

FIPS 140-2 Non-Proprietary
Security Policy for

Unbound Tech EKM
Cryptographic Module

Software Version 2.0

Document Version 005
23 April 2020

Prepared for Unbound Tech by

Rycombe Consulting Limited
http://www.rycombe.com
+44 1273 476366

http://www.rycombe.com/

2

Table of Contents

1 Introduction .. 4
1.1 Identification ... 4
1.2 Purpose ... 4
1.3 References .. 4
1.4 Document Organization ... 4
1.5 Document terminology .. 5

2 Unbound Tech EKM Cryptographic Module .. 6
2.1 Overview ... 6
2.2 Module Specification ... 6

2.2.1 Hardware, Software and Firmware Components ... 7
2.2.2 Cryptographic Boundary ... 7
2.2.3 Scope of Evaluation .. 12
2.2.4 Cryptographic Algorithms ... 13
2.2.5 Components Excluded from the Security Requirements of the Standard 15

2.3 Physical Ports and Logical Interfaces .. 16
2.4 Roles, Services and Authentication ... 16

2.4.1 Roles ... 16
2.4.2 Services ... 16
2.4.3 Authentication .. 19

2.5 Physical Security .. 20
2.6 Operational Environment .. 20
2.7 Cryptographic Key Management .. 21

2.7.1 Random Number Generators ... 21
2.7.2 Key Generation & Establishment .. 21
2.7.3 Key Tables ... 22
2.7.4 Key Destruction .. 23
2.7.5 Access to Key Material .. 24

2.8 Self-Tests ... 24
2.8.1 Power-up Self-tests ... 24
2.8.2 Conditional Self-tests .. 25

2.9 Design Assurance ... 25
2.10 Mitigation of Other Attacks .. 26

3 Secure Operation ... 26
3.1 Security Rules & Guidance ... 26
3.2 Notes on GCM ... 27

3.2.1 OpenSSL .. 27
3.2.2 EKM ... 27

3

Table of Figures
FIGURE 1 DOCUMENT TERMINOLOGY 6
FIGURE 2 MODULE BINARY IMAGES 7
FIGURE 3 GENERAL-PURPOSE COMPUTER HARDWARE BLOCK DIAGRAM 8
FIGURE 4 LOGICAL DIAGRAM OF THE CRYPTOGRAPHIC BOUNDARY 8
FIGURE 5 LOGICAL DIAGRAM OF THE EKM CRYPTOGRAPHIC MODULE 9
FIGURE 6 LOGICAL DIAGRAM OF THE EKM CRYPTOGRAPHIC MODULE RUNNING ON DIFFERENT

MACHINES 10
FIGURE 7 LOGICAL DIAGRAM OF THE EKM CRYPTOGRAPHIC MODULE RUNNING ON DIFFERENT

VIRTUAL MACHINES IN THE SAME HYPERVISOR 10
FIGURE 8 LOGICAL DIAGRAM OF THE EKM CRYPTOGRAPHIC MODULE RUNNING ON DIFFERENT

DOCKER CONTAINERS 11
FIGURE 9 LOGICAL DIAGRAM OF THE EKM CRYPTOGRAPHIC MODULE RUNNING ON DIFFERENT

PROCESSES 11
FIGURE 10 LOGICAL DIAGRAM OF THE EKM CRYPTOGRAPHIC MODULE RUNNING ON A SINGLE

PROCESS 12
FIGURE 11 SECURITY LEVEL SPECIFICATION PER FIPS 140-2 SECTION 12
FIGURE 12 APPROVED ALGORITHMS (EKM) 14
FIGURE 13 APPROVED ALGORITHMS (OPENSSL) 15
FIGURE 14 MODULE INTERFACES 16
FIGURE 15 ROLES 16
FIGURE 16 FIPS APPROVED SERVICES 19
FIGURE 17 CERTIFIED OPERATIONAL ENVIRONMENTS 20
FIGURE 18 LINUX MODULE BINARY IMAGES 21
FIGURE 19 MODULE CSPS 22
FIGURE 20 MODULE PUBLIC KEYS 23
FIGURE 21 EKM POWER-UP SELF-TESTS 24
FIGURE 22 OPENSSL POWER-UP SELF-TESTS 25
FIGURE 23 CONDITIONAL SELF-TESTS 25

4

1 Introduction

This section identifies the cryptographic module; describes the purpose of this document; provides
external references for more information; and explains how the document is organized.

