FIPS 140 - 3 Non-Proprietary Security Policy for:

### Toshiba Secure TCG Opal SSC Self-Encrypting Drive Series

 $\bigcirc$ TOSHIBA 12 Θ CP16TA E .91 **@**X 16**T**B ashiba Electronice Europe Genth - UK branch a Road, KTIS 910 Weybridge Survey, UK 123345678901234567890123456789012 TY VOID IF ANY LABEL~SCREW 非确实的通 OVED OR BROKEN. CAN ICEE-3197448-3(8) YED OR BROKEN. CAN ICES-318)// Instrumic Devices & Storage Corporat 含有情況構示 vou edd toehiba com tu/bes

MG09SCP18TA and MG09SCP16TA

1

Prepared by: TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION Rev 2.4.0

| TOSI | HIBA SECURE TCG OPAL SSC SELF-ENCRYPTING DRIVE SERIES |
|------|-------------------------------------------------------|
| 1.   | GENERAL                                               |
| 1.1  | ACRONYMS                                              |
| 2.   | CRYPTOGRAPHIC MODULE SPECIFICATION                    |
| 2.1  |                                                       |
| 2.2  | ALL SECURITY FUNCTIONS                                |
| 3.   | CRYPTOGRAPHIC MODULE INTERFACES                       |
| 4.   | ROLES, SERVICES, AND AUTHENTICATION                   |
| 4.1  | Roles                                                 |
| 4.2  | SERVICES                                              |
| 5.   | SOFTWARE/FIRMWARE SECURITY11                          |
| 6.   | OPERATIONAL ENVIRONMENT                               |
| 7.   | PHYSICAL SECURITY                                     |
| 8.   | NON-INVASIVE SECURITY                                 |
| 9.   | SENSITIVE SECURITY PARAMETERS MANAGEMENT 12           |
| 10.  | SELF-TESTS 14                                         |
| 11.  | LIFE-CYCLE ASSURANCE                                  |
| 12.  | MITIGATION OF OTHER ATTACKS                           |

#### 1. General

The Toshiba Secure TCG Opal SSC Self-Encrypting Drive Series (MG09SCP18TA and MG09SCP16TA) is used for hard disk drive data security. The security levels for this Cryptographic Module (CM) are as follows:

| ISO/IEC 24759 Section 6. | FIPS 140-3 Section Title                | Security |
|--------------------------|-----------------------------------------|----------|
| [Number Below]           |                                         | Level    |
| 1                        | General                                 | 1        |
| 2                        | Cryptographic module specification      | 1        |
| 3                        | Cryptographic module interfaces         | 1        |
| 4                        | Roles, services, and authentication     | 1        |
| 5                        | Software/Firmware security              | 2        |
| 6                        | Operational environment                 | 1        |
| 7                        | Physical security                       | 1        |
| 8                        | Non-invasive security                   | N/A      |
| 9                        | Sensitive security parameter management | 1        |
| 10                       | Self-tests                              | 1        |
| 11                       | Life-cycle assurance                    | 1        |
| 12                       | Mitigation of other attacks             | N/A      |
|                          | Overall Level                           | 1        |

#### Table 1: Security Levels

This document is non-proprietary and may be reproduced in its original entirety.

#### 1.1 Acronyms

| AES                    | Advanced Encryption Standard                                                         |
|------------------------|--------------------------------------------------------------------------------------|
| $\mathbf{C}\mathbf{M}$ | Cryptographic Module                                                                 |
| CSP                    | Critical Security Parameter                                                          |
| DRBG                   | Deterministic Random Bit Generator                                                   |
| EBG                    | Entropy Bit Generator                                                                |
| FW                     | Firmware                                                                             |
| HMAC                   | Keyed-Hashing for Message Authentication code                                        |
| KAT                    | Known Answer Test                                                                    |
| LBA                    | Logical Block Address                                                                |
| PCA                    | Printed Circuit Assembly                                                             |
| POST                   | Power on Self-Test (pre-operational self-tests and conditional algorithm self-tests) |
| SoC                    | System on Chip                                                                       |
| SSC                    | Security Subsystem Class                                                             |
| SED                    | Self-Encrypting Drive                                                                |
| SHA                    | Secure Hash Algorithm                                                                |
| SID                    | Security ID                                                                          |
| TCG SW                 | G Trusted Computing Group Storage Work Group                                         |
| TOEPP                  | Tested Operational Environment's Physical Perimeter                                  |
|                        |                                                                                      |

### 2. Cryptographic Module Specification

This CM provides various cryptographic services using approved algorithms. Services include hardware-based data encryption, cryptographic erase, independently protected user data LBA ranges, and FW Download. The CM always encrypts the user data, protects CSPs from unauthorized access, and provides secure sanitization methods by supporting TCG Opal SSC features. The operational rules described in this document adheres to TCG Opal.

