Hewlett Packard Enterprise # Hewlett Packard Enterprise Hewlett Packard Enterprise OpenSSL 3 Provider Software version: 3.1.4a FIPS 140-3 Non-Proprietary Security Policy Document version: 0.8 # Table of Contents | 1 General | 5 | |--|----| | 1.1 Overview | 5 | | 1.2 Security Levels | 6 | | 1.3 Additional Information | 7 | | 2 Cryptographic Module Specification | 8 | | 2.1 Description | 8 | | 2.2 Tested and Vendor Affirmed Module Version and Identification | 9 | | 2.3 Excluded Components | 15 | | 2.4 Modes of Operation | 15 | | 2.5 Algorithms | 15 | | 2.6 Security Function Implementations | 18 | | 2.7 Algorithm Specific Information | 20 | | 2.8 RBG and Entropy | 21 | | 2.9 Key Generation | 21 | | 2.10 Key Establishment | 21 | | 2.11 Industry Protocols | 22 | | 3 Cryptographic Module Interfaces | 23 | | 3.1 Ports and Interfaces | 23 | | 3.2 Trusted Channel Specification | 23 | | 3.3 Control Interface Not Inhibited | 23 | | 4 Roles, Services, and Authentication | 24 | | 4.1 Authentication Methods | 24 | | 4.2 Roles | 24 | | 4.3 Approved Services | 24 | | 4.4 Non-Approved Services | 27 | | 4.5 External Software/Firmware Loaded | 28 | | 4.6 Bypass Actions and Status | 28 | | 4.7 Cryptographic Output Actions and Status | 28 | | 5 Software/Firmware Security | 29 | | 5.1 Integrity Techniques | 29 | | 5.2 Initiate on Demand | 29 | | 5.3 Open-Source Parameters | 29 | | 6 Operational Environment | 30 | | 6.1 Operational Environment Type and Requirements | 30 | | 6.2 Configuration Settings and Restrictions | 30 | | 7 Physical Security | 31 | |---|----| | 8 Non-Invasive Security | 32 | | 9 Sensitive Security Parameters Management | 33 | | 9.1 Storage Areas | 33 | | 9.2 SSP Input-Output Methods | 33 | | 9.3 SSP Zeroization Methods | 33 | | 9.4 SSPs | 34 | | 9.5 Transitions | 38 | | 10 Self-Tests | 39 | | 10.1 Pre-Operational Self-Tests | 39 | | 10.2 Conditional Self-Tests | 39 | | 10.3 Periodic Self-Test Information | 41 | | 10.4 Error States | 42 | | 10.5 Operator Initiation of Self-Tests | 42 | | 11 Life-Cycle Assurance | 43 | | 11.1 Installation, Initialization, and Startup Procedures | 43 | | 11.2 Administrator Guidance | 43 | | 11.3 Non-Administrator Guidance | 43 | | 11.6 End of Life | 43 | | 12 Mitigation of Other Attacks | 44 | | 12.1 Attack List | 44 | | 12.2 Mitigation Effectiveness | 44 | | 12.3 Guidance and Constraints | 44 | # List of Tables | Table 1: Security Levels | 6 | |--|----| | Table 2: Tested Module Identification – Hardware | 9 | | Table 3: Tested Module Identification – Software, Firmware, Hybrid (Executable Code Sets). | 9 | | Table 4: Tested Module Identification – Hybrid Disjoint Hardware | | | Table 5: Tested Operational Environments - Software, Firmware, Hybrid | 10 | | Table 6: Vendor-Affirmed Operational Environments - Software, Firmware, Hybrid | | | Table 7: Modes List and Description | | | Table 8 Approved Algorithms | | | Table 9: Vendor-Affirmed Algorithms | 18 | | Table 10: Security Function Implementations | 20 | | Table 11: Key Generation | 21 | | Table 12: Key Establishment | 21 | | Table 13: Ports and Interfaces | 23 | | Table 14: Roles | | | Table 15: Approved Services | | | Table 16: Non-Approved Services | | | Table 17: Storage Areas | | | Table 18: SSP Input-Output Methods | | | Table 19: SSP Zeroization Methods | | | Table 20: SSP Table 1 | | | Table 21: SSP Table 2 | | | Table 22: Pre-Operational Self-Tests | | | Table 23: Conditional Self-Tests | | | Table 24: Error States | 42 | | | | | List of Figures | | | | | | Figure 1: Block Diagram | 9 | ### 1 General ### 1.1 Overview This section describes: - The purpose of this document. - HPE documents related to this document contents. - Where to go for additional HPE Aruba Networking product information. - Acronyms and abbreviations. - The assurance security levels for each of the areas described in the FIPS 140-3 Standard. This release supplement provides information regarding the Hewlett Packard Enterprise OpenSSL 3 Provider Module software version 3.1.4a FIPS 140-3 Level 1 validation from HPE Aruba Networking. HPE Aruba Networking is a Hewlett Packard Enterprise company. The material in this supplement modifies the general Hewlett Packard Enterprise software documentation included with this product and should be kept with your Hewlett Packard Enterprise product documentation. This supplement primarily covers the non-proprietary Cryptographic Module Security Policy for the Hewlett Packard Enterprise OpenSSL 3 Provider Module software version 3.1.4a. This security policy describes how the module meets the security requirements of FIPS 140-3 Level 1 and how to place and maintain the module in the secure FIPS 140-3 mode. This policy was prepared as part of the FIPS 140-3 Level 1 validation of the product. FIPS 140-3 (Federal Information Processing Standards Publication 140-3, Security Requirements for Cryptographic Modules) details the U.S. Government requirements for cryptographic modules. FIPS 140-3 aligns with ISO/IEC 19790:2012(E) and includes modifications of the Annexes that are allowed to the Cryptographic Module Validation Program (CMVP), as a validation authority. The testing for these requirements will be in accordance with ISO/IEC 24759:2017(E), with the modifications, additions or deletions of vendor evidence and testing allowed as a validation authority under paragraph 5.2. More information about the FIPS 140-3 standard and validation program is available on the National Institute of Standards and Technology (NIST) website at: https://csrc.nist.gov/projects/cryptographic-module-validation-program In addition, in this document, the Hewlett Packard Enterprise OpenSSL 3 Provider Module is referred to as the module, the cryptographic module, and HPE OpenSSL. This document may be freely reproduced and distributed whole and intact including the copyright notice. Products identified herein contain confidential commercial software. Valid license required. ### Copyright © 2024 Hewlett Packard Enterprise Company. Hewlett Packard Enterprise Company trademarks include HPE Aruba Networking®, HPE Aruba Wireless Networks®, the registered HPE Aruba Networking the Mobile Edge Company logo, HPE Aruba Networking Mobility Management System®, Mobile Edge Architecture®, People Move. Networks Must Follow®, RFProtect®, Green Island®. All rights reserved. All other trademarks are the property of their respective owners. HPE Aruba Networking is a Hewlett Packard Enterprise company. ### **Open Source Code** Certain Hewlett Packard Enterprise Company products include Open Source software code developed by third parties, including software code subject to the GNU General Public License (GPL), GNU Lesser General Public License (LGPL), or other Open Source Licenses. The Open Source code used can be found at this site: https://www.arubanetworks.com/open source ### **Legal Notice** The use of HPE Aruba Networking switching platforms and software or firmware, by all individuals or corporations, to terminate other vendors' VPN client devices constitutes complete acceptance of liability by that individual or corporation for this action and indemnifies, in full, HPE Aruba Networking. from any and all legal actions that might be taken against it with respect to infringement of copyright on behalf of those vendors. ### **Acronyms and Abbreviations** | -ci oliyii | is and Appreviations | |------------|---| | AES | Advanced Encryption Standard | | CAVP | Cryptographic Algorithm Validation Program | | CBC | Cipher Block Chaining | | CCCS | Canadian Centre for Cyber Security, a branch of CSE | | CMVP | Cryptographic Module Validation Program | | CO | Crypto Officer | | CSE | Communications Security Establishment | | CSP | Critical Security Parameter | | HMAC | Hashed Message Authentication Code | | KAT | Known Answer Test | | PCT | Pairwise Consistency Test | | PSP | Public Security Parameter | | SHA | Secure Hash Algorithm | | SSP | Sensitive Security Parameter | | | | ### 1.2 Security Levels | Section | Security | |---------|----------| | | Level | | 1 | 1 | | 2 | 1 | | 3 | 1 | | 4 | 1 | | 5 | 1 | | 6 | 1 | | 7 | N/A | | 8 | N/A | | 9 | 1 | | 10 | 1 | | 11 | 1 | | 12 | 1 | Table 1: Security Levels ### 1.3 Additional Information More information is available from the following sources: - See the Hewlett Packard Enterprise web site for the full line of products from HPE: https://www.hpe.com - See the HPE Aruba Networking web site for the full line of products from HPE Aruba Networking: https://www.arubanetworks.com The NIST Validated Modules web site contains contact information for answers to technical or sales-related questions for the product: https://csrc.nist.gov/projects/cryptographic-module-validation-program/validated-modules/search Enter Hewlett Packard Enterprise in the Vendor field then select Search to see a list of FIPS validated Hewlett Packard Enterprise or HPE Aruba Networking products. Select the Certificate Number for the Module Name 'Hewlett Packard Enterprise OpenSSL 3 Provider Module'. # 2 Cryptographic Module Specification ### 2.1 Description ### **Purpose and Use:** The Hewlett Packard Enterprise OpenSSL 3 Provider Module (also referred to as 'the module') is a software type cryptographic module and was validated under FIPS 140-3 Level 1 requirements. The Hewlett Packard Enterprise OpenSSL 3 Provider Module is one of the components within a variety of Hewlett Packard Enterprise and HPE Aruba Networking products, including the Aruba Mobility Conductors, Mobility Controllers/Gateways, and controller-managed HPE Aruba Networking Access Points (APs) running the HPE ANW
