

IBM

IBM DataPower FIPS Provider

FIPS 140-3 Non-Proprietary Security Policy

Prepared by:

atsec information security corporation

4516 Seton Center Parkway, Suite 250

Austin, TX 78759

www.atsec.com

Table of Contents

1 General	5
1.1 Overview	5
1.2 Security Levels	5
2 Cryptographic Module Specification	6
2.1 Description	6
2.2 Tested and Vendor Affirmed Module Version and Identification	า7
2.3 Excluded Components	8
2.4 Modes of Operation	
2.5 Algorithms	9
2.6 Security Function Implementations	25
2.7 Algorithm Specific Information	
2.8 RBG and Entropy	
2.9 Key Generation	
2.10 Key Establishment	47
2.11 Industry Protocols	
3 Cryptographic Module Interfaces	
3.1 Ports and Interfaces	
4 Roles, Services, and Authentication	
4.1 Authentication Methods	
4.2 Roles	
4.3 Approved Services	
4.4 Non-Approved Services	55
4.5 External Software/Firmware Loaded	55
5 Software/Firmware Security	57
5.1 Integrity Techniques	57
5.2 Initiate on Demand	57
6 Operational Environment	58
6.1 Operational Environment Type and Requirements	
6.2 Configuration Settings and Restrictions	58
7 Physical Security	59
8 Non-Invasive Security	60
9 Sensitive Security Parameters Management	61
9.1 Storage Areas	61
9.2 SSP Input-Output Methods	61
9.3 SSP Zeroization Methods	61
9.4 SSPs	

 $\ensuremath{\mathbb{C}}$ 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 2 of 89

9.5 Transitions	66
10 Self-Tests	67
10.1 Pre-Operational Self-Tests	67
10.2 Conditional Self-Tests	67
10.3 Periodic Self-Test Information	76
10.4 Error States	81
10.5 Operator Initiation of Self-Tests	82
11 Life-Cycle Assurance	83
11.1 Installation, Initialization, and Startup Procedures	
11.2 Administrator Guidance	83
11.3 Non-Administrator Guidance	
11.6 End of Life	83
12 Mitigation of Other Attacks	84
Appendix A. Glossary and abbreviations	85
Appendix B. References	87

List of Tables

Table 2: Tested Module Identification - Software, Firmware, Hybrid (Executable Code Sets)7Table 3: Tested Operational Environments - Software, Firmware, Hybrid8Table 4: Modes List and Description8Table 5: Approved Algorithms24Table 6: Vendor-Affirmed Algorithms24Table 7: Non-Approved, Not Allowed Algorithms25Table 8: Security Function Implementations44Table 9: Entropy Certificates45Table 10: Entropy Sources46Table 11: Ports and Interfaces49Table 12: Roles49Table 13: Approved Services54Table 14: Non-Approved Services55Table 15: Storage Areas61Table 16: SSP Table 1.64Table 19: SSP Table 2.66Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests76Table 21: Conditional Self-Tests76Table 22: Pre-Operational Periodic Information81Table 23: Conditional Periodic Information81Table 24: Error States82	Table 1: Security Levels	5
Table 4: Modes List and Description.8Table 5: Approved Algorithms.24Table 6: Vendor-Affirmed Algorithms.24Table 7: Non-Approved, Not Allowed Algorithms.25Table 8: Security Function Implementations.44Table 9: Entropy Certificates.45Table 10: Entropy Sources.46Table 11: Ports and Interfaces.48Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 166Table 19: SSP Table 266Table 20: Pre-Operational Self-Tests.76Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.81	Table 2: Tested Module Identification - Software, Firmware, Hybrid (Executable Code Se	ts)7
Table 5: Approved Algorithms.24Table 6: Vendor-Affirmed Algorithms.24Table 7: Non-Approved, Not Allowed Algorithms.25Table 8: Security Function Implementations.44Table 9: Entropy Certificates.45Table 10: Entropy Sources.46Table 11: Ports and Interfaces.48Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 1.64Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests.76Table 22: Pre-Operational Periodic Information.76Table 23: Conditional Periodic Information.81	Table 3: Tested Operational Environments - Software, Firmware, Hybrid	8
Table 6: Vendor-Affirmed Algorithms.24Table 7: Non-Approved, Not Allowed Algorithms.25Table 8: Security Function Implementations.44Table 9: Entropy Certificates.45Table 10: Entropy Sources.46Table 11: Ports and Interfaces.48Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 164Table 19: SSP Table 266Table 20: Pre-Operational Self-Tests.76Table 22: Pre-Operational Periodic Information.81	Table 4: Modes List and Description	8
Table 7: Non-Approved, Not Allowed Algorithms.25Table 8: Security Function Implementations.44Table 9: Entropy Certificates.45Table 10: Entropy Sources.46Table 11: Ports and Interfaces.48Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 164Table 19: SSP Table 266Table 20: Pre-Operational Self-Tests.76Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.81		
Table 8: Security Function Implementations.44Table 9: Entropy Certificates.45Table 10: Entropy Sources.46Table 11: Ports and Interfaces.48Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 164Table 19: SSP Table 266Table 20: Pre-Operational Self-Tests.76Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.81		
Table 9: Entropy Certificates45Table 10: Entropy Sources46Table 11: Ports and Interfaces48Table 12: Roles49Table 13: Approved Services54Table 14: Non-Approved Services55Table 15: Storage Areas61Table 16: SSP Input-Output Methods61Table 17: SSP Zeroization Methods61Table 18: SSP Table 164Table 19: SSP Table 266Table 20: Pre-Operational Self-Tests76Table 21: Conditional Self-Tests76Table 22: Pre-Operational Periodic Information76Table 23: Conditional Periodic Information81		
Table 10: Entropy Sources.46Table 11: Ports and Interfaces.48Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 164Table 19: SSP Table 266Table 20: Pre-Operational Self-Tests.67Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.81	Table 8: Security Function Implementations	44
Table 11: Ports and Interfaces.48Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 1.64Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests.67Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.81	Table 9: Entropy Certificates	45
Table 12: Roles.49Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 1.64Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests.67Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.81	Table 10: Entropy Sources	46
Table 13: Approved Services.54Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 1.64Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests.67Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.76Table 23: Conditional Periodic Information.81		
Table 14: Non-Approved Services.55Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 1.64Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests.67Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.76Table 23: Conditional Periodic Information.81	Table 12: Roles	49
Table 15: Storage Areas.61Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 1.64Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests.67Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.76Table 23: Conditional Periodic Information.81		
Table 16: SSP Input-Output Methods.61Table 17: SSP Zeroization Methods.61Table 18: SSP Table 1.64Table 19: SSP Table 2.66Table 20: Pre-Operational Self-Tests.67Table 21: Conditional Self-Tests.76Table 22: Pre-Operational Periodic Information.76Table 23: Conditional Periodic Information.81		
Table 17: SSP Zeroization Methods		
Table 18: SSP Table 1	Table 16: SSP Input-Output Methods	61
Table 19: SSP Table 2		
Table 20: Pre-Operational Self-Tests		
Table 21: Conditional Self-Tests	Table 19: SSP Table 2	66
Table 22: Pre-Operational Periodic Information	Table 20: Pre-Operational Self-Tests	67
Table 23: Conditional Periodic Information81	Table 21: Conditional Self-Tests	76
	Table 22: Pre-Operational Periodic Information	76
Table 24: Error States	Table 23: Conditional Periodic Information	81
	Table 24: Error States	82

List of Figures

1 General

1.1 Overview

This document is the non-proprietary FIPS 140-3 Security Policy for version 3.0.9-B3346E1D91BA83B7BAB52F472F3E6A0D of the IBM DataPower FIPS Provider. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for an overall Security Level 1 module.

This Non-Proprietary Security Policy may be reproduced and distributed, but only whole and intact and including this notice. Other documentation is proprietary to their authors.

1.2 Security Levels

Section	Security Level
1	1
2	1
3 4	1
4	1
5 6	1
6	1
7	N/A
8	N/A
9	1
10	1
11	1
12	1
Table 1, Cocurity	Lovala

Table 1: Security Levels

2 Cryptographic Module Specification

2.1 Description

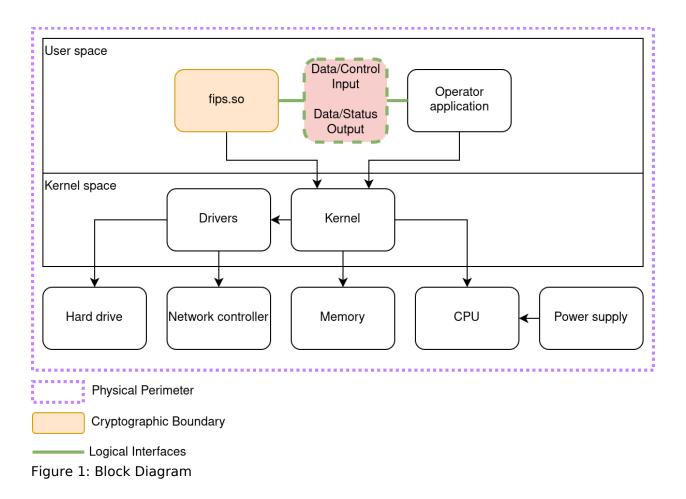
Purpose and Use:

The IBM DataPower FIPS Provider (hereafter referred to as "the module") is defined as a software module in a multi-chip standalone embodiment. It provides a C language application program interface (API) for use by other applications that require cryptographic functionality. The module consists of one software component, the "FIPS provider", which implements the FIPS requirements and the cryptographic functionality provided to the operator.

Module Type: Software

Module Embodiment: MultiChipStand

Module Characteristics:


Cryptographic Boundary:

The cryptographic boundary of the module is defined as the fips.so shared library, which contains the compiled code implementing the FIPS provider.

Figure 1 shows a block diagram that represents the design of the module when the module is operational and providing services to other user space applications. In this diagram, the physical perimeter of the operational environment (a general-purpose computer on which the module is installed) is indicated by a purple dashed line. The cryptographic boundary is represented by the component painted in orange, which consists only of the shared library implementing the FIPS provider (fips.so).

Green lines indicate the flow of data between the cryptographic module and its operator application, through the logical interfaces defined in Section 3.

Components in white are only included in the diagram for informational purposes. They are not included in the cryptographic boundary (and therefore not part of the module's validation). For example, the kernel is responsible for managing system calls issued by the module itself, as well as other applications using the module for cryptographic services.

Tested Operational Environment's Physical Perimeter (TOEPP):

The TOEPP of the module is defined as the general-purpose computer on which the module is installed.

2.2 Tested and Vendor Affirmed Module Version and Identification

Tested Module Identification - Hardware:

N/A for this module.

Tested Module Identification - Software, Firmware, Hybrid (Executable Code Sets):

Package or File Name	Software/ Firmware Version	Features	Integrity Test
fips.so	3.0.9-		HMAC-SHA2-
	B3346E1D91BA83B7BAB52F472F3E6A0		256
	D		

Table 2: Tested Module Identification – Software, Firmware, Hybrid (Executable Code Sets)

Tested Module Identification - Hybrid Disjoint Hardware:

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. N/A for this module.

Tested Operational Environments - Software, Firmware, Hybrid:

Operati ng System	Hardwa re Platfor m	Process ors	PAA/ PAI	Hypervis or or Host OS	Version(s)
CentOS Stream 8	IBM DataPow er Gateway X3	Intel Xeon Gold 6326	Yes		3.0.9- B3346E1D91BA83B7BAB52F472F 3E6A0D
CentOS Stream 8	IBM DataPow er Gateway X3	Intel Xeon Gold 6326	No		3.0.9- B3346E1D91BA83B7BAB52F472F 3E6A0D

Table 3: Tested Operational Environments - Software, Firmware, Hybrid

Vendor-Affirmed Operational Environments - Software, Firmware, Hybrid:

N/A for this module.

2.3 Excluded Components

There are no components excluded from the requirements of the FIPS 140-3 standard.

2.4 Modes of Operation

Modes List and Description:

Table Name	Description	Туре	Status Indicator
Approved	Automatically entered whenever	Approved	Equivalent to the
mode	an approved service is requested		indicator of the
			requested service
Non-	Automatically entered whenever	Non-	Equivalent to the
approved	a non-approved service is	Approved	indicator of the
mode	requested		requested service

Table 4: Modes List and Description

After passing all pre-operational self-tests and cryptographic algorithm self-tests executed on start-up, the module automatically transitions to the approved mode. No operator intervention is required to reach this point.

In the operational state, the module accepts service requests from calling applications through its logical interfaces. At any point in the operational state, a calling application can end its process, thus causing the module to end its operation.

Mode Change Instructions and Status:

The module automatically switches between the approved and non-approved modes depending on the services requested by the operator. The status indicator of the mode of operation is equivalent to the indicator of the service that was requested.

2.5 Algorithms

Approved Algorithms:

Algorithm	CAVP Cert	Properties	Reference
KDA HKDF Sp800- 56Cr1	A4355	Derived Key Length: 2048 Shared Secret Length: 224-2048 Increment 8 HMAC Algorithm: SHA-1, SHA2- 224, SHA2-256, SHA2-384, SHA2- 512, SHA2-512/224, SHA2- 512/256, SHA3-224, SHA3-256, SHA3-384	SP 800-56C Rev. 2
TLS v1.3 KDF (CVL)	A4355	HMAC Algorithm: SHA2-256, SHA2- 384 KDF Running Modes: DHE, PSK, PSK-DHE	SP 800-135 Rev. 1
Counter DRBG	A4356	Prediction Resistance: Yes, No Supports Reseed Mode: AES-128, AES-192, AES-256 Derivation Function Enabled: Yes, No	SP 800-90A Rev. 1
Hash DRBG	A4356	Prediction Resistance: Yes, No Supports Reseed Mode: SHA-1, SHA2-256, SHA2- 512	SP 800-90A Rev. 1
HMAC DRBG	A4356	Prediction Resistance: Yes, No Supports Reseed Mode: SHA-1, SHA2-256, SHA2- 512	SP 800-90A Rev. 1
AES-CBC	A4357	Direction: Decrypt, Encrypt Key Length: 128, 192, 256	SP 800-38A
AES-CBC-CS1	A4357	Direction: Decrypt, Encrypt Key Length: 128, 192, 256	SP 800-38A
AES-CBC-CS2	A4357	Direction: Decrypt, Encrypt Key Length: 128, 192, 256	SP 800-38A
AES-CBC-CS3	A4357	Direction: Decrypt, Encrypt Key Length: 128, 192, 256	SP 800-38A
AES-CCM	A4357	Key Length: 128, 192, 256 Tag Length: 32, 48, 64, 80, 96, 112, 128 IV Length: 56, 64, 72, 80, 88, 96, 104	SP 800-38C
AES-CFB1	A4357	Direction: Decrypt, Encrypt Key Length: 128, 192, 256	SP 800-38A
AES-CFB128	A4357	Direction: Decrypt, Encrypt Key Length: 128, 192, 256	SP 800-38A
AES-CFB8	A4357	Direction: Decrypt, Encrypt Key Length: 128, 192, 256	SP 800-38A
AES-CMAC	A4357	Direction: Generation, Verification	SP 800-38B