This CM is a multiple-chip-embedded hardware cryptographic module. The cryptographic boundary of the CM is the entire HDD. The physical interface for power-supply and for communication is one SAS connector. The CM is connected with host system by this SAS connector. The logical interface is the SAS, TCG SWG and Opal SSC.

The CM has the non-volatile storage area for not only user data but also the keys, CSPs, and FW. The latter storage area is called the "system area", which is not logically accessible / addressable by the host application.

The CM has one approved mode of operation and CM is always in approved mode of operation. The CM provides only approved services defined in 4.2. Non-approved security functions are not implemented.

#### 2.1 Product Version

The Toshiba Secure TCG Opal SSC SED has been validated in the following versions:

| Model       | Hardware [Part Number and Version] | Firmware<br>Version | Distinguishing Features |
|-------------|------------------------------------|---------------------|-------------------------|
| MG09SCP18TA | A0                                 | PC82                | SAS interface, 18TB     |
| MG09SCP16TA | A0                                 | PC82                | SAS interface, 16TB     |

The tested platform is Toshiba Cryptographic Hardware 88i1215-B1. The CM does not employ any operating system.

#### Table 2: Cryptographic Module Tested Configuration

#### 2.2 All Security Functions

The CM does not implement any non-approved algorithms allowed in the approved mode of operation. It does not implement any non-approved algorithms allowed in the approved mode of operation with no security claimed. It does not implement any non-approved algorithms not allowed in the approved mode of operation.

| CAVP Certs | Algorithm and | Mode/Method | Description / Key Size(s) / | Use/Function           |
|------------|---------------|-------------|-----------------------------|------------------------|
|            | Standard      |             | Key Strength                |                        |
| A1637      | RSA, FIPS     | RSASSA-     | Modulus: 3072bits,          | Digital signature      |
|            | PUB 186-4     | PKCS#1-v1_5 | Key Strength: 128bits       | verification           |
| A1637      | SHS, FIPS     | SHA2-256    | -                           | Message digest for RSA |
|            | PUB 180-4     | (BYTE-only) |                             |                        |
| A1638      | AES, FIPS     | CBC         | Key Size: 256bits,          | Data encryption /      |
|            | PUB 197-      |             | Key Strength: 256bits       | decryption             |

| CAVP Certs      | Algorithm and<br>Standard                                                                              | Mode/Method             | Description / Key Size(s) /<br>Key Strength                                          | Use/Function                                                                   |
|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                 | upd1, SP800-<br>38A                                                                                    |                         |                                                                                      |                                                                                |
| A1638           | AES,         FIPS           PUB         197-           upd1,         SP800-           38E         100- | XTS                     | Key Size (Key_1): 256bits,<br>Key Size (Key_2): 256bits,<br>Key Strength: 256bits    | Data encryption /<br>decryption                                                |
| A1638           | HMAC, FIPS<br>PUB 198-1                                                                                | SHA2-256                | Key Size: 256bits,<br>Key Strength: 256bits,<br>KS < BS                              | Message authentication<br>for data integrity<br>verification of system<br>area |
| A1638           | SHS, FIPS<br>PUB 180-4                                                                                 | SHA2-256<br>(BYTE-only) | -                                                                                    | Message digest for HMAC                                                        |
| A1645           | Hash-DRBG,<br>SP800-90A<br>rev1                                                                        | SHA2-256                | Prediction Resistance :<br>False                                                     | Deterministic random bit generation                                            |
| A1645           | SHS, FIPS<br>PUB 180-4                                                                                 | SHA2-256<br>(BYTE-only) | -                                                                                    | Message digest for DRBG                                                        |
| ENT (P)         | SP800-90B                                                                                              | -                       | -                                                                                    | Seed generation for Hash-<br>DRBG                                              |
| Vendor Affirmed | CKG, SP800-<br>133rev2                                                                                 | -                       | An output of the hash-<br>DRBG is directly used.<br>(Section 4 of SP800-<br>133rev2) | Key generation                                                                 |

There are algorithms, modes, and keys that have been CAVP tested but not used by the module. Only the algorithms, modes/methods, and key lengths/curves/moduli shown in this table are used

by the module.  $% \label{eq:constraint}$ 

#### Table 3: Approved Algorithms



Figure 1: MG09SCP16TA

Figure 2: MG09SCP18TA

Figure 3: PCA side



Figure 4: Side of the device

Figure 5: SAS port

Figure 6: Side of the device

Figure 7 shows the CM's block diagram. In this diagram, the cryptographic boundary of the CM, defined by the enclosure of the MG09SCP18TA and the MG09SCP16TA, is indicated by a dashed line. It includes the SAS connector, the SoC, the buffer DRAM, the flash ROM and the magnetic storage medium.