Wireless Operating System (AOS) operating system running on the HPE Aruba Networking hardware-based equipment or HPE Aruba Networking virtual appliances. The module provides cryptographic services for these products and is installed automatically as part of the product's software package. For HPE Aruba Networking products, software is installed by HPE Aruba Networking technical support personnel or downloaded from the HPE Aruba Networking Support Portal (ASP) by authenticated licensed customer personnel. Hewlett Packard Enterprise's development processes are such that future releases under Hewlett Packard Enterprise OpenSSL 3 Provider Module should be FIPS validate-able and meet the claims made in this document. Only the versions that explicitly appear on the certificate, however, are formally validated. Any version of this module that is not shown on the module certificate is out of the scope of this validation and requires a separate FIPS 140-3 validation. The CMVP makes no claim as to the correct operation of the module or the security strengths of the generated keys when operating under a version that is not listed on the validation certificate. Module Type: Software Module Embodiment: Multichip Standalone **Module Characteristics:** #### **Cryptographic Boundary:** The Hewlett Packard Enterprise OpenSSL 3 Provider Module is comprised of a single component, which is a dynamically loadable OpenSSL 3 provider. The boundary of the module is defined as the shared library file, which on Unix/Linux is fips.so. ### **Tested Operational Environment's Physical Perimeter (TOEPP):** The physical perimeter is the production grade enclosure of the hardware chassis of the HPE or HPE Aruba Networking hardware device or virtual appliance host. ### **HPE or HPE Aruba Networking Hardware or Virtual Appliance Host** Figure 1: Block Diagram ### 2.2 Tested and Vendor Affirmed Module Version and Identification ### **Tested Module Identification – Hardware:** | Model and/or Part
Number | Hardware
Version | Firmware
Version | Processors | Features | |-----------------------------|---------------------|---------------------|------------|----------| | N/A | N/A | N/A | N/A | N/A | Table 2: Tested Module Identification – Hardware ### Tested Module Identification - Software, Firmware, Hybrid (Executable Code Sets): | Package or File
Name | Software/ Firmware Version | Features | Integrity Test | |-------------------------|----------------------------|-------------------|----------------| | fips.so | 3.1.4a | FIPS provider for | HMAC-SHA2-256 | | | | OpenSSL 3 | | Table 3: Tested Module Identification – Software, Firmware, Hybrid (Executable Code Sets) ### **Tested Module Identification – Hybrid Disjoint Hardware:** | Model and/or
Part Number | Hardware
Version | Firmware
Version | Processors | Features | |-----------------------------|---------------------|---------------------|------------|----------| | N/A | N/A | N/A | N/A | N/A | Table 4: Tested Module Identification – Hybrid Disjoint Hardware # **Tested Operational Environments - Software, Firmware, Hybrid:** | Operating | Hardware | Processors | PAA/PAI | Hypervisor | Version(s) | |--------------|--------------|--------------|---------|------------|------------| | System | Platform | | | or Host OS | | | Ubuntu 22.04 | HPE ProLiant | Intel® Xeon® | Yes | VMWare | 3.1.4a | | | ML 110 | Silver 4110 | | ESXi 6.7 | | | | Gen10 | (Skylake) | | | | | Ubuntu 22.04 | HPE ProLiant | Intel® Xeon® | No | VMWare | 3.1.4a | | | ML 110 | Silver 4110 | | ESXi 6.7 | | | | Gen10 | (Skylake) | | | | Table 5: Tested Operational Environments - Software, Firmware, Hybrid # **Vendor-Affirmed Operational Environments - Software, Firmware, Hybrid:** | Operating System | Hardware Platform | |--|-------------------| | HPE ANW CX Switch Operating System | 6200F | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 6200M | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 6300 | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 6300L | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 6400 | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 8100 | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 8320 | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 8325 | | (AOS-CX) 10.16 or later | | | HPE ANW CX Switch Operating System | 8325P | | (AOS-CX) 10.16 or later | 2000 | | HPE ANW CX Switch Operating System | 8360 | | (AOS-CX) 10.16 or later | 0.400 | | HPE ANW CX Switch Operating System | 8400 | | (AOS-CX) 10.16 or later | 0000 | | HPE ANW CX Switch Operating System | 9300 | | (AOS-CX) 10.16 or later | 02008 | | HPE ANW CX Switch Operating System | 9300S | | (AOS-CX) 10.16 or later HPE ANW CX Switch Operating System | 10000 | | (AOS-CX) 10.16 or later | 10000 | | HPE ANW EdgeConnect Operating System | EC-XS | | (AOS-EC) 9.6 or later | LO-7/3 | | HPE ANW EdgeConnect Operating System | EC-US | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-10104 | | (AOS-EC) 9.6 or later | 20 10104 | | (ACC EC) 3.0 or later | | | Operating System | Hardware Platform | |--|---------------------------| | HPE ANW EdgeConnect Operating System | EC-XS | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-XS (2020) | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-10106 | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-10108 | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-S | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-S-P | | (AOS-EC) 9.6 or later | 50.4 | | HPE ANW EdgeConnect Operating System | EC-M | | (AOS-EC) 9.6 or later | EC M D | | HPE ANW EdgeConnect Operating System (AOS-EC) 9.6 or later | EC-M-P | | | EC-M-P | | HPE ANW EdgeConnect Operating System (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-M-H | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-L, EC-L-NM | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-L-P, EC-L-P-NM | | (AOS-EC) 9.6 or later | , - | | HPE ANW EdgeConnect Operating System | EC-L-H | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-XL, EC-XL-NM | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-XL-P, EC-XL-P-NM (10G) | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-XL-P, EC-XL-P-NM (25G) | | (AOS-EC) 9.6 or later | | | HPE ANW EdgeConnect Operating System | EC-XL-H | | (AOS-EC) 9.6 or later | F0.V | | HPE ANW EdgeConnect Operating System | EC-V | | (AOS-EC) 9.6 or later | FC V | | HPE ANW EdgeConnect Operating System | EC-V | | (AOS-EC) 9.6 or later running on VMware ESXi/ESX 6.7 | | | HPE ANW EdgeConnect Operating System | EC-V | | (AOS-EC) 9.6 or later running on VMware | EU-V | | ESXi/ESX 7.0 | | | HPE ANW EdgeConnect Operating System | EC-V | | (AOS-EC) 9.6 or later running on Red Hat | | | KVM 8.x | | | HPE ANW EdgeConnect Operating System | EC-V | | (AOS-EC) 9.6 or later running on KVM, QEMU | | | 4.x | | | L | | | HPE ANW EdgeConnect Operating System (AOS-EC) 9.6 or later running on Microsoft Hyper V 10.0 | Operating System | Hardware Platform | |--|---|--| | (AOS-EC) 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW EdgeConnect Operating System (AOS-EC) 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Orchestrator 9.6 or later running on Orchestrator on-prem VMware ESXi/ESX 6.7 HPE ANW Networking Orchestrator 9.6 or later running on Ndware ESXi/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking
Orchestrator 9.6 or later running on KVM OzEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on KVM OzEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Wireless Operating System (AOS) | | | | Hyper V 10.0 HPE ANW EdgeConnect Operating System (AOS-EC) 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Orchestrator 9.6 or later running on Orchestrator on-prem VMware ESX/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on Why Networking Orchestrator 9.6 or later running on Mware ESX/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 Wire | | | | HPE ANW EdgeConnect Operating System (AOS-EC) 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Orchestrator 9.6 or later running on VMware ESXi/ESX 6.7 HPE ANW Networking Orchestrator 9.6 or later running on Ndware ESXI/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 AN | | | | (AOS-EC) 9.6 or later running on Čitrix Xen Server 8.1.0 HPE ANW Orchestrator 9.6 or later running on VMware ESXi/ESX 6.7 HPE ANW Networking Orchestrator 9.6 or later running on VMware ESXi/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on VMware ESXi/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Wireless Operating System (AOS) 8.13 H | | EC-V | | Server 8.1.0 HPE ANW Orchestrator 9.6 or later running on Wavare ESXi/ESX 6.7 HPE ANW Networking Orchestrator 9.6 or later running on Vorchestrator on-prem Orchestrator on-prem | | | | HPE ANW Orchestrator 9.6 or later running on VMware ESXI/ESX 6.7 HPE ANW Networking Orchestrator 9.6 or later running on VMware ESXI/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 HP | , , | | | Mware ESXi/ESX 6.7 | | Orchestrator on-prem | | HPE ANW Networking Orchestrator 9.6 or later running on VMware ESXI/ESX 7.0 HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 Operati | | Oronostrator on prom | | Later running on VMware ESXi/ESX 7.0 | | Orchastrator on-prem | | HPE ANW Networking Orchestrator 9.6 or later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (| | | | Later running on Red Hat KVM 8.x HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) AP-51x and AP-57x Wireless Access Points 8.13 AP-50x and AP-56x Wireless Access Points 8.13 AP-53x, AP-555, AP-58x, and AP-63x Wireless Access Points AP-515 Wireless Access Points AP-515 Wireless Access Point AP-515 Wireless Access Point AP-515 Wireless Access Point AP-535 Wireless Access Point AP-630 Wireless Access Point AP-630 Wireless Access Point AP-630 Wireless Access Point AP-610 Wireless Access Point AP-630 AP-635 Wireless Access Point AP-635 Wireless Access Point AP-635 Wireless Access Point AP-650 AP-670 Wireless Access Point AP-670 Wireless Access Point AP-670 Wireless Access Point AP-670 Wireless Access Point AP-750 Wire | | Orchastrator on-prem | | HPE ANW Networking Orchestrator 9.6 or later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless | | | | later running on KVM, QEMU 4.x HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wir | | Orchastrator on prom | | HPE ANW Networking Orchestrator 9.6 or later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless Operating System (AOS) 8.18 HPE ANW Wireless Operating System (AOS) 8.19 HPE ANW Wireless Operating System (AOS) 8.10 HPE ANW Wireless Operating System (AOS) 8.11 HPE ANW Wireless Operating System (AOS) 8.12 HPE ANW Wireless Operating System (AOS) 8. | | Oronestiator on-prem | | later running on Microsoft Hyper V 10.0 HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless Operating System (AOS) 8.18 HPE ANW Wireless Operating System (A | | Orchastrator on prom | | HPE ANW Networking Orchestrator 9.6 or later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 AP-650 Wireless Access Point 8.16 AP-670 Wireless Access Point 8.17 AP-670 Wireless Access Point 8.18 AP-670 Wireless Acce | | Ordinestrator on-prem | | later running on Citrix Xen Server 8.1.0 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) AP-50x and AP-56x Wireless Access Points 8.13 HPE ANW Wireless Operating System (AOS) AP-53x, AP-555, AP-58x, and AP-63x Wireless Access Points 8.13 HPE ANW Wireless Operating System (AOS) AP-515 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-535 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-605 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-610 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-630 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-635 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-650 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-650 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-650 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-670 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-670 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-730 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-750 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-750 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-750 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) AP-750 Wireless Access Point 8.13 | | Ouch potuntou on pro- | | HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless Operating System (AOS) 8.18 HPE ANW Wireless Operating System (AOS) 8.19 HPE ANW Wireless Operating System (AOS) 8.10 HPE ANW Wireless Operating System (AOS) 8.11 HPE ANW Wireless Oper | | Orcnestrator on-prem | | 8.13 HPE ANW Wireless Operating System (AOS) 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless Operating System (AOS) 8.18 HPE ANW Wireless Operating System (AOS) 8.19 HPE ANW Wireless Operating System (AOS) 8.10 HPE ANW Wireless Operating System (AOS) 8.11 HPE ANW Wireless Operating System (AOS) 8.12 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless | | AD 54 | | HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE
ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 AP-750 Wireless Access Point 8.17 AP-750 Wireless Access Point 8.18 HPE ANW Wireless Operating System (AOS) 8.19 AP-750 Wireless Access Point | | AP-51x and AP-57x Wireless Access Points | | 8.13 HPE ANW Wireless Operating System (AOS) 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless Operating System (AOS) 8.18 HPE ANW Wireless Operating System (AOS) 8.19 HPE ANW Wireless Operating System (AOS) 8.10 HPE ANW Wireless Operating System (AOS) 8.11 HPE ANW Wireless Operating System (AOS) 8.12 HPE ANW Wireless | | | | HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 AP-750 Wireless Access Point (AOS) 8.17 AP-750 Wireless Access Point (AOS) 8.18 HPE ANW Wireless Operating System (AOS) 8.19 HRE ANW Wireless Operating System (AOS) 8.10 AP-750 Wireless Access Point (AOS) 8.11 | | AP-50x and AP-56x Wireless Access Points | | 8.13 Wireless Access Points HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless Operating System (AOS) 8.18 HPE ANW Wireless Operating System (AOS) 8.19 HPE ANW Wireless Operating System (AOS) 8.19 HPE ANW Wireless Operating System (AOS) 8.10 HPE ANW Wireless Operating System (AOS) 8.10 HPE ANW Wireless Operating System (AOS | | | | HPE ANW Wireless Operating System (AOS) 8.13 8.17 AP-750 Wireless Access Point 8.18 HPE ANW Wireless Operating System (AOS) 8.19 AP-750 Wireless Access Point 8.11 AP-750 Wireless Access Point 8.12 AP-750 Wireless Access Point 8.13 AP-750 Wireless Access Point | | | | 8.13 HPE ANW Wireless Operating System (AOS) 8.14 HPE ANW Wireless Operating System (AOS) 8.15 HPE ANW Wireless Operating System (AOS) 8.16 HPE ANW Wireless Operating System (AOS) 8.17 HPE ANW Wireless Operating System (AOS) 8.18 HPE ANW Wireless Operating System (AOS) 8.19 | | | | HPE ANW Wireless Operating System (AOS) 8.13 8.14 PE ANW Wireless Operating System (AOS) 8.15 PE ANW Wireless Operating System (AOS) 8.16 PE ANW Wireless Operating System (AOS) 8.17 PE ANW Wireless Operating System (AOS) 8.18 PE ANW Wireless Operating System (AOS) 8.19 PE ANW Wireless Operating System (AOS) 8.10 PE ANW Wireless Operating System (AOS) 8.11 PE ANW Wireless Operating System (AOS) 8.12 PE ANW Wireless Operating System (AOS) 8.13 PE ANW Wireless Operating System (AOS) 8.14 PE ANW Wireless Operating System (AOS) 8.15 PE ANW Wireless Operating System (AOS) 8.16 PE ANW Wireless Operating System (AOS) 8.17 PE ANW Wireless Operating System (AOS) 8.18 PE ANW Wireless Operating System (AOS) | | AP-515 Wireless Access Point | | HPE ANW Wireless Operating System (AOS) 8.13 | | | | HPE ANW Wireless Operating System (AOS) 8.13 8.14 HPE ANW Wireless Operating System (AOS) 8.15 AP-650 Wireless Access Point 8.16 AP-670 Wireless Access Point 8.17 AP-670 Wireless Access Point 8.18 AP-750 Wireless Access Point 8.19 | | AP-535 Wireless Access Point | | HPE ANW Wireless Operating System (AOS) 8.13 | | | | HPE ANW Wireless Operating System (AOS) 8.13 AP-750 Wireless Access Point 8.13 | | AP-605 Wireless Access Point | | HPE ANW Wireless Operating System (AOS) 8.13 AP-750 Wireless Access Point | | | | HPE ANW Wireless Operating System (AOS) 8.13 | , | AP-610 Wireless Access Point | | HPE ANW Wireless Operating System (AOS) 8.13 | | | | HPE ANW Wireless Operating System (AOS) 8.13 AP-750 Wireless Access Point 8.13 | , | AP-630 Wireless Access Point | | 8.13 HPE ANW Wireless Operating System (AOS) AP-750 Wireless Access Point 8.13 AP-750 Wireless Access Point 8.13 AP-750 Wireless Access Point 8.13 | | | | HPE ANW Wireless Operating System (AOS) 8.13 AP-750 Wireless Access Point 8.13 AP-750 Wireless Access Point 8.13 AP-750 Wireless Access Point 8.13 | | AP-635 Wireless Access Point | | 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | | | | HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | | AP-650 Wireless Access Point | | 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | | | | HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) HPE ANW Wireless Operating System (AOS) AP-750 Wireless Access Point 70xx Mobility Controllers | HPE ANW Wireless Operating System (AOS) | AP-655 Wireless Access Point | | 8.13 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) AP-750 Wireless Access Point 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | | | | HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) HPE ANW Wireless Operating System (AOS) AP-730 Wireless Access Point 70xx