

n
e

ra
ti

o
n

Im
p

o
rt

/E
xp

o
rt

Es
ta

b
lis

h
m

e
n

t

St
o

ra
ge

Ze
ro

is
ati

o
n

Use & Related Keys

KD_DKM 160, 128, 192,
256, 384, 512

KDF SSH #A2461,
KDF TLS #A2461,
TLS v1.2 KDF RFC7627
#A2461,
TLS v1.3 KDF #A2461

-- -- E3 S1 Z1 Key Derivation derived keying material2

KH_Key/
AES-CMAC

128, 192, 256 AES-CMAC #A2461 -- IE1 -- S1 Z1 Keyed Hash key

KH_Key/
AES-GMAC

128, 192, 256 AES-GMAC #A2461 -- IE1 -- S1 Z1 Keyed Hash key

KH_Key/HMAC 112 to 1024 in
8-bit
increments

HMAC SHA-1
HMAC SHA2-224
HMAC SHA2-256
HMAC SHA2-384
HMAC SHA2-512
HMAC SHA3-224
HMAC SHA3-256
HMAC SHA3-384
HMAC SHA3-512
 #A2461

-- IE1 -- S1 Z1 Keyed Hash key

KTS_KDK/IFC 112, 128, 152 RSA Decryption Primitive
#A2461

-- IE1 -- S1 Z1 RSA key de-encapsulation Key (for KDF)

KTS_KEK/IFC 112, 128, 152 RSA Encryption Primitive -- IE1 -- S1 Z1 RSA key encapsulation Key (for KDF)

KTS_SS/IFC 112, 128, 152 RSA Decryption Primitive
#A2461, RSA Encryption
Primitive

-- IE1 -- S1 Z1 RSA key transport shared secret (for
KDF)

Entropy Input 112 External source (see Table
9)

-- IE1 -- S1 Z1,
Z2

Entropy input string

RBG_Seed 112 Hash DRBG #A2461 G4 -- -- S1 Z1,
Z2

DRBG seed used for DRBG instantiate
and reseed

RBG_State 256 Hash DRBG #A2461 G5 -- E4 S1 Z1,
Z2

Hash DRBG (SHA2-256) state: V (440)
and C (440)

SC_EDK/AES 128, 192, 256 AES-CBC #A2461,
AES-CCM #A2461,
AES-CTR #A2461,
AES-ECB #A2461,
AES-GCM #A2461,
AES-OFB #A2461

-- IE1 -- S1 Z1 AES key used for symmetric encryption
and decryption (including AES
authenticated encryption and
decryption)

Legend

Generation

G1: [FIPS186-4] RSA keypair generation,
[SP800-133r2] Section 5 compliant

G2: [FIPS186-4] ECDSA keypair generation
[SP800-133r2] Section 5 compliant

G3: [FIPS186-4] DSA keypair generation,
[SP800-133r2] Section 5 compliant.

G4: [SP800-90B] DRBG seed material,
[SP800-133r2] Section 4 compliant

Establishment

E1: [SP800-56Ar3] §5.7.1.1 FFC DH

E2: [SP800-56Ar3] §5.7.1.1 ECC CDH

E3: [SP800-56Cr2] Extract-then-expand
KDF

E4: [SP800-90Ar1] Hash_df; Instantiate;
Generate; Reseed

Storage

S1: RAM in plaintext

Zeroisation

Z1: Cleared after use via Free, or as part of
function cleanup before return.

Z2: the internal RBG is zeroized upon
module shutdown.

2 The separation into specific keys is done outside the scope of the module but must be conformant to [SP800-56Cr2].

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 18 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

G5: [SP800-90Ar1] DRBG state
(instantiation or update); [SP800-133r2]
Section 4 compliant.

Import/Export

IE1: Call stack (API) input parameters
(electronic entry)

IE2: Call stack (API) output parameters
(electronic entry)

The Module:

• Produces random values in accordance with [SP800-133r2] Section 4, in that the DRBG output is
provided directly as the random output.

• Does not provide any service beyond random value generation for symmetric key generation. SSPs used
with symmetric key algorithms are provided by the calling application.

• Produces asymmetric keys in accordance with [SP800-133r2] Section 5, in that all asymmetric keys
generated by the module (the Key management service) provide the output of the approved key
generation algorithm with no post-processing or manipulation of the generated key pairs. As noted in
the previous item, random values used in the asymmetric key generation algorithms are direct outputs
of the DRBG. Keys produced by the module use an internal Counter DRBG for which the minimum key
size and equivalent security strength is 128 bits.

