

Cohesity FIPS Object Module For OpenSSL Version 1.0.1 and 1.0.2 By Cohesity, Inc.

October 16, 2019

References

Reference	Full Specification Name	
[ANS X9.31]	Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)	
[FIPS 140-2]	Security Requirements for Cryptographic modules, May 25, 2001	
[FIPS 180-4]	Secure Hash Standard	
[FIPS 186-4]	Digital Signature Standard	
[FIPS 197]	Advanced Encryption Standard	
[FIPS 198-1]	The Keyed-Hash Message Authentication Code (HMAC)	
[SP 800-38B]	Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication	
[SP 800-38C]	Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality	
[SP 800-38D]	Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC	
[SP 800-56A]	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography	
[SP 800- 67R2]	Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher	
[SP 800-89]	Recommendation for Obtaining Assurances for Digital Signature Applications	
[SP 800-90A]	Recommendation for Random Number Generation Using Deterministic Random Bit_Generators	
[SP 800- 3 A]	<u>Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key</u> <u>Lengths</u>	

Table of Contents

1 Introduction	4
2 Tested Configurations	6
3 Ports and Interfaces	7
4 Modes of Operation and Cryptographic Functionality	8
4.1 Critical Security Parameters and Public Keys	14
5 Roles, Authentication and Services	14
6 Self-test	16
7 Operational Environment	18
8 Mitigation of other Attacks	19
Appendix A Installation and Usage Guidance	20
Appendix B Controlled Distribution File Fingerprint	23

I Introduction

This document is the security policy for the Cohesity FIPS Object Module, hereafter referred to as the Module.

The Module is a software library providing a C-language application program interface (API) for use by other processes that require cryptographic functionality. The Module is classified by FIPS 140-2 as a software module, multi-chip standalone module embodiment. The physical cryptographic boundary is the general-purpose computer on which the module is installed. The logical cryptographic boundary of the Module is the fipscanister object module, a single object module file named fipscanister.o (Linux^{®1}).The Module performs no communications other than with the calling application (the process that invokes the Module services).

Security Requirement	Security Leve
Cryptographic Module Specification	I
Cryptographic Module Ports and Interfaces	I
Roles, Services, and Authentication	2
Finite State Model	I
Physical Security	NA
Operational Environment	I
Cryptographic Key Management	I
EMI/EMC	I
SelfTests	I
Design Assurance	3
Mitigation of Other Attacks	NA

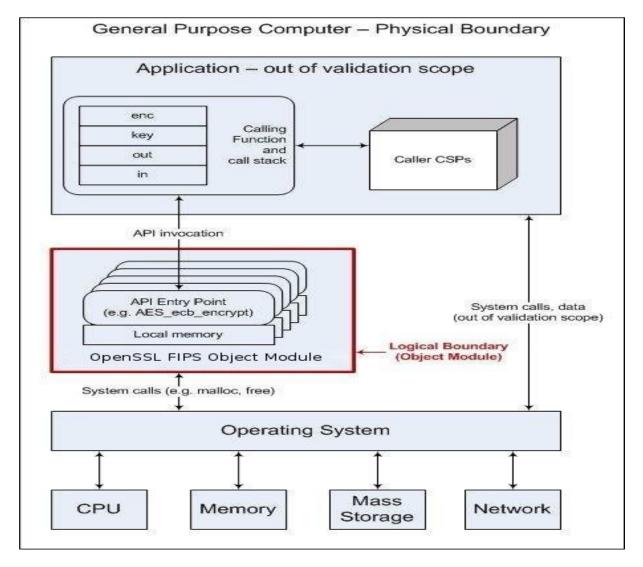

The FIPS 140-2 security levels for the Module are as follows:

Table 1 - Security Level of Security Requirements

¹ Linux is registered trademark of Linus Torvalds in the U.S. and other countries.