Mobility Controllers | HPE ANW Wireless Operating System (AOS) | AP-670 Wireless Access Point | | 8.13 HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | 8.13 | | | HPE ANW Wireless Operating System (AOS) 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | HPE ANW Wireless Operating System (AOS) | AP-730 Wireless Access Point | | 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | 8.13 | | | 8.13 HPE ANW Wireless Operating System (AOS) 70xx Mobility Controllers | HPE ANW Wireless Operating System (AOS) | AP-750 Wireless Access Point | | | | | | | HPE ANW Wireless Operating System (AOS) | 70xx Mobility Controllers | | 0.13 | 8.13 | - | | Operating System | Hardware Platform | |---|---| | HPE ANW Wireless Operating System (AOS) | 72xx Mobility Controllers | | 8.13 | , | | HPE ANW Wireless Operating System (AOS) | 7220 Mobility Controller | | 8.13 | · | | HPE ANW Wireless Operating System (AOS) | 90xx Gateways | | 8.13 | | | HPE ANW Wireless Operating System (AOS) | 92xx Gateways | | 8.13 | · | | HPE ANW Wireless Operating System (AOS) | 9012 Gateway | | 8.13 | | | HPE ANW Wireless Operating System (AOS) | MCR-HW-5K Mobility Conductor Hardware | | 8.13 | Appliance | | HPE ANW Wireless Operating System (AOS) | MC-VA-50 Mobility Controller Virtual | | 8.13 running on VMWare ESXi 7.0 | Appliance on HPE ProLiant ML110 Gen10 | | HPE ANW Wireless Operating System (AOS) | MCR-HW-xxx Mobility Conductor Hardware | | 8.13 | Appliances | | HPE ANW Wireless Operating System (AOS) | MC-VA-xxx Mobility Controller Virtual | | 8.13 running on VMWare ESXi 7.0 | Appliances on HPE ProLiant ML110 Gen10 | | HPE ANW Wireless Operating System (AOS) | MCR-VA-xxx Mobility Conductor Virtual | | 8.13 running on VMWare ESXi 7.0 | Appliances on HPE ProLiant ML110 Gen10 | | HPE ANW Wireless Operating System (AOS) | Virtual Appliances on HPE EdgeLine 20 | | 8.13 running on VMWare ESXi 7.0 | | | HPE ANW Wireless Operating System (AOS) | Virtual Appliances on PacStar PS451-1258 | | 8.13 running on VMWare ESXi 7.0 | Series | | HPE ANW Wireless Operating System (AOS) | Virtual Appliances on device running an | | 8.13 running on VMWare ESXi 7.0 | equivalent Intel processor (Intel Atom, i5, i7, | | | or Xeon) | | HPE ANW Wireless Operating System (AOS) | AP-51x and AP-57x Wireless Access Points | | 10.8 | | | HPE ANW Wireless Operating System (AOS) | AP-50x and AP-56x Wireless Access Points | | 10.8 | | | HPE ANW Wireless Operating System (AOS) | AP-53x, AP-555, AP-58x, and AP-63x | | 10.8 | Wireless Access Points | | HPE ANW Wireless Operating System (AOS) | AP-515 Wireless Access Point | | 10.8 | | | HPE ANW Wireless Operating System (AOS) | AP-535 Wireless Access Point | | 10.8 | | | HPE ANW Wireless Operating System (AOS) | AP-605 Wireless Access Point | | 10.8 | 100000000000000000000000000000000000000 | | HPE ANW Wireless Operating System (AOS) | AP-610 Wireless Access Point | | 10.8 | AB cooks to A | | HPE ANW Wireless Operating System (AOS) | AP-630 Wireless Access Point | | 10.8 | AD COS ME | | HPE ANW Wireless Operating System (AOS) | AP-635 Wireless Access Point | | 10.8 | AB 050 W. L. A. B. C. | | HPE ANW Wireless Operating System (AOS) | AP-650 Wireless Access Point | | 10.8 | AD OFF ME I | | HPE ANW Wireless Operating System (AOS) | AP-655 Wireless Access Point | | 10.8 | | | Operating System | Hardware Platform | |--|---| | HPE ANW Wireless Operating System (AOS) | AP-670 Wireless Access Point | | 10.8 | 7.11 070 171101000 7100000 1 01111 | | HPE ANW Wireless Operating System (AOS) | AP-730 Wireless Access Point | | 10.8 | 7 TOO WILDIOGO 7 COOCCO I CIIIC | | HPE ANW Wireless Operating System (AOS) | AP-750 Wireless Access Point | | 10.8 | Al -130 Wildiess Access I dilit | | HPE ANW Wireless Operating System (AOS) | 70xx Mobility Controllers | | 10.8 | 7 OXX WODING CONTONERS | | HPE ANW Wireless Operating System (AOS) | 72xx Mobility Controllers | | 10.8 | 72XX WODING CONTONERS | | HPE ANW Wireless Operating System (AOS) | 7220 Mobility Controller | | 10.8 | 7220 Mobility Controller | | HPE ANW Wireless Operating System (AOS) | 90xx Gateways | | 10.8 | 90xx Galeways | | | O2vvv Cotourous | | HPE ANW Wireless Operating System (AOS) 10.8 | 92xx Gateways | | | 0040 O-t | | HPE ANW Wireless Operating System (AOS) | 9012 Gateway | | 10.8 | MOD LIM SK Makilita Oan daataa Handaraa | | HPE ANW Wireless Operating System (AOS) | MCR-HW-5K Mobility Conductor Hardware | | 10.8 | Appliance | | HPE ANW Wireless Operating System (AOS) | MC-VA-50 Mobility Controller Virtual | | 10.8
running on VMWare ESXi 7.0 | Appliance on HPE ProLiant ML110 Gen10 | | HPE ANW Wireless Operating System (AOS) | MCR-HW-xxx Mobility Conductor Hardware | | 10.8 | Appliances | | HPE ANW Wireless Operating System (AOS) | MC-VA-xxx Mobility Controller Virtual | | 10.8 running on VMWare ESXi 7.0 | Appliances on HPE ProLiant ML110 Gen10 | | HPE ANW Wireless Operating System (AOS) | MCR-VA-xxx Mobility Conductor Virtual | | 10.8 running on VMWare ESXi 7.0 | Appliances on HPE ProLiant ML110 Gen10 | | HPE ANW Wireless Operating System (AOS) | Virtual Appliances on HPE EdgeLine 20 | | 10.8 running on VMWare ESXi 7.0 | | | HPE ANW Wireless Operating System (AOS) | Virtual Appliances on PacStar PS451-1258 | | 10.8 running on VMWare ESXi 7.0 | Series | | HPE ANW Wireless Operating System (AOS) | Virtual Appliances on device running an | | 10.8 running on VMWare ESXi 7.0 | equivalent Intel processor (Intel Atom, i5, i7, | | | or Xeon) | | HPE ANW Clearpass (CPPM) 6.14 or later | Unicom S1200-R4 | | HPE ANW Clearpass (CPPM) 6.14 or later | HPE ProLiant DL360 | | HPE ANW Clearpass (CPPM) 6.14 or later | X86 Architecture | | running on VMware ESXi up to 8.0 | | | HPE ANW Clearpass (CPPM) 6.14 or later | X86 Architecture | | running on Microsoft Hyper-V 2016/2019 | | | R2/2019 | | | HPE ANW Clearpass (CPPM) 6.14 or later | X86 Architecture | | running on KVM on CentOS 7.7, Ubuntu | 7.00 / Horitodaro | | 18.04, and Ubuntu 20.04 | | | HPE ANW Clearpass (CPPM) 6.14 or later | X86 Architecture | | running on Amazon AWS (EC2) | 7.00 / Horitootaro | | Turring on Amazon Avvo (LOZ) | <u> </u> | | Operating System | Hardware Platform | |--|-------------------| | HPE ANW Clearpass (CPPM) 6.14 or later | X86 Architecture | | running on Amazon AWS (EC2) | | Table 6: Vendor-Affirmed Operational Environments - Software, Firmware, Hybrid CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate. ### 2.3 Excluded Components Not Applicable – There are no excluded components for the module. ### 2.4 Modes of Operation ### **Modes List and Description:** | Name | Description | Туре | Status Indicator | |---------------|--|----------|--------------------------------| | Approved Mode | When configured per the administrator guidance, the module | Approved | Successful service completion. | | | only supports approved services. | | | Table 7: Modes List and Description When configured per section 11.2 Administrator Guidance, the module only supports approved services in an approved manner. ### **Mode Change Instructions and Status:** Not Applicable – The module only supports a single approved mode of operation. ### **Degraded Mode Description:** Not Applicable – The module does not support a degraded mode of operation. ### 2.5 Algorithms **Approved Algorithms:** | CAVP
Cert | Algorithm and Standard | Mode/Method | Description/Key
Size/Key
Strength | Use/Function | |--------------|------------------------|-------------|---|-----------------------------| | A4803 | AES-CBC | AES | 128,192,256 bits | Data Encryption/ Decryption | | A4803 | AES-CCM | AES | 128,192,256 bits | Data Encryption/ Decryption | | A4803 | AES-
CFB128 | AES | 128,192,256 bits | Data Encryption/ Decryption | | CAVP
Cert | Algorithm and Standard | Mode/Method | Description/Key
Size/Key
Strength | Use/Function | |--------------|------------------------------------|-----------------------------|---|---| | A4803 | AES-CFB8 | AES | 128,192,256 bits | Data Encryption/ Decryption | | A4803 | AES-CMAC | AES | 128,192,256 bits | Message
Authentication | | A4803 | AES-CTR | AES | 128-256 bits | DRBG | | A4803 | AES-ECB | AES | 128,192,256 bits | Data Encryption/ Decryption | | A4803 | AES-GCM | AES | 128,192,256 bits | Data Encryption/ Decryption | | A4803 | AES-GMAC | AES | 128,192,256 bits | Message
Authentication | | A4803 | AES-KW | AES | 128,192,256 bits | Key Transport | | A4803 | AES-KWP | AES | 128,192,256 bits | Key Transport | | A4803 | AES-OFB | AES | 128,192,256 bits | Data Encryption/ Decryption | | A4803 | AES-XTS
Testing
Revision 2.0 | AES | 128,256 bits | Data Encryption/ Decryption | | A4803 | Counter
DRBG | Counter
DRBG | 128,192,256 bits | Generate random
numbers with SP800-
90A Rev 1 | | A4803 | ECDSA
KeyGen
(FIPS186-4) | ECDSA
KeyGen
(FIPS186 | ≥ 112 bits | Generate an asymmetric keypair | | A4803 | ECDSA
KeyVer
(FIPS186-4) | ECDSA
KeyVer
(FIPS186 | ≥ 112 bits | Verify an asymmetric keypair parameters | | A4803 | ECDSA
SigGen
(FIPS186-4) | ECDSA
SigGen