© 2024 IBM Corporation/ atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Algorithm	CAVP Cert	Properties	Reference
-		Key Length: 128, 192, 256	
		MAC Length: 128	
AES-CTR	A4357	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-ECB	A4357	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-KW	A4357	Direction: Decrypt, Encrypt	SP 800-38F
		Key Length: 128, 192, 256	
AES-KWP	A4357	Direction: Decrypt, Encrypt	SP 800-38F
		Key Length: 128, 192, 256	
AES-OFB	A4357	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-XTS Testing	A4357	Direction: Decrypt, Encrypt	SP 800-38E
Revision 2.0		Key Length: 128, 256	
		Tweak Mode: Hex	
		Data Unit Length Matches Payload	
AES-CBC	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-CBC-CS1	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-CBC-CS2	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-CBC-CS3	A4358	Direction: Decrypt, Encrypt	SP 800-38A
	11000	Key Length: 128, 192, 256	
AES-CCM	A4358	Key Length: 128, 192, 256	SP 800-38C
	////	Tag Length: 32, 48, 64, 80, 96,	51 000 500
		112, 128	
		IV Length: 56, 64, 72, 80, 88, 96,	
		104	
AES-CFB1	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-CFB128	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-CFB8	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-CMAC	A4358	Direction: Generation, Verification	SP 800-38B
		Key Length: 128, 192, 256	
		MAC Length: 128	
AES-CTR	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-ECB	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-KW	A4358	Direction: Decrypt, Encrypt	SP 800-38F
-		Key Length: 128, 192, 256	
AES-KWP	A4358	Direction: Decrypt, Encrypt	SP 800-38F
		Key Length: 128, 192, 256	
AES-OFB	A4358	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-XTS Testing	A4358	Direction: Decrypt, Encrypt	SP 800-38E
Revision 2.0		Key Length: 128, 256	
		Tweak Mode: Hex	
		Data Unit Length Matches Payload	
AES-CBC	A4359	Direction: Decrypt, Encrypt	SP 800-38A
		· · · · · · · · · · · · · · · · · · ·	

CBC A4559 Direction, 2003, 201

Algorithm	CAVP Cert	Properties	Reference
		Key Length: 128, 192, 256	
AES-CBC-CS1	A4359	Direction: Decrypt, Encrypt	SP 800-38A
120 000 001	////	Key Length: 128, 192, 256	
AES-CBC-CS2	A4359	Direction: Decrypt, Encrypt	SP 800-38A
	114333	Key Length: 128, 192, 256	51 000 50/1
AES-CBC-CS3	A4359	Direction: Decrypt, Encrypt	SP 800-38A
ALS-CDC-CSS		Key Length: 128, 192, 256	JI 000-J0A
AES-CCM	A4359	Key Length: 128, 192, 256	SP 800-38C
ALD-CCM		Tag Length: 32, 48, 64, 80, 96,	51 000-500
		112, 128	
		IV Length: 56, 64, 72, 80, 88, 96,	
		104	
AES-CFB1	A4359		SP 800-38A
AES-CFB1	A4339	Direction: Decrypt, Encrypt	SP 800-38A
	A 4 2 5 0	Key Length: 128, 192, 256	
AES-CFB128	A4359	Direction: Decrypt, Encrypt	SP 800-38A
	44250	Key Length: 128, 192, 256	
AES-CFB8	A4359	Direction: Decrypt, Encrypt	SP 800-38A
	4.4250	Key Length: 128, 192, 256	
AES-CMAC	A4359	Direction: Generation, Verification	SP 800-38B
		Key Length: 128, 192, 256	
		MAC Length: 128	
AES-CTR	A4359	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-ECB	A4359	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-KW	A4359	Direction: Decrypt, Encrypt	SP 800-38F
		Key Length: 128, 192, 256	
AES-KWP	A4359	Direction: Decrypt, Encrypt	SP 800-38F
		Key Length: 128, 192, 256	
AES-OFB	A4359	Direction: Decrypt, Encrypt	SP 800-38A
		Key Length: 128, 192, 256	
AES-XTS Testing	A4359	Direction: Decrypt, Encrypt	SP 800-38E
Revision 2.0		Key Length: 128, 256	
		Tweak Mode: Hex	
		Data Unit Length Matches Payload	
AES-GCM	A4360	Direction: Decrypt, Encrypt	SP 800-38D
		IV Generation: External, Internal	
		IV Generation Mode: 8.2.2	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
		IV Length: 96, 128	
AES-GMAC	A4360	Direction: Decrypt, Encrypt	SP 800-38D
		IV Generation: External	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
		IV Length: 96	
ECDSA KeyGen	A4361	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)		Secret Generation Mode: testing	
		candidates	
ECDSA KeyVer	A4361	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)			

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 11 of 89

Algorithm	CAVP Cert	Properties	Reference
ECDSA SigGen	A4361	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)	/////	Hash Algorithm: SHA2-224, SHA2-	1110 200 5
(111 3100 3)		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
ECDSA SigVer	A4361	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)		Hash Algorithm: SHA2-224, SHA2-	
		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
HMAC-SHA-1	A4361	MAC: 160	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-224	A4361	MAC: 224	FIPS 198-1
	A4301		FIP3 190-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-256	A4361	MAC: 256	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-384	A4361	MAC: 384	FIPS 198-1
TIMAC SHAZ 504	74501	Key Length: 112-524288	111 5 1 5 0 1
		Increment 8	5156 100 1
HMAC-SHA2-512	A4361	MAC: 512	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-512/224	A4361	MAC: 224	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-512/256	A4361	MAC: 256	FIPS 198-1
TIMAC-511A2-512/250	A4301	Key Length: 112-524288	1115 190-1
		Increment 8	CD 000 FCA
KAS-ECC-SSC Sp800-	A4361	P-224, P-256, P-384, P-521	SP 800-56A
56Ar3		Scheme: ephemeralUnified	Rev. 3
		KAS Role: initiator, responder	
KDF ANS 9.42 (CVL)	A4361	Hash Algorithm: SHA-1, SHA2-224,	SP 800-135 Rev.
		SHA2-256, SHA2-384, SHA2-512,	1
		SHA2-512/224, SHA2-512/256	_
		zz Length: 8-4096 Increment 8	
		Increment 8	
KDF ANS 9.63 (CVL)	A4361	Hash Algorithm: SHA2-224, SHA2-	SP 800-135 Rev.
		256, SHA2-384, SHA2-512, SHA2-	1
		512/224, SHA2-512/256	
		Shared Info Length: 0-1024	
		Increment 8	
		Key Data Length: 128-4096	
		Increment 8	
PBKDF	A4361	Iteration Count: 1000-10000	SP 800-132
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Increment 1	5, 000 152
		HMAC Algorithm: SHA-1, SHA2-	
		224, SHA2-256, SHA2-384, SHA2-	
		512, SHA2-512/224, SHA2-512/256	
		Password Length: 8-128 Increment	
		1	
		Salt Length: 128-4096 Increment 8	
	1		1

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 12 of 89

Algorithm	CAVP Cert	Properties	Reference
		Key Data Length: 128-4096 Increment 8	
RSA KeyGen (FIPS186-5)	A4361	Key Generation Mode: probableWithProbableAux Modulo: 2048, 3072, 4096 Private Key Format: standard Public Exponent Mode: random	FIPS 186-5
RSA SigGen (FIPS186-5)	A4361	Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256 Modulo: 2048, 3072, 4096 Signature Type: pkcs1v1.5, pss	FIPS 186-5
RSA SigVer (FIPS186-4)	A4361	Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256 Modulo: 1024 Signature Type: pkcs1v1.5, pss	FIPS 186-4
RSA SigVer (FIPS186-5)	A4361	Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256 Modulo: 2048, 3072, 4096 Signature Type: pkcs1v1.5, pss	FIPS 186-5
SHA-1	A4361	-	FIPS 180-4
SHA2-224	A4361	-	FIPS 180-4
SHA2-256	A4361	-	FIPS 180-4
SHA2-384	A4361	-	FIPS 180-4
SHA2-512	A4361	-	FIPS 180-4
SHA2-512/224	A4361	-	FIPS 180-4
SHA2-512/256	A4361	-	FIPS 180-4
TLS v1.2 KDF RFC7627 (CVL)	A4361	Hash Algorithm: SHA2-256, SHA2- 384, SHA2-512 Key Block Length: 1024	SP 800-135 Rev. 1
ECDSA SigGen (FIPS186-5)	A4362	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA3-224, SHA3- 256, SHA3-384, SHA3-512	FIPS 186-5
ECDSA SigVer (FIPS186-5)	A4362	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA3-224, SHA3- 256, SHA3-384, SHA3-512	FIPS 186-5
HMAC-SHA3-224	A4362	MAC: 224 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA3-256	A4362	MAC: 256 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA3-384	A4362	MAC: 384 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA3-512	A4362	MAC: 512 Key Length: 112-524288 Increment 8	FIPS 198-1
KDF ANS 9.42 (CVL)	A4362	Hash Algorithm: SHA3-224, SHA3- 256, SHA3-384, SHA3-512 zz Length: 8-4096 Increment 8	SP 800-135 Rev. 1

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 13 of 89

Algorithm	CAVP Cert	Properties	Reference
		Key Data Length: 8-4096	
		Increment 8	
KDF ANS 9.63 (CVL)	A4362	Hash Algorithm: SHA3-224, SHA3- 256, SHA3-384, SHA3-512 Shared Info Length: 0-1024 Increment 8 Key Data Length: 128-4096 Increment 8	SP 800-135 Rev. 1
PBKDF	A4362	Iteration Count: 1000-10000 Increment 1 HMAC Algorithm: SHA3-224, SHA3- 256, SHA3-384, SHA3-512 Password Length: 8-128 Increment 1 Salt Length: 128-4096 Increment 8 Key Data Length: 128-4096 Increment 8	SP 800-132
RSA SigGen (FIPS186-5)	A4362	Hash Algorithm: SHA3-224, SHA3- 256, SHA3-384, SHA3-512 Modulo: 2048, 3072, 4096 Signature Type: pkcs1v1.5, pss	FIPS 186-5
RSA SigVer (FIPS186-5)	A4362	Hash Algorithm: SHA3-224, SHA3- 256, SHA3-384, SHA3-512 Modulo: 2048, 3072, 4096 Signature Type: pkcs1v1.5, pss	FIPS 186-5
SHA3-224	A4362	-	FIPS 202
SHA3-256	A4362	-	FIPS 202
SHA3-384	A4362	-	FIPS 202
SHA3-512	A4362	-	FIPS 202
SHAKE-128	A4362	-	FIPS 202
SHAKE-256	A4362	-	FIPS 202
AES-GCM	A4363	Direction: Decrypt, Encrypt IV Generation: External, Internal IV Generation Mode: 8.2.2 Key Length: 128, 192, 256 Tag Length: 32, 64, 96, 104, 112, 120, 128 IV Length: 96, 128	SP 800-38D
AES-GMAC	A4363	Direction: Decrypt, Encrypt IV Generation: External Key Length: 128, 192, 256 Tag Length: 32, 64, 96, 104, 112, 120, 128 IV Length: 96	SP 800-38D
AES-GCM	A4364	Direction: Decrypt, Encrypt IV Generation: External, Internal IV Generation Mode: 8.2.2 Key Length: 128, 192, 256 Tag Length: 32, 64, 96, 104, 112, 120, 128 IV Length: 96, 128	SP 800-38D
AES-GMAC	A4364	Direction: Decrypt, Encrypt IV Generation: External	SP 800-38D

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 14 of 89

Algorithm	CAVP Cert	Properties	Reference
		Key Length: 128, 192, 256 Tag Length: 32, 64, 96, 104, 112, 120, 128 IV Length: 96	
ECDSA KeyGen (FIPS186-5)	A4365	Curve: P-224, P-256, P-384, P-521 Secret Generation Mode: testing candidates	FIPS 186-5
ECDSA KeyVer (FIPS186-5)	A4365	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
ECDSA SigGen (FIPS186-5)	A4365	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	FIPS 186-5
ECDSA SigVer (FIPS186-5)	A4365	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	FIPS 186-5
HMAC-SHA-1	A4365	MAC: 160 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-224	A4365	MAC: 224 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-256	A4365	MAC: 256 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-384	A4365	MAC: 384 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-512	A4365	MAC: 512 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-512/224	A4365	MAC: 224 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-512/256	A4365	MAC: 256 Key Length: 112-524288 Increment 8	FIPS 198-1
KAS-ECC-SSC Sp800- 56Ar3	A4365	P-224, P-256, P-384, P-521 Scheme: ephemeralUnified KAS Role: initiator, responder	SP 800-56A Rev. 3
KDF ANS 9.42 (CVL)	A4365	Hash Algorithm: SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA2-512/224, SHA2-512/256 zz Length: 8-4096 Increment 8 Key Data Length: 8-4096 Increment 8	SP 800-135 Rev. 1
KDF ANS 9.63 (CVL)	A4365	Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256 Shared Info Length: 0-1024 Increment 8 Key Data Length: 128-4096	SP 800-135 Rev. 1

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 15 of 89

Algorithm	CAVP Cert	Properties	Reference
		Increment 8	
PBKDF	A4365	Iteration Count: 1000-10000 Increment 1 HMAC Algorithm: SHA-1, SHA2- 224, SHA2-256, SHA2-384, SHA2- 512, SHA2-512/224, SHA2-512/256	SP 800-132
RSA KeyGen	A4365	Password Length: 8-128 Increment 1 Salt Length: 128-4096 Increment 8 Key Data Length: 128-4096 Increment 8 Key Generation Mode:	FIPS 186-5
(FIPS186-5)	A4303	probableWithProbableAux Modulo: 2048, 3072, 4096 Private Key Format: standard Public Exponent Mode: random	FIF3 100-3
RSA SigGen (FIPS186-5)	A4365	Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256 Modulo: 2048, 3072, 4096 Signature Type: pkcs1v1.5, pss	FIPS 186-5
RSA SigVer (FIPS186-4)	A4365	Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256 Modulo: 1024 Signature Type: pkcs1v1.5, pss	FIPS 186-4
RSA SigVer (FIPS186-5)	A4365	Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256 Modulo: 2048, 3072, 4096 Signature Type: pkcs1v1.5, pss	FIPS 186-5
SHA-1	A4365	-	FIPS 180-4
SHA2-224	A4365	-	FIPS 180-4
SHA2-256	A4365	-	FIPS 180-4
SHA2-384	A4365	-	FIPS 180-4
SHA2-512	A4365	-	FIPS 180-4
SHA2-512/224	A4365	-	FIPS 180-4
SHA2-512/256	A4365	-	FIPS 180-4
TLS v1.2 KDF RFC7627 (CVL)	A4365	Hash Algorithm: SHA2-256, SHA2- 384, SHA2-512 Key Block Length: 1024	SP 800-135 Rev. 1
ECDSA KeyGen (FIPS186-5)	A4366	Curve: P-224, P-256, P-384, P-521 Secret Generation Mode: testing candidates	FIPS 186-5
ECDSA KeyVer (FIPS186-5)	A4366	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
ECDSA SigGen (FIPS186-5)	A4366	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	FIPS 186-5
ECDSA SigVer (FIPS186-5)	A4366	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2-	FIPS 186-5