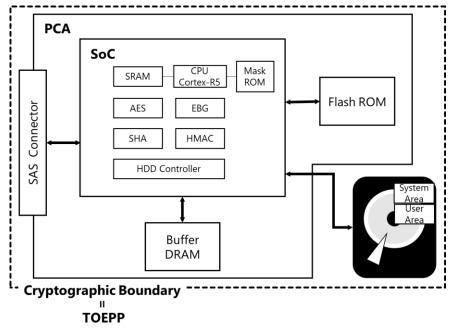



Figure 7: Block Diagram

### 3. Cryptographic Module Interfaces

The CM does not implement any control output interface.

| Physical port | Logical interface                                         | Data that passes over port / interface      |
|---------------|-----------------------------------------------------------|---------------------------------------------|
| SAS connector | Data input interface                                      | User data, FW data                          |
| SAS connector | Data output interface                                     | User data                                   |
| SAS connector | Control input interface SAS control input data (ex. comma |                                             |
|               |                                                           | data frame)                                 |
| N/A           | Control output interface                                  | N/A                                         |
| SAS connector | Status output interface                                   | SAS status output data (ex. response frame, |
|               |                                                           | data frame)                                 |
| SAS connector | Power interface                                           | N/A                                         |

All data, status, control, and power interfaces above use a single SAS connector that contains multiple pins for power supply, data transmission, and signal exchange.

#### **Table 4: Ports and Interfaces**

#### 4. Roles, Services, and Authentication

This section describes roles and services the CM supports. The CM supports 14 Crypto Officer roles listed in Table 5. The roles listed in Table 5 are all Crypto Officer roles.

The CM does not implement any Non-Approved Services.

#### 4.1 Roles

| Role <sup>1</sup>    | Service                                          | Input                                                                | Output                                   |
|----------------------|--------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|
| LockingSP.Ad<br>min1 | Enable / Disable LockingSP<br>Admin/User         | Security Protocol Out command                                        | Command<br>response                      |
| <br>LockingSP.Ad     | Range Lock/Unlock                                | •                                                                    |                                          |
| min4                 | Set range position and size<br>TCG Reactivate    | -                                                                    |                                          |
|                      | TCG Cryptographic Erase<br>(Erase)               |                                                                      |                                          |
|                      | TCG Cryptographic Erase<br>(GenKey)              |                                                                      |                                          |
|                      | Zeroization (without RKey)                       |                                                                      |                                          |
| LockingSP.Us<br>er1  | Range Lock/Unlock                                | Security Protocol Out command                                        | Command<br>response                      |
| <br>LockingSP.Us     | Set range position and size                      | -                                                                    |                                          |
| er9                  | TCG Cryptographic Erase<br>(Erase)               | -                                                                    |                                          |
|                      | TCG Cryptographic Erase<br>(GenKey) <sup>2</sup> |                                                                      |                                          |
| AdminSP.SID          | TCG activate                                     | Security Protocol Out command                                        | Command                                  |
|                      | Firmware Download                                | Security Protocol Out command<br>and Write Buffer command with<br>FW | response                                 |
| None                 | Reset (run POSTs)                                | Power on reset command                                               | Command<br>response                      |
|                      | Data read / write                                | Read/Write commands with User data                                   | Command<br>response,<br>User data        |
|                      | Random number generation                         | Security Protocol Out command                                        | Command<br>response,<br>Random<br>number |
|                      | Show status                                      | Request Sense command                                                | Command<br>response,<br>Status           |
|                      | Zeroization (with RKey)<br>(using PSID)          | Security Protocol Out command                                        | Command<br>response                      |
|                      | Cryptographic Sanitization                       | Sanitize command                                                     |                                          |
|                      | Show versioning information                      | Inquiry command                                                      | Command<br>response,<br>Versioning       |

<sup>1</sup> TCG Authority (LockingSP.Admin1-4, AdminSP.Admin1, LockingSP.User1-9 or AdminSP.SID) can be assumed by using TCG Start Session method.

<sup>2</sup> Available only when the CM uses TCG Single User Mode functionality. The CM is always in 140-3 approved mode of operation regardless of this functionality.

| Role <sup>1</sup> | Service                   | Input        | Output      |
|-------------------|---------------------------|--------------|-------------|
|                   |                           |              | information |
|                   |                           |              |             |
|                   | Non-security relevant HDD | SCSI command | Command     |
|                   | service                   |              | response    |

 Table 5: Roles, Service Commands, Input and Output

#### 4.2 Services

The CM supports the TCG Single User Mode functionality defined in the Single User Mode feature set of TCG Opal. A single role (LockingSP.Userx) is assigned to manage the associated range (range X) during the TCG single user mode. The LockingSP.Reactivate or LockingSP.Activate method enables this mode. Authorized roles of some services differ when the CM is in single user mode. About such services, the Role(s) column in Table 6 is divided into two rows. The upper row shows authorized roles in non-single user mode (normal mode), while the lower row shows authorized roles against range X in single user mode.