(FIPS186 | ≥ 112 bits | Generate digital signatures | | A4803 | ECDSA
SigVer
(FIPS186-4) | ECDSA
SigVer
(FIPS186 | ≥ 112 bits | Verify digital signatures | | A4803 | HMAC-
SHA2-224 | HMAC | 224 bits | Message
Authentication | | A4803 | HMAC-
SHA2-256 | HMAC | 256 bits | Message
Authentication | | A4803 | HMAC-
SHA2-384 | HMAC | 384 bits | Message
Authentication | | A4803 | HMAC-
SHA2-512 | HMAC | 512 bits | Message
Authentication | | A4803 | HMAC-
SHA3-224 | HMAC | 224 bits | Message
Authentication | | A4803 | HMAC-
SHA3-256 | HMAC | 256 bits | Message
Authentication | | A4803 | HMAC-
SHA3-384 | HMAC | 384 bits | Message
Authentication | | CAVP
Cert | Algorithm and Standard | Mode/Method | Description/Key
Size/Key
Strength | Use/Function | |--------------|---|----------------------------|---|---------------------------------| | A4803 | HMAC-
SHA3-512 | HMAC | 512 bits | Message
Authentication | | A4803 | KAS-ECC
CDH-
Component
SP800-
56Ar3 | KAS | 112 to 256 bits | Shared Secret
Computation | | A4803 | KAS-ECC-
SSC Sp800-
56Ar3 | KAS | 112 to 256 bits | Shared Secret
Computation | | A4803 | KAS-FFC-
SSC Sp800-
56Ar3 | KAS | 112 to 200 bits | Shared Secret
Computation | | A4803 | KDA HKDF
SP800-
56Cr2 | KDA HKDF
SP800 | ≥ 112 bits | Key Derivation
Function | | A4803 | KDA
OneStep
SP800-
56Cr2 | KDA OneStep
SP800 | ≥ 112 bits | Key Derivation
Function | | A4803 | KDA
TwoStep
SP800-
56Cr2 | KDA TwoStep
SP800 | ≥ 112 bits | Key Derivation Function | | A4803 | KDF KMAC
Sp800-108r1 | KDF KMAC
Sp800 | ≥ 112 bits | Message
Authentication | | A4803 | KDF SP800-
108 | KDF SP800 | ≥ 112 bits | Key Derivation | | A4803 | KDF SSH | KDF SSH | ≥ 112 bits | Key Derivation Function | | A4803 | KMAC-128 | KMAC | 128 bits | Message
Authentication | | A4803 | KMAC-256 | KMAC | 256 bits | Message
Authentication | | A4803 | PBKDF | PBKDF | ≥ 112 bits | Perform key derivation | | A4803 | RSA
KeyGen
(FIPS186-4) | RSA KeyGen
(FIPS186 | 2048 bits | Generate RSA key pair | | A4803 | RSA SigGen
(FIPS186-4) | RSA SigGen
(FIPS186 | 128-256 bits | Generate RSA digital signatures | | A4803 | RSA SigVer
(FIPS186-4) | RSA SigVer
(FIPS186 | 128-256 bits | Verify RSA digital signatures | | A4803 | RSA
Signature
Primitive | RSA Signature
Primitive | 128-256 bits | Generate RSA digital signatures | | A4803 | SHA2-224 | SHA2 | 224 bits | Message Digest | | A4803 | SHA2-256 | SHA2 | 256 bits | Message Digest | | CAVP
Cert | Algorithm
and
Standard | Mode/Method | Description/Key
Size/Key
Strength | Use/Function | |--------------|------------------------------------|------------------------------------|---|---------------------------------| | A4803 | SHA2-384 | SHA2 | 384 bits | Message Digest | | A4803 | SHA2-512 | SHA2 | 512 bits | Message Digest | | A4803 | SHA3-224 | SHA3 | 224 bits | Message Digest | | A4803 | SHA3-256 | SHA3 | 256 bits | Message Digest | | A4803 | SHA3-384 | SHA3 | 384 bits | Message Digest | | A4803 | SHA3-512 | SHA3 | 512 bits | Message Digest | | A4803 | SHAKE-128 | SHAKE | 128 bits | Message Digest | | A4803 | SHAKE-256 | SHAKE | 256 bits | Message Digest | | A4803 | Safe Primes
Key
Generation | Safe Primes
Key
Generation | ≥ 112 bits | Safe Primes Key
Generation | | A4803 | Safe Primes
Key
Verification | Safe Primes
Key
Verification | ≥ 112 bits | Safe Primes Key
Verification | | A4803 | TLS v1.2
KDF
RFC7627 | TLS v1.2 KDF
RFC7627 | ≥ 112 bits | Key Derivation
Function | | A4803 | TLS v1.3
KDF | TLS v1.3 KDF | ≥ 112 bits | Key Derivation
Function | Table 8 Approved Algorithms ### **Vendor-Affirmed Algorithms:** | Name | Properties | Implementation | Reference | |------|-----------------------|----------------|----------------------| | CKG | Symmetric keys, seeds | - | SP 800-133r2 section | | | for asymmetric keys | | 4 | Table 9: Vendor-Affirmed Algorithms The module does not implement any non-approved but allowed algorithms. The module does not implement any non-approved but allowed algorithms with no security claimed. The module does not implement any non-approved, not allowed algorithms. # 2.6 Security Function Implementations | Name | Туре | Description | Properties | Algorithms | |----------------|----------|--------------|---------------------|---------------------| | Data | AES | Encrypt or | Provides 128 to 256 | CBC, CFB128, CFB8, | | Encryption, | | decrypt data | bits of strength | OFB, XTS, ECB, CTR, | | Decryption | | | _ | GCM, CCM, KW, KWP | | Key Derivation | PBKDF, | Perform key | Provides ≥ 112 bits | SSH, TLS v1.2 RFC | | Function | KBKDF, | derivation | | 7627, TLS v1.3, | | | KDA, CVL | using a key | | PBKDF, KBKDF, KDA | | Name | Туре | Description | Properties | Algorithms |
---|------------------------------|---|--------------------------------------|--| | | | derivation | • | | | Deterministic
Random Bit
Generation | DRBG | function Generate random numbers with SP800-90A Rev 1 | Provides 128 to 256 bits of strength | CTR DRBG | | Digital
Signature | RSA,
ECDSA | Generate or
verify RSA or
ECDSA
digital
signatures | Provides 128 to 256 bits of strength | RSA Sig Gen, RSA Sig
Ver, ECDSA Sig Gen,
ECDSA Sig Ver | | Message
Authentication | AES,
HMAC,
KMAC | Generate or verify data integrity | Provides ≥ 112 bits | CMAC Gen, GMAC
Gen, HMAC Gen,
KMAC Gen | | Shared Secret
Computation | KAS-SSC-
ECC | Perform key agreement primitives on behalf of the calling process (does not establish keys into the module) | Provides 112 to 256 bits of strength | KAS-ECC-SSC, KAS-
ECC CDH-Component | | Shared Secret
Computation | KAS-SSC-
FFC | Perform key agreement primitives on behalf of the calling process (does not establish keys into the module) | Provides 112 to 200 bits of strength | KAS-FFC-SSC | | Key
Generation | RSA,
ECDSA,
SafePrimes | Generate
and verify an
asymmetric
keypair and
DH
parameters | Provides ≥ 112 bits | RSA Key Gen, ECDSA
Key Gen, ECDSA Key
Ver, Safe Prime Gen,
Safe Prime Ver | | Key Transport | KTS | AES | Provides 128 to 256 bits of strength | GCM, CCM, KW, KWP
or
AES CBC, CFB128,
CFB8, OFB, ECB,
CTR with HMAC or
CMAC | | Name | Туре | Description | Properties | Algorithms | |---------|-----------|-------------|---------------------|--| | Message | SHS, SHA- | Generate a | Provides 112 to 256 | SHA2-224, SHA2-256, | | digest | 3, SHAKE | message | bits of strength | SHA2-384, SHA2-512, | | | | digest | | SHA3-224, SHA3-256,
SHA3-384, SHA3-512, | | | | | | SHAKE-128, SHAKE- | | | | | | 256 | Table 10: Security Function Implementations ### 2.7 Algorithm Specific Information #### TLS and SSH No parts of the TLS or SSH protocols, other than the KDF, have been reviewed or tested by the CAVP and CMVP. #### **AES GCM** The module supports AES-GCM in the context of TLS 1.2 and TLS 1.3. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. For TLS v1.2, the module's GCM implementation is compatible with RFC 5288 and the ciphersuites from section 3.3.1 of SP 800-52 rev 2. When the counter (nonce_explicit) part of the IV exhausts the maximum number of possible values for session key, the module will return an error, triggering a handshake to establish a new encryption key. For TLS v1.3, the module's GCM implementation is compatible with RFC 8446. The module also supports randomly generated IVs. The IV is generated using the module's Approved DRBG and the minimum length of the IV is 96 bits. If power on the host system is lost, the operator must reestablish new keys. #### **AES XTS** When XTS keys are loaded the module performs a key check per IG C.I to ensure that Key_1 ≠ Key_2. ### **PBKDF** The module's implementation of PBKDF, - Uses option 1a from FIPS 140-3 IG D.N, for deriving a data protection key - Requires passwords between 8 and 128 ASCII characters long. The likelihood of guessing this password at random is 1-in-6.1x10¹⁵. - Uses an iteration count of 1 to 10,000. ### 2.8 RBG and Entropy The module receives entropy passively via a callback per IG 9.3.A scenario 2 (b). The caveat 'No assurance of the minimum strength of generated SSPs' applies. The callback must provide a minimum of 112 bits of entropy or return an error if this minimum cannot be met. # 2.9 Key Generation | Name | Type | Properties | | |---------|------|--|--| | RSA Key | CKG | Key Type: Asymmetric | | | | | FIPS 186-4 B.3.6 | | | EC Key | CKG | Key Type: Asymmetric | | | | | SP 800-56A rev 3 5.6.1.2.2, FIPS 186-4 B.4.2 | | | FFC Key | CKG | Key Type: Asymmetric | | | | | SP800-56A rev 3 5.6.1.1.4 | | Table 11: Key Generation Key generation is provided as a service to the calling application. Generated keys are not used directly by the module. # 2.10 Key Establishment | Name | Туре | Properties | |--------|----------|--| | AEAD | KTS-Wrap | Cipher: AES-GCM, AES-CCM | | | | Key sizes: 128, 192, 256 | | Cipher | KTS-Wrap | Cipher: AES ECB, CBC, OFB, CFB 8, CFB 128, CTR | | CMAC | | Authentication: AES-CMAC | | | | Key sizes: 128, 192, 256 | | Cipher | KTS-Wrap | Cipher: AES ECB, CBC, OFB, CFB 8, CFB 128, CTR | | HMAC | | Authentication: HMAC with SHA2-224, 256, 384, 512, SHA3- | | | | 224, 256, 384, 512 | | | | Key sizes: 128, 