• Supports symmetric key derivation in accordance with [SP800-133r2] Section 6.2, using the approved
and CAVP listed KDF algorithms.

Table 10 – Non-Deterministic Random Number Generation Specification

Entropy Sources Minimum Number
of Bits of Entropy

Details

Calling application 112 to 256 inclusive The Module passively obtains entropy via callback functions outside the
Module boundary, while exercising no control over the amount or quality
of the obtained entropy; the following caveat is applicable to this
scenario:

No assurance of the minimum strength of generated SSPs (e.g., keys)

10 Self-Tests

10.1 Pre-Operational and Conditional Self-Tests

Each time the Module is powered up, it tests that the cryptographic algorithms still operate correctly, and that
sensitive data has not been damaged. The pre-operational self-tests are available on demand by reloading the
Module.

On instantiation, the Module performs the pre-operational self-tests described below. All cryptographic
functions include a check of a self-test flag; a self-test will be invoked if it has not yet been performed. All KATs
must complete successfully prior to any other use of cryptography by the Module. The error state is persistent,
and no services are available. All attempts to use the Module’s services result in the return of a non-zero error
code, FIPS_NOT_ALLOWED_E (-197). To recover from an error state, reload the Module into memory. The
module error state is called “Err”.

Once the Module is powered on and has passed the pre-operational self-tests, calls to any cryptographic
algorithm will trigger the CAST on first operational use of the algorithm. The CASTs are available on demand after
power-on and can be executed by the Cryptographic Officer (CO) at any time. The CO may optionally invoke any
CAST ahead of algorithm use at a more convenient time rather than letting it run automatically on first use.
Regardless of the CAST running manually or automatically, once it has passed, the CO may manually re-run any
CAST at any time in a periodic fashion. A CAST will no longer run automatically after it has passed the first time.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 19 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

wolfSSL Inc. highly recommends a periodic power cycle or reload of the Module (once in a 24-hour period) as a
best security practice. If a periodic power cycle is not possible, a periodic call to the function
wc_RunAllCast_fips() is recommended as an alternative (at least once in a 24-hour period). See §10.2 below for
details on proper use of the API from a calling application.

Pre-Operational Self-Tests

• Software Integrity: HMAC-SHA2-256 (#A2461) with a 256-bit key.

Conditional Cryptographic Algorithm Self-Tests (CASTs)

• AES-CBC #A2461: Encryption KAT, CBC mode, 128-bit key. Covers self-test requirements for the Table 3
Algorithm and Standard entry AES [FIPS197], [SP800-38A].

• AES-CBC #A2461: Decryption KAT, CBC mode, 128-bit key. Covers self-test requirements for the Table 3
Algorithm and Standard entry AES [FIPS197], [SP800-38A].

• AES-GCM #A2461: Authenticated encryption KAT, GCM mode, 128-bit key. Covers self-test requirements
for the Table 3 Algorithm and Standard entries AES [SP800-38B], [SP800-38C], [SP800-38D].

• AES-GCM #A2461: Authenticated decryption KAT, GCM mode, 128-bit key. Covers self-test requirements
for the Table 3 Algorithm and Standard entries AES [SP800-38B], [SP800-38C], [SP800-38D].

• ECDSA SigGen #A2461: ECDSA signature generation KAT using the P-256 curve.

• ECDSA SigVer #A2461: ECDSA signature verification KAT using the P-256 curve.

• Hash DRBG #A2461: [SP800-90Ar1] §11.3 Instantiate, Generate, Reseed health tests for SHA2-256 Hash
DRBG.

• HMAC-SHA-1 #A2461: HMAC-SHA-1 (160-bit key) KAT. Per [FIPS140-3_IG] §10.3.A and §10.3.B, inclusive
of corresponding SHA-1 CAST.

• HMAC-SHA2-256 #A2461: HMAC-SHA2-256 (256-bit key) KAT. Per [FIPS140-3_IG] §10.3.A and §10.3.B,
inclusive of corresponding SHA2 CAST. Performed prior to its use in the integrity test as required by
AS10.20.

• HMAC-SHA2-512 #A2461: HMAC-SHA2-512 (512-bit key) KAT. Per [FIPS140-3_IG] §10.3.A and §10.3.B,
inclusive of corresponding SHA2 CAST.