Figure I – Module Block Diagram

2 **Tested Configurations**

The Module has been validated on the following platform and no claims can be made as to correct operation of the Module or the security strengths of the generated keys when operating on a platform that is not listed on the validation certificate:

	Module Version	Operational Environment	Processor	Hardware	Optimizations (Target)	EC	В
ľ	1.0.1	CentOS 7.2	Intel Xeon E5-2630 (x86)	C2500; C2300	AES-NI	Р	U2
	1.0.2	CentOS 7.5	Intel Xeon E5-2630 (x86)	C2510	AES-NI	Р	U2

Table 2 - Tested Configurations (B = Build Method; EC = Elliptic Curve Support). The EC column indicates support for prime curve only (P)

In addition to the above validation, Cohesity has tested and affirms that the following list of configurations are also supported as part of FIPS 140-2 compliance:

- CentOS 7.x (x86)
- All hardware platform models sold by Cohesity
- Cloud Edition supported on Azure, AWS and Google clouds
- Virtual Edition supported on VMware
- 3rd party whitelist hardware

3 Ports and Interfaces

The physical ports of the Module are the same as the computer system on which it is executing. The logical interface is a C-language application program interface (API).

Logical interface type	Description	
Control input	API entry point and corresponding stack parameters	
Data input	API entry point data input stack parameters	
Status output	API entry point return values and status stack parameters	
Data output	API entry point data output stack parameters	

Table 3 - Logical interfaces

As a software module, control of the physical ports is outside module scope. However, when the module is performing self-tests, or is in an error state, all output on the logical data output interface is inhibited. The module is single-threaded and in error scenarios returns only an error value (no data output is returned).

4 Modes of Operation & Cryptographic Functionality

The Module supports only a FIPS 140-2 Approved mode. Below tables list the Approved and Non-approved but Allowed algorithms, respectively.

Function	Algorithm	Options	Cert #
Random Number Generation; Symmetric key generation ²	[SP 800-90A] DRBG ³ Prediction resistance supported for all variations	Hash DRBG HMAC DRBG CTR DRBG (AES)	2117
	[SP 800-67R I]	3-Key Triple-DES TECB, TCBC, TCFB, TOFB; CMAC generate and verify Note: There is a limit of 2^16 encryptions with the same key, and this limit is imposed by policy.	2724
Encryption, Decryption and CMAC	[FIPS 197] AES [SP 800-38B]CMAC [SP 800-38C] CCM [SP 800-38D] GCM ⁴ [SP 800-38E] XTS	 128/ 192/256 ECB, CBC, OFB, CFB I, CFB8, CFB 128, CTR, CCM; GCM; CMAC generate and verify 128/256 XTS Note: XTS can only be used for Storage applications. 	5426
Message Digests	[FIPS 180-4]	SHAI, SHA2 (224, 256, 384, 512)	4353
Keyed Hash	[FIPS 198-1] HMAC	SHAI, SHA2 (224, 256, 384, 512)	3591
	[FIPS 186-2] RSA	SigVer9.31, SigVerPKCS1.5, SigVerPSS (1024/1536/2048/3072/4096 with all SHA2 sizes)	2906
Digital Signature and Asymmetric Key Generation ²	[FIPS 186-4] DSA	PQG Gen, Key Pair Gen (2048/3072 with all SHA2 sizes) Sig Gen (2048/3072 with SHA1 and all SHA2 sizes) PQG Ver, Sig Ver (1024/2048/3072 with SHA1 and all SHA2 sizes)	1395

TABLE FOR MODULE VERSION 1.0.2

 $^{^2\ {\}rm Keys/CSPs}$ generated in FIPS mode cannot be used in non-FIPS mode, and vice versa.

³ For all DRBGs the "supported security strengths" is just the highest supported security strength per [SP800-90A] and [SP800-57].

⁴ The module's AES GCM implementation meets IG A.5. The IV is generated deterministically, as per the guidance in SP800-38D section 8.2.1.