Unbound Tech randomly splits keys across servers so that they are never in any single place to be
stolen. The advanced protocols used in Unbound Tech ensure that even if servers are breached and
completely controlled by an attacker, the secrets and credentials cannot be stolen. The result is that
digital assets remain safe, even if all else fails and attackers get inside the network.

Furthermore, Unbound Tech frequently refreshes the random split key process - distributing different,
random key parts to each Unbound Tech Server. As result of the refresh, even in the extremely
unlikely case that an attacker breaches the server and steals a key part, the key part alone is useless
and it becomes obsolete as soon as the next refresh takes place. This provides a very high level of
security, and enables enterprise servers to be used with a much lower level of risk.

Unbound Tech is able to protect all types of standard cryptographic keys: RSA and ECC keys for all
purposes - encryption/decryption, digital signing and authentication. Unbound Tech’s technology for
securing keys using multi-party computation (MPC) is fully transparent to the calling application.

1.1 Identification

Module Name Unbound Tech EKM Cryptographic Module

Module Version 2.0

1.2 Purpose

This is the non-proprietary FIPS 140-2 Security Policy for the Unbound Tech EKM Cryptographic
Module, also referred to as “the module” within this document. This Security Policy details the secure
operation of Unbound Tech EKM Cryptographic Module as required in Federal Information Processing
Standards Publication 140-2 (FIPS 140-2) as published by the National Institute of Standards and
Technology (NIST) of the United States Department of Commerce.

1.3 References

For more information on Unbound Tech products please visit: www.unboundtech.com. For more
information on NIST and the Cryptographic Module Validation Program (CMVP), please visit
http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.4 Document Organization

This document is Copyright 2020 Unbound Tech Security Ltd. It may be freely reproduced and
distributed whole and intact including this copyright notice. This Security Policy document is one part
of the FIPS 140-2 Submission Package. This document outlines the functionality provided by the
module and gives high-level details on the means by which the module satisfies FIPS 140-2
requirements. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Submission
documentation may be Unbound Tech proprietary or otherwise controlled and releasable only under

5

appropriate non-disclosure agreements. For access to these documents, please contact Unbound
Tech.

The various sections of this document map directly onto the sections of the FIPS 140-2 standard and
describe how the module satisfies the requirements of that standard.

1.5 Document terminology

The following abbreviations are used in this document:

Term Description
AES Advanced Encryption Standard
ANSI American National Standards Institute
API Application Programming Interface
BIOS Basic Input Output Services
CAVP Cryptographic Algorithm Validation Program
CCM Counter with CBC-MAC
CMAC Cipher-based Message Authentication Code
CMSP Cryptographic Module Security Policy
CMVP Cryptographic Module Validation Program
CPU Central Processing Unit (Microprocessor)
CSP Critical Security Parameters
DES Data Encryption Standard
DRBG Deterministic Random-bit Generator
EC DH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FIPS Federal Information Processing Standard
GCM Galois/Counter Mode
HMAC Keyed-Hash Message Authentication Code
IV Initialization Vector
KDF Key Derivation Function
KW Key Wrap
KWP Key Wrap with Padding
MAC Message Authentication Code
MPC Secure multi-party computation
N/A Not Applicable
NDRNG Non-deterministic Random Number Generator
NIST National Institute of Standards and Technology
OAEP Optimal asymmetric encryption padding
OFB Output Feedback
OS Operating System
RAM Random-access Memory
RBG Random Bit Generator
RFC Request for Comments
RNG Random Number Generator
RSA An algorithm for public-key cryptography. Named after Rivest, Shamir and