• HMAC-SHA3 #A2461: HMAC-SHA3-256 (256-bit key) KAT. Per [FIPS140-3_IG] §10.3.A and §10.3.B,
inclusive of corresponding SHA3 CAST.

• KAS-ECC-SSC #A2461: [SP800-56Ar3] Section 5.7.1.2 primitive “Z” computation KAT, per [FIPS140-3_IG]
§D.F, using P-256.

• KAS-FFC-SSC #A2461: [SP800-56Ar3] Section 5.7.1.1 primitive “Z” computation KAT, per [FIPS140-3_IG]
§D.F, using L = 2048 N = 256.

• KDF SSH #A2461: [SP800-135r1] SSH v2 KDF KAT. Hash type SHA2-256.

• KDF TLS #A2461: [SP800-135r1] TLS v1.2 KDF KAT. Covers self-test requirements for TLS v1.2 KDF
RFC7627. Hash type SHA2-256.

• RSA SigGen #A2461: Signature generation KAT (k = 2048), inclusive of the embedded SHA2-256 self-test.

• RSA SigVer #A2461: Signature verification KAT (k = 2048), inclusive of the embedded SHA2-256 self-test.

• TLS v1.3 KDF #A2461: TLS v1.3 KDF KAT.

Conditional Pairwise Consistency Tests (PCTs)

• DSA KeyGen #A2461: FFC Key Generation Pairwise Consistency Test, performed on FFC key pair
generation. FFDHE 2048, FFDHE 3072, FFDHE 4096. [RFC7919]

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 20 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

• ECDSA KeyGen #A2461: ECC Key Generation Pairwise Consistency Test, performed on ECC (ECDSA, KAS-
ECC-SSC) key pair generation. Covers self-test requirements for the Table 3 Algorithm and Standard entry
ECDSA KeyVer [FIPS186-4]. Curves: NIST P-224, NIST P-256, NIST P-384, NIST P-521.

• RSA KeyGen #A2461: RSA Key Generation Pairwise Consistency Test, performed on RSA key pair
generation.Key size 2048, 3072, 4096.

10.2 Operator Initiation of Self-Tests

For calling applications, the following is required:

1. Include the library configuration header <wolfssl/options.h> (or user_settings.h via
wolfssl/wolfcrypt/settings.h) first.

2. After including the library configuration header, include <wolfssl/wolfcrypt/fips_test.h>, then use the API
specified below to execute a given self-test.

The CO may initiate all CASTs at once. The API wc_RunAllCast_fips() is provided as a public API to applications
using the Module that have included the headers above in the proper order.

The CO may initiate CASTs individually using the API wc_RunCast_fips(algorithm type) with any of the below
algorithm type inputs:

• FIPS_CAST_AES_CBC

• FIPS_CAST_AES_GCM

• FIPS_CAST_HMAC_SHA1

• FIPS_CAST_HMAC_SHA2_256

• FIPS_CAST_HMAC_SHA2_512

• FIPS_CAST_HMAC_SHA3_256

• FIPS_CAST_DRBG

• FIPS_CAST_RSA_SIGN_PKCS1v15

• FIPS_CAST_ECC_CDH

• FIPS_CAST_ECC_PRIMITIVE_Z

• FIPS_CAST_DH_PRIMITIVE_Z

• FIPS_CAST_ECDSA

• FIPS_CAST_KDF_TLS12

• FIPS_CAST_KDF_TLS13

• FIPS_CAST_KDF_SSH

The CO may re-run the pre-operational self-tests at any time after power-on using the public API
wolfCrypt_IntegrityTest_fips(). This function always returns a value of zero regardless if the integrity check
passed or failed, so the CO shall then check the status of the Module using the API wolfCrypt_GetStatus_fips().
The return value of the wolfCrypt_GetStatus_fips() API shall then be checked against the status indicators below:

• FIPS_MODE_INIT status indicator value is 0. This indicator means the integrity test has not completed
and is likely running in another thread (multi-threaded).

• FIPS_MODE_NORMAL status indicator value is 1. This indicator means the integrity test passed and the
Module is in a state without errors.