	FIPS 140-2 Non-proprietary Security Policy				
	[FIPS 186-4] ECDSA	PKG: CURVES(P:224 P:256 P:384 P:521 - 521 ExtraRandomBits TestingCandidates) PKV: CURVES(ALL:P) SigGen: CURVES(P:224: (SHA:224, 256, 384, 512) P:256: (SHA:224, 256, 384, 512) P:384: (SHA:224, 256, 384, 512) P:521: (SHA:224, 256, 384, 512)) SigVer: CURVES(P:192: (SHA:1, 224, 256, 384, 512) P:224: (SHA:1, 224, 256, 384, 512) P. 256: (SHA:1, 224, 256, 384, 512) P:384: (SHA: 1, 224, 256, 384, 512) P:521: (SHA:1, 224, 256, 384, 512))	1442		
ECC CDH (KAS)	[SP 800-56A] (§5.7.1.2)	All NIST defined P curves except sizes 163 and 192	CVL Cert.# 1876		

TABLE FOR MODULE VERSION 1.0.1

Function	Algorithm	Options	Cert #
Random Number Generation; Symmetric key generation ⁵	[SP 800-90A] DRBG ⁶ Prediction resistance supported for all variations	Hash DRBG HMAC DRBG CTR DRBG (AES)	1162
	[SP 800-67R1]	3-Key Triple-DES TECB, TCBC, TCFB, TOFB; CMAC generate and verify Note: There is a limit of 2 ¹⁶ encryptions with the same key, and this limit is imposed by policy.	2176
Encryption, Decryption and CMAC	[FIPS 197] AES [SP 800-38B]CMAC [SP 800-38C] CCM [SP 800-38D] GCM ⁷ [SP 800-38E] XTS	128/ 192/256 ECB, CBC, OFB, CFB I, CFB8, CFB 128, CTR, CCM; GCM; CMAC generate and verify 128/256 XTS Note: XTS can only be used for Storage applications.	3967
Message Digests	[FIPS 180-4]	SHAI, SHA2 (224, 256, 384, 512)	3271
Keyed Hash	[FIPS 198-1] HMAC	SHA1, SHA2 (224, 256, 384, 512)	2585
Digital Signature and Asymmetric Key [FIPS 186-2] RSA		SigVer9.31, SigVerPKCS1.5, SigVerPSS (1024/1536/2048/3072/4096 with all SHA·2	2027

 ⁵ Keys/CSPs generated in FIPS mode cannot be used in non-FIPS mode, and vice versa.
 ⁶ For all DRBGs the "supported security strengths" is just the highest supported security strength per [SP800-90A] and [SP800-57].
 ⁷ The module's AES GCM implementation meets IG A.5. The IV is generated deterministically, as per the guidance in SP800-38D section 8.2.1.

FIPS 140-2 Non-proprietary Security Policy			
Generation ²		sizes)	
	[FIPS 86-4] DSA	PQG Gen, Key Pair Gen (2048/3072 with all SHA:2 sizes) Sig Gen (2048/3072 with SHA1 and all SHA:2 sizes) PQG Ver, Sig Ver (1024/2048/3072 with SHA1 and all SHA-2 sizes)	1081
	[FIPS 186-4] ECDSA	PKG: CURVES(P:224 P:256 P:384 P:521 · 521 ExtraRandomBits TestingCandidates) PKV: CURVES(ALL:P) SigGen: CURVES(P:224: (SHA:224, 256, 384, 512) P:256: (SHA:224, 256, 384, 512) P:384: (SHA:224, 256, 384, 512) P:521: (SHA:224, 256, 384, 512)) SigVer: CURVES(P:192: (SHA:1, 224, 256, 384, 512) P:224: (SHA:1, 224, 256, 384, 512) P. 256: (SHA:1, 224, 256, 384, 512) P:384: (SHA: I, 224, 256, 384, 512) P:521: (SHA:1, 224, 256, 384, 512))	873
ECC CDH (KAS)	[SP 800-56A](§5.7.1.2)	All NIST defined P curves except sizes 163 and 192	CVL Cert.# 796

Table 4 - FIPS Approved Cryptographic Functions

The Module supports only NIST defined curves for use with ECDSA and ECC CDH. The Module supports one operational environment configurations for elliptic curve; NIST prime curve only (listed in Table 2 with the EC column marked "P").