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 16 of 89

Algorithm	CAVP Cert	Properties	Reference
		512/224, SHA2-512/256	
HMAC-SHA-1	A4366	MAC: 160	FIPS 198-1
	74500	Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-224	A4366	MAC: 224	FIPS 198-1
TIMAC-STIAZ-224	A4300	Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-256	A4366	MAC: 256	FIPS 198-1
TIMAC-STIAZ-250	A4300	Key Length: 112-524288	1115 190-1
		Increment 8	
HMAC-SHA2-384	A4366	MAC: 384	FIPS 198-1
	A4300	Key Length: 112-524288	FIF2 190-1
		Increment 8	
HMAC-SHA2-512	A 4 2 6 6	MAC: 512	
HMAC-SHAZ-SIZ	A4366		FIPS 198-1
		Key Length: 112-524288	
	11266	Increment 8 MAC: 224	FIDC 100 1
HMAC-SHA2-512/224	A4366		FIPS 198-1
		Key Length: 112-524288	
	A 4266	Increment 8	
HMAC-SHA2-512/256	A4366	MAC: 256	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
KAS-ECC-SSC Sp800-	A4366	P-224, P-256, P-384, P-521	SP 800-56A
56Ar3		Scheme: ephemeralUnified	Rev. 3
		KAS Role: initiator, responder	
KDF ANS 9.42 (CVL)	A4366	Hash Algorithm: SHA-1, SHA2-224,	SP 800-135 Rev.
		SHA2-256, SHA2-384, SHA2-512,	1
		SHA2-512/224, SHA2-512/256	
		zz Length: 8-4096 Increment 8	
		Key Data Length: 8-4096	
		Increment 8	
KDF ANS 9.63 (CVL)	A4366	Hash Algorithm: SHA2-224, SHA2-	
		256, SHA2-384, SHA2-512, SHA2-	1
		512/224, SHA2-512/256	
		Shared Info Length: 0-1024	
		Increment 8	
		Key Data Length: 128-4096	
		Increment 8	
PBKDF	A4366	Iteration Count: 1000-10000	SP 800-132
		Increment 1	
		HMAC Algorithm: SHA-1, SHA2-	
		224, SHA2-256, SHA2-384, SHA2-	
		512, SHA2-512/224, SHA2-512/256	
		Password Length: 8-128 Increment	
		Salt Length: 128-4096 Increment 8	
		Key Data Length: 128-4096	
		Increment 8	
RSA KeyGen	A4366	Key Generation Mode:	FIPS 186-5
(FIPS186-5)		probableWithProbableAux	
		Modulo: 2048, 3072, 4096	
		Private Key Format: standard	
		Public Exponent Mode: random	

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 17 of 89

Algorithm	CAVP Cert	Properties	Reference
RSA SigGen	A4366	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-5
(FIPS186-5)		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
		Modulo: 2048, 3072, 4096	
		Signature Type: pkcs1v1.5, pss	
RSA SigVer	A4366	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-4
(FIPS186-4)		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
		Modulo: 1024	
		Signature Type: pkcs1v1.5, pss	
RSA SigVer	A4366	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-5
(FIPS186-5)		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
		Modulo: 2048, 3072, 4096	
		Signature Type: pkcs1v1.5, pss	
SHA-1	A4366	-	FIPS 180-4
SHA2-224	A4366	-	FIPS 180-4
SHA2-256	A4366	-	FIPS 180-4
SHA2-384	A4366	-	FIPS 180-4
SHA2-512	A4366	-	FIPS 180-4
SHA2-512/224	A4366	-	FIPS 180-4
SHA2-512/256	A4366	-	FIPS 180-4
TLS v1.2 KDF	A4366	Hash Algorithm: SHA2-256, SHA2-	SP 800-135 Rev.
RFC7627 (CVL)	//+500	384, SHA2-512	1
		Key Block Length: 1024	-
ECDSA KeyGen	A4367	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)		Secret Generation Mode: testing	1110 200 5
(1.1.0100.0)		candidates	
ECDSA KeyVer	A4367	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)			
ECDSA SigGen	A4367	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)		Hash Algorithm: SHA2-224, SHA2-	
		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
ECDSA SigVer	A4367	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)		Hash Algorithm: SHA2-224, SHA2-	
		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
HMAC-SHA-1	A4367	MAC: 160	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-224	A4367	MAC: 224	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-256	A4367	MAC: 256	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-384	A4367	MAC: 384	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
	A 42C7	MAC: 512	FIPS 198-1
HMAC-SHA2-512	A4367	MAC. JIZ	112 190-1
HMAC-SHA2-512	A4367	Key Length: 112-524288	115 190-1

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 18 of 89

Algorithm	CAVP Cert	Properties	Reference
HMAC-SHA2-512/224	A4367	MAC: 224	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
HMAC-SHA2-512/256	A4367	MAC: 256	FIPS 198-1
		Key Length: 112-524288	
		Increment 8	
KAS-ECC-SSC Sp800-	A4367	P-224, P-256, P-384, P-521	SP 800-56A
56Ar3		Scheme: ephemeralUnified	Rev. 3
		KAS Role: initiator, responder	CD 000 105 D
KDF ANS 9.42 (CVL)	A4367	Hash Algorithm: SHA-1, SHA2-224,	SP 800-135 Rev.
		SHA2-256, SHA2-384, SHA2-512,	1
		SHA2-512/224, SHA2-512/256 zz Length: 8-4096 Increment 8	
		Key Data Length: 8-4096	
		Increment 8	
KDF ANS 9.63 (CVL)	A4367	Hash Algorithm: SHA2-224, SHA2-	SP 800-135 Rev.
		256, SHA2-384, SHA2-512, SHA2-	1
		512/224, SHA2-512/256	-
		Shared Info Length: 0-1024	
		Increment 8	
		Key Data Length: 128-4096	
		Increment 8	
PBKDF	A4367	Iteration Count: 1000-10000	SP 800-132
		Increment 1	
		HMAC Algorithm: SHA-1, SHA2-	
		224, SHA2-256, SHA2-384, SHA2-	
		512, SHA2-512/224, SHA2-512/256	
		Password Length: 8-128 Increment	
		Salt Length: 128-4096 Increment 8	
		Key Data Length: 128-4096	
		Increment 8	
RSA KeyGen	A4367	Key Generation Mode:	FIPS 186-5
(FIPS186-5)	/////	probableWithProbableAux	1113 100 5
(Modulo: 2048, 3072, 4096	
		Private Key Format: standard	
		Public Exponent Mode: random	
RSA SigGen	A4367	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-5
(FIPS186-5)		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
		Modulo: 2048, 3072, 4096	
	A 4 2 6 7	Signature Type: pkcs1v1.5, pss	
RSA SigVer (FIPS186-4)	A4367	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-4
(1153100-4)		256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	
		Modulo: 1024	
		Signature Type: pkcs1v1.5, pss	
RSA SigVer	A4367	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-5
(FIPS186-5)		256, SHA2-384, SHA2-512, SHA2-	
, /		512/224, SHA2-512/256	
		Modulo: 2048, 3072, 4096	
		Signature Type: pkcs1v1.5, pss	
SHA-1	A4367	-	FIPS 180-4

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 19 of 89

Algorithm	CAVP Cert	Properties	Reference
SHA2-224	A4367		FIPS 180-4
SHA2-256	A4367		FIPS 180-4
SHA2-384	A4367	-	FIPS 180-4
SHA2-512	A4367	-	FIPS 180-4
SHA2-512/224	A4367	-	FIPS 180-4
		-	FIPS 180-4
SHA2-512/256	A4367	-	SP 800-135 Rev.
TLS v1.2 KDF RFC7627 (CVL)	A4367	Hash Algorithm: SHA2-256, SHA2- 384, SHA2-512 Key Block Length: 1024	1
ECDSA KeyGen	A4368	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
(FIPS186-5)	A4306	Secret Generation Mode: testing candidates	FIF3 100-3
ECDSA KeyVer (FIPS186-5)	A4368	Curve: P-224, P-256, P-384, P-521	FIPS 186-5
ECDSA SigGen (FIPS186-5)	A4368	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	FIPS 186-5
ECDSA SigVer (FIPS186-5)	A4368	Curve: P-224, P-256, P-384, P-521 Hash Algorithm: SHA2-224, SHA2- 256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	FIPS 186-5
HMAC-SHA-1	A4368	MAC: 160 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-224	A4368	MAC: 224 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-256	A4368	MAC: 256 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-384	A4368	MAC: 384 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-512	A4368	MAC: 512 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-512/224	A4368	MAC: 224 Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2-512/256	A4368	MAC: 256 Key Length: 112-524288 Increment 8	FIPS 198-1
KAS-ECC-SSC Sp800- 56Ar3	A4368	P-224, P-256, P-384, P-521 Scheme: ephemeralUnified KAS Role: initiator, responder	SP 800-56A Rev. 3
KDF ANS 9.42 (CVL)	A4368	Hash Algorithm: SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA2-512/224, SHA2-512/256 zz Length: 8-4096 Increment 8 Key Data Length: 8-4096 Increment 8	SP 800-135 Rev. 1
KDF ANS 9.63 (CVL)	A4368	Hash Algorithm: SHA2-224, SHA2-	SP 800-135 Rev.

CONTRACT AND A C

Algorithm	CAVP Cert	Properties	Reference
		256, SHA2-384, SHA2-512, SHA2-	1
		512/224, SHA2-512/256	
		Shared Info Length: 0-1024	
		Increment 8	
		Key Data Length: 128-4096	
		Increment 8	
PBKDF	A4368	Iteration Count: 1000-10000	SP 800-132
		Increment 1	
		HMAC Algorithm: SHA-1, SHA2-	
		224, SHA2-256, SHA2-384, SHA2-	
		512, SHA2-512/224, SHA2-512/256	
		Password Length: 8-128 Increment	
		1	
		Salt Length: 128-4096 Increment 8	
		Key Data Length: 128-4096	
		Increment 8	
RSA KeyGen	A4368	Key Generation Mode:	FIPS 186-5
(FIPS186-5)		probableWithProbableAux	
		Modulo: 2048, 3072, 4096	
		Private Key Format: standard	
		Public Exponent Mode: random	
RSA SigGen	A4368	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-5
(FIPS186-5)		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
		Modulo: 2048, 3072, 4096	
		Signature Type: pkcs1v1.5, pss	5150 100 1
RSA SigVer	A4368	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-4
(FIPS186-4)		256, SHA2-384, SHA2-512, SHA2-	
		512/224, SHA2-512/256	
		Modulo: 1024	
RSA SigVer	A 4 2 6 0	Signature Type: pkcs1v1.5, pss	
	A4368	Hash Algorithm: SHA2-224, SHA2-	FIPS 186-5
(FIPS186-5)		256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	
		Modulo: 2048, 3072, 4096	
		Signature Type: pkcs1v1.5, pss	
SHA-1	A4368		FIPS 180-4
SHA2-224	A4368	-	FIPS 180-4
SHA2-256	A4368		FIPS 180-4
SHA2-384	A4368	-	FIPS 180-4
SHA2-512	A4368	-	FIPS 180-4
SHA2-512/224	A4368	-	FIPS 180-4
SHA2-512/256	A4368	-	FIPS 180-4
TLS v1.2 KDF	A4368	Hash Algorithm: SHA2-256, SHA2-	SP 800-135 Rev.
RFC7627 (CVL)		384, SHA2-512	1
		Key Block Length: 1024	
KDF SSH (CVL)	A4370	Hash Algorithm: SHA-1, SHA2-256,	SP 800-135 Rev.
		SHA2-384, SHA2-512	1
AES-GCM	A4371	Direction: Decrypt, Encrypt	
		IV Generation: External, Internal	
		IV Generation Mode: 8.2.2	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 21 of 89

Algorithm	CAVP Cert	Properties	Reference
		120, 128	
		IV Length: 96, 128	
AES-GMAC	A4371	Direction: Decrypt, Encrypt	SP 800-38D
		IV Generation: External	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
AES-GCM	A4372	IV Length: 96 Direction: Decrypt, Encrypt	SP 800-38D
AL3-GCM	A4372	IV Generation: External, Internal	3F 000-30D
		IV Generation Mode: 8.2.2	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
		IV Length: 96, 128	
AES-GMAC	A4372	Direction: Decrypt, Encrypt	SP 800-38D
		IV Generation: External	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
	A 4272	IV Length: 96	CD 000 20D
AES-GCM	A4373	Direction: Decrypt, Encrypt IV Generation: External, Internal	SP 800-38D
		IV Generation Mode: 8.2.2	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
		IV Length: 96, 128	
AES-GMAC	A4373	Direction: Decrypt, Encrypt	SP 800-38D
		IV Generation: External	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
	A 4074	IV Length: 96	CD 000 20D
AES-GCM	A4374	Direction: Decrypt, Encrypt IV Generation: External, Internal	SP 800-38D
		IV Generation Mode: 8.2.2	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
		IV Length: 96, 128	
AES-GMAC	A4374	Direction: Decrypt, Encrypt	SP 800-38D
		IV Generation: External	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
	A 4 2 7 5	IV Length: 96	
AES-GCM	A4375	Direction: Decrypt, Encrypt	SP 800-38D
		IV Generation: External, Internal IV Generation Mode: 8.2.2	
		Key Length: 128, 192, 256	
		Tag Length: 32, 64, 96, 104, 112,	
		120, 128	
		120, 120	

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 22 of 89

Algorithm	CAVP Cert	Properties	Reference
		IV Length: 96, 128	
AES-GMAC	A4375	Direction: Decrypt, Encrypt IV Generation: External Key Length: 128, 192, 256 Tag Length: 32, 64, 96, 104, 112, 120, 128 IV Length: 96	SP 800-38D
AES-GCM	A4376	Direction: Decrypt, Encrypt IV Generation: External, Internal IV Generation Mode: 8.2.2 Key Length: 128, 192, 256 Tag Length: 32, 64, 96, 104, 112, 120, 128 IV Length: 96, 128	SP 800-38D
AES-GMAC	A4376	Direction: Decrypt, Encrypt IV Generation: External Key Length: 128, 192, 256 Tag Length: 32, 64, 96, 104, 112, 120, 128 IV Length: 96	SP 800-38D
KDF SSH (CVL)	A4377	Hash Algorithm: SHA-1, SHA2-256, SHA2-384, SHA2-512	SP 800-135 Rev. 1
KDF SSH (CVL)	A4378	Hash Algorithm: SHA-1, SHA2-256, SHA2-384, SHA2-512	SP 800-135 Rev. 1
KDF SSH (CVL)	A4379	Hash Algorithm: SHA-1, SHA2-256, SHA2-384, SHA2-512	SP 800-135 Rev. 1
KDF SSH (CVL)	A4380	Hash Algorithm: SHA-1, SHA2-256, SHA2-384, SHA2-512	SP 800-135 Rev. 1
KDF SP800-108	A4381	KDF Mode: Counter, Feedback MAC Mode: HMAC-SHA-1, HMAC- SHA2-224, HMAC-SHA2-256, HMAC-SHA2-384, HMAC-SHA2-512, HMAC-SHA2-512/224, HMAC- SHA2-512/256, HMAC-SHA3-224, HMAC-SHA3-256, HMAC-SHA3-384, HMAC-SHA3-512, CMAC-AES128, CMAC-AES192, CMAC-AES256 Supported Lengths: 8, 72, 128, 776, 3456, 4096 Fixed Data Order: Before Fixed Data Counter Length: 32	SP 800-108 Rev. 1
KDA OneStep SP800- 56Cr2	A4382	Auxiliary Function: SHA-1, SHA2- 224, SHA2-256, SHA2-384, SHA2- 512, SHA2-512/224, SHA2- 512/256, SHA3-224, SHA3-256, SHA3-384, SHA3-512, HMAC- SHA-1, HMAC-SHA2-224, HMAC- SHA2-256, HMAC-SHA2-384, HMAC-SHA2-512, HMAC-SHA2- 512/224, HMAC-SHA2-512/256, HMAC-SHA3-224, HMAC-SHA3-256, HMAC-SHA3-384, HMAC-SHA3-512	SP 800-56C Rev. 2

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 23 of 89

Algorithm	CAVP Cert	Properties	Reference
		Derived Key Length: 2048 Shared Secret Length: 224-2048 Increment 8	
KDA TwoStep SP800- 56Cr2	A4382	KDF Mode: feedback MAC Modes: HMAC-SHA-1, HMAC- SHA2-224, HMAC-SHA2-256, HMAC-SHA2-384, HMAC-SHA2-512, HMAC-SHA2-512/224, HMAC- SHA2-512/256, HMAC-SHA3-224, HMAC-SHA3-256, HMAC-SHA3-384 Derived Key Length: 2048 Shared Secret Length: 224-2048 Increment 8	SP 800-56C Rev. 2
KAS-FFC-SSC Sp800- 56Ar3	A4383	ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192 Scheme: dhEphem KAS Role: initiator, responder	
Safe Primes Key Generation	A4383	ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192	Rev. 3
Safe Primes Key Verification	A4383	ffdhe2048, ffdhe3072, ffdhe4096,ffdhe6144,ffdhe8192,MODP-2048,MODP-3072,MODP-4096,MODP-6144,MODP-8192MODP-8192	SP 800-56A Rev. 3

Table 5: Approved Algorithms

Vendor-Affirmed Algorithms:

Name	Properties	Implementation	Reference			
CKG	Кеу	N/A	SP 800-133r2, Section 4, example 1			
	Type:Asymmetric					
Table 6: Vendor-Affirmed Algorithms						

Table 6: Vendor-Affirmed Algorithms

Non-Approved, Allowed Algorithms:

N/A for this module.