192, 256 | | KW/KWP | KTS-Wrap | Cipher Modes: KW, KWP | | | | Key sizes: 128, 192, 256 | | ECDH | KAS-ECC- | Domain Parameter Generation Methods: P-224, P-256, P-384, | | | SSC | P-521 | | | | Scheme: ephemeralUnified | | | | KAS Role: initiator, responder | | DH | KAS-FFC- | Domain Parameter Generation Methods: ffdhe2048, ffdhe3072, | | | SSC | ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, | | | | MODP-4096, MODP-6144, MODP-8192 | | | | Scheme: dhEphem | | | | KAS Role: initiator, responder | Table 12: Key Establishment The methods of key transport are approved per FIPS 140-3 IG D.G. The methods of shared secret computation are approved per FIPS 140-3 IG D.F. Key transport and key agreement are provided as services to the calling application. Established keys are not used directly by the module. # 2.11 Industry Protocols The module implements the KDFs for TLS 1.2, TLS 1.3, and SSH, however does not implement these protocols. # 3 Cryptographic Module Interfaces ### 3.1 Ports and Interfaces | Physical Port | Logical Interface | Data That Passes | |---------------|-------------------|-------------------------------| | N/A | Data Input | API input parameters for data | | N/A | Data Output | API output parameters for | | | | data | | N/A | Control Input | API function calls | | N/A | Status Output | API return codes, status | | | · | information, error codes | Table 13: Ports and Interfaces As a software module, the module interfaces are defined as Software or Firmware Module Interfaces (SFMI), and there are no physical ports. The logical interfaces are defined as the API of the cryptographic module. All data output via data output interface is inhibited when the module is performing preoperational tests or zeroization or when the module enters error state. #### Notes: - The module does not implement a control output interface. - As software, the module does not have a power interface. ### 3.2 Trusted Channel Specification Not applicable – The module does not implement a trusted channel. ### 3.3 Control Interface Not Inhibited Not applicable – The module does not implement a control interface. # 4 Roles, Services, and Authentication ### 4.1 Authentication Methods The Hewlett Packard Enterprise OpenSSL 3 Provider Module does not provide any identification or authentication methods of its own. ### 4.2 Roles | Name | Туре | Operator Type | Authentication
Methods | |----------------|------|---------------|---| | Crypto Officer | Role | СО | N/A - Authentication
not required for Level
1 | | User | Role | User | N/A - Authentication
not required for Level
1 | Table 14: Roles The module supports two distinct operator roles: the Crypto Officer (CO) role and the User role. These roles are implicitly assumed by the operator of the module when performing a service. The module does not support multiple concurrent operators, a maintenance role, nor bypass capability. 4.3 Approved Services | Name | Description | Indicator | Inputs | Outputs | Security
Function
s | Roles | SSP
Access | |-----------------------------------|--|-----------------------|--|--|--|-------|--| | Initialize
Module | The CO loads and initializes the module. | N/A | N/A | Status | None | СО | None | | Data
Encryption,
Decryption | Encrypt or decrypt data | Successful completion | Parame
ters,
plaintex
t or
ciphert
ext, key | Status,
ciphertext
or
plaintext | CBC,
CFB128,
CFB8,
OFB,
XTS,
ECB,
CTR,
GCM,
CCM, KW, | User | AES Key:
W, E | | Key Derivation
Function | Perform key
derivation
using a key
derivation
function | Successful completion | Parame
ters,
key/pas
sword | Status,
derived
key | SSH, TLS
v1.2 RFC
7627, TLS
v1.3,
PBKDF, | User | KDF
Secret: W,
E
PBKDF
Password:
W, E | | Name | Description | Indicator | Inputs | Outputs | Security
Function
s | Roles | SSP
Access | |---|--|-----------------------|---|---|---------------------------------|-------|--| | | | | | | KBKDF,
KDA | | KBKDF
Key: W, E
Derived
Key: G, R
PBKDF
Derived
Key: G, R
KBKDF
Derived
Key: G, R | | Deterministic
Random Bit
Generation | Generate
random
numbers
with SP800-
90A Rev 1 |
Successful completion | N/A | Status,
random
number | DRBG | User | DRBG Entropy input: W DRBG Seed: G, E DRBG Key: G, E DRBG V: G, E | | Digital
Signature | Generate or
verify RSA
or ECDSA
digital
signatures | Successful completion | Parame
ters,
RSA /
ECDSA
keys,
messag
e | Status,
digital
signature | RSA,
ECDSA | User | RSA Signature Public Key: W, E RSA Signature Private Key: W, E ECDSA Signature Public Key: W, E ECDSA Signature Private Key: W, E ECDSA Signature Fivate Key: W, E | | Message
Authentication | Generate or
verify data
integrity | Successful completion | Parame
ters,
messag
e, key | Status,
message
authentic
ation
code ² | CMAC,
GMAC,
HMAC,
KMAC | User | HMAC Key:
W, E
KMAC Key:
W, E
AES Key:
W, E | | Shared Secret
Computation | Perform key agreement primitives on behalf of | Successful completion | Parame
ters,
DH/EC | Status,
shared
secret | KAS-
ECC-
SSC, | User | DH Public
Key: W, E
DH Private
Key: W, E | ¹ Generate only ² Generate only | Name | Description | Indicator | Inputs | Outputs | Security
Function
s | Roles | SSP
Access | |-------------------|--|-----------------------|-------------|--------------------|----------------------------------|-------|--| | | the calling
process
(does not
establish
keys into
the module) | | DH
keys | | KAS-FFC-
SSC | | EC DH Public Key: W, E EC DH Private Key: W, E EC DH Shared Secret: G, R DH Shared Secret: G, R | | Key
Generation | Generate and verify an asymmetric keypair and DH parameters | Successful completion | Parame ters | Status,
keypair | RSA,
ECDSA,
Safe
Primes | User | DRBG Entropy input: W DRBG Seed: G, E DRBG Key: G, E DRBG V: G, E RSA Signature Public Key: G, R RSA Signature Private Key: G, R ECDSA Signature Public Key: G, R ECDSA Signature Private ECDH Public Key: G, R ECDH Public Key: G, R ECDH Private Key: G, R | | Name | Description | Indicator | Inputs | Outputs | Security
Function
s | Roles | SSP
Access | |--------------------------------|--|-----------------------|---|---|--|-------|------------------------------| | Key
Wrapping/unwr
apping | AES | Successful completion | Parame
ters,
plaintex
t or
ciphert
ext key,
transpo
rt
key(s) | Status,
plaintext
or
ciphertext
key | GCM,
CCM, KW,
KWP
or
AES CBC,
CFB128,
CFB8,
OFB,
ECB, CTR
with
HMAC or
CMAC | User | Key
Wrapping
Key: W, E | | Message
digest | Generate a
message
digest | Successful completion | Parame
ters,
Messag
e | Status,
Digest of
the
message | SHA-1,
SHA2,
SHA3 | User | N/A | | Zeroize | Zeroize all
SSPs | N/A | None | Status | None | CO | All SSPs: Z | | Show Status | Query the module for status | N/A | None | Status | None | СО | N/A | | Show Version | Query the module for name and version information | N/A | None | Status,
module
version | None | СО | N/A | | On demand self-test | Perform FIPS start- up tests on demand through the module's API or by rebooting the host platform. | N/A | None | Status | HMAC-
SHA2-256 | CO | N/A | Table 15: Approved Services # 4.4 Non-Approved Services | Name | Description | Security Functions | Role | |------|-------------|--------------------|------| | N/A | N/A | N/A | N/A | Table 16: Non-Approved Services Not applicable – The module does not implement any non-approved services. # 4.5 External Software/Firmware Loaded Not applicable – The module does not implement software loading. # 4.6 Bypass Actions and Status Not applicable – The module does not implement bypass. # 4.7 Cryptographic Output Actions and Status Not applicable – The module does not implement self-initiated cryptographic output capability. # 5 Software/Firmware Security ### 5.1 Integrity Techniques The module performs a software integrity test when initialized. The test is performed by calculating the HMAC-SHA2-256 value of the module's shared library file and comparing it with the expected value in the module's configuration file. Prior to performing the integrity test, the module performs a HMAC-SHA2-256 KAT. If the integrity test fails, the module enters an error state where no cryptographic operations are possible. ### 5.2 Initiate on Demand The software integrity test can be initiated on demand using the on demand self-test service. ### 5.3 Open-Source Parameters The module is distributed in binary form. # 6 Operational Environment ### 6.1 Operational Environment Type and Requirements Type of Operational Environment: Modifiable ### **How Requirements are Satisfied:** The module's operational environment is Linux, multi-threaded operating system that supports memory protection between processes. The operating control mechanisms protect against unauthorized execution, unauthorized modification, and unauthorized reading of SSPs, control and status data. ### 6.2 Configuration Settings and Restrictions No specific configuration settings or restrictions are required. # 7 Physical Security Not applicable – The module is implemented exclusively in software. # 8 Non-Invasive Security Not Applicable – The module does not implement any non-invasive security mitigation techniques. # 9 Sensitive Security Parameters Management ### 9.1 Storage Areas | Storage Area Name | Description | Persistence Type | |-------------------|----------------------------|------------------| | Volatile Memory | All SSPs are stored in the | Dynamic | | | volatile memory of the | | | | Operational Environment. | | Table 17: Storage Areas As specified in the Storage Areas table, the module does not persistently store any SSPs. # 9.2 SSP Input-Output Methods | Name | From | То | Format