• FIPS_MODE_FAILED status indicator value is 3. This indicator means the integrity test failed and the
Module is unusable. The CO shall power cycle or reload (equivalent to power cycle) to restore the
Module.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 21 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

11 Life-Cycle Assurance

11.1 Installation, Initialization, and Startup Procedures

The CO shall use the provided FIPS 140-3 User Guide, hereafter referred to as [UG]. A common name for this
document is also the Cryptographic Officer Guidance Manual (COGM). [UG] and COGM are one and the same for
this Module. The [UG] has a section specific to each Operational Environment (OE), also referred to as the
“Tested Configuration”, that appears on the Module’s certificate and in the above Table 2 – Tested Operational
Environments. The instructions provided in the [UG] shall be followed or the Module will not be considered a
FIPS 140-3 validated module.

• The [UG] includes library configuration settings that are: required, allowed, and not allowed.

• For any setting that is not specifically covered, the CO shall contact wolfSSL by emailing “support at
wolfssl dot com” for clarification about that settings impact on compiling the compliant module. The
[UG] includes details about the toolchain, compiler, compiler configuration settings, and methods to
compile the source code into an executable form.

o While the Module is not “open-source” since it is only shipped under a commercial license,
open-source practice of source code delivery with a commercial license is standard for the
Module. As such the Module (while not required to) will abide by [ISO19790] §B.2.5: “If the
module is open source, specify the compilers and control parameters required to compile the
code into an executable format.”

The following initialization instructions apply to all use-cases for the Module generically by a consuming
application. OE-specific details are covered in the [UG].

• When planning on using the Module, the CO shall first include the library settings headers so the
application knows how the library was configured.

o On Linux systems where autotools was used to configure the library (./configure && make), the
CO shall include <wolfssl/options.h> as the very first header.

o When working with IDEs or Makefile setups, the CO shall include <wolfssl/wolfcrypt/settings.h>
as the very first header and ensure that the define WOLFSSL_USER_SETTINGS is set globally at
the project level. No other wolfSSL specific build options should be set globally; all configurations
will be managed by a custom user_settings.h header that is included anytime
WOLFSSL_USER_SETTINGS is defined globally.

▪ Once the library configuration settings have been included, only then shall the CO
include other wolfSSL headers as needed; any other headers shall always come after the
configuration settings header.

static void myFipsCb(int ok, int err, const char* hash)

{

 printf("in my Fips callback, ok = %d, err = %d\n", ok, err);

 printf("message = %s\n", wc_GetErrorString(err));

 printf("hash = %s\n", hash);

 if (err == IN_CORE_FIPS_E) {

 printf("In core integrity hash check failure,"

 "copy above hash\n");

 printf("into verifyCore[] in fips_test.c and rebuild\n");

 }

}

Figure 2 – Callback Example

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 22 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

o If using an informational callback function, the CO shall register the function by passing the
function pointer to the API as follows: “wolfCrypt_SetCb_fips(myFipsCb);”.

• Prior to operational use of the Module, the CO shall register an entropy callback function to load entropy
into the Module from an external entropy source. A portable callback is available but must be registered
by the application on startup as the entropy source is external to the Module. To register the portable
callback function provided with the Module, the application will call “ret =
wc_SetSeed_Cb(wc_GenerateSeed);” where “ret” is an integer to capture the status return of the call
and should be checked against the value 0 for success or < 0 for failure. A successful register of any
entropy callback function is considered the first operational use of the Module and the DBRG CAST will
run during registration of the callback.

• When working with a private key, the application must programmatically unlock access to private key
material via the function call “wolfCrypt_SetPrivateKeyReadEnable_fips(1, WC_KEYTYPE_ALL);”. Once
done working with the private key, it is recommended that the application then lock access to private key
materials before resuming operations with the function call:
“wolfCrypt_SetPrivateKeyReadEnable_fips(0, WC_KEYTYPE_ALL);”.

• The module will operate in the Approved mode of operation as long as only the Approved services listed
in Table 7 are invoked. The module transitions to the non-Approved mode when the service in Table 8 is
invoked. When using the non-Approved service, no SSPs from the Approved mode are being used.

11.1.1 Linux Installation

Operation of wolfCrypt in the FIPS 140-3 Approved Mode requires the wolfCrypt library version 5.2.0.1. To verify
the fingerprint of the package, calculate the SHA2-256 sum using a FIPS 140-2 or FIPS 140-3 validated
cryptographic module. The following command serves as an example:

$ shasum -a 256 wolfssl-5.2.0.1-commercial-fips-linuxv5.7z
746341ac6d88b0d6de02277af5b86275361ed106c9ec07559aa57508e218b3f5

Compare the sum to the sum provided with the package. If the sums do not match stop using the Module and
contact wolfSSL.