Non-Approved, Allowed Algorithms with No Security Claimed:

N/A for this module.

Non-Approved, Not Allowed Algorithms:

Name	Use and Function
AES GCM (external IV)	Encryption
HMAC (< 112-bit keys)	Message authentication

© 2024 IBM Corporation/ atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 24 of 89

Name	Use and Function	
KBKDF, KDA OneStep, KDA TwoStep, HKDF, ANS X9.42	Key derivation	
KDF, ANS X9.63 KDF (< 112-bit input or output keys)		
KDA OneStep, KDA TwoStep (SHAKE128, SHAKE256)	Key derivation	
ANS X9.42 KDF (SHAKE128, SHAKE256)	Key derivation	
ANS X9.63 KDF (SHA-1, SHAKE128, SHAKE256)	Key derivation	
SSH KDF (SHA-512/224, SHA-512/256, SHA-3, SHAKE128, SHAKE256)	Key derivation	
TLS 1.2 KDF (SHA-1, SHA-224, SHA-512/224, SHA-512/226, SHA-3)	Key derivation	
TLS 1.3 KDF (SHA-1, SHA-224, SHA-512, SHA-512/224, SHA-512/256, SHA-3)	Key derivation	
PBKDF2 (short password; short salt; insufficient iterations;	Password-based key	
< 112-bit output keys)	derivation	
KAS-IFC-SSC (KAS1 and KAS2 schemes)	Shared secret computation	
RSA and ECDSA (pre-hashed message)	Signature generation;	
	Signature verification	
RSA-PSS (invalid salt length)	Signature generation;	
	Signature verification	
RSA-OAEP	Asymmetric encryption;	
	Asymmetric decryption	

Table 7: Non-Approved, Not Allowed Algorithms

2.6 Security Function Implementations

Name	Туре	Description	Properties	Algorithm
Random number generation	er DRBG	Random numbe generation	r	S Counter DRBG HMAC DRBG Hash DRBG AES-ECB AES-ECB AES-ECB HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA2-224 HMAC- SHA2-224 HMAC- SHA2-224

 $\ensuremath{\mathbb{C}}$ 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 25 of 89

Image: second	
SHA2-224 HMAC- SHA2-256 HMAC- SHA2-256 HMAC- SHA2-256 HMAC- SHA2-256 HMAC- SHA2-256 HMAC- SHA2-380 HMAC- SHA2-380 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-312 HMAC- SHA2-512	
HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-31/ HMAC- SHA2-512/ HMAC- SHA2-5	
SHA2-256 HMAC- SHA2-256 HMAC- SHA2-256 HMAC- SHA2-256 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512	-
HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-38/ HMAC- SHA2-512 HMAC- SHA2-	2
SHA2-256 HMAC- SHA2-256 HMAC- SHA2-256 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-	
HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-25(HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-312 HMAC- SHA2-512 HMAC- SHA2- SHA	5
SHA2-256 HMAC- SHA2-256 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-312 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 HMAC- SHA2- SHA	
HMAC- SHA2-256 HMAC- SHA2-386 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512	5
SHA2-256 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512	
HMAC- SHA2-256 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-312 HMAC- SHA2-512 HMAC-	5
SHA2-256 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-5	
HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC-	5
SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-5	
HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512 SHA	1
SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512 SHA2-5	•
HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512	1
SHA2-384 HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512	•
HMAC- SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512	1
SHA2-384 HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512	т
HMAC- SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512 HMAC- SHA2-512	1
SHA2-384 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512	т
HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512	1
SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512	т
HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512	2
SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 SHA2-512 SHA2-512	_
HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2- S12/224	2
SHA2-512 HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2- SHA2- 512/224	_
HMAC- SHA2-512 HMAC- SHA2-512 HMAC- SHA2- SHA2- 512/224	2
SHA2-512 HMAC- SHA2-512 HMAC- SHA2- 512/224	_
HMAC- SHA2-512 HMAC- SHA2- 512/224	2
SHA2-512 HMAC- SHA2- 512/224	_
HMAC- SHA2- 512/224	2
SHA2- 512/224	_
512/224	
HMAC-	
SHA2-	
512/224	
HMAC-	
SHA2-	
512/224	
HMAC-	
SHA2-	
512/224	
HMAC-	
SHA2-	
512/224	
HMAC-	
SHA2-	
512/256	
HMAC-	
SHA2-	
511/2256	

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 26 of 89

Name	Туре	Description	Properties	Algorithm s
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA3-224
				HMAC-
				SHA3-256
				HMAC-
				SHA3-384
				HMAC-
				SHA3-512
				SHA-1
				SHA2-224
				SHA2-256
				SHA2-384
				SHA2-512
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-

Name	Туре	Description	Properties	Algorithm s
				512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA3-224 SHA3-256 SHA3-384 SHA3-512
Encryption/ Decryption	BC-UnAuth BC-Auth KTS-Wrap	Encryption/ Decryption		AES-CBC AES-CBC AES-CBC- AES-CBC- CS1 AES-CBC- CS1 AES-CBC- CS1 AES-CBC- CS1 AES-CBC- CS2 AES-CBC- CS2 AES-CBC- CS2 AES-CBC- CS3 AES-CBC- CS3 AES-CBC- CS3 AES-CBC- CS3 AES-CBC- CS3 AES-CCM AES-CCM AES-CCM AES-CCM AES-CCM AES-CFB1 AES-CFB1 AES-CFB1 AES-CFB1 AES-CFB1 AES- CFB128 AES-CFB8 AES-CFB8 AES-CFB8 AES-CFB8 AES-CTR AES-CTR AES-CTR AES-CTR AES-CTR AES-CTR

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 28 of 89

Name	Туре	Description	Properties	Algorithm s
				AES-ECB AES-ECB AES-KW AES-KW AES-KWP AES-KWP AES-KWP AES-CFB AES-OFB AES-OFB AES-OFB AES-OFB AES-OFB AES-TS Testing Revision 2.0 AES-XTS Testing Revision 2.0 AES-XTS Testing Revision 2.0 AES-XTS Testing Revision 2.0 AES-XTS Testing Revision 2.0 AES-COM AES-GCM AES-GCM AES-GCM AES-GCM AES-GCM
Message authentication	MAC	Message authentication		AES-GCM AES-CMAC AES-CMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC AES-GMAC HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC-

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 29 of 89

Name	Туре	Description	Properties	Algorithm s
				SHA-1
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224

Name	Туре	Description	Properties	Algorithm s
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA3-224
				HMAC-
				SHA3-256
				HMAC-
				SHA3-384
				HMAC-
				SHA3-512
				SHA-1
				SHA2-224
				SHA2-224 SHA2-256
				SHA2-256 SHA2-256
				SHA2-256
				SHA2-256
				SHA2-256
				SHA2-230
				SHA2-384
				SHA2-512
				SHA2-
				512/224

Name	Туре	Description	Properties	Algorithm s
				SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA3-224 SHA3-226 SHA3-384 SHA3-512
Signature generation	DigSig- SigGen	Signature generation		ECDSA SigGen (FIPS186-5) ECDSA SigGen (FIPS186-5) ECDSA SigGen (FIPS186-5) ECDSA SigGen (FIPS186-5) ECDSA SigGen (FIPS186-5) ECDSA SigGen (FIPS186-5) RSA SigGen (FIPS186-5) RSA SigGen

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 32 of 89

Name	Туре	Description	Properties	Algorithm s
				SHA2-224
				SHA2-256
				SHA2-384
				SHA2-512
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/256
				SHA2-
				512/256
				SHA2-
				512/256
				SHA2-
				512/256
				SHA2-
				512/256
				SHA3-224
				SHA3-256
				SHA3-384
				SHA3-512
Signature verification	DigSig-	Signature verification		ECDSA
	SigVer			SigVer
				(FIPS186-5)
				ECDSA
				SigVer
				(FIPS186-5)
				ECDSA
				SigVer
				(FIPS186-5)
				ECDSA

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 33 of 89

s SigVer (FIPS186-5) ECDSA SigVer (FIPS186-5) ECDSA SigVer (FIPS186-5) RSA SigVer
(FIPS186-5) ECDSA SigVer (FIPS186-5) ECDSA SigVer (FIPS186-5)
SigVer (FIPS186-5) ECDSA SigVer (FIPS186-5)
(FIPS186-5) ECDSA SigVer (FIPS186-5)
ECDSA SigVer (FIPS186-5)
SigVer (FIPS186-5)
(FIPS186-5)
(FIPS186-4)
RSA SigVer
(FIPS186-5)
RSA SigVer
(FIPS186-5)
RSA SigVer (FIPS186-5)
RSA SigVer
(FIPS186-5)
RSA SigVer
(FIPS186-5)
RSA SigVer
(FIPS186-5)
SHA-1
SHA2-224 SHA2-224
SHA2-224
SHA2-224
SHA2-224
SHA2-256
SHA2-384
SHA2-384
SHA2-384
SHA2-384
SHA2-384 SHA2-512
SHA2-512 SHA2-512
SHA2-512

Name	Туре	Description	Properties	Algorithm s
				SHA2-512 SHA2-512 SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA3-224 SHA3-256 SHA3-384 SHA3-512
Shared secret computation	KAS-SSC	Shared secret computation	KAS-ECC-SSC Strength:112 -256 bits KAS-ECC-FFC Strength:112 -200 bits	KAS-ECC- SSC Sp800- 56Ar3 KAS-ECC- SSC Sp800- 56Ar3 KAS-ECC- SSC Sp800- 56Ar3 KAS-ECC- SSC Sp800- 56Ar3 KAS-ECC- SSC Sp800- 56Ar3 KAS-FFC- SSC Sp800- 56Ar3
Key derivation	KAS-135KDF KAS-56CKDF KBKDF	Key derivation		KDF ANS 9.42 KDF ANS 9.42
				KDF ANS 9.42 KDF ANS
	@ 2024 IDM Cov			9.42 KDF ANS

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 35 of 89

Name	Туре	Description	Properties	Algorithm s
				9.42
				KDF ANS
				9.42
				KDF ANS
				9.63
				KDF ANS
				9.63
				KDF ANS
				9.63
				KDF ANS
				9.63
				KDF ANS
				9.63
				KDF ANS
				9.63
				TLS v1.2
				KDF
				RFC7627
				TLS v1.2 KDF
				RFC7627
				TLS v1.2
				KDF
				RFC7627
				TLS v1.2
				KDF
				RFC7627
				TLS v1.2
				KDF
				RFC7627
				KDF SSH
				KDF SP800-
				108
				KDA
				OneStep
				SP800-
				56Cr2
				KDA
				TwoStep
				SP800-
				56Cr2
				KDA HKDF
				Sp800-
				56Cr1
				TLS v1.3
				KDF
				AES-CMAC
				AES-CMAC
				AES-CMAC

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 36 of 89

Name	Туре	Description	Properties	Algorithm s
				HMAC-
				SHA-1
				HMAC-
				SHA-1
				HMAC-
				SHA-1
				HMAC-
				SHA-1
				HMAC-
				SHA-1
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-
				512/224

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 37 of 89

Name	Туре	Description	Properties	Algorithm s
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA3-224
				HMAC-
				SHA3-256
				HMAC-
				SHA3-384
				HMAC-
				SHA3-512
				SHA-1
				SHA2-224
				SHA2-256
				SHA2-250
				SHA2-384
				SHA2-384

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 38 of 89

Name	Туре	Description	Properties	Algorithm s
				SHA2-384 SHA2-384 SHA2-512 SHA2-512 SHA2-512 SHA2-512 SHA2-512 SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/224 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA3-224 SHA3-256 SHA3-384 SHA3-512
Password-based key derivation	PBKDF	Password-based key derivation		PBKDF PBKDF PBKDF PBKDF PBKDF PBKDF HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA-1 HMAC- SHA2-224 HMAC- SHA2-224

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 39 of 89

Name	Туре	Description	Properties	Algorithm s
				HMAC-
				SHA2-224
				HMAC-
				SHA2-224
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-256
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-384
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-512
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/224
				HMAC-
				SHA2-
				512/256
				HMAC-

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 40 of 89

Name	Туре	Description	Properties	Algorithm s
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA2-
				512/256
				HMAC-
				SHA3-224
				HMAC-
				SHA3-256
				HMAC-
				SHA3-384
				HMAC-
				SHA3-512
				SHA-1
				SHA2-224
				SHA2-256
				SHA2-256
				SHA2-256 SHA2-256
				SHA2-256
				SHA2-250
				SHA2-384
				SHA2-512
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-
				512/224
				SHA2-

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 41 of 89

Name	Туре	Description	Properties	Algorithm s
				512/224 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA2- 512/256 SHA3-224 SHA3-226 SHA3-256 SHA3-384 SHA3-512
Key pair generation	AsymKeyPair -KeyGen AsymKeyPair -SafePri	Key pair generation		ECDSA KeyGen (FIPS186-5) ECDSA KeyGen (FIPS186-5) ECDSA KeyGen (FIPS186-5) ECDSA KeyGen (FIPS186-5) ECDSA KeyGen (FIPS186-5) RSA
Key pair verification	AsymKeyPair -KeyVer AsymKeyPair -SafePri	Key pair verification		ECDSA KeyVer (FIPS186-5) ECDSA KeyVer

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 42 of 89

Message digest SHA Message digest SHA Message digest SHA Message digest SHA Message digest SHA Message digest SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-224 SHA-2256 SHA-2256 SHA-2256 SHA-2256 SHA-2256 SHA-2256 SHA-2256 SHA-2256 SHA-2256 SHA-2384 SHA-2384 SHA-2384 SHA2-512 SHA-2512 SHA-2512 SHA-2512 SHA2-512 SHA-2512 SHA-2512 SHA-2	Name	Туре	Description	Properties	Algorithm s
Message digest SHA Message digest SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-2224 SHA2-224 SHA2-224 SHA2-224 SHA2-256 SHA2-256 SHA2-256 SHA2-256 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-312 SHA2-512					ECDSA KeyVer (FIPS186-5) ECDSA KeyVer (FIPS186-5) ECDSA KeyVer (FIPS186-5) Safe Primes Key
	Message digest	SHA	Message digest		SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-1 SHA-2 SHA-2-24 SHA2-224 SHA2-224 SHA2-224 SHA2-226 SHA2-256 SHA2-256 SHA2-256 SHA2-256 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-512 SHA2-5

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 43 of 89

Name	Туре	Description	Properties	Algorithm
				S
				512/256
				SHA2-
				512/256
				SHA2-
				512/256
				SHA3-224
				SHA3-256
				SHA3-384
				SHA3-512
XOF	XOF	XOF		SHAKE-128
				SHAKE-256

Table 8: Security Function Implementations

2.7 Algorithm Specific Information

AES-GCM:

For TLS 1.2, the module offers the AES-GCM implementation and uses the context of Scenario 1 of FIPS 140-3 IG C.H. OpenSSL 3 is compliant with SP 800-52r2 Section 3.3.1 and the mechanism for IV generation is compliant with RFC 5288 and 8446.