Category	Algorithm	Description
Key Agreement	EC DH	Non-compliant (untested) DH scheme using elliptic curve, supporting all NIST defined P curves. Key agreement is a service provided for calling process use, but is not used to establish keys into the Module.
Key Encryption, Decryption	RSA	The RSA algorithm may be used by the calling application for encryption or decryption of keys. No claim is made for SP 800-56B compliance, and no CSPs are established into or exported out of the module using these services.

Table 5 - Non-FIPS Approved But Allowed Cryptographic Functions

The Module implements the following services which are Non-Approved per the SP 800-131A transition:

Γ	Function	Algorithm	Options
	Random Number Generation;	[ANS X9.31] RNG	AES 128/192/256

	FIPS 140-2 Non-proprietary S	ecurity Policy
Symmetric key generation		
Random Number Generation; Symmetric key generation	[SP 800-90A] DRBG	Dual EC DRBG (note the Dual EC DRBG algorithm shall not be used in the FIPS Approved mode of operation)
Digital Signature and Asymmetric Key Generation ⁸	[FIPS 186-2] RSA	GenKey9.31, SigGen9.31, SigGenPKCS1.5, SigGenPSS (1024/1536 with all SHA sizes, 2048/3072/4096 with SHA-1, 2048/3072/4096 with all SHA-2 sizes)
	[FIPS 186-2] DSA	PQG Gen, Key Pair Gen, Sig Gen (1024 with all SHA sizes, 2048/3072 with SHA·1)
	[FIPS 186-4] DSA	PQG Gen, Key Pair Gen, Sig Gen (1024 with all SHA sizes, 2048/3072 with SHA 1)
	[FIPS 186-2] ECDSA	PKG: CURVES(P192 K163 B- 163) SIG(gen): CURVES(P192 P- 224 P256 P384 P521 K163 K- 233 K283 K409 K571 B163 B- 233 B283 B409 B571)
	[FIPS 186-4] ECDSA	PKG: CURVES(P192 K163 B- 163) SigGen: CURVES(P- 192: (SHA1, 224, 256, 384, 512) P- 224:(SHA1) P256:(SHA1) P384: (SHA1) P521:(SHA1) K163: (SHA- I, 224, 256, 384, 512) K233:(SHA- I) K283:(SHA1) K409:(SHA1) K- 571:(SHA1) B163: (SHA1, 224, 256, 384, 512) B233:(SHA- I) B283: (SHA1) B409:(SHA1) B- 571:(SHA1))
ECC CDH (CVL)	[SP 800-56A](§5.7.1.2)	NIST Recommended P curves sizes 163 and 192 All NIST Recommended B and K curves

Table 6 – FIPS Non-Approved Cryptographic Functions

X9.31 RNG is Non-Approved effective December 31, 2015, per the CMVP Notice "X9.31 RNG transition, December 31, 2015".

These algorithms shall not be used when operating in the FIPS Approved mode of operation.

EC DH Key Agreement provides a maximum of 256 bits of security strength. RSA Key Wrapping provides a maximum of 256 bits of security strength.

⁸ Keys/CSPs generated in FIPS mode cannot be used in non-FIPS mode, and vice versa

The Module requires an initialization sequence (see IG 9.5): the calling application invokes FIPS_mode_set()⁹, which returns a "I" for success and "0" for failure. If FIPS_mode_set() fails then all cryptographic services fail from then on. The application can test to see if FIPS mode has been successfully performed.

The Module is a cryptographic engine library, which can be used only in conjunction with additional software. Aside from the use of the NIST defined elliptic curves as trusted third party domain parameters, all other FIPS 186-4 assurances are outside the scope of the Module, and are the responsibility of the calling process.

4.1 Critical Security Parameters and Public Keys

All CSPs used by the Module are described in this section. All access to these CSPs by Module services are described in Section 4. The CSP names are generic, corresponding to API parameter data structures.