To unpack the bundle:

$ 7za x wolfssl-5.7.2-commercial-fips-linuxv5.2.0.1.7z
7-Zip...
Extracting archive: wolfssl-5.7.2-commercial-fips-linuxv5.2.0.1.7z
...
Enter password (will not be echoed):

When prompted, enter the password. The password is provided in the distribution email.

To build and install wolfCrypt in Approved mode:

$./configure --enable-fips=v5
$./wolfcrypt/test/testwolfcrypt
$ sudo make install

If you have not received the library with FIPS 140-3 support the ./configure step will fail. Please contact wolfSSL.

The enable and disable options required for running in the Approved Mode are automatically set by the FIPS
enable option. Any encryption algorithms that are not enabled by the configuration must not be enabled
separately. Options affecting wolfSSL usage are still allowed.

make check will verify the build and that the library is operating correctly. If make check fails this probably means
the In Core Integrity check has failed, which is expected. To verify this do:

$./wolfcrypt/test/testwolfcrypt

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 23 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

...
in my Fips callback, ok = 0, err = 203 message = In Core Integrity check FIPS
error
hash = 622B4F8714276FF8845DD49DD3AA27FF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hash into verifyCore[] in
fips_test.c and rebuild

Copy the value given for the hash in the output, and replace the value of verifyCore[] in
./wolfcrypt/src/fips_test.c with this new value. After updating verifyCore[], recompile the wolfSSL library by
running make check again.

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target hardware, and
build type.

11.1.2 Windows 10 Installation

Operation of wolfCrypt in the FIPS 140-3 Approved Mode requires the wolfCrypt library version 5.2.0.1. To verify
the fingerprint of the package, calculate the SHA2-256 sum using a FIPS 140-2 or FIPS 140-3 validated
cryptographic module. The following command serves as an example:

% shasum –a 256 wolfssl-5.7.2-commercial-fips-linuxv5.2.0.1.7z
02da35d0a4d6b8e777236fe30da7a6ff93834fb16939ea16da663773f1b34cf0

And compare the sum to the sum provided with the package. If for some reason the sums do not match stop
using the Module and contact wolfSSL.

A GUI-based 7-zip extraction may be used. To unpack the bundle from a command shell:

% 7za x wolfssl-5.7.2-commercial-fips-linuxv5.2.0.1.7z
7-Zip...
Extracting archive: wolfssl-5.7.2-commercial-fips-linuxv5.2.0.1.7z
...
Enter password (will not be echoed):

When prompted, enter the password. The password is provided in the distribution email.

To build and install wolfCrypt for use in a FIPS 140-3 approved mode:

1. In Visual Studio open IDE\WIN10\wolfssl-fips.sln.
2. Select the Release DLL and x64 as the build type and target.
3. Build the solution
4. The library should be in the directory IDE\WIN10\DLL Release\x64 as a pair of files: wolfssl-fips.lib is the

linking library and wolfssl-fips.dll is the shared library proper, it can be added to your project.
5. In your application project, add a preprocessor macro for HAVE_FIPS. This will ensure the compiler is

loading all the correct settings from the user_settings.h header file in the library.
6. Build the solution.
7. Run the code from the DLL Release\x64 directory, the default check failure should be output in the shell.

The enable and disable options required for Approved mode are automatically set in the user settings file
mentioned in step 5 above. Any encryption algorithms that are not enabled by the Approved mode must not be
enabled separately. Options affecting wolfSSL usage are still allowed.

The first run should indicate the In Core Integrity check has failed:

in my Fips callback, ok = 0, err = -203 message = In Core Integrity check
FIPS error
hash = 622B4F8714276FF8845DD49DD3AA27FF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hash into verifyCore[] in
fips_test.c and rebuild

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 24 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target hardware, and
build type.

11.1.3 Linux Secure Startup

The library uses an allocator method to initialize itself after loading, without programmer interaction. The library
will perform its own self-test in a thread safe manner.

11.1.4 Windows 10 Secure Startup

The library uses the DllMain() function to initialize itself after loading, without programmer interaction. The
library will perform its own self-test in a thread safe manner.

11.2 Administrator Guidance

The CO shall use the provided [UG].

11.3 Non-Administrator Guidance

The Module supports the Cryptographic Officer (CO) operator role and does not support non-administrators.