The module does not implement the TLS protocol. The module's implementation of AES GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the TLS protocol implicitly ensures that the counter (the nonce_explicit part of the IV) does not exhaust the maximum number of possible values for a given session key. In the event the module's power is lost and restored, the consuming application must ensure that a new key for use with the AES-GCM key encryption or decryption under this scenario shall be established.

Alternatively, the Crypto Officer can use the module's API to perform AES-GCM encryption using internal IV generation. These IVs are always 96 bits and generated using the approved DRBG internal to the module's boundary, compliant to Scenario 2 of FIPS 140-3 IG C.H. The module also provides a non-approved AES-GCM encryption service which accepts arbitrary external IVs from the operator. This service can be requested by invoking the EVP_EncryptInit_ex2 API function with a non-NULL iv value. When this is the case, the API will set a non-approved service indicator as described in Section 4.3.

Finally, for TLS 1.3, the AES-GCM implementation uses the context of Scenario 5 of FIPS 140-3 IG C.H. The protocol that provides this compliance is TLS 1.3, defined in RFC8446 of August 2018, using the cipher-suites that explicitly select AES-GCM as the

encryption/decryption cipher (Appendix B.4 of RFC8446). The module supports acceptable AES-GCM cipher suites from Section 3.3.1 of SP800-52r2. TLS 1.3 employs separate 64-bit sequence numbers, one for protocol records that are received, and one for protocol records that are sent to a peer. These sequence numbers are set at zero at the beginning of a TLS 1.3 connection and each time when the AES-GCM key is changed. After reading or writing a record, the respective sequence number is incremented by one. The protocol specification determines that the sequence number should not wrap, and if this condition is observed, then the protocol implementation must either trigger a re-key of the session (i.e., a new key for AES-GCM), or terminate the connection.

AES-XTS:

The length of a single data unit encrypted or decrypted with AES-XTS shall not exceed 2²⁰ AES blocks, that is 16MB, of data per XTS instance. An XTS instance is defined in Section 4 of SP 800-38E.

The XTS mode shall only be used for the cryptographic protection of data on storage devices. It shall not be used for other purposes, such as the encryption of data in transit.

PBKDF2:

The module provides password-based key derivation (PBKDF2), compliant with SP 800-132. The module supports option 1a from Section 5.4 of SP 800-132, in which the Master Key (MK) or a segment of it is used directly as the Data Protection Key (DPK). In accordance with SP 800-132 and FIPS 140-3 IG D.N, the following requirements shall be met:

- Derived keys shall only be used in storage applications. The MK shall not be used for other purposes. The length of the MK or DPK shall be 112 bits or more.
- Passwords or passphrases, used as an input for the PBKDF2, shall not be used as cryptographic keys.
- The length of the password or passphrase shall be at least 8 characters, and shall consist of lowercase, uppercase, and numeric characters. The probability of guessing the value is estimated to be at most $1/62^8 = 4 \times 10^{-15}$. Combined with the minimum iteration count as described below, this provides an acceptable trade-off between user experience and security against brute-force attacks.
- A portion of the salt, with a length of at least 128 bits, shall be generated randomly using the SP 800-90Ar1 DRBG provided by the module.
- The iteration count shall be selected as large as possible, as long as the time required to generate the key using the entered password is acceptable for the users. The minimum value is 1000.

If any of these requirements is not met, the requested service is non-approved.

RSA:

For RSA key pair generation, signature generation, and signature verification, the module supports any modulus size between 2048 and 16384 bits. Additionally, the module supports a modulus size of 1024 bits for RSA signature verification. Only modulus sizes 1024, 2048, 3072, and 4096 bits have been CAVP tested. Any other modulus size is untested.

SP 800-56Ar3 assurances:

To comply with the assurances found in Section 5.6.2 of SP 800-56Ar3, the operator must use the module together with an application that implements the TLS protocol. Additionally, the module's approved key pair generation service must be used to generate ephemeral Diffie-Hellman or EC Diffie-Hellman key pairs, or the key pairs must be obtained from another FIPS-validated module. As part of this service, the module will internally perform the full public key validation of the generated public key.

The module's shared secret computation service will internally perform the full public key validation of the peer public key, complying with Sections 5.6.2.2.1 and 5.6.2.2.2 of SP 800-56Ar3.

Legacy use:

Digital Signature Verification using RSA with a 1024-bit modulus is allowed for legacy use only.

2.8 RBG and Entropy

Cert Number	Vendor Name		
E91	IBM Corporation		
Table O. Entropy Cartificator			

Table 9: Entropy Certificates

Name	Туре	Operational Environment	Sample Size	Entrop y per Sample	Conditioning Component
Entropy Source for the IBM DataPower FIPS Provider	Non- Physical	IBM DataPower Gateway X3	256 bits	256 bits	SHA3-256 (A4294); AES-256 CTR DRBG (A4294); AES-256 CTR DRBG (A4356)

Table 10: Entropy Sources

The module employs two Deterministic Random Bit Generator (DRBG) implementations based on SP 800-90Ar1. These DRBGs are used internally by the module (e.g. to generate seeds for asymmetric key pairs and random numbers for security functions). They can also be accessed using the specified API functions. The following parameters are used:

- 1. Private DRBG: AES-256 CTR_DRBG with derivation function. This DRBG is used to generate secret random values (e.g. during asymmetric key pair generation). It can be accessed using the RAND_priv_bytes API function.
- 2. Public DRBG: AES-256 CTR_DRBG with derivation function. This DRBG is used to generate general purpose random values that do not need to remain secret (e.g. initialization vectors). It can be accessed using the RAND bytes API function.

The DRBGs are seeded with 384 bits of seed material (corresponding to 384 bits of entropy) obtained from an SP 800-90B compliant entropy source. During reseeding, the DRBGs obtain 256 bits of seed material (corresponding to 256 bits of entropy). These DRBGs will always employ prediction resistance. More information regarding the configuration and design of these DRBGs can be found in the module's manual pages.

The module complies with the Public Use Document for ESV certificate E91 seeding the aforementioned DRBGs using the EVP_RAND_generate function, which corresponds to the GetEntropy() function. The operational environment of the module is identical to the one listed on the ESV certificate. There are no maintenance requirements for the entropy source.

2.9 Key Generation

The module implements Cryptographic Key Generation (CKG, vendor affirmed), compliant with SP 800-133r2. When random values are required, they are obtained from the SP 800-90Ar1 approved DRBG, compliant with Section 4 of SP 800-133r2. The following methods are implemented:

- Safe primes key pair generation: compliant with SP 800-133r2, Section 5.2, which maps to SP 800-56Ar3. The method described in Section 5.6.1.1.4 of SP 800-56Ar3 ("Testing Candidates") is used.
- RSA key pair generation: compliant with SP 800-133r2, Section 5.1, which maps to FIPS 186-5. The method described in Appendix A.1.6 of FIPS 186-5 ("Probable Primes with Conditions Based on Auxiliary Probable Primes") is used.
- ECDSA key pair generation: compliant with SP 800-133r2, Section 5.1, which maps to FIPS 186-5. The method described in Appendix B.2.2 of FIPS 186-5 ("Rejection Sampling") is used. Note that this generation method is also used to generate ECDH key pairs.

Intermediate key generation values are not output from the module and are explicitly zeroized after processing the service.

Additionally, the module implements the following key derivation methods, with a security strength of 112-256 bits:

• KBKDF: compliant with SP 800-108r1. This implementation can be used to derive secret keys from a pre-existing key-derivation-key.

© 2024 IBM Corporation/ atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

- KDA OneStep, KDA TwoStep, HKDF: compliant with SP 800-56Cr2. These implementations shall only be used to derive secret keys in the context of an SP 800-56Ar3 key agreement scheme.
- ANS X9.42 KDF, ANS X9.63 KDF: compliant with SP 800-135r1. These implementations shall only be used to derive secret keys in the context of an ANS X9.42-2001 resp. ANS X9.63- 2001 key agreement scheme.
- SSH KDF, TLS 1.2 KDF, TLS 1.3 KDF: compliant with SP 800-135r1 and RFC 8446. These implementations shall only be used to derive secret keys in the context of the SSH, TLS 1.2, or TLS 1.3 protocols, respectively.
- PBKDF2: compliant with option 1a of SP 800-132. This implementation shall only be used to derive keys for use in storage applications.

2.10 Key Establishment

The module implements SSP agreement and SSP transport methods as listed in the SFI table.

2.11 Industry Protocols

The module implements the SSH key derivation function for use in the SSH protocol (RFC 4253 and RFC 6668).

GCM with internal IV generation in the approved mode is compliant with versions 1.2 and 1.3 of the TLS protocol (RFC 5288 and 8446) and shall only be used in conjunction with the TLS protocol. Additionally, the module implements the TLS 1.2 and TLS 1.3 key derivation functions for use in the TLS protocol.

For Diffie-Hellman, the module supports the use of the following safe primes:

- IKE (RFC 3526): MODP-2048 (ID = 14), MODP-3072 (ID = 15), MODP-4096 (ID = 16), MODP-6144 (ID = 17), MODP-8192 (ID = 18)
- TLS (RFC 7919): ffdhe2048 (ID = 256), ffdhe3072 (ID = 257), ffdhe4096 (ID = 258), ffdhe6144 (ID = 259), ffdhe8192 (ID = 260)

No parts of the SSH, TLS, or IKE protocols, other than those mentioned above, have been tested by the CAVP or CMVP.

3 Cryptographic Module Interfaces

3.1 Ports and Interfaces

Physical Port	Logical Interface(s)	Data Passes	That
As a software-only module, the module does not have physical ports. Physical Ports are interpreted to be the physical ports of the hardware platform on which it runs.	Data Input	API parame	input ters
As a software-only module, the module does not have physical ports. Physical Ports are interpreted to be the physical ports of the hardware platform on which it runs.	Data Output	API parame	output ters
As a software-only module, the module does not have physical ports. Physical Ports are interpreted to be the physical ports of the hardware platform on which it runs.	Control Input	API calls	function
As a software-only module, the module does not have physical ports. Physical Ports are interpreted to be the physical ports of the hardware platform on which it runs.	Status Output	API codes, queue	return error

Table 11: Ports and Interfaces

The logical interfaces are the APIs through which the applications request services. These logical interfaces are logically separated from each other by the API design.

4 Roles, Services, and Authentication

4.1 Authentication Methods

N/A for this module.

4.2 Roles

Name	Туре	Operator Type	Authentication Methods
Crypto Officer	Role	CO	None

Table 12: Roles

No support is provided for multiple concurrent operators.

4.3 Approved Services

Name	Descr iption	Indicator	Input s	Outp uts	Security Functions	SSP Acces s
Messag e digest	Comp ute a messa ge digest	EVP_DigestFinal_ex returns 1	Mess age	Diges t value	Message digest	Crypto Officer
XOF	Comp ute the output of an XOF	EVP_DigestFinalXOF returns 1	Mess age, outpu t lengt h	Diges t value	XOF	Crypto Officer
Encrypt ion	Encryp t a plainte xt	EVP_EncryptFinal_ex returns 1	Plaint ext, IV, AES key	Ciphe rtext	Encryption/ Decryption	Crypto Officer - AES key: W,E
Decryp tion	Decry pt a cipher text	EVP_DecryptFinal_ex returns 1	Ciphe rtext, IV, AES key	Plaint ext	Encryption/ Decryption	Crypto Officer - AES key: W,E
Authen ticated encrypt ion	Encryp t a plainte xt	AES GCM: EVP_CIPHER_DATAPOWER_FIPS_ INDICATOR_APPROVED; Others: EVP_EncryptFinal_ex returns 1	Plaint ext, IV, AES key	Ciphe rtext, MAC tag	Encryption/ Decryption	Crypto Officer - AES key: W,E
Authen ticated decrypt ion	Decry pt a cipher text	AES GCM: EVP_CIPHER_DATAPOWER_FIPS_ INDICATOR_APPROVED; Others: EVP_DecryptFinal_ex returns 1	Ciphe rtext, IV, AES key,	Plaint ext or fail	Encryption/ Decryption	Crypto Officer - AES key: W,E

© 2024 IBM Corporation/ atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 49 of 89

Name	Descr iption	Indicator	Input s	Outp uts	Security Functions	SSP Acces s
Messag e authen tication	Comp ute a MAC tag	HMAC: EVP_MAC_DATAPOWER_FIPS_IN DICATOR_APPROVED; Others: EVP_MAC_final returns 1	MAC tag Mess age, key	MAC tag	Message authenticati on	Crypto Officer - AES key: W,E -
Key derivati on	Derive a key from a key- deriva tion key or a shared secret	EVP_KDF_DATAPOWER_FIPS_IN DICATOR_APPROVED	Key- deriv ation key or share d secre t, outpu t lengt h	Deriv ed key	Key derivation	HMAC key: W,E Crypto Officer - Key- deriva tion key: W,E - Share d secret: W,E - Derive d key: G,R
Passwo rd- based key derivati on	Derive a key from a passw ord	EVP_KDF_DATAPOWER_FIPS_IN DICATOR_APPROVED	Pass word, salt, iterati on count , outpu t lengt h	Deriv ed key	Password- based key derivation	Crypto Officer - Passw ord: W,E - Derive d key: G,R
Rando m numbe r genera tion	Gener ate rando m bytes	RAND_bytes, RAND_priv_bytes, RAND_bytes_ex, RAND_priv_bytes_ex returns 1	Outp ut lengt h	Rand om bytes	Random number generation	Crypto Officer - Entrop y input: W,E,Z - DRBG seed: G,E,Z -
			formation			DRBG intern

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 50 of 89

Name	Descr iption	Indicator	Input s	Outp uts	Security Functions	SSP Acces s
						al state (V, Key): G,E
						DRBG intern al state (V, C): G,E
Shared secret comput ation	Comp ute a shared secret	EVP_PKEY_derive returns 1	Owne r privat e key, peer public key		Shared secret computatio n	Crypto Officer - DH public key: W,E - DH privat e key: W,E - EC public key: W,E - EC privat e key: W,E - EC privat e key: W,E - Share d secret: G,R
Signatu re genera tion	Gener ate a signat ure	RSA: OSSL_DP_FIPSINDICATOR_APPR OVED and EVP_SIGNATURE_DATAPOWER_F IPS_INDICATOR_APPROVED; ECDSA: OSSL_DP_FIPSINDICATOR_APPR OVED	Mess age, privat e key	Signa ture	Signature generation	Crypto Officer - EC privat e key: W,E - RSA privat e key: W,E
Signatu re verifica tion	Verify a signat ure	RSA: OSSL_DP_FIPSINDICATOR_APPR OVED and EVP_SIGNATURE_DATAPOWER_F IPS_INDICATOR_APPROVED; ECDSA: OSSL_DP_FIPSINDICATOR_APPR	Mess age, public key, signa ture	Pass/ fail	Signature verification	Crypto Officer - EC public key: W,E - RSA

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 51 of 89

Name	Descr iption	Indicator	Input s	Outp uts	Security Functions	SSP Acces s
		OVED				public key: W,E
Key pair genera tion	Gener ate a key pair	EVP_PKEY_generate returns 1	Grou p, curve , or modu lus size	Key pair	Key pair generation	Crypto Officer - DH public key: G,R - DH privat e key: G,R - EC public key: G,R - EC privat e key: G,R - RSA public key: G,R - RSA privat e key: G,R - R - RSA privat e key: G,R - R - R - R - R - R - R - R - R - R -
Key pair verifica tion	Verify a key pair	Successful execution and non- approved indicator is not present	Key pair	Pass/ fail	Key pair verification	Crypto Officer - DH public key: W,E - DH privat e key: W,E - EC public key: W,E - EC

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 52 of 89

Name	Descr iption	Indicator	Input s	Outp uts	Security Functions	SSP Acces s
						privat e key: W,E
Show version	Return the name and versio n inform ation	None	None	Modu le name and versi on	None	Crypto Officer
Show status	Return the modul e status	None	None	Modu le statu s	None	Crypto Officer
Self- test	Perfor m the CASTs and integri ty test	None	None	Pass/ fail	None	Crypto Officer
Zeroiza tion	Zeroiz e any SSP	None	Any SSP	None	None	Crypto Officer - AES key: Z - HMAC key: Z - Key- deriva tion key: Z
						- Share d secret: Z
						Passw ord: Z
						Derive d key: Z
		© 2024 IBM Corporation/ atoos in				- DRBG intern al state (V, Key):

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 53 of 89

Name	Descr iption	Indicator	Input s	Outp uts	Security Functions	SSP Acces s
						Z - DRBG intern al state (V, C): Z - DH public key: Z - DH privat e key: Z - EC public key: Z - EC privat e key: Z - EC privat e key: Z - EC privat e key: Z - RSA public key: Z - RSA
						privat e key: Z

Table 13: Approved Services

The following convention is used to specify access rights to SSPs:

- Generate (G): The module generates or derives the SSP.
- **Read (R):** The SSP is read from the module (e.g. the SSP is output).
- Write (W): The SSP is updated, imported, or written to the module.
- **Execute (E):** The module uses the SSP in performing a cryptographic operation.
- Zeroize (Z): The module zeroizes the SSP.
- **N/A**: The module does not access any SSP or key during its operation.