The CM provides the following services to operators per Section 7.4.3.1 of ISO/IEC 19790\_2012\_2015:

- Show module's versioning information: Show versioning information service
- Show status: Show Status service
- Perform self-test: Reset (run POSTs) service
- Perform zeroization: Zeroization (with RKey) service, Zeroization (without RKey) services
- Perform approved security functions: Services indicated with Approved Security Functions in Table 6

The modes of access to SSPs shown in Table 6 are defined as:

G = Generate: The module generates or derives the SSP.

R = Read: The SSP is read from the module (e.g. the SSP is output).

W = Write: The SSP is updated, imported, or written to the module.

E = Execute: The module uses the SSP in performing a cryptographic operation.

Z = Zeroise: The module zeroises the SSP.

| Service                                     | Description                                                                                               | Approved<br>Security<br>Functions | Keys<br>and/or<br>SSPs | Role(s) | Access<br>rights<br>to Keys<br>and/or<br>SSPs | Indicator           |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|---------|-----------------------------------------------|---------------------|
| Data<br>read/write<br>(decrypt/encry<br>pt) | Encryption / decryption of<br>unlocked user data to/from<br>range<br>Method: SCSI READ, WRITE<br>commands | AES256-XTS                        | MEK(s)                 | None    | Ε                                             | Command<br>response |

| Service                                       | Description                                                                                                                                                                                                     | Approved<br>Security<br>Functions                                                               | Keys<br>and/or<br>SSPs                               | Role(s)                                                                                     | Access<br>rights<br>to Keys<br>and/or<br>SSPs | Indicator           |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|
| Enable<br>/Disable<br>LockingSP<br>Admin/User | Enable/Disable LockingSP<br>Admin/User (except for-<br>Single-User-Data-Range<br>User) Authority<br>Method: SECURITY<br>PROTOCOL OUT command<br>(TCG Set Method)                                                | HMAC<br>SHA2-<br>256(A1638)                                                                     | N/A                                                  | LockingSP.A<br>dminx                                                                        | N/A                                           | Command<br>response |
| Random<br>Number<br>generation                | Provide a random number<br>generated by the CM<br>Method: SECURITY<br>PROTOCOL OUT command<br>(TCG Random)                                                                                                      | Hash_DRBG<br>SHA2-<br>256(A1645)                                                                | DRBG C<br>Vector<br>DRBG V<br>Vector                 | None                                                                                        | E                                             | Command<br>response |
| Range<br>Lock/Unlock                          | Block or allow read (decrypt)<br>/ write (encrypt) of user<br>data in a range. Locking<br>also requires read/write<br>locking to be enabled<br>Method:<br>-SECURITY PROTOCOL<br>OUT command (TCG Set<br>Method) | HMAC<br>SHA2-<br>256(A1638)                                                                     | RKey<br>MEK(s)                                       | LockingSP.A<br>dminx/Locki<br>ngSP.Userx<br>(LockingSP<br>is active)<br>LocknigSP.<br>Userx | E<br>E                                        | Command<br>response |
| Set range<br>position and<br>size             | Set the location and size of the<br>LBA range<br>Method: SECURITY<br>PROTOCOL OUT command<br>(TCG Set Method)                                                                                                   | Hash_DRBG<br>SHA2-<br>256(A1645)<br>AES256-CBC<br>HMAC<br>SHA2-<br>256(A1638)<br>ENT (P)<br>CKG | MEK(s)<br>RKey                                       | LockingSP.A<br>dminx<br>LockingSP.A<br>dminx<br>or<br>LockingSP.<br>Userx                   | G<br>E                                        | Command<br>response |
| Reset<br>(run POSTs)                          | Perform self-tests and delete<br>CSPs in SRAM<br>Method: Power on reset<br>command                                                                                                                              | RSASSA-<br>PKCS#1-v1_5<br>SHA2-<br>256(A1637)                                                   | DRBG C<br>Vector<br>DRBG V<br>Vector<br>Seed<br>RKey | None                                                                                        | G, Z<br>G, Z<br>G, E, Z<br>E                  | Command<br>response |
| TCG<br>reactivate                             | Switch from/to TCG Opal<br>single user mode<br>Method: SECURITY<br>PROTOCOL OUT command<br>(TCG Reactivate)                                                                                                     | HMAC<br>SHA2-<br>256(A1638)                                                                     | N/A                                                  | LockingSP.A<br>dminx                                                                        | N/A                                           | Command<br>response |
| Show Status                                   | Report status of the CM<br>Method: REQUEST SENSE<br>command                                                                                                                                                     | N/A                                                                                             | N/A                                                  | None                                                                                        | N/A                                           | Command<br>response |