Adleman who first publicly described it.
RSA PKCS1.5 RSA Public-Key Cryptography Standards (PKCS) #1 v1.5
RSA PSS Provable secure RSA Signatures
RSADP RSA Decryption Primitive

6

Term Description
RWE Read, Write, Execute
SCSI Small Computer System Interface
SHA Secure Hash Algorithm
SHS Secure Hash Standard
SIV Synthetic IV
SP NIST Special Publication document
TLS Transport Layer Security
Triple-DES Triple-DES
USB Universal Serial Bus

Figure 1 Document Terminology

2 Unbound Tech EKM Cryptographic Module

This section provides the details of how the module meets the FIPS 140-2 requirements.

2.1 Overview

The module provides cryptographic services to Unbound Tech products.

2.2 Module Specification

The Unbound Tech EKM Cryptographic Module is a software module that provides cryptographic
services to Unbound Tech products.

The module is classified as a multi-chip standalone module.

The module provides a number of NIST validated cryptographic algorithms. The module provides
applications with a library interface that enables them to access the various cryptographic algorithm
functions supplied by the module.

The module uses Secure multi-party computation to implement NIST-validated cryptographic
algorithms.

7

2.2.1 Hardware, Software and Firmware Components

The module is a software module that resides on the hardware of a general-purpose computer (see
Figure 3). For the purposes of FIPS 140-2 testing, the module is evaluated running on the operational
environments defined in section 2.6.

The module is packaged as a number of distinct binary images:

OS Family Filename(s) SHA-256 Hash
Windows ekmengine_jni.dll

libeay32.dll

ssleay32.dll

011a6e24cc9625ba72d03fffca8ddfd3b4df1d85808b97ada039
493d6702161b
1bb766e875b89dedfe91e399778968f4b34dd19ace83306a038
d4f4af4db018e
9bd3f667dcc89a5e6e1e8f3d6706c9b5c0bf5ef679a98ebe172d
bf20e022fcad

Figure 2 Module Binary Images

2.2.2 Cryptographic Boundary

The physical boundary of the module encompasses multiple general-purpose computers (GPCs) on
which it is installed (see Figure 3). Each instance is a software module running in a well-defined
operational environment on a general-purpose computer. The processor of this platform executes all
software. All software components of the module are persistently stored within the device and, while
executing, are stored in the device local RAM.

Within the cryptographic boundary of the module is an unmodified copy of the OpenSSL FIPS Object
Module version 2.0.16.

The cryptographic boundary of the module is shown in Figure 4. The only software within the logical
boundary of the cryptographic boundary is listed in Figure 2.

8

Figure 3 General-purpose Computer Hardware Block Diagram

Figure 4 Logical Diagram of the Cryptographic Boundary

9

The EKM Cryptographic Module is constructed from three (3) different components: Entry, Pair and
Auxiliary. All three (3) components take part in executing the cryptographic module and executing
crypto operations. Together they form the logical EKM Cryptographic Module. The different modules
communicate over secure channels. The generic structure of the different components is shown in
Figure 5.

Figure 5 Logical Diagram of the EKM Cryptographic Module

The three different components of the cryptographic module can be configured to run on different
physical and logical boundaries but is always executing the same code on each of the three (3)
components and communicating in the same way over secured channels. The certification should test
and certify all configurations as listed below:

1. Each logical component of the Cryptographic Module is installed on a different machine
(Figure 6).

2. Each logical component of the Cryptographic Module is installed on a different virtual
machine running in a single hypervisor on a single physical machine (Figure 7).

3. Each logical component of the Cryptographic Module is installed on a different Docker
container running on a single machine (Figure 8).

4. Each logical component of the Cryptographic Module is part of a different process running on
the same machine (Figure 9).