To interact with the module, a calling application must use the EVP API layer provided by OpenSSL. This layer will delegate the request to the FIPS provider, which will in turn perform the requested service. Additionally, this EVP API layer can be used to retrieve the approved service indicator for the module. The datapower_ossl_query_fipsindicator API function indicates whether an EVP API function is approved. After a cryptographic service was performed by the module, the API context associated with this request can contain a parameter which represents the approved service indicator. The contexts and parameters are listed in the table below.

Context	Service Indicator
EVP_CIPHER_CTX	OSSL_CIPHER_PARAM_DATAPOWER_FIPS_INDICATOR
EVP_MAC_CTX	OSSL_MAC_PARAM_DATAPOWER_FIPS_INDICATOR
EVP_KDF_CTX	OSSL_KDF_PARAM_DATAPOWER_FIPS_INDICATOR

© 2024 IBM Corporation/ atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 54 of 89

EVP_PKEY_CTX	OSSL_SIGNATURE_PARAM_DATAPOWER_FIPS_INDICATOR
EVP_PKEY_CTX	OSSL_ASYM_CIPHER_PARAM_DATAPOWER_FIPS_INDICATOR
EVP_PKEY_CTX	OSSL_KEM_PARAM_DATAPOWER_FIPS_INDICATOR

The details to use these functions and parameters are described in the module's manual pages.

4.4 Non-Approved Services

Name	Description	Algorithms	Role
Encryption	Encrypt a plaintext	AES GCM (external IV)	Crypto
			Officer
Message	Compute a MAC tag	HMAC (< 112-bit keys)	Crypto
authentication			Officer
Key derivation	Derive a key from a key-derivation key or a shared secret	KBKDF, KDA OneStep, KDA TwoStep, HKDF, ANS X9.42 KDF, ANS X9.63 KDF (< 112-bit input or	Crypto Officer
Password-based key derivation	Derive a key from a password	PBKDF2 (short password; short salt; insufficient iterations; < 112- bit output keys)	Crypto Officer
Shared secret computation	Compute a shared secret	KAS-IFC-SSC (KAS1 and KAS2 schemes)	Crypto Officer
Signature generation	Generate a signature	RSA and ECDSA (pre-hashed message) RSA-PSS (invalid salt length)	Crypto Officer
Signature verification	Verify a signature	RSA and ECDSA (pre-hashed message) RSA-PSS (invalid salt length)	Crypto Officer
Asymmetric encryption	Encrypt a plaintext	RSA-OAEP	Crypto Officer
Asymmetric decryption	Decrypt a ciphertext	RSA-OAEP	Crypto Officer

Table 14: Non-Approved Services

4.5 External Software/Firmware Loaded

The module does not load external software or firmware.

5 Software/Firmware Security

5.1 Integrity Techniques

The integrity of the module is verified by comparing a HMAC-SHA2-256 value calculated at run time with the HMAC-SHA2-256 value embedded in the fips.so file that was computed at build time.

5.2 Initiate on Demand

Integrity tests are performed as part of the pre-operational self-tests, which are executed when the module is initialized. The integrity test may be invoked on-demand by resetting the module, or by calling the OSSL_PROVIDER_self_test API function. This will perform (among others) the software integrity test.

6 Operational Environment

6.1 Operational Environment Type and Requirements

Type of Operational Environment: Modifiable

How Requirements are Satisfied:

Any SSPs contained within the module are protected by the process isolation and memory separation mechanisms provided by the Linux kernel, and only the module has control over these SSPs.

6.2 Configuration Settings and Restrictions

Instrumentation tools like the ptrace system call, gdb and strace, user space live patching, as well as other tracing mechanisms offered by the Linux environment such as ftrace or systemtap, shall not be used in the operational environment. The use of any of these tools implies that the cryptographic module is running in a non-validated operational environment.

7 Physical Security

The module is comprised of software only and therefore this section is not applicable.

8 Non-Invasive Security

This module does not implement any non-invasive security mechanism and therefore this section is not applicable.

9 Sensitive Security Parameters Management

9.1 Storage Areas

Storage Area Name	Description	Persistence Type
RAM	Temporary storage for SSPs used by the module as part of service execution	Dynamic

Table 15: Storage Areas

SSPs are provided to the module by the calling process and are destroyed when released by the appropriate zeroization function calls.

9.2 SSP Input-Output Methods

Name	From	То	Format Type	Distributio n Type	Entry Type	SFI or Algorithm
API input parameters	Operator calling application (TOEPP)	RAM	Plaintext	Manual	Electronic	
API output parameters	RAM	Operator calling application (TOEPP)	Plaintext	Manual	Electronic	

Table 16: SSP Input-Output Methods

9.3 SSP Zeroization Methods

Zeroization Method	Description	Rationale	Operator Initiation
Free cipher handle	Zeroizes the SSPs contained within the cipher handle	Memory occupied by SSPs is overwritten with zeroes and then it is released, which renders the SSP values irretrievable. The completion of the zeroization routine indicates that the zeroization procedure succeeded.	By calling the appropriate zeroization API functions
Automatic	Automatically zeroized by the module when no longer needed	Memory occupied by SSPs is overwritten with zeroes, which renders the SSP values irretrievable	N/A
Module reset	De-allocates the volatile memory used to store SSPs	Volatile memory used by the module is overwritten within nanoseconds when the module is unloaded	By unloading the module

Table 17: SSP Zeroization Methods

All data output is inhibited during zeroization.

9.4 SSPs

Name	Descripti on	Size - Strength	Type - Categor y	Generat ed By	Establish ed By	Used By
AES key	AES key used for encryptio n, and computin g MAC tags	XTS: 256, 512 bits; Other modes: 128, 192, 256 bits - XTS: 128, 256 bits; Other modes: 128, 192, 256 bits	Symmetri c key - CSP			Encryption/ Decryption Message authentication
HMAC key	HMAC key used computin g MAC tags	112- 524288 bits - 112- 256 bits	Symmetri c key - CSP			Message authentication
Key- derivation key	Key- derivation key used for: Key derivation	112-4096 bits - 112- 256 bits	Symmetri c key - CSP			Key derivation
Shared secret	Shared secret generate d by (EC) Diffie- Hellman	224-8192 bits - 112- 256 bits	Shared secret - CSP		Shared secret computati on	Key derivation
Password	Password used to derive symmetri c keys	8-128 characters - N/A	Password - CSP			Password-based key derivation
Derived key	Symmetri c key derived from a key- derivation key, shared secret, or password	8-4096 bits - 112- 256 bits	Symmetri c key - CSP	n Passwor d-based key derivatio n		
Entropy input	Entropy input used to seed the	128-384 bits - 128- 384 bits	Entropy input - CSP	Random number generati on		

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 62 of 89

Name	Descripti on	Size - Strength	Type - Categor y	Generat ed By	Establish ed By	Used By
	DRBG		y			
DRBG seed	DRBG seed derived from entropy input	CTR_DRB G: 256, 320, 348 bits; Hash_DRB G: 440, 888 bits; HMAC_DR BG: 160, 256, 512 bits - CTR_DRB G: 128, 192, 256 bits; Hash_DRB G: 128, 256 bits; HMAC_DR BG: 128, 256 bits;	Seed - CSP	Random number generati on		Random number generation
DRBG internal state (V, Key)	Internal state of CTR_DRB G and HMAC_DR BG instances	CTR_DRB G: 256, 320, 348 bits HMAC_DR BG: 320, 512, 1024 bits - CTR_DRB G: 128, 192, 256 bits; HMAC_DR BG: 128, 256 bits	Internal state - CSP	Random number generati on		Random number generation
DRBG internal state (V, C)	Internal state of Hash_DR BG instances	Hash_DRB G: 880, 1776 bits - Hash_DRB G: 128, 256 bits	Internal state - CSP	Random number generati on		Random number generation
DH public key	Public key used for Diffie- Hellman	2048- 8192 bits - 112-200 bits	Public key - PSP	Key pair generati on		Shared secret computation Key pair verification
DH private key	Private key used for Diffie-	2048- 8192 bits - 112-200	Private key - CSP	Key pair generati on		Shared secret computation Key pair

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 63 of 89

Name	Descripti on	Size - Strength	Type - Categor Y	Generat ed By	Establish ed By	Used By
EC public key	Hellman Public key used for ECDH and ECDSA	bits P-224, P-256, P-384, P-521 - 112-256 bits	Public key - PSP	Key pair generati on		verification Signature verification Shared secret computation Key pair verification
EC private key	Private key used for ECDH and ECDSA	P-224, P-256, P-384, P-521 - 112-256 bits	Private key - CSP	Key pair generati on		Signature generation Shared secret computation Key pair verification
RSA public key	Public key used for: Signature verificatio n, Key pair generatio n; Related keys: RSA private key	Signature verificatio n: 1024 and 2048- 16384 bits; Key pair generatio n: 2048- 16384 bits - Signature verificatio n: 80 and 112-256 bits; Key pair generatio n: 112- 256 bits	Public key - PSP	Key pair generati on		Signature verification
RSA private key	Private key used RSA signature verificatio n	2048- 16384 bits - 112- 256 bits	Private key - CSP	Key pair generati on		Signature generation
Intermedi ate key generatio n value	Temporar y value generate d during key pair generatio n services	2048- 16384 bits - 112- 256 bits	Intermedi ate value - CSP	Key pair generati on		Key pair generation

Table 18: SSP Table 1

Name	Input -	Storage	Storage	Zeroizatio	Related SSPs
Name	Output	Storage	Duration	n	Related 551 3
AES key	API input parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	
HMAC key	API input parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	
Key- derivation key	API input parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	
Shared secret	API input parameter s API output parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	
Password	API input parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	
Derived key	API output parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	Key-derivation key:Derived From Shared secret:Derived From Password:Derive d From
Entropy input		RAM:Plaintex t	From generation until DRBG seed is created	Automatic Module reset	
DRBG seed		RAM:Plaintex t	While the DRBG is being instantiate d	Automatic Module reset	Entropy input:Derived From
DRBG internal state (V, Key)		RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	DRBG seed:Derived From
DRBG internal state (V, C)		RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	DRBG seed:Derived From
DH public key	API input parameter s	RAM:Plaintex t	Until the cipher handle is	Free cipher handle Module	DH private key:Paired With

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 65 of 89

Name	Input -	Storage	Storage	Zeroizatio	Related SSPs
	Output API output		Duration freed	n reset	
	parameter s				
DH private key	API input parameter s API output parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	DH public key:Paired With
EC public key	API input parameter s API output parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	EC private key:Paired With
EC private key	API input parameter s API output parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	EC public key:Paired With
RSA public key	API input parameter s API output parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	RSA private key:Paired With
RSA private key	API input parameter s API output parameter s	RAM:Plaintex t	Until the cipher handle is freed	Free cipher handle Module reset	RSA public key:Paired With
Intermediat e key generation value		RAM:Plaintex t	From service invocation to service completion	Automatic	

Table 19: SSP Table 2

9.5 Transitions

The SHA-1 algorithm as implemented by the module will be non-approved for all purposes, starting January 1, 2030.

10 Self-Tests

While the module is executing the self-tests, services are not available, and data output (via the data output interface) is inhibited until the tests are successfully completed. The module does not return control to the calling application until the tests are completed.

10.1 Pre-Operational Self-Tests

Algorith m or Test	Test Propertie s	Test Method	Test Type	Indicator	Detail s
HMAC-	256-bit key	Message	SW/FW	OSSL_PROV_PARAM_STATU	Used
SHA2-256		authenticatio	Integrit	S is set to 1	for
(A4365)		n	y		fips.so

Table 20: Pre-Operational Self-Tests

The pre-operational software integrity tests are performed automatically when the module is initialized, before the module transitions into the operational state. The module transitions to the operational state only after the pre-operational self-tests are passed successfully.

10.2 Conditional Self-Tests

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
SHA-1 (A4361)	24-bit message	KAT	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA-1 (A4365)	24-bit message	KAT	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA-1 (A4366)	24-bit message	KAT	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA-1 (A4367)	24-bit message	KAT	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA-1 (A4368)	24-bit message	КАТ	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA2-512 (A4361)	24-bit message	КАТ	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA2-512 (A4365)	24-bit message	KAT	CAST	Module becomes operational	Message digest	Test runs at power-on before the

© 2024 IBM Corporation/ atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 67 of 89

Algorithm or Test	Test Properties	Test Method	Test	Indicator	Details	Conditions
oriest	Properties	Methoa	Туре			integrity test
SHA2-512 (A4366)	24-bit message	КАТ	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA2-512 (A4367)	24-bit message	КАТ	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA2-512 (A4368)	24-bit message	КАТ	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA3-256 (A4362)	32-bit message	КАТ	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
SHA3-256 (A4362)	32-bit message	КАТ	CAST	Module becomes operational	Message digest	Test runs at power-on before the integrity test
AES-GCM (A4360)	Encryption with 256-bit key	КАТ	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the integrity test
AES-GCM (A4363)	Encryption with 256-bit key	КАТ	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the integrity test
AES-GCM (A4364)	Encryption with 256-bit key	КАТ	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the integrity test
AES-GCM (A4371)	Encryption with 256-bit key	КАТ	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the integrity test
AES-GCM (A4372)	Encryption with 256-bit key	КАТ	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the integrity test
AES-GCM (A4373)	Encryption with 256-bit key	КАТ	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the integrity test
AES-GCM (A4374)	Encryption with 256-bit key	КАТ	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the integrity test
AES-GCM (A4375)	Encryption with 256-bit key	KAT	CAST	Module becomes operational	Symmetric operation	Test runs at power-on before the

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 68 of 89

Algorithm	Test	Test	Test	Indicator	Details	Conditions
or Test	Properties	Method	Туре			
	F arana tina		CACT	Mashula	C	integrity test
AES-GCM	Encryption with 256-bit	KAT	CAST	Module	Symmetric	Test runs at
(A4376)				becomes	operation	power-on
	key			operational		before the
150 0014		1/47	CACT.			integrity test
AES-GCM	Decryption	KAT	CAST	Module	Symmetric	Test runs at
(A4360)	with 256-bit			becomes	operation	power-on
	key			operational		before the
						integrity test
AES-GCM	Decryption	KAT	CAST	Module	Symmetric	Test runs at
(A4363)	with 256-bit			becomes	operation	power-on
	key			operational		before the
						integrity test
AES-GCM	Decryption	KAT	CAST	Module	Symmetric	Test runs at
(A4364)	with 256-bit			becomes	operation	power-on
	key			operational		before the
	-			-		integrity test
AES-GCM	Decryption	KAT	CAST	Module	Symmetric	Test runs at
(A4371)	with 256-bit			becomes	operation	power-on
	key			operational		before the
						integrity test
AES-GCM	Decryption	KAT	CAST	Module	Symmetric	Test runs at
(A4372)	with 256-bit			becomes	operation	power-on
(key			operational	00000000	before the
				000000000000000000000000000000000000000		integrity test
AES-GCM	Decryption	КАТ	CAST	Module	Symmetric	Test runs at
(A4373)	with 256-bit		0,101	becomes	operation	power-on
(11010)	key			operational	00000000	before the
	i key			operational		integrity test
AES-GCM	Decryption	КАТ	CAST	Module	Symmetric	Test runs at
(A4374)	with 256-bit		0, 10 1	becomes	operation	power-on
() (10 / 1)	key			operational	operation	before the
	i key			operational		integrity test
AES-GCM	Decryption	КАТ	CAST	Module	Symmetric	Test runs at
(A4375)	with 256-bit		CASI	becomes	operation	power-on
(74373)	key			operational	operation	before the
	Key			operational		integrity test
AES-GCM	Decryption	КАТ	CAST	Module	Symmetric	Test runs at
(A4376)	with 256-bit		CASI	becomes	operation	power-on
(44370)						before the
	key			operational		
	Decruption	КАТ	CAST	Modulo	Summatria	integrity test
AES-ECB	Decryption	NAI	CASI	Module	Symmetric	Test runs at
(A4357)	with 128-bit			becomes	operation	power-on
	key			operational		before the
	Deerstier		CACT	Madula	Cy upp res a trail a	integrity test
AES-ECB	Decryption	KAT	CAST	Module	Symmetric	Test runs at
(A4358)	with 128-bit			becomes	operation	power-on
	key			operational		before the
			0.007			integrity test
AES-ECB	Decryption	KAT	CAST	Module	Symmetric	Test runs at
(A4359)	with 128-bit			becomes	operation	power-on
	key			operational		before the

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 69 of 89

Algorithm	Test	Test	Test	Indicator	Details	Conditions
or Test	Properties	Method	Туре			
						integrity test
KDF SP800-	Counter	KAT	CAST	Module	Key	Test runs at
108	mode,			becomes	derivation	power-on
(A4381)	HMAC-SHA2-			operational		before the
	256					integrity test
KDA	SHA2-224	KAT	CAST	Module	Кеу	Test runs at
OneStep				becomes	derivation	power-on
SP800-				operational		before the
56Cr2						integrity test
(A4382)			CACT	Madula	Kavi	Teet wine et
KDA HKDF	SHA2-256	KAT	CAST	Module	Key	Test runs at
Sp800-				becomes	derivation	power-on
56Cr1				operational		before the
(A4355) KDF ANS	SHA-1	КАТ	CAST	Module	Кеу	integrity test Test runs at
9.42	SUA-1	NA I	CAST	becomes	derivation	power-on
9.42 (A4361)				operational	uenvacion	before the
(A4301)				operational		integrity test
KDF ANS	SHA-1	KAT	CAST	Module	Кеу	Test runs at
9.42			CASI	becomes	derivation	power-on
(A4362)				operational	activation	before the
(/(+302)				operational		integrity test
KDF ANS	SHA-1	KAT	CAST	Module	Кеу	Test runs at
9.42			0,101	becomes	derivation	power-on
(A4365)				operational		before the
. ,						integrity test
KDF ANS	SHA-1	KAT	CAST	Module	Key	Test runs at
9.42				becomes	derivation	power-on
(A4366)				operational		before the
						integrity test
KDF ANS	SHA-1	KAT	CAST	Module	Кеу	Test runs at
9.42				becomes	derivation	power-on
(A4367)				operational		before the
						integrity test
KDF ANS	SHA-1	KAT	CAST	Module	Key	Test runs at
9.42				becomes	derivation	power-on
(A4368)				operational		before the
			CACT	Madula	Kavi	integrity test
KDF ANS	SHA2-256	KAT	CAST	Module	Key	Test runs at
9.63				becomes	derivation	power-on before the
(A4361)				operational		
KDF ANS	SHA2-256	КАТ	CAST	Module	Кеу	integrity test Test runs at
9.63			CASI	becomes	derivation	power-on
(A4362)				operational		before the
() (1002)						integrity test
KDF ANS	SHA2-256	KAT	CAST	Module	Кеу	Test runs at
9.63				becomes	derivation	power-on
(A4365)				operational		before the
/						integrity test
KDF ANS	SHA2-256	KAT	CAST	Module	Кеу	Test runs at
9.63				becomes	derivation	power-on

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 70 of 89

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
(A4366)	roperties	Meenou	Турс	operational		before the
						integrity test
KDF ANS 9.63 (A4367)	SHA2-256	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
KDF ANS 9.63 (A4368)	SHA2-256	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
KDF SSH (A4370)	SHA-1	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
KDF SSH (A4377)	SHA-1	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
KDF SSH (A4378)	SHA-1	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
KDF SSH (A4379)	SHA-1	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
KDF SSH (A4380)	SHA-1	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
TLS v1.2 KDF RFC7627 (A4361)	SHA2-256	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
TLS v1.2 KDF RFC7627 (A4365)	SHA2-256	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
TLS v1.2 KDF RFC7627 (A4366)	SHA2-256	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
TLS v1.2 KDF RFC7627 (A4367)	SHA2-256	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
TLS v1.2 KDF RFC7627 (A4368)	SHA2-256	КАТ	CAST	Module becomes operational	Key derivation	Test runs at power-on before the integrity test
TLS v1.3 KDF	SHA2-256, extract and	KAT	CAST	Module becomes	Key derivation	Test runs at power-on

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 71 of 89

Algorithm	Test	Test	Test	Indicator	Details	Conditions
or Test	Properties	Method	Туре			
(A4355)	expand			operational		before the integrity test
PBKDF (A4361)	SHA2-256, 24-character password, 288-bit salt, iteration count: 4096	КАТ	CAST	Module becomes operational	Password- based key derivation	Test runs at power-on before the integrity test
PBKDF (A4362)	SHA2-256, 24-character password, 288-bit salt, iteration count: 4096	КАТ	CAST	Module becomes operational	Password- based key derivation	Test runs at power-on before the integrity test
PBKDF (A4365)	SHA2-256, 24-character password, 288-bit salt, iteration count: 4096	КАТ	CAST	Module becomes operational	Password- based key derivation	Test runs at power-on before the integrity test
PBKDF (A4366)	SHA2-256, 24-character password, 288-bit salt, iteration count: 4096	КАТ	CAST	Module becomes operational	Password- based key derivation	Test runs at power-on before the integrity test
PBKDF (A4367)	SHA2-256, 24-character password, 288-bit salt, iteration count: 4096	КАТ	CAST	Module becomes operational	Password- based key derivation	Test runs at power-on before the integrity test
PBKDF (A4368)	SHA2-256, 24-character password, 288-bit salt, iteration count: 4096	КАТ	CAST	Module becomes operational	Password- based key derivation	Test runs at power-on before the integrity test
Counter DRBG (A4356)	AES-128	КАТ	CAST	Module becomes operational	Instantiate, generate, reseed, generate (compliant with SP 800- 90Ar1)	Test runs at power-on before the integrity test
Hash DRBG (A4356)	SHA2-256	КАТ	CAST	Module becomes operational	Instantiate, generate, reseed, generate (compliant with SP 800- 90Ar1)	Test runs at power-on before the integrity test

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 72 of 89

Algorithm	Test	Test	Test	Indicator	Details	Conditions
or Test	Properties	Method	Туре	maicator	Details	contactions
HMAC DRBG (A4356)	HMAC-SHA2- 256	КАТ	CAST	Module becomes operational	Instantiate, generate, reseed, generate (compliant with SP 800- 90Ar1)	Test runs at power-on before the integrity test
KAS-FFC- SSC Sp800- 56Ar3 (A4383)	ffdhe2048	КАТ	CAST	Module becomes operational	Shared secret computation	Test runs at power-on before the integrity test
KAS-ECC- SSC Sp800- 56Ar3 (A4361)	P-256	КАТ	CAST	Module becomes operational	Shared secret computation	Test runs at power-on before the integrity test
KAS-ECC- SSC Sp800- 56Ar3 (A4365)	P-256	КАТ	CAST	Module becomes operational	Shared secret computation	Test runs at power-on before the integrity test
KAS-ECC- SSC Sp800- 56Ar3 (A4366)	P-256	КАТ	CAST	Module becomes operational	Shared secret computation	Test runs at power-on before the integrity test
KAS-ECC- SSC Sp800- 56Ar3 (A4367)	P-256	КАТ	CAST	Module becomes operational	Shared secret computation	Test runs at power-on before the integrity test
KAS-ECC- SSC Sp800- 56Ar3 (A4368)	P-256	КАТ	CAST	Module becomes operational	Shared secret computation	Test runs at power-on before the integrity test
RSA SigGen (FIPS186-5) (A4361)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
RSA SigGen (FIPS186-5) (A4362)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
RSA SigGen (FIPS186-5) (A4365)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
RSA SigGen (FIPS186-5) (A4366)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	KAT	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
RSA SigGen (FIPS186-5) (A4367)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	KAT	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
RSA SigGen	PKCS#1 v1.5	KAT	CAST	Module	Digital	Test runs at

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 73 of 89

Algorithm	Test	Test	Test	Indicator	Details	Conditions
or Test	Properties	Method	Туре	marcator	Details	contactions
(FIPS186-5) (A4368)	with 2048 bit key and SHA2-256			becomes operational	signature generation	power-on before the integrity test
RSA SigVer (FIPS186-5) (A4361)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
RSA SigVer (FIPS186-5) (A4362)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
RSA SigVer (FIPS186-5) (A4365)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
RSA SigVer (FIPS186-5) (A4366)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
RSA SigVer (FIPS186-5) (A4367)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
RSA SigVer (FIPS186-5) (A4368)	PKCS#1 v1.5 with 2048 bit key and SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
ECDSA SigGen (FIPS186-5) (A4361)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
ECDSA SigGen (FIPS186-5) (A4362)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
ECDSA SigGen (FIPS186-5) (A4365)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
ECDSA SigGen (FIPS186-5) (A4366)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
ECDSA SigGen (FIPS186-5) (A4367)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 74 of 89

Algorithm	Test	Test	Test	Indicator	Details	Conditions
or Test	Properties	Method	Туре	marcator	Details	conditions
ECDSA SigGen (FIPS186-5) (A4368)	P-224, P-256, P-384, and P-521 with SHA2-256	KAT	CAST	Module becomes operational	Digital signature generation	Test runs at power-on before the integrity test
ECDSA SigVer (FIPS186-5) (A4361)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
ECDSA SigVer (FIPS186-5) (A4362)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
ECDSA SigVer (FIPS186-5) (A4365)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
ECDSA SigVer (FIPS186-5) (A4366)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
ECDSA SigVer (FIPS186-5) (A4367)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
ECDSA SigVer (FIPS186-5) (A4368)	P-224, P-256, P-384, and P-521 with SHA2-256	КАТ	CAST	Module becomes operational	Digital signature verification	Test runs at power-on before the integrity test
Safe Primes Key Generation (A4383)	N/A	PCT	PCT	Successful key pair generation	SP 800-56Ar3 Section 5.6.2.1.4	Key pair generation
ECDSA KeyGen (FIPS186-5) (A4361)	SHA2-256	PCT	PCT	Successful key pair generation	Signature generation & verification	Key pair generation
ECDSA KeyGen (FIPS186-5) (A4365)	SHA2-256	РСТ	РСТ	Successful key pair generation	Signature generation & verification	Key pair generation
ECDSA KeyGen (FIPS186-5) (A4366)	SHA2-256	РСТ	PCT	Successful key pair generation	Signature generation & verification	Key pair generation
ECDSA	SHA2-256	PCT	PCT	Successful	Signature	Key pair

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 75 of 89

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
KeyGen (FIPS186-5) (A4367)				key pair generation	generation & verification	generation
ECDSA KeyGen (FIPS186-5) (A4368)	SHA2-256	PCT	PCT	Successful key pair generation	Signature generation & verification	Key pair generation
RSA KeyGen (FIPS186-5) (A4361)	PKCS#1 v1.5 with SHA2- 256	PCT	PCT	Successful key pair generation	Signature generation & verification	Key pair generation
RSA KeyGen (FIPS186-5) (A4365)	PKCS#1 v1.5 with SHA2- 256	PCT	PCT	Successful key pair generation	Signature generation & verification	Key pair generation
RSA KeyGen (FIPS186-5) (A4366)	PKCS#1 v1.5 with SHA2- 256	PCT	PCT	Successful key pair generation	Signature generation & verification	Key pair generation
RSA KeyGen (FIPS186-5) (A4367)	PKCS#1 v1.5 with SHA2- 256	РСТ	РСТ	Successful key pair generation	Signature generation & verification	Key pair generation
RSA KeyGen (FIPS186-5) (A4368)	PKCS#1 v1.5 with SHA2- 256	PCT	PCT	Successful key pair generation	Signature generation & verification	Key pair generation

Table 21: Conditional Self-Tests

Upon generation of a DH, RSA or EC key pair, the module will perform a pair-wise consistency test (PCT) as shown in the table above, which provides some assurance that the generated key pair is well formed. For DH key pairs, this tests consists of the PCT described in Section 5.6.2.1.4 of SP 800-56Ar3. For RSA and EC key pairs, this test consists of a signature generation and a signature verification operation.

10.3 Periodic Self-Test Information

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
HMAC-SHA2-	Message	SW/FW Integrity	On demand	Manually
256 (A4365)	authentication			
Table 22, Dra Ora	watianal Daviadia Iv	formeration		

Table 22: Pre-Operational Periodic Information

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
SHA-1 (A4361)	KAT	CAST	On demand	Manually
SHA-1 (A4365)	KAT	CAST	On demand	Manually
SHA-1 (A4366)	KAT	CAST	On demand	Manually
SHA-1 (A4367)	KAT	CAST	On demand	Manually
SHA-1 (A4368)	KAT	CAST	On demand	Manually

© 2024 IBM Corporation/ atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 76 of 89

Algorithm or	Test Method	Test Type	Period	Periodic
Test	restriction	Test Type	i chida	Method
SHA2-512	КАТ	CAST	On demand	Manually
(A4361)				
SHA2-512	KAT	CAST	On demand	Manually
(A4365)				
SHA2-512	КАТ	CAST	On demand	Manually
(A4366)				
SHA2-512	KAT	CAST	On demand	Manually
(A4367)				
SHA2-512	KAT	CAST	On demand	Manually
(A4368)				_
SHA3-256	KAT	CAST	On demand	Manually
(A4362)				_
SHA3-256	KAT	CAST	On demand	Manually
(A4362)				
AES-GCM	KAT	CAST	On demand	Manually
(A4360)				_
AES-GCM	KAT	CAST	On demand	Manually
(A4363)				_
AES-GCM	KAT	CAST	On demand	Manually
(A4364)				_
AES-GCM	KAT	CAST	On demand	Manually
(A4371)				
AES-GCM	KAT	CAST	On demand	Manually
(A4372)				_
AES-GCM	KAT	CAST	On demand	Manually
(A4373)				
AES-GCM	KAT	CAST	On demand	Manually
(A4374)				
AES-GCM	KAT	CAST	On demand	Manually
(A4375)				
AES-GCM	KAT	CAST	On demand	Manually
(A4376)				
AES-GCM	KAT	CAST	On demand	Manually
(A4360)				
AES-GCM	KAT	CAST	On demand	Manually
(A4363)				
AES-GCM	KAT	CAST	On demand	Manually
(A4364)				
AES-GCM	KAT	CAST	On demand	Manually
(A4371)				
AES-GCM	КАТ	CAST	On demand	Manually
(A4372)				
AES-GCM	КАТ	CAST	On demand	Manually
(A4373)				
AES-GCM	КАТ	CAST	On demand	Manually
(A4374)				
AES-GCM	KAT	CAST	On demand	Manually
(A4375)		CACT		
AES-GCM	KAT	CAST	On demand	Manually
(A4376)		CACT		NA - m - m - l l
AES-ECB	KAT	CAST	On demand	Manually
(A4357)		Corporation/atcoc info		

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 77 of 89

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
		CACT	Out dama and	
AES-ECB (A4358)	КАТ	CAST	On demand	Manually
AES-ECB (A4359)	KAT	CAST	On demand	Manually
KDF SP800-108 (A4381)	КАТ	CAST	On demand	Manually
KDA OneStep SP800-56Cr2 (A4382)	КАТ	CAST	On demand	Manually
KDA HKDF Sp800-56Cr1 (A4355)	КАТ	CAST	On demand	Manually
KDF ANS 9.42 (A4361)	КАТ	CAST	On demand	Manually
KDF ANS 9.42 (A4362)	КАТ	CAST	On demand	Manually
KDF ANS 9.42 (A4365)	КАТ	CAST	On demand	Manually
KDF ANS 9.42 (A4366)	КАТ	CAST	On demand	Manually
KDF ANS 9.42 (A4367)	КАТ	CAST	On demand	Manually
KDF ANS 9.42 (A4368)	КАТ	CAST	On demand	Manually
KDF ANS 9.63 (A4361)	КАТ	CAST	On demand	Manually
KDF ANS 9.63 (A4362)	КАТ	CAST	On demand	Manually
KDF ANS 9.63 (A4365)	КАТ	CAST	On demand	Manually
KDF ANS 9.63 (A4366)	КАТ	CAST	On demand	Manually
KDF ANS 9.63 (A4367)	КАТ	CAST	On demand	Manually
KDF ANS 9.63 (A4368)	КАТ	CAST	On demand	Manually
KDF SSH (A4370)	КАТ	CAST	On demand	Manually
KDF SSH (A4377)	КАТ	CAST	On demand	Manually
KDF SSH (A4378)	КАТ	CAST	On demand	Manually
KDF SSH (A4379)	КАТ	CAST	On demand	Manually
KDF SSH (A4380)	КАТ	CAST	On demand	Manually
TLS v1.2 KDF RFC7627 (A4361)	КАТ	CAST	On demand	Manually
TLS v1.2 KDF RFC7627 (A4365)	КАТ	CAST	On demand	Manually

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 78 of 89

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
TLS v1.2 KDF RFC7627 (A4366)	КАТ	CAST	On demand	Manually
TLS v1.2 KDF RFC7627 (A4367)	КАТ	CAST	On demand	Manually
TLS v1.2 KDF RFC7627 (A4368)	КАТ	CAST	On demand	Manually
TLS v1.3 KDF (A4355)	КАТ	CAST	On demand	Manually
PBKDF (A4361)	KAT	CAST	On demand	Manually
PBKDF (A4362)	KAT	CAST	On demand	Manually
PBKDF (A4365)	КАТ	CAST	On demand	Manually
PBKDF (A4366)	КАТ	CAST	On demand	Manually
PBKDF (A4367)	КАТ	CAST	On demand	Manually
PBKDF (A4368)	КАТ	CAST	On demand	Manually
Counter DRBG (A4356)	КАТ	CAST	On demand	Manually
Hash DRBG (A4356)	КАТ	CAST	On demand	Manually
HMAC DRBG (A4356)	КАТ	CAST	On demand	Manually
KAS-FFC-SSC Sp800-56Ar3 (A4383)	КАТ	CAST	On demand	Manually
KAS-ECC-SSC Sp800-56Ar3 (A4361)	КАТ	CAST	On demand	Manually
KAS-ECC-SSC Sp800-56Ar3 (A4365)	КАТ	CAST	On demand	Manually
KAS-ECC-SSC Sp800-56Ar3 (A4366)	КАТ	CAST	On demand	Manually
KAS-ECC-SSC Sp800-56Ar3 (A4367)	КАТ	CAST	On demand	Manually
KAS-ECC-SSC Sp800-56Ar3 (A4368)	КАТ	CAST	On demand	Manually
RSA SigGen (FIPS186-5) (A4361)	КАТ	CAST	On demand	Manually
RSA SigGen (FIPS186-5) (A4362)	КАТ	CAST	On demand	Manually
RSA SigGen (FIPS186-5) (A4365)	КАТ	CAST	On demand	Manually
RSA SigGen (FIPS186-5)	КАТ	CAST	On demand	Manually

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 79 of 89

Algorithm or	Test Method	Test Type	Period	Periodic
Test				Method
(A4366)				
RSA SigGen (FIPS186-5) (A4367)	КАТ	CAST	On demand	Manually
RSA SigGen (FIPS186-5) (A4368)	КАТ	CAST	On demand	Manually
RSA SigVer (FIPS186-5) (A4361)	КАТ	CAST	On demand	Manually
RSA SigVer (FIPS186-5) (A4362)	КАТ	CAST	On demand	Manually
RSA SigVer (FIPS186-5) (A4365)	КАТ	CAST	On demand	Manually
RSA SigVer (FIPS186-5) (A4366)	КАТ	CAST	On demand	Manually
RSA SigVer (FIPS186-5) (A4367)	КАТ	CAST	On demand	Manually
RSA SigVer (FIPS186-5) (A4368)	КАТ	CAST	On demand	Manually
ECDSA SigGen (FIPS186-5) (A4361)	КАТ	CAST	On demand	Manually
ECDSA SigGen (FIPS186-5) (A4362)	КАТ	CAST	On demand	Manually
ECDSA SigGen (FIPS186-5) (A4365)	КАТ	CAST	On demand	Manually
ECDSA SigGen (FIPS186-5) (A4366)	КАТ	CAST	On demand	Manually
ECDSA SigGen (FIPS186-5) (A4367)	КАТ	CAST	On demand	Manually
ECDSA SigGen (FIPS186-5) (A4368)	КАТ	CAST	On demand	Manually
ECDSA SigVer (FIPS186-5) (A4361)	КАТ	CAST	On demand	Manually
ECDSA SigVer (FIPS186-5) (A4362)	КАТ	CAST	On demand	Manually
ECDSA SigVer (FIPS186-5) (A4365)	КАТ	CAST	On demand	Manually

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 80 of 89

Algorithm or	Test Method	Test Type	Period	Periodic
Test ECDSA SigVer	КАТ	CAST	On demand	Method Manually
(FIPS186-5) (A4366)				
ECDSA SigVer (FIPS186-5) (A4367)	КАТ	CAST	On demand	Manually
ECDSA SigVer (FIPS186-5) (A4368)	КАТ	CAST	On demand	Manually
Safe Primes Key Generation (A4383)	РСТ	РСТ	On demand	Manually
ECDSA KeyGen (FIPS186-5) (A4361)	РСТ	PCT	On demand	Manually
ECDSA KeyGen (FIPS186-5) (A4365)	РСТ	РСТ	On demand	Manually
ECDSA KeyGen (FIPS186-5) (A4366)	РСТ	PCT	On demand	Manually
ECDSA KeyGen (FIPS186-5) (A4367)	РСТ	РСТ	On demand	Manually
ECDSA KeyGen (FIPS186-5) (A4368)	РСТ	РСТ	On demand	Manually
RSA KeyGen (FIPS186-5) (A4361)	РСТ	РСТ	On demand	Manually
RSA KeyGen (FIPS186-5) (A4365)	РСТ	РСТ	On demand	Manually
RSA KeyGen (FIPS186-5) (A4366)	РСТ	РСТ	On demand	Manually
RSA KeyGen (FIPS186-5) (A4367)	РСТ	РСТ	On demand	Manually
RSA KeyGen (FIPS186-5) (A4368)	РСТ	РСТ	On demand	Manually

Table 23: Conditional Periodic Information

10.4 Error States

Name	Descripti	ion	Conditio	ns	Recovery Method	Indicator	
Error	The immediate stops func	ely	Software integrity failure	test	Module reset	OSSL_PROV_PARAM_STATUS set to 0 or Module is aborted	is

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 81 of 89

Name	Description	Conditions	Recovery Method	Indicator
		CAST failure PCT failure		

Table 24: Error States

In the error state, the module immediately stops functioning and ends the application process. Consequently, the data output interface is inhibited, and the module accepts no more inputs or requests (as the module is no longer running).

10.5 Operator Initiation of Self-Tests

The software integrity tests and cryptographic algorithm self-tests can be invoked on demand by resetting the module. The pair-wise consistency tests can be invoked on demand by requesting the key pair generation service.

11 Life-Cycle Assurance

11.1 Installation, Initialization, and Startup Procedures

The IBM DataPower security appliance ships with signed firmware which contains the module embedded in it. No additional steps are required to install or initialize the module.

11.2 Administrator Guidance

After delivery of the DataPower security appliance, the module name and version can be verified by executing the "openssl list -providers" command. The FIPS provider will be listed in the output as follows:

fips

name: IBM DataPower FIPS Provider

version: 3.0.9-B3346E1D91BA83B7BAB52F472F3E6A0D status: active

The cryptographic boundary consists only of the FIPS provider as listed. If any other OpenSSL or third-party provider is invoked, the user is not interacting with the module specified in this Security Policy.

11.3 Non-Administrator Guidance

There is no non-administrator guidance.

11.6 End of Life

As the module does not persistently store SSPs, secure sanitization of the module consists of unloading the module. This will zeroize all SSPs in volatile memory.

12 Mitigation of Other Attacks

Certain cryptographic subroutines and algorithms are vulnerable to timing analysis. The module mitigates this vulnerability by using constant-time implementations. This includes, but is not limited to:

- Big number operations: computing GCDs, modular inversion, multiplication, division, and modular exponentiation (using Montgomery multiplication)
- Elliptic curve point arithmetic: addition and multiplication (using the Montgomery ladder)
- Vector-based AES implementations

In addition, RSA, ECDSA, ECDH, and DH employ blinding techniques to further impede timing and power analysis. No configuration is needed to enable the aforementioned countermeasures.

Appendix A. Glossary and abbreviations

AES	Advanced Encryption Standard
AES-NI	Advanced Encryption Standard New Instructions
API	Application Programming Interface
CAST	Cryptographic Algorithm Self-Test
CAVP	Cryptographic Algorithm Validation Program
	Cipher Block Chaining
CBC	
ССМ	Counter with Cipher Block Chaining-Message Authentication Code
CFB	Cipher Feedback
CKG	Cryptographic Key Generation
CMAC	Cipher-based Message Authentication Code
CMVP	Cryptographic Module Validation Program
CPACF	CP Assist for Cryptographic Functions
CSP	Critical Security Parameter
CTR	Counter
CTS	Ciphertext Stealing
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ECC	
	Elliptic Curve Cryptography
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
EVP	Envelope
FFC	Finite Field Cryptography
FIPS	Federal Information Processing Standards
GCM	Galois Counter Mode
GMAC	Galois Counter Mode Message Authentication Code
HKDF	HMAC-based Key Derivation Function
HMAC	Keyed-Hash Message Authentication Code
IKE	Internet Key Exchange
KAS	Key Agreement Scheme
KAT	Known Answer Test
KBKDF	Key-based Key Derivation Function
KW	Key Wrap
KWP	Key Wrap with Padding
MAC	Message Authentication Code
NIST	National Institute of Science and Technology
OAEP	Optimal Asymmetric Encryption Padding
OFB	Output Feedback
PAA	Processor Algorithm Acceleration
PCT	Pair-wise Consistency Test
PBKDF2	Password-based Key Derivation Function v2
PKCS	Public-Key Cryptography Standards
PSP	Public Security Parameter
PSS	Probabilistic Signature Scheme
RSA	Rivest, Shamir, Addleman
SHA	Secure Hash Algorithm
SSC	Shared Secret Computation
SSH	Secure Shell
SSP	Sensitive Security Parameter
TLS	Transport Layer Security
XOF	Extendable Output Function

Extendable Output Function XOF

XTS XEX-based Tweaked-codebook mode with cipher text Stealing Glossary and abbreviations

Appendix B. References

ANS X9.42- 2001	Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography 2001 https://webstore.ansi.org/standards/ascx9/ansix9422001
ANS X9.63- 2001	Public Key Cryptography for the Financial Services Industry, Key Agreement and Key Transport Using Elliptic Curve Cryptography 2001 https://webstore.ansi.org/standards/ascx9/ansix9632001
FIPS 140-3	FIPS PUB 140-3 - Security Requirements For Cryptographic Modules March 2019 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
FIPS 140-3 IG	Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation Program https://csrc.nist.gov/Projects/cryptographic-module-validation-program/ fips-140-3-ig-announcements
FIPS 180-4	Secure Hash Standard (SHS) March 2012 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
FIPS 186-4	Digital Signature Standard (DSS) July 2013 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
FIPS 186-5	Digital Signature Standard (DSS) February 2023 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
FIPS 197	Advanced Encryption Standard November 2001 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
FIPS 198-1	The Keyed Hash Message Authentication Code (HMAC) July 2008 https://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
FIPS 202	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions August 2015 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
PKCS#1	Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1 February 2003 https://www.ietf.org/rfc/rfc3447.txt
RFC 3526	More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE) May 2003 https://www.ietf.org/rfc/rfc3526.txt

AES Galois Counter Mode (GCM) Cipher Suites for TLS August 2008 https://www.ietf.org/rfc/rfc5288.txt
Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS) August 2016 https://www.ietf.org/rfc/rfc7919.txt
The Transport Layer Security (TLS) Protocol Version 1.3 August 2018 https://www.ietf.org/rfc/rfc8446.txt
Recommendation for Block Cipher Modes of Operation Methods and Techniques December 2001 https://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode October 2010 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a- add.pdf
Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication May 2005 https://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality May 2004 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800- 38c.pdf
Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC November 2007 https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
Recommendation for Block Cipher Modes of Operation: The XTS AES Mode for Confidentiality on Storage Devices January 2010 https://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping December 2012 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations August 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography April 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

© 2024 IBM Corporation/ atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. Page 88 of 89

SP 800-56Cr2	Recommendation for Key-Derivation Methods in Key-Establishment Schemes August 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
SP 800-90Ar1	Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
SP 800-90B	Recommendation for the Entropy Sources Used for Random Bit Generation January 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
SP 800-108r1	NIST Special Publication 800-108 - Recommendation for Key Derivation Using Pseudorandom Functions August 2022 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
SP 800- 131Ar2	Transitioning the Use of Cryptographic Algorithms and Key Lengths March 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800- 131Ar2.pdf
SP 800-132	Recommendation for Password-Based Key Derivation - Part 1: Storage Applications December 2010 https://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
SP 800-133r2	Recommendation for Cryptographic Key Generation June 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf
SP 800-135r1	Recommendation for Existing Application-Specific Key Derivation Functions December 2011 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800- 135r1.pdf
SP 800- 140Br1	CMVP Security Policy Requirements November 2023 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800- 140Br1.pdf