| Service                                   | Description                                                                                                                                                                                                                | Approved<br>Security<br>Functions                                                               | Keys<br>and/or<br>SSPs                               | Role(s)                                            | Access<br>rights<br>to Keys<br>and/or<br>SSPs | Indicator           |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|---------------------|
| TCG Activate                              | Activate LockingSP<br>Method: SECURITY<br>PROTOCOL OUT command<br>(AdminSP.activate)                                                                                                                                       | Hash_DRBG<br>SHA2-<br>256(A1645)<br>AES256-CBC<br>HMAC<br>SHA2-<br>256(A1638)                   | MEK(s)<br>(except<br>for<br>Global<br>Range)<br>RKey | AdminSP.SI<br>D                                    | G                                             | Command<br>response |
| TCG<br>Cryptographic<br>Erase (Erase)     | Erase user data (in<br>cryptographic means) in an<br>LBA range by changing the<br>data encryption key. This<br>method is available only in<br>single user mode.<br>Method: SECURITY<br>PROTOCOL OUT command<br>(TCG Erase) | Hash_DRBG<br>SHA2-<br>256(A1645)<br>AES256-CBC<br>HMAC<br>SHA2-<br>256(A1638)<br>ENT (P)<br>CKG | MEK(s)<br>RKey                                       | N/A<br>LocknigSP.<br>Userx<br>LockingSP.A<br>dminx | G, Z<br>E                                     | Command<br>response |
| TCG<br>Cryptographic<br>Erase<br>(GenKey) | Erase user data (in<br>cryptographic means) in an<br>LBA range by changing the<br>data encryption key.<br>Method: SECURITY<br>PROTOCOL OUT command<br>(TCG GenKey)                                                         | Hash_DRBG<br>SHA2-<br>256(A1645)<br>AES256-CBC<br>HMAC<br>SHA2-<br>256(A1638)<br>ENT (P)<br>CKG | MEK(s)<br>RKey                                       | LockingSP.A<br>dminx<br>LockingSP.<br>Userx        | G, Z<br>E                                     | Command<br>response |
| Zeroization<br>(with RKey)                | Initialize the CM by zeroizing<br>RKey, MEKs, and range<br>configuration.<br>Method: SECURITY<br>PROTOCOL OUT command (<br>- AdminSPObj.Revert <sup>3</sup><br>)                                                           | Hash_DRBG<br>SHA2-<br>256(A1645)<br>AES256-CBC<br>HMAC<br>SHA2-<br>256(A1638)<br>ENT (P)<br>CKG | MEK(s)<br>RKey                                       | None (using<br>PSID <sup>4</sup> )                 | G, Z<br>G, E, Z                               | Command<br>response |
| Zeroization<br>(without<br>RKey)          | Initialize the CM by zeroizing<br>MEKs, and range<br>configuration.<br>Method: SECURITY<br>PROTOCOL OUT command (<br>- LockingSP.RevertSP <sup>3</sup><br>- LockingSPObj.Revert <sup>3</sup><br>)                          | Hash_DRBG<br>SHA2-<br>256(A1645)<br>AES256-CBC<br>HMAC<br>SHA2-<br>256(A1638)<br>ENT (P)<br>CKG | MEK(s)<br>RKey                                       | LockingSP.A<br>dminx                               | G, Z<br>E                                     | Command<br>response |

 <sup>&</sup>lt;sup>3</sup> AdminSPObj.Revert, LockingSP.RevertSP, LockingSPObj.Revert are methods of TCG Opal SSC.
 <sup>4</sup> PSID (Printed SID) is public drive-unique value which is used for the TCG Revert AdminSP method. PSID is printed on the HDD's product label.