12 Mitigation of Other Attacks

N/A. The Module does not claim mitigation of other attacks.

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 25 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

References

• [FIPS140-3]: FIPS 140-3, Security Requirements for Cryptographic Modules, 3/22/2019

• [SP800-140_DTR]: NIST SP 800-140, FIPS 140-3 Derived Test Requirements (DTR): CMVP Validation
Authority Updates to ISO/IEC 24759, 3/20/2020

• [SP800-140A]: NIST SP 800-140A, CMVP Documentation Requirements: CMVP Validation Authority
Updates to ISO/IEC 24759, 3/20/2020

• [SP800-140B]: NIST SP 800-140B, CMVP Security Policy Requirements: CMVP Validation Authority
Updates to ISO/IEC 24759 and ISO/IEC 19790 Annex B, 3/20/2020

• [SP800-140Cr2]: NIST SP 800-140C Rev. 2, Cryptographic Module Validation Program (CMVP)-Approved
Security Functions: CMVP Validation Authority Updates to ISO/IEC 24759, 7/25/2023

Supplemental Information: SP 800-140C: Approved Security Functions, 7/25/2023

• [SP800-140Dr2]: NIST SP 800-140D Rev. 2, Cryptographic Module Validation Program (CMVP)-Approved
Sensitive Security Parameter Generation and Establishment Methods: CMVP Validation Authority
Updates to ISO/IEC 24759, 7/25/2023

Supplemental Information: SP 800-140D: Approved SSP Generation and Establishment Methods, 25-Jul-
2023

• [SP800-140F]: NIST SP 800-140F, CMVP Approved Non-Invasive Attack Mitigation Test Metrics: CMVP
Validation Authority Updates to ISO/IEC 24759, 3/20/2020

• [FIPS140-3_IG]: Implementation Guidance for FIPS 140-3 and the Cryptographic Module Validation
Program, 8/1/2023

• [ISO19790]: ISO/IEC 19790:2012 Information technology – Security techniques – Security requirements
for cryptographic modules, 11/1/2015

• [ISO24759]: ISO/IEC 24759:2017 Information technology – Security techniques – Test requirements for
cryptographic Modules, 3/1/2017

• [FIPS180-4]: FIPS 180-4, Secure Hash Standard (SHS), 8/4/2015

• [FIPS186-4]: FIPS 186-4, Digital Signature Standard (DSS), 7/19/2013

• [FIPS186-5]: FIPS 186-5, Digital Signature Standard (DSS), 2/3/2023

• [FIPS197]: FIPS 197, Advanced Encryption Standard (AES), 5/09/2023

• [FIPS198-1]: FIPS 198-1, The Keyed Hash Message Authentication Code (HMAC), 7/16/2008

• [FIPS202]: FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions,
8/4/2015

• [SP800-38A]: NIST SP 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and
Techniques, 12/1/2001

• [SP800-38B]: NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode
for Authentication, 10/6/2016

• [SP800-38C]: NIST SP 800-38C, Recommendation for Block Cipher Modes of Operation: the CCM Mode for
Authentication and Confidentiality, 7/20/2007

• [SP800-38D]: NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC, 11/28/2007

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140Cr2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140Cr2.pdf
https://csrc.nist.gov/projects/cmvp/sp800-140c
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140D.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140Dr2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140Dr2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140Dr2.pdf
https://csrc.nist.gov/projects/cmvp/sp800-140d
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140F.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140F.pdf
https://csrc.nist.gov/csrc/media/projects/Cryptographic-Module-Validation-Program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
https://csrc.nist.gov/csrc/media/projects/Cryptographic-Module-Validation-Program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://csrc.nist.gov/publications/detail/sp/800-38b/final
https://csrc.nist.gov/publications/detail/sp/800-38b/final
https://csrc.nist.gov/publications/detail/sp/800-38b/final
https://csrc.nist.gov/publications/detail/sp/800-38b/final
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 26 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

• [SP800-52r2]: NIST SP 800-52 Rev. 2, Guidelines for the Selection, Configuration, and Use of Transport
Layer Security (TLS) Implementations, 8/29/2019

• [SP800-56Ar3]: NIST SP 800-56A Rev. 3, Recommendation for Pair-Wise Key-Establishment Schemes
Using Discrete Logarithm Cryptography, 4/16/2018

• [SP800-56Br2]: NIST SP 800-56B Rev. 2, Recommendation for Pair-Wise Key-Establishment Using Integer
Factorization Cryptography, 3/21/2019