Type | Distribution
Type | Entry
Type | SFI or
Algorithm | |------------|----------------------------|----------------------------|----------------|----------------------|---------------|---------------------| | API Entry | Calling application memory | Module
memory | Plaintext | Manual | Electronic | N/A | | API Output | Module
memory | Calling application memory | Plaintext | Manual | Electronic | N/A | Table 18: SSP Input-Output Methods As specified in the SSP Input-Output table, all SSPs are input and/or output via the module's API within the module's operational environment. ### 9.3 SSP Zeroization Methods | Zeroization Method | Description | Rationale | Operator Initiation | |---------------------------|-----------------------|-----------------------|---------------------| | Reboot | All SSPs are zeroized | SSPs are only stored | Rebooting the host | | | by rebooting the host | in volatile memory | platform must be | | | platform. | and so are zeroized | performed under the | | | | by rebooting the host | control of the | | | | platform. | operator. | Table 19: SSP Zeroization Methods As specified in the SSP Zeroization Methods table, all SSPs/Keys used in the module are zeroized by rebooting the host platform, indicated implicitly via the successful completion of the reboot. Rebooting the host platform must be performed under the control of the operator. # 9.4 SSPs | Name | Description | Size -
Strength | Type -
Category | Generated
By | Established
By | Used By | |-----------------------------------|--|---|-----------------------------|---|-------------------|------------------------------------| | AES Key | Key used for AES operations | 128 to 256
bits | AES Key | External | N/A | AES | | KDF
Secret | Secret used for KDF operations | ≥ 112 bits | KDF
Secret | External or generated per KAS-SSC | N/A | SSH, TLS
v1.2, TLS
v1.3, KDA | | Derived
Key | Key resulting
from the
module's
KDF | ≥ 112 bits | Symmetri
c Key | KDF | N/A | AES | | PBKDF
Password | Password
used for
PBKDF
operations | 8-128 | PBKDF
Password | External | N/A | PBKDF | | PBKDF
Derived
Key | Key resulting
from the
module's
PBKDF | ≥ 112 bits | Symmetri
c Key | KDF | N/A | AES | | KBKDF
Key | Key used for
key based
key
derivation | 112 to 256
bits | KDF Key | External | N/A | KBKDF | | KBKDF
Derived
Key | Key resulting
from the
module's
KBKDF | ≥ 112 bits | Symmetri
c Key | KDF | N/A | AES | | Entropy
Input | Externally
generated
entropy used
to seed the
DRBG | 128 to 256 bits | Entropy | External | N/A | DRBG | | DRBG
Seed | Internal state
for DRBG | 256 bits | DRBG
Seed | Generated
per SP800-
90Ar2 | N/A | DRBG | | DRBG
Key | Internal state
for DRBG | 256 bits | DRBG
Internal
State | Generated per SP800-90Ar2 | N/A | DRBG | | DRBG V | Internal state for DRBG | 256 bits | DRBG
Internal
State | Generated
per SP800-
90Ar2 | N/A | DRBG | | RSA
Signature
Public
Key | Key used
for
RSA
Signature
Verification | ≥ 1024 bits
Strength:
96 to 256
bits | RSA
Signature
Keypair | External or
generated
per FIPS
186-4 | N/A | RSA | | Name | Description | Size -
Strength | Type -
Category | Generated
By | Established
By | Used By | |--------------------------------------|--|--|-------------------------------|---|-------------------|---------------------| | RSA
Signature
Private
Key | Key used for
RSA
Signature
Generation | ≥ 2048 bits
Strength:
112 to 256
bits | RSA
Signature
Keypair | External or
generated
per FIPS
186-4 | N/A | RSA | | ECDSA
Signature
Public
Key | Key used for
ECDSA
Signature
Verification | 192 to 521
bits
Strength:
96 to 256
bits | ECDSA
Signature
Keypair | External or
generated
per FIPS
186-4 | N/A | ECDSA | | ECDSA
Signature
Private
Key | Key used for
ECDSA
Signature
Generation | 224 to 521
bits
Strength:
112 to 256
bits | ECDSA
Signature
Keypair | External or
generated
per FIPS
186-4 | N/A | ECDSA | | HMAC
Key | Key used for HMAC Operations | ≥ 112 bits | HMAC
Key | External | N/A | HMAC | | KMAC
Key | Key used for KMAC Operations | ≥ 112 bits | KMAC
Key | External | N/A | KMAC | | DH Public
Key | DH Public
Key | 2048 –
8192 bits
Strength:
112 to 200
bits | DH
Keypair | External or
generated
per SP800-
56A rev 3 | N/A | KAS-
FFC-SSC | | DH
Private
Key | DH Private
Key | 2048 –
8192 bits
Strength:
112 to 200
bits | DH
Keypair | External or
generated
per SP800-
56A rev 3 | N/A | KAS-
FFC-SSC | | DH
Shared
Secret | DH Shared
Secret | 2048 –
8192 bits
Strength:
112 to 200
bits | DH
Shared
Secret | N/A | Key
agreement | SP800-
56A rev 3 | | EC DH
Public
Key | EC DH Public
Key | 224 - 521
bits
Strength:
112 to 256
bits | EC DH
Keypair | External or
generated
per SP800-
56A rev 3 | N/A | KAS-
ECC-SSC | | EC DH
Private
Key | EC DH
Private Key | 224 - 521
bits
Strength:
112 to 256
bits | EC DH
Keypair | External or
generated
per SP800-
56A rev 3 | N/A | KAS-
ECC-SSC | | EC DH
Shared
Secret | EC DH
Shared
Secret | 112 to 256
bits | EC DH
Shared
Secret | N/A | Key
agreement | SP800-
56A rev 3 | | Name | Description | Size -
Strength | Type -
Category | Generated
By | Established
By | Used By | |----------|-------------|--------------------|--------------------|-----------------|-------------------|---------| | Key | Key | 128 to 256 | Key | External | N/A | KTS | | Wrapping | Wrapping | bits | Wrapping | | | | | Key | Key | | Key | | | | Table 20: SSP Table 1 | Name | Input -
Output | Storage | Storage
Duration | Zeroisation | Related
SSPs | |----------------------|--|------------------------------|---------------------|-------------|---| | AES Key | Input:
Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | N/A | | KDF Secret | Output: N/A Input: Plaintext via API Output: N/A | Plaintext in volatile memory | Until zeroized | Reboot | Used to
derive the
Derived Key | | Derived Key | Input: N/A
Output:
Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Derived from
KDF Secret | | PBKDF
Password | Input:
Plaintext via
API
Output: N/A | Plaintext in volatile memory | Until zeroized | Reboot | Used to
derive the
PBKDF
Derived Key | | PBKDF
Derived Key | Input: N/A Output: Plaintext via API | Plaintext in volatile memory | Until zeroized | Reboot | Derived from PBKDF Password | | KBKDF Key | Input:
Plaintext via
API
Output: N/A | Plaintext in volatile memory | Until zeroized | Reboot | Used to
derive
KBKDF
Derived Key | | KBKDF
Derived Key | Input: N/A Output: Plaintext | Plaintext in volatile memory | Until zeroized | Reboot | Derived from
KBKDF Key | | Entropy Input | N/A | Plaintext in volatile memory | Until zeroized | Reboot | N/A | | DRBG Seed | N/A | Plaintext in volatile memory | Until zeroized | Reboot | Generated from the Entropy Input | | DRBG Key | N/A | Plaintext in volatile memory | Until zeroized | Reboot | Generated from the DRBG Seed | | Name | Input -
Output | Storage | Storage
Duration | Zeroisation | Related
SSPs | |-----------------------------------|---|------------------------------|---------------------|-------------|--| | DRBG V | N/A | Plaintext in volatile memory | Until zeroized | Reboot | Generated
from the
DRBG Seed | | RSA
Signature
Public Key | Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Pair with RSA
Signature
Private Key | | RSA
Signature
Private Key | Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Pair with RSA
Signature
Public Key | | ECDSA
Signature
Public Key | Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Pair with
ECDSA
Signature
Private Key | | ECDSA
Signature
Private Key | Input:
Plaintext via
API
Output: N/A | Plaintext in volatile memory | Until zeroized | Reboot | Pair with
ECDSA
Signature
Public Key | | HMAC Key | Input:
Plaintext via
API
Output: N/A | Plaintext in volatile memory | Until zeroized | Reboot | N/A | | KMAC Key | Input:
Plaintext via
API
Output: N/A | Plaintext in volatile memory | Until zeroized | Reboot | N/A | | DH Public
Key | Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Pair to DH
Private Key | | DH Private
Key | Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Pair to DH
Public Key | | DH Shared
Secret | Input: N/A
Output:
Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | DH Public
Key and
Private Key
Can be used
as the KDF
Secret | | EC DH Public
Key | Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Pair to EC
DH Private
Key | | EC DH
Private Key | Plaintext via
API | Plaintext in volatile memory | Until zeroized | Reboot | Pair to EC
DH Public
Key | | EC DH
Shared
Secret | Input: N/A | Plaintext in volatile memory | Until zeroized | Reboot | EC DH Public