| Service                                 | Description                                                                                                                                                                                                                                          | Approved<br>Security<br>Functions                                                               | Keys<br>and/or<br>SSPs | Role(s)         | Access<br>rights<br>to Keys<br>and/or<br>SSPs | Indicator           |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|-----------------|-----------------------------------------------|---------------------|
| Firmware<br>Download                    | Enable / Disable firmware<br>download and load a part of a<br>firmware image. If the<br>firmware load test passes, the<br>CM will run with the new<br>code.<br>Method: SECURITY<br>PROTOCOL OUT command<br>(TCG Set Method), WRITE<br>BUFFER command | RSASSA-<br>PKCS#1-v1_5<br>SHA2-<br>256(A1637)<br>HMAC<br>SHA2-<br>256(A1638)                    | PubKey                 | AdminSP.SI<br>D | Е                                             | Command<br>response |
| Cryptographic<br>Sanitization           | Erase user data by changing<br>the data encryption key.<br>This service is available only<br>when all ranges are unlocked.<br>Method: SANITIZE<br>CRYPTOGRAPHIC ERASE<br>command                                                                     | Hash_DRBG<br>SHA2-<br>256(A1645)<br>AES256-CBC<br>HMAC<br>SHA2-<br>256(A1638)<br>ENT (P)<br>CKG | MEK(s)<br>RKey         | None            | G, Z<br>E                                     | Command<br>response |
| Show<br>versioning<br>information       | Output the model name, HW<br>version and FW version of the<br>CM.<br>Method: INQUIRY Standard<br>Inquiry data command with<br>Byte 32-35 (FW version), VPD<br>Page C2, Byte 4-5 (HW<br>version)                                                      | N/A                                                                                             | N/A                    | None            | N/A                                           | Command<br>response |
| Non-security<br>relevant HDD<br>service | Provide a HDD general<br>service<br>Method: SCSI commands                                                                                                                                                                                            | N/A                                                                                             | N/A                    | None            | N/A                                           | Command<br>response |

 Table 6: Approved Services

#### 5. Software/Firmware Security

FW integrity check is performed at power on. Signature verification using RSASSA-PKCS#1-v1\_5 of the FW codes (in the flash ROM and in the disk media) and EDC verification of the FW code in the Mask ROM are done. The operator can initiate the on-demand FW integrity check by power cycling. All firmware components are in executable form, which cannot be dynamically modified.

### 6. Operational Environment

The CM is a hardware module and operates in a non-modifiable operational environment, that is its firmware cannot be modified and no code can be added or deleted. SSPs are controlled by the CM itself, and uncontrolled access to CSPs and uncontrolled modifications of SSPs are prevented. Although firmware can be updated by "Firmware Download" service, whole FW codes (in the flash ROM and in the disk media) are replaced by this service, and the module becomes another module

which requires new 140-3 certification.

### 7. Physical Security

The CM has the following physical security:

- Production-grade components with standard passivation
- Exterior of the drive is opaque

The operator is required to periodically inspect the enclosure condition of the CM.

#### 8. Non-Invasive Security

The CM does not employ non-invasive mitigation techniques referenced in NIST SP800-140F.

### 9. Sensitive Security Parameters Management

The CM uses SSPs in the following tables:

| Key/SSP/Name/<br>Type   | Strength | Security<br>function and<br>cert. number | Generation                                                                                              | Import/<br>export | $\mathbf{Establishment}$                                            | Storage                                                                                                                         | Zeroization                                                            | Use & related keys                                                                                            |
|-------------------------|----------|------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| MEKs/ CSP/<br>Symmetric | 256      | AES-<br>XTS(A1638)                       | By Hash-<br>DRBG<br>(A1645)<br>CKG, SP800-<br>133rev2<br>Compliant<br>with IG C.I<br>(Key_1 ≠<br>Key_2) | No                | Sanitization",                                                      | Encrypte<br>d by<br>RKey / in<br>System<br>area<br>/Static<br>/Static<br>Plain/ in<br>SRAM<br>(SoC<br>register)<br>/Dynami<br>c | Cryptograph<br>ic Erase<br>(Erase /<br>GenKey)",<br>and<br>"Cryptograp | User data<br>encryption and<br>decryption (only for<br>storage purpose)<br>Encrypted and<br>decrypted by RKey |
| RKey/ CSP/<br>Symmetric | 256      | AES-<br>CBC(A1638)                       | By Hash-<br>DRBG<br>(A1645)<br>CKG, SP800-<br>133rev2                                                   | No                | After<br>"Zeroization<br>(with RKey)"<br>service.<br>In the factory | Obfuscat<br>ed (plain<br>in 140-3<br>means) /<br>in<br>System<br>area<br>/Static                                                | By<br>"Zeroization<br>(with RKey)"<br>service<br>(explicitly)          | Encryption and<br>decryption of MEKs                                                                          |