• [SP800-56Cr2]: NIST SP 800-56C Rev. 2, Recommendation for Key-Derivation Methods in Key-
Establishment Schemes, 8/18/2020

• [SP800-57P1r5]: NIST SP 800-57 Part 1 Rev. 5, Recommendation for Key Management: Part 1 – General,
5/4/2020

• [SP800-90Ar1]: NIST SP 800-90A Rev. 1, Recommendation for Random Number Generation Using
Deterministic Random Bit Generators, 6/24/2015

• [SP800-90B]: NIST SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit
Generation, 1/10/2018

• [SP800-107r1]: NIST SP 800-107 Rev. 1, Recommendation for Applications Using Approved Hash
Algorithms, 8/24/2012

• [SP800-131Ar2]: NIST SP 800-131A Rev. 2, Transitioning the Use of Cryptographic Algorithms and Key
Lengths, 3/21/2019

• [SP800-133r2]: NIST SP 800-133 Rev. 2, Recommendation for Cryptographic Key Generation, 6/4/2020

• [SP800-135r1]: NIST SP 800-135 Rev. 1, Recommendation for Existing Application-Specific Key Derivation
Functions, 12/23/2011

• [SP800-186]: NIST SP 800-186, Recommendations for Discrete Logarithm-based Cryptography: Elliptic
Curve Domain Parameters, 2/3/2023

• [RFC7627]: Transport Layer Security (TLS) Session Hash and Extended Master Secret Extension,
9/16/2015

• [RFC7919]: Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security
(TLS), 8/10/2016

• [RFC8446]: The Transport Layer Security (TLS) Protocol Version 1.3, 8/10/2018

• [UG]: wolfCrypt FIPS 140-3 User Guide, 4/19/2021

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-107r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc7919
https://datatracker.ietf.org/doc/html/rfc7919
https://datatracker.ietf.org/doc/html/rfc8446

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 27 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

Acronyms and Definitions

• AES: Advanced Encryption Standard

• AES-NI: Advanced Encryption Standard New Instructions

• API: Application Programming Interface

• CAST: Cryptographic Algorithm Self-Test

• CAVP: Cryptographic Algorithm Validation Program

• CBC: Cipher-Block Chaining

• CCM: Counter with CBC-MAC

• CMAC: Cipher-based Message Authentication Code

• CMVP: Cryptographic Module Validation Program

• CO: Cryptographic Officer

• CPU: Central Processing Unit

• CSP: Critical Security Parameter

• CTR: Counter-mode

• CVL: Component Validation List

• DH: Diffie-Hellman

• DRBG: Deterministic Random Bit Generator

• DSA: Digital Signature Algorithm

• ECB: Electronic Code Book

• ECC: Elliptic Curve Cryptography

• ECC-CDH: Elliptic Curve Cryptography Cofactor Diffie-Hellman

• ECDH: Elliptic Curve Diffie-Hellman

• ECDSA: Elliptic Curve Digital Signature Algorithm

• EMC: Electromagnetic Compatibility

• EMI: Electromagnetic Interference

• FFC: Finite Field Cryptography

• FIPS: Federal Information Processing Standard

• GCM: Galois/Counter Mode

• GMAC: Galois Message Authentication Code

• GPC: General-Purpose Computer

• HMAC: Keyed-Hash Message Authentication Code

• IG: Implementation Guidance

• IV: Initialization Vector

• KAS: Key Agreement Scheme

• KAT: Known Answer Test

• KDF: Key Derivation Function

• LTS: Long Term Support

• NIST: National Institute of Standards and Technology

• PAA: Processor Algorithm Accelerators

• PCT: Pair-wise Consistency Test

• PSP: Public Security Parameter

• RAM: Random Access Memory

FIPS 140-3 Security Policy wolfCrypt

Copyright © wolfSSL Inc., 2025 Page 28 of 28
wolfSSL Inc. Public Material – May be reproduced in its original entirety without revision.

• RNG: Random Number Generator

• RSA: Rivest, Shamir, and Adleman Algorithm

• RSADP: RSA Decryption Primitive

• RSAEP: RSA Encryption Primitive

• SHA: Secure Hash Algorithm

• SHS: Secure Hash Standard

• SSC: Shared Secret Computation

• SSP: Sensitive Security Parameter

• TLS: Transport Layer Security