Key and
Private Key | | Name | Input -
Output | Storage | Storage
Duration | Zeroisation | Related
SSPs | |------------------------|---|------------------------------|---------------------|-------------|-------------------------------| | | Output:
Plaintext via
API | | | | Can be used as the KDF Secret | | Key
Wrapping
Key | Input:
Plaintext via
API
Output: N/A | Plaintext in volatile memory | Until zeroized | Reboot | N/A | Table 21: SSP Table 2 # 9.5 Transitions No algorithm or security strength transitions are forecasted to occur over the lifetime of the validation. # 10 Self-Tests ### 10.1 Pre-Operational Self-Tests | Algorithm | Test
Properties | Test
Method | Test Type | Indicator | Details | |--|---|----------------|-----------------------|---|----------------------| | HMAC-
SHA2-256
software
Integrity
Test | HMAC-
SHA2-256
with a 256-
bit key | KAT | Software
Integrity | Successful initialization of the module | HMAC
verification | Table 22: Pre-Operational Self-Tests The module performs Pre-Operational Self-Tests (POSTs) at initialization. While the module is executing the pre-operational self-tests, services are not available, and so input and output are inhibited. After the POST and CASTs are successfully concluded, the module automatically transitions to the operational state. If the POST fails, the module enters the Error state. Self-test results can be obtained using the show status service. ### 10.2 Conditional Self-Tests | Algorithm | Test
Properties | Test
Method | Test
Type | Indicator | Details | Condition s | |-----------|--------------------|----------------|--------------|---|----------------------|---| | НМАС | HMAC-
SHA2-256 | KAT | CAST | Successf
ul
initializati
on of the
module | HMAC
verification | During module initializatio n prior to executing the integrity test | | SHS | | KAT | CAST | Successf
ul
initializati
on of the
module | SHA-512 | Module
Initializatio
n | | SHA3 | | KAT | CAST | Successf
ul
initializati
on of the
module | SHA3-256 | Module
Initializatio
n | | AES GCM | AES-GCM-
256 | KAT | CAST | Successf
ul
initializati
on of the
module | Encrypt,
Decrypt | Module
Initializatio
n | | Algorithm | Test
Properties | Test
Method | Test
Type | Indicator | Details | Condition | |-----------------|---------------------------------------|----------------|--------------|---|---|------------------------------| | AES ECB | AES-ECB-
128 | KAT | CAST | Successf
ul
initializati
on of the
module | Encrypt,
Decrypt | Module
Initializatio
n | | RSA | 2048, SHA-
256,
PKCS#1-
v1.5 | KAT | CAST |
Successf
ul
initializati
on of the
module | Sign, Verify | Module
Initializatio
n | | ECDSA | P-224 | KAT | CAST | Successf
ul
initializati
on of the
module | Sign, Verify | Module
Initializatio
n | | TLS v1.3
KDF | | KAT | CAST | Successf
ul
initializati
on of the
module | TLS v1.3
KDF | Module
Initializatio
n | | TLS v1.2
KDF | | КАТ | CAST | Successf
ul
initializati
on of the
module | TLS 1.2
KDFs | Module
Initializatio
n | | PBKDF2 | | КАТ | CAST | Successf
ul
initializati
on of the
module | Derivation of
the Master
Key | Module
Initializatio
n | | KBKDF | | КАТ | CAST | Successf
ul
initializati
on of the
module | Counter
mode using
HMAC-SHA-
256 | Module
Initializatio
n | | KDA HKDF | | KAT | CAST | Successf
ul
initializati
on of the
module | One-Step
and Two-
Step | Module
Initializatio
n | | KDA
OneStep | | KAT | CAST | Successf
ul
initializati
on of the
module | One-Step
and Two-
Step | Module
Initializatio
n | | DRBG | CTR_DRBG
: AES 128-
bit with DF | KAT | CAST | Successf
ul
initializati | Instantiate,
Generate,
Reseed | Module
Initializatio
n | | Algorithm | Test
Properties | Test
Method | Test
Type | Indicator | Details | Condition s | |------------------------------|---------------------------------------|----------------|----------------------|---|---|------------------------------| | | | | | on of the module | | | | KAS-FFC-
SSC | p=2048,
q=256 | КАТ | CAST | Successf
ul
initializati
on of the
module | dhEphem | Module
Initializatio
n | | KAS-ECC-
SSC | P-256 | КАТ | CAST | Successf
ul
initializati
on of the
module | Ephemeral
Unified | Module
Initializatio
n | | EC Keypair
Generation | Keypair
consistency
test | PCT | PCT | Success
or failure
of service | Sign / Verify
and SP 800-
56Ar3
Assurances
per Section
5.6.2 | Keypair
generation | | RSA
Keypair
Generation | Keypair
consistency
test | PCT | PCT | Success
or failure
of service | Sign / Verify
using
PKCS#1-
v1.5 | Keypair
generation | | FFC
Keypair
Generation | Keypair
consistency
test | PCT | PCT | Success
or failure
of service | SP 800-
56Ar3
Assurances
per Section
5.6.2 | Keypair
generation | | XTS Key
Check | Check to
confirm
Key1 ≠
Key2 | Key
check | Critical
Function | Success
or failure
of service | Per IG C.I | XTS key
entry | Table 23: Conditional Self-Tests All Cryptographic Algorithm Self-Tests (CASTs) are run at initialization along with the POST. This ensures they are run prior to the first operational use of the cryptographic algorithm. As with the POST, once the CASTs are successfully concluded the module automatically transitions to the operational state. If a CAST fails, the module enters the Error state. If a conditional PCT or key check test fails, the service returns an error. ### 10.3 Periodic Self-Test Information Not applicable ### 10.4 Error States | Name | Description | Conditions | Recovery
Method | Indicator | |-------|--------------|--------------|--------------------|---------------| | Error | The module's | POST or CAST | Reload the | Status return | | | error state. | failure | module | code | Table 24: Error States The module has a single error state. While in this state, the module provides no cryptographic functionality and inhibits all data output. # 10.5 Operator Initiation of Self-Tests The module's POST and CASTs can be run anytime using the On-Demand Self-Test service by calling OSSL_PROVIDER_self_test(), or by reloading the module. # 11 Life-Cycle Assurance ### 11.1 Installation, Initialization, and Startup Procedures The Hewlett Packard Enterprise OpenSSL 3 Provider Module is one of the components within Hewlett Packard Enterprise products. Full details about configuring Hewlett Packard Enterprise products can be found in the product documentation. The module is initialized by loading the shared library and executing the Initialize Module service. ### 11.2 Administrator Guidance Complete Crypto Officer documentation for the Hewlett Packard Enterprise OpenSSL 3 Provider is provided in the module's Administrator guidance documentation. The module's Show Version service can be invoked by obtaining OSSL_PROV_PARAM_NAME and OSSL_PROV_PARAM_VERSION using OSSL_PROVIDER_get_params(). The module will return the following values: | | Parameter | Value | |---------|-------------------------|--------------------------------------| | Name | OSSL_PROV_PARAM_NAME | Hewlett Packard Enterprise OpenSSL 3 | | | | Provider | | Version | OSSL_PROV_PARAM_VERSION | 3.1.4a | The module always operates in Approved mode. The Crypto Officer must ensure the following runtime checks, which are enabled by default, are not disabled in the configuration file or using any other method: - security-checks - tls1-prf-ems-check - hpe-hmac-min-key-len #### 11.3 Non-Administrator Guidance Complete User documentation for the Hewlett Packard Enterprise OpenSSL 3 Provider is provided in the module's Administrator guidance documentation. Keys derived from passwords (using PBKDF) shall only be used for storage applications. #### 11.6 Fnd of Life Details about end-of-life procedures for Hewlett Packard Enterprise products can be found in the product documentation. The module itself does not have any special end of life procedures. All SSPs can be zeroized by restarting the host platform. # 12 Mitigation of Other Attacks ### 12.1 Attack List The module mitigates against timing-based side-channel attacks using constant-time implementations and blinding. ### 12.2 Mitigation Effectiveness Constant-time Implementations protect cryptographic implementations in the Module against timing analysis since such attacks exploit differences in execution time depending on the cryptographic operation, and constant-time implementations ensure that the variations in execution time cannot be traced back to the key, CSP or secret data. Numeric Blinding protects the RSA and ECDSA algorithms from timing attacks. These algorithms are vulnerable to such attacks since attackers can measure the time of signature operations or RSA decryption. To mitigate this the Module generates a random blinding factor which is provided as an input to the decryption/signature operation and is discarded once the operation has completed and resulted in an output. This makes it difficult for attackers to attempt timing attacks on such operations without the knowledge of the blinding factor and therefore the execution time cannot be correlated to the RSA/ ECDSA key. ### 12.3 Guidance and Constraints These mitigations are enabled by default.