| Key/SSP/Name/<br>Type                     | Strength         | Security<br>function and<br>cert. number | Generation           | Import/<br>export |                                                                                                                                                                                                                                                                                                                | Storage                                                          | Zeroization                                       | Use & related keys            |
|-------------------------------------------|------------------|------------------------------------------|----------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-------------------------------|
|                                           |                  |                                          |                      |                   | By "Zeroization<br>(with RKey<br>/without RKey)",<br>"TCG<br>Cryptographic<br>Erase (Erase/<br>GenKey)",<br>"Cryptographic<br>Sanitization",<br>"TCG Activate",<br>"Set range<br>position and<br>size", and<br>"Range<br>Lock/Unlock"<br>services.<br>By "Reset"<br>service (when<br>the range is<br>unlocked) |                                                                  | After use<br>(implicitly)                         |                               |
| Seed/ CSP/ DRBG<br>seed <sup>5</sup>      | N/A <sup>6</sup> | Hash-<br>DRBG(A1645),<br>Entropy source  | By Entropy<br>source | No                | At instantiation<br>(SP800-90Arev1)                                                                                                                                                                                                                                                                            |                                                                  |                                                   | Instantiation of<br>Hash_DRBG |
| DRBG C Vector<br>/CSP /internal<br>state  | N/A6             | Hash-<br>DRBG(A1645)                     | By DRBG              | No                | At instantiation<br>(SP800-90Arev1)                                                                                                                                                                                                                                                                            |                                                                  |                                                   | Random number<br>generation   |
| DRBG V Vector /<br>CSP/ internal<br>state | $N/A^6$          | Hash-<br>DRBG(A1645)                     | By DRBG              | No                | At instantiation<br>(SP800-90Arev1)                                                                                                                                                                                                                                                                            |                                                                  |                                                   | Random number<br>generation   |
| PubKey/ PSP/<br>Public                    | Key              | RSASSA-<br>PKCS#1-<br>v1_5(A1637)        | Manufacturi<br>ng    | No                | In the factory                                                                                                                                                                                                                                                                                                 | Plain /<br>Embedde<br>d in FW<br>in<br>system<br>area<br>/Static | "Firmware<br>Download"<br>service<br>(explicitly) | Signature<br>verification     |
|                                           | :128             |                                          |                      |                   | By "Firmword                                                                                                                                                                                                                                                                                                   |                                                                  | By power-off<br>(implicitly)                      |                               |

#### Table 8: SSPs

Note that there is no security-relevant audit feature and audit data.

<sup>&</sup>lt;sup>5</sup> Entropy input string and nonce.

<sup>&</sup>lt;sup>6</sup> The security strength of Hash\_DRBG is 256 bits.

| Entropy sources | Minimum number of bits of | Details                                                                                                                                                                             |
|-----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | entropy                   |                                                                                                                                                                                     |
| Entropy source  | 0.6 / 1                   | Physical noise source used to seed the approved Hash-<br>DRBG. The overall amount of generated entropy is 48<br>bytes.<br>This entropy source meets NIST SP800-90B<br>requirements. |

Table 9: Non-Deterministic Random Number Generation Specification

If the source may deteriorate to the point when the generation of the sufficient amount of entropy can no longer be guaranteed, health test detects the source deterioration, enter an error state, and halts the CM. When the CM continuously enters in error state in spite of several trials of reboot, the CM shall be sent back to factory to recover from error state.

### 10. Self-Tests

The CM runs self-tests in the following table.

| Function                    | Self-test type                                         | Description                                                                                                                                                                                       | Operator<br>initiation | Failure behavior                                                                                                                       |
|-----------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Firmware<br>integrity check | Pre-operational<br>software/firmware<br>integrity test | EDC (32bits)<br>verification of the<br>firmware in the Mask<br>ROM<br>Signature verification<br>of the firmware in the<br>flash ROM by<br>RSASSA-PKCS#1-<br>v1_5 with a 3072-bit<br>Modulus using | Power-cycle            | Boot error state<br>The CM is not accessible<br>via SAS interface<br>Boot error state<br>The CM is not accessible<br>via SAS interface |
|                             |                                                        | "PubKey2"<br>Signature verification<br>of the firmware in the<br>disk media by<br>RSASSA-PKCS#1-<br>v1_5 with a 3072-bit<br>Modulus using<br>"PubKey2"                                            |                        | Boot error state<br>Status: CHECK<br>CONDITION(02h), Sense<br>Data: 04 4C 9F                                                           |
| AES CBC                     | Conditional<br>cryptographic<br>algorithm test         | Encrypt KAT with a<br>256-bit key<br>Decrypt KAT with a<br>256-bit key                                                                                                                            | Power-cycle            | Boot error state<br>Status: CHECK<br>CONDITION(02h), Sense<br>Data: 04 44 92                                                           |
| AES XTS                     | Conditional<br>cryptographic<br>algorithm test         | Encrypt KAT with a<br>256-bit key<br>Decrypt KAT with a<br>256-bit key                                                                                                                            | Power-cycle            |                                                                                                                                        |
| SHA2-<br>256(A1637)         | Conditional<br>cryptographic<br>algorithm test         | Digest KAT                                                                                                                                                                                        | Power-cycle            |                                                                                                                                        |
| SHA2-<br>256(A1638)         | Conditional<br>cryptographic<br>algorithm test         | Digest KAT                                                                                                                                                                                        | Power-cycle            |                                                                                                                                        |
| SHA2-<br>256(A1645)         | Conditional<br>cryptographic                           | Digest KAT                                                                                                                                                                                        | Power-cycle            |                                                                                                                                        |