5. All logical components of the Cryptographic Module are part of a single process (Figure 10).

10

Figure 6 Logical Diagram of the EKM Cryptographic Module Running on Different Machines

Figure 7 Logical Diagram of the EKM Cryptographic Module Running on Different Virtual Machines in the Same Hypervisor

11

Figure 8 Logical Diagram of the EKM Cryptographic Module Running on Different Docker Containers

Figure 9 Logical Diagram of the EKM Cryptographic Module Running on Different Processes

12

Figure 10 Logical Diagram of the EKM Cryptographic Module Running on a Single Process

2.2.3 Scope of Evaluation

The cryptographic module meets the overall requirements applicable to Level 2 security of FIPS 140-2,
with Design Assurance at Level 3.

Security Requirements Section Level
Cryptographic Module Specification 2
Module Ports and Interfaces 2
Roles, Services and Authentication 2
Finite State Model 2
Physical Security N/A
Operational Environment 2
Cryptographic Key Management 2
EMI/EMC 2
Self-Tests 2
Design Assurance 3
Mitigation of Other Attacks 2

Figure 11 Security Level Specification per FIPS 140-2 Section

13

2.2.4 Cryptographic Algorithms

2.2.4.1 Approved Algorithms

The following tables provide details of the approved algorithms that are included within the module.
The information is separated into two (2) tables to differentiate between algorithms that are
contained within the EKM component and those that are contained within the OpenSSL component.
(Note, the EKM DRBG is not distributed, though its seeding process is). The module supports both an
Approved mode and non-Approved mode of operation. The module alternates service by service
between approved and non-approved modes of operations. The module is considered in the
Approved mode when services in Figure 16 are called.

Items in {curly brackets} are used only during power-on self-tests.

CAVP
Cert #

Algorithm Standard Mode/
Method

Key Lengths,
Curves,

Moduli, etc.

Use

5444 AES FIPS 197,
SP 800-38A
SP 800-38B
SP 800-38C
SP 800-38D

ECB, CBC,
CFB128, OFB,

CCM, GCM*, CTR,
CMAC

128, 192, 256 Data Encryption/Decryption,
Message Authentication

5444 AES FIPS 197,
SP 800-38E

XTS* 128, 256 Data Encryption/Decryption

5444 AES FIPS 197,
SP 800-38F

KW1 128, 192, 256 Key Wrapping/Unwrapping

Vendor
Affirmed

CKG SP 800-133 §6.1, §6.2
(Asymmetric)

§7.1
(Direct Symmetric)

Varies
(128 to 4096)

Key generation for other
algorithms performed by this

module

2126 DRBG SP800-90A CTR-DRBG
(with DF)

AES-256 Deterministic Random Bit
Generation

1448 ECDSA FIPS 186-4 N/A P-256,
P-384,
P-521

Key Pair Generation (Appendix
B.4.1)

1888 ECDSA
(CVL)

FIPS 186-4 N/A P-256,
P-384,
P-521

Digital Signature Generation
Component

3601 HMAC FIPS 198-1 HMAC-SHA-1,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512

128-1024,
128-2048,
128-3072,
128-4096

(λ = hash size)

Message Authentication

1887 KAS EC DH
(CVL: primitive only)

SP 800-
56Ar1

ECC P-256,
P-384,
P-521

Key Agreement (component)

Vendor
Affirmed

KAS EC DH SP 800-
56Ar2

ECC
SP800-135 KDF

P-256,
P-384,
P-521

Key Agreement

1 AES Key Wrap (KW) mode

14

CAVP
Cert #

Algorithm Standard Mode/
Method

Key Lengths,
Curves,

Moduli, etc.

Use

5444 KTS SP 800-38F AES-KW 128, 192, 256 Key Wrapping, Key
Unwrapping

Vendor
Affirmed

KTS-RSA SP 800-56B OAEP 2048, 3072,
4096

Key Wrapping, Key
Unwrapping

2919 RSA FIPS 186-4 X9.31 (Probable
Primes, Appendix

B.3.3)

2048, 3072,
4096

Key Pair Generation

2919 RSA FIPS 186-4 PKCS1 v1.5 2048, 3072,
4096

Digital Signature Generation

2919 RSA FIPS 186-4 PSS 2048, 3072,
4096

Digital Signature Generation

1889 RSA-DP
(CVL)

SP 800 56B N/A 2048 Decryption Primitive

Figure 12 Approved Algorithms (EKM)

CAVP
Cert #

Algorithm Standard Mode/
Method

Key Lengths,
Curves,

Moduli, etc.

Use

5443 AES FIPS 197,
SP 800-38A,
SP 800-38D

ECB, CBC,
CFB128, OFB,

GCM*

128, 192, 256 Data Encryption/Decryption,
Message Authentication

1885 CVL TLS v1.2 KDF SP 800-135
rev1

TLS v1.2 N/A Key Derivation

1447 ECDSA FIPS 186-4 N/A {P-224},
P-256,
P-384,
P-521

Key Pair Generation (Appendix
B.4.1),

Digital Signature Generation,
Digital Signature Verification

1886 ECDSA (CVL) FIPS 186-4 N/A {P-224},
P-256,
P-384,
P-521

Digital Signature Generation,
Component

3600 HMAC FIPS 198-1 HMAC-SHA-1,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512

128-1024,
128-2048,
128-3072,
128-4096

Message Authentication

1884 KAS EC DH
(CVL: All except KDF)

SP 800-56A ECC EB (P-224)
EC (P-256),
ED (P-384),
EE (P-521)

Key Agreement

2918 RSA FIPS 186-4 PKCS v1.5 10242, 2048,
3072, 40963

Digital Signature Generation,
Digital Signature Verification

2918 RSA FIPS 186-4 PSS 10244, 2048,
3072, 40965

Digital Signature Generation,
Digital Signature Verification

2 1024 – legacy verification only
3 4096 – generation only
4 1024 – legacy verification only
5 4096 – generation only

15

CAVP
Cert #

Algorithm Standard Mode/
Method

Key Lengths,
Curves,

Moduli, etc.

Use

4362 SHS FIPS 180-4 SHA-16,
SHA-256,
SHA-384,
SHA-512

N/A Message Digest

Figure 13 Approved Algorithms (OpenSSL)

* The module ensures XTS key pairs are not identical. AES XTS is for use in storage applications only.
Refer to Section 3.2 for notes on GCM IV behavior.

2.2.4.2 Non-Approved Algorithms Allowed in Approved Mode

• NDRNG (seeds DRBG with 384,000 bits of Entropy Input + Nonce)
• EC Diffie-Hellman (key agreement; key establishment methodology provides 128 bits of

encryption strength)
• RSA unwrap, non-compliant to SP800-56B (allowed by IG D.8; PKCS 1.5 padding). Legacy use

only.

2.2.4.3 Non-Approved Algorithms

• Password Protection (proprietary)
• Triple-DES
• AES GMAC (non-compliant)

2.2.4.4 TLS Supported Cipher Suites

The module supports the following cipher suites for TLS v1.2 (older TLS versions are not supported):

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA384
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA384

2.2.5 Components Excluded from the Security Requirements of the Standard

There are no components excluded from the security requirements of the standard.

6 Disallowed for digital signature generation , except where specifically allowed by NIST protocol-
specific guidance; allowed for legacy use for digital signature verification; acceptable for non-digital
signature uses.

16

2.3 Physical Ports and Logical Interfaces

The module is classified as a multi-chip standalone module for FIPS 140-2 purposes. The module’s
physical boundary encompasses the general-purpose computer on which it is installed as well as the
other instances it is bound to (entry, pair, auxiliary).

The module provides its logical interfaces via Application Programming Interface (API) calls. This logical
interface exposes services (described in section 2.4.2) that the User and operating system utilize
directly.

The logical interfaces provided by the module are mapped onto the FIPS 140-2 logical interfaces: data
input, data output, control input, and status output as follows:

FIPS 140-2 Logical Interface Module Mapping
Data Input Parameters passed to the module via API calls
Data Output Data returned from the module via API calls
Control Input API Calls and/or parameters passed to API calls
Status Output Information received in response to API calls
Power Interface There is no separate power or maintenance access interface

beyond the power interface provided by the GPC itself

Figure 14 Module Interfaces

2.4 Roles, Services and Authentication

2.4.1 Roles

The Cryptographic Module implements both a Crypto Officer role and a User role. The module uses
certificate-based authentication to allow an operator to assume a role. The authentication process
requires the operator to sign a challenge provided by the module that the module then authenticates
the response. Section 2.4.2 summarizes the services available to each role.

Role Description
Crypto Officer
(CO)

The administrator of the module having full configuration and key
management privileges.

User General User of the module

Figure 15 Roles

2.4.2 Services

Most of the services provided by the module are provided via access to API calls using interfaces
exposed by the module.

However, some of the services, such as power-up module integrity testing are performed
automatically and so have no function API, but do provide status output. Services listing N/A as their
Role are unauthenticated.

For services involving asymmetric cryptography, the module only provides services relating to the
private key.

17

 Service Description Approved
Mode

Role(s) Keys and CSPs CAVP
Cert #

RWE

1 Import
RSA Key

Creates an RSA key
object from the
imported data.

Yes CO, User RSA key share #2919 W

2 Import
EC DH
Key

Creates an EC DH key
object from the
imported data.

Yes CO, User EC DH key share #1888 W

3 Import
ECDSA
Key

Creates an ECDSA key
object from the
imported data.

Yes CO, User ECDSA key share #1448 W

4 Import
AES Key

Creates an AES key
object from the
imported data.

Yes CO, User AES key share #5444 W

5 Import
HMAC
Key

Creates a new HMAC
key from the imported
data.

Yes CO, User HMAC key share #3601 W

6 Generate
RSA Key

Randomly generates a
new RSA key.

Yes CO, User RSA key share
DRBG State
DRBG Entropy
Input

#2919 W

7 Generate
EC DH
Key

Randomly generates a
new EC DH key.

Yes CO, User EC DH key share
DRBG State
DRBG Entropy
Input

#1888 W

8 Generate
ECDSA
Key

Randomly generates a
new ECDSA key.

Yes CO, User ECDSA key share
DRBG State
DRBG Entropy
Input

#1448 W

9 Generate
AES Key

Randomly generates a
new AES key.

Yes CO, User AES key share
DRBG State
DRBG Entropy
Input

#5444 W

10 Generate
HMAC
Key

Randomly generates a
new HMAC key.

Yes CO, User HMAC key share
DRBG State
DRBG Entropy
Input

#3601 W

11 Export a
Key

Exports a key in full
from the module7

Yes CO, User Any secret or
private key

#2919
#1888
#1448
#5444
#3601

R

12 Sign
PKCS1

Signs data using PKCS #1
with MPC

Yes CO, User RSA key share #2919 E

13 Sign PSS Signs data using RSA PSS
with MPC

Yes CO, User RSA key share #2919 E

14 Decrypt
RSA Raw

Performs a raw RSA
decrypt using the
private key using MPC

Yes CO, User RSA key share #1889 E

7 Only possible if the key was defined as “exportable” when generated. Most of the keys are generated with this
flag set to false.

18

 Service Description Approved
Mode

Role(s) Keys and CSPs CAVP
Cert #

RWE

15 Decrypt
PKCS1

Decrypts data using
PKCS #1 with MPC

Yes CO, User RSA key share #2919 E

16 Decrypt
OAEP

Decrypts data using RSA
OAEP with MPC

Yes CO, User RSA key share #2919 E

17 ECDSA Signs hashed data using
ECDSA with MPC

Yes CO, User ECDSA key share #1448 E

18 EC DH EC DH key agreement
computation using MPC

Yes CO, User EC DH key share #1888 E

19 Wrap AES
NIST

SP 800-38F key
wrapping

Yes CO, User AES key share #5444 E

20 Get key
informati
on

Return key information
on a key share

Yes CO, User All keys N/A R

21 Load key Loads key share from
binary input to module.

Yes CO, User RSA, ECDSA, EC
DH, AES, HMAC
key share

#2919
#1888
#1448
#5444
#3601

W

22 Delete
key

This function deletes a
key-share from the local
module only. It does not
affect any remote
servers

Yes CO, User RSA, ECDSA, EC
DH, AES, HMAC
key share

#2919
#1888
#1448
#5444
#3601

W

23 Refresh
key

Performs a refresh of
key-shares in the
module

Yes CO, User RSA, ECDSA, EC
DH, AES, HMAC
key share

#2919
#1888
#1448
#5444
#3601

W

24 Read Key Outputs the key share
from module as binary
data

Yes CO, User RSA, ECDSA, EC
DH, AES, HMAC
key share

#2919
#1888
#1448
#5444
#3601

R

25 Get
public key

Returns the public key
corresponding to the
identified private key
(RSA, EC DH or ECDSA)

Yes CO, User All public keys #2919
#1888
#1448

R

26 AES ECB AES ECB encryption and
decryption

Yes CO, User AES key share #5444 E

27 AES CBC AES CBC encryption and
decryption using MPC

Yes CO, User AES key share #5444 E

28 AES OFB AES OFB encryption and
decryption using MPC

Yes CO, User AES key share #5444 E

29 AES CFB AES OFB encryption and
decryption using MPC

Yes CO, User AES key share #5444 E

30 AES CCM AES CCM encryption
and decryption using
MPC

Yes CO, User AES key share #5444 E

31 AES CTR AES CTR using MPC Yes CO, User AES key share #5444 E
32 AES XTS AES XTS using MPC Yes CO, User AES key share #5444 E
33 AES GCM AES GCM using MPC Yes CO, User AES key share #5444 E

19

 Service Description Approved
Mode

Role(s) Keys and CSPs CAVP
Cert #

RWE

36 HMAC HMAC using MPC Yes CO, User HMAC key share #3601 E
37 Show

status
Returns self-test results,
FIPS mode status and
module version number

N/A N/A8 N/A N/A N/A

38 Self-tests Performs the power-up
self-tests

N/A N/A Module
Integrity Public
Key

N/A N/A

39 Zeroize
keys

Zeroizes all secret and
private keys in the
module

N/A N/A All keys and
CSPs

N/A W

40 Register
nodes9

Allows nodes to be
registered to form a
coordinated module

N/A N/A N/A N/A N/A

41 Install
OpenSSL
certificate
10

Installs the OpenSSL
certificate used for
inter-node
authentication

N/A CO TLS Peer Public
Key

#1447
#2918

W

42 Initialize
module11

Starts up the module
(initiates power-up self-
tests, establishes TLS
tunnels for distributed
operation)

N/A CO TLS keys and
CSPs
DRBG State
DRBG Entropy
Input
Operator
authentication
public key

#5443
#1884
#1885
#1886
#1887
#3600
#4362

RWE

43 Stop
module

Stops the module and
zeroizes keys

N/A N/A All keys and
CSPs

N/A W

Figure 16 FIPS Approved Services

2.4.3 Authentication

The operator passes a signed ticket into the library via a logon API for authentication. If this
authentication is successful, it passes back a handle that the operator can use to access module
services. Available signature algorithms for operator authentication are:

• RSA-2048 w/SHA-256 (PKCS1 padding)
• ECDSA P-256, P-384, or P-521 w/SHA-256

8 Note that if the Role is marked N/A this indicates that the service is unauthenticated.
9 Each server (Entry, Partner and Aux) registers itself with its own hostname (or IP), entry point and