CSP Name	Description
RSA SGK	RSA (2048 to 16384 bits) signature generation key
RSA KDK	RSA (2048 to 16384 bits) key decryption (private key transport) key
DSA SGK	[FIPS 186-4] DSA (2048/3072) signature generation key
ECDSA SGK	ECDSA (All NIST defined P curves) signature generation key
EC DH Private	EC DH (All NIST defined P curves) private key agreement key.
AES EDK	AES (128/192/256) encrypt / decrypt key
AES CMAC	AES (128/192/256) CMAC generate / verify key
AES GCM	AES (128/192/256) encrypt / decrypt / generate / verify key
AES XTS	AES (256/512) XTS encrypt / decrypt key
Triple-DES	Triple-DES (3-Key) encrypt / decrypt key
EDK	
Triple-DES	Triple-DES (3-Key) CMAC generate / verify key
CMAC	
HMAC Key	Keyed hash key (160/224/256/384/512)
Hash_DRBG	V (440/888 bits) and C (440/888 bits), entropy input (length dependent on security strength)
CSPs	
CTR_DRBG	V (128 bits) and Key (AES 128/192/256), entropy input (length dependent on security
CSPs	strength)
CO:AD:Digest	Precalculated HMACSHAI digest used for Crypto Officer role authentication
User:AD:Digest	Precalculated HMACSHAI digest used for User role authentication

Table 7 - Critical Security Parameters

Authentication data is loaded into the module during the module build process, performed by an authorized operator (Crypto Officer), and otherwise cannot be accessed.

⁹ The function call in the Module is FIPS_module_mode_set() which is typically used by an application via the FIPS_mode_set() wrapper function.

FIPS 140-2 Non-proprietary Security Policy The module does not output intermediate key generation values.

CSP Name	Description
RSA SVK	RSA (2048 to 16384 bits) signature verification public key
RSA KEK	RSA (2048 to 16384 bits) key encryption (public key transport) key
DSA SVK	[FIPS 186-4] DSA (2048/3072) signature verification key
ECDSA SVK	ECDSA (All NIST P curves) signature verification key
EC DH Public	EC DH (All NIST defined P curves) public key agreement key

Table 8 - Public Keys

For all CSPs and Public Keys:

Storage: RAM, associated to entities by memory location. The Module stores DRBG state values for the lifetime of the DRBG instance. The module uses CSPs passed in by the calling application on the stack. The Module does not store any CSP persistently (beyond the lifetime of an API call), with the exception of DRBG state values used for the Modules' default key generation service.

Generation: The Module implements SP 800-90A compliant DRBG services for creation of symmetric keys, and for generation of DSA, elliptic curve, and RSA keys as shown in Table 4. The calling application is responsible for storage of generated keys returned by the module.

Entry: All CSPs enter the Module's logical boundary in plaintext as API parameters, associated by memory location. However, none cross the physical boundary.

Output: The Module does not output CSPs, other than as explicit results of key generation services. However, none cross the physical boundary.

Destruction: Zeroization of sensitive data is performed automatically by API function calls for temporarily stored CSPs. In addition, the module provides functions to explicitly destroy CSPs related to random number generation services. The calling application is responsible for parameters passed in and out of the module.

Private and secret keys as well as seeds and entropy input are provided to the Module by the calling application, and are destroyed when released by the appropriate API function calls. Keys residing in internally allocated data structures (during the lifetime of an API call) can only be accessed using the Module defined API. The operating system protects memory and process space from unauthorized access. Only the calling application that creates or imports keys can use or export such keys. All API functions are executed by the invoking calling application in a non-overlapping sequence such that no two API functions will execute concurrently. An authorized application as user (Crypto-Officer and User) has access to all key data generated during the operation of the Module.

In the event Module power is lost and restored the calling application must ensure that any AES-GCM keys used for encryption or decryption are re-distributed.

Module users (the calling applications) shall use entropy sources that meet the security strength required for the random number generation mechanism as shown in [SP 800-90A] Table 2 (Hash_DRBG, HMAC_DRBG), Table 3 (CTR_DRBG) and Table 4 (Dual_EC_DRBG). This entropy is supplied by means of callback functions. Those functions must return an error if the minimum entropy strength cannot be met.

5 Roles, Authentication and Services

The Module implements the required User and Crypto Officer roles and requires authentication for those roles. Only one role may be active at a time and the Module does not allow concurrent operators. The User or Crypto Officer role is assumed passing the appropriate password to the FIPS_module_mode_set() function. The password values may be specified at build time and must have a minimum length of 16 characters. Any attempt to authenticate with an invalid password will result in an immediate and permanent failure condition rendering the Module unable to enter the FIPS mode of operation, even with subsequent use of a correct password.

Authentication data is loaded into the Module during the Module build process, performed by the Crypto Officer, and otherwise cannot be accessed.

Since minimum password length is 16 characters, the probability of a random successful authentication attempt in one try is a maximum of $1/256^{16}$, or less than $1/10^{38}$. The Module permanently disables further authentication attempts after a single failure, so this probability is independent of time.

Both roles have access to all of the services provided by the Module.

- User Role (User): Loading the Module and calling any of the API functions.
- Crypto Officer Role (CO): Installation of the Module on the host computer system and calling of any API functions.

All services implemented by the Module are listed below, along with a description of service CSP access:

Service	Role	Description
Initialize	User, CO	Module initialization. Does not access CSPs.
Self-test	User, CO	Perform self tests (FIPS_selftest). Does not access CSPs.
		Functions that provide module status information:

ohesity, Inc.

COHESITY

		FIPS 140-2 Non-proprietary Security Policy
		Version (as unsigned long or const char *)
Show status	User, CO	FIPS Mode (Boolean)
		Does not access CSPs.
		Functions that destroy CSPs:
Zeroize	User, CO	fips_drbg_uninstantiate: for a given DRBG context, overwrites DRBG CSPs (Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs)
		All other services automatically overwrite CSPs stored in allocated memory. Stack cleanup is the responsibility of the calling application.
		Used for random number and symmetric key generation.
Random number		Seed or reseed a DRBG instance
generation	User, CO	Determine security strength of a DRBG instance
		Obtain random data
		Uses and updates Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs.
		Used to generate DSA, ECDSA and RSA keys:
Asymmetric key		RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK
generation	User, CO	There is one supported entropy strength for each mechanism and algorithm type, the maximum specified in SP800-90A
Symmetric	User, CO	Used to encrypt or decrypt data.
encrypt/decrypt		Executes using AES EDK, Triple-DES EDK (passed in by the calling process).
Symmetric	User, CO	Used to generate or verify data integrity with CMAC.
digest		Executes using AES CMAC, Triple-DES, CMAC (passed in by the calling process).
Message digest	User, CO	Used to generate a SHA-1 or SHA-2 message digest. Does not access CSPs.
Keyed Hash	User, CO	Used to generate or verify data integrity with HMAC. Executes using HMAC Key (passed in by the calling process).
Кеу	User, CO	Used to encrypt or decrypt a key value on behalf of the calling process (does not establish keys into the module).
transport10		Executes using RSA KDK, RSA KEK (passed in by the calling process).
Key agreement	User, CO	Used to perform key agreement primitives on behalf of the calling process (does not establish keys into the module).
		Executes using EC DH Private, EC DH Public (passed in by the calling process).
Digital signature		Used to generate or verify RSA, DSA or ECDSA digital signatures.
	User, CO	Executes using RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK,
		ECDSA SVK (passed in by the calling process).

¹⁰ "Key transport" can refer to a) moving keys in and out of the module or b) the use of keys by an external application. The latter definition is the one that applies to the Module.

FIPS 140-2 Non-proprietary Security Policy				
Utility		User, CO	Miscellaneous helper functions. Does not access CSPs.	

Table 9 - Services and CSP Access

6 Self-test

The Module performs the self-tests listed below on invocation of Initialize or Self-test.

Algorithm	Туре	Test Attributes
Software integrity	КАТ	HMACSHAI
НМАС	КАТ	One KAT per SHA1, SHA224, SHA256, SHA384 and SHA512 Per IG 9.3, this testing covers SHA POST requirements.
AES	КАТ	Separate encrypt and decrypt, ECB mode, 128 bit key length
AES CCM	КАТ	Separate encrypt and decrypt, 192 key length
AES GCM	KAT	Separate encrypt and decrypt, 256 key length
XTSAES	KAT	128, 256 bit key sizes to support either the 256-bit key size (for XTS:AES:128) or the 512-bit key size (for XTS:AES:256)
AES CMAC	КАТ	Sign and verify CBC mode, 128, 192, 256 key lengths
Triple-DES	КАТ	Separate encrypt and decrypt, ECB mode, 3-Key
Triple-DES CMAC	КАТ	CMAC generate and verify, CBC mode, 3-Key
RSA	КАТ	Sign and verify using 2048 bit key, SHA:256, PKCS#1
DSA	PCT	Sign and verify using 2048 bit key, SHA-384
DRBG	КАТ	CTR_DRBG: AES, 256 bit with and without derivation function HASH_DRBG: SHA256 HMAC_DRBG: SHA256 Dual_EC_DRBG: P-256 and SHA256
ECDSA	РСТ	Keygen, sign, verify using P-224, K-233 and SHA512. The K-233 self-test is not performed for operational environments that support prime curve only (see Table 2).
ECC CDH	KAT	Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6

Table 10 - Power On Self Tests (KAT = Known answer test; PCT = Pairwise consistency test)

The Module is installed using one of the set of instructions in Appendix A, as appropriate for the target system. The HMAC-SHA-I of the Module distribution file as tested by the CMT Laboratory and listed in Appendix A is verified during installation of the Module file as described in Appendix A.

The FIPS_mode_set()⁸ function performs all power-up self-tests listed above with no operator intervention required, returning a "I" if all power-up self-tests succeed, and a "0"

otherwise. If any component of the power-up self-test fails an internal flag is set to prevent subsequent invocation of any cryptographic function calls. The module will only enter the FIPS Approved mode if the module is reloaded and the call to FIPS_mode_set()¹¹ succeeds.

The power-up self-tests may also be performed on-demand by calling FIPS_selftest(), which returns a "I" for success and "0" for failure. Interpretation of this return code is the responsibility of the calling application.

Algorithm	Test
DRBG	Tested as required by [SP800-90A] Section 11
DRBG	FIPS 140-2 continuous test for stuck fault
DSA	Pairwise consistency test on each generation of a key pair
ECDSA	Pairwise consistency test on each generation of a key pair
RSA	Pairwise consistency test on each generation of a key pair

The Module also implements the following conditional tests:

Table 11 - Conditional Tests

In the event of a DRBG self-test failure the calling application must uninstantiate and reinstantiate the DRBG per the requirements of [SP 800-90A]; this is not something the Module can do itself.

Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and Encrypt/Decrypt.

The Module supports two operational environment configurations for elliptic curve: NIST prime curves only (listed in Table 2 with the EC column marked "P") and all NIST defined curves (listed in Table 2 with the EC column marked "BKP").

II FIPS_mode_set() calls Module function FIPS_module_mode_set()

7 **Operational Environment**

The tested operating systems segregate user processes into separate process spaces. Each process space is logically separated from all other processes by the operating system software and hardware. The Module functions entirely within the process space of the calling application, and implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation.

8 Mitigation of other Attacks

The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140-2.

Appendix A Installation and Usage Guidance

The FIPS 140-2 Inside Cohesity software is made available post-purchase and at the time of deployment. The tested module is part of the Cohesity Software download. It is available regardless of the mode of deployment, be it on Cohesity appliances, Cisco, HP, Dell, Lenovo or other 3rd party whitelist hardware, in the cloud or in a virtualization environment.

Cohesity provides FIPS-mode as the default manner for operation post 5.0.2 release.

Please note that the module is unavailable for public downloads.

Appendix B Controlled Distribution

The module is distributed as part of the Cohesity solution. It is unavailable as a stand-alone library.