|                | algorithm test    |                         |             |                            |
|----------------|-------------------|-------------------------|-------------|----------------------------|
| Hash DRBG      | Conditional       | DRBG KAT for            | Power-cycle |                            |
|                | cryptographic     | instantiate and         |             |                            |
|                | algorithm test    | generate functions      |             |                            |
| HMAC           | Conditional       | Digest KAT              | Power-cycle |                            |
|                | cryptographic     |                         |             |                            |
|                | algorithm test    |                         |             |                            |
| RSASSA-        | Conditional       | Signature verification  | Power-cycle |                            |
| PKCS#1-v1_5    | cryptographic     | KAT with a 3072-bit     |             |                            |
|                | algorithm test    | Modulus                 |             |                            |
|                |                   |                         |             |                            |
|                |                   |                         |             |                            |
| Entropy source | Conditional       | SP800-90B Start-up      | Power-cycle | Boot error state           |
|                | cryptographic     | health test (repetition |             | Status: CHECK              |
|                | algorithm test    | count test, adaptive    |             | CONDITION(02h), Sense      |
|                |                   | proportion test)        |             | Data: 04 40 91             |
|                |                   | SP800-90B               | Power-cycle | Error state (conditional   |
|                |                   | Continuous health       |             | test)                      |
|                |                   | test (repetition count  |             | Status: CHECK              |
|                |                   | test, adaptive          |             | CONDITION(02h), Sense      |
|                |                   | proportion test)        |             | Data: 04 44 92             |
| Firmware       | Conditional       | Signature verification  | N/A         | Error state (FW Load Test) |
| load test      | software/firmware | of firmware image by    |             | Status: CHECK              |
|                | load test         | RSASSA-PKCS#1-          |             | CONDITION(02h), Sense      |
|                |                   | v1_5 with a 3072-bit    |             | Data: 0B 74 08             |
|                |                   | Modulus                 |             | The CM discards the new    |
|                |                   |                         |             | firmware image, then       |
|                |                   |                         |             | enters the Idle state      |

The public verification key "PubKey2" used in firmware integrity check resides within the MaskROM code and is not a SSP.

SHA2-256(A1637) is embedded in RSASSA-PKCS#1-v1\_5, while SHA2-256(A1638) is used in HMAC, and SHA2-256(A1645) is employed in Hash DRBG.

The CM does not implement reseed function of Hash DRBG.

### Table 10: Self-Tests

If the CM fails the self-test, it enters one of three error states: Error State (Conditional Test), Error State (FW Load Test), or Boot Error State. If the SP800-90B continuous health test fails, it enters Error State (Conditional Test); if the firmware load test fails, it goes to Error State (FW Load Test); and for other self-tests, it transitions to Boot Error State. Status indicator for each error state is specified in Table 10 (e.g. "Status: CHECK CONDITION(02h), Sense Data: 04 40 91" indicates the CM is currently in Boot Error State).

When in the error state, the CM does not perform any cryptographic operations or output data. A power cycle is required to clear the error state. When the CM continuously enters the error state despite several reboot attempts, the CM should be returned to the factory for recovery from the error state.

The CM does not support any degraded operation.

### 11. Life-Cycle Assurance

The following are the secure initialization procedure for the CM.

The CM is always in approved mode of operation in a deployed environment. In addition to this, the following procedure of initial settings will allow further secure operation during power cycling. Please refer to TCG Opal specification (TCG Storage Security Subsystem Class: Opal Version 2.01 Revision 1.00) for the details.

- (1) Activate LockingSP by "TCG Activate" service.
- (2) Set LockOnReset in Download port to "Power Cycle".
- (3) Set ReadLockEnabled and WriteLockEnabled to 1(true) and LockOnReset to "Power Cycle".
- (4) Do a power-on-reset.

The longest service life of the CM under suitable conditions and treatment is 5 years. By the end of this period the operator is required to follow the CM's end of life procedures below.

(1) Initialize internal sensitive data in the host system.

(2) Initialize parameters and user information in the CM by "Zeroization (with RKey)" service.

For additional details, refer to the guidance documents provided with the CM:

- 3.5 type SAS Hard Disk Drives Product Specification
- 3.5 type SAS Hard Disk Drives Interface Specification
- 3.5 type Hard Disk Drives SED Specification
- Toshiba SED HDD FIPS140-2/3 Use case Rev.6.0

### 12. Mitigation of Other Attacks

The CM does not mitigate other attacks beyond the scope of 140-3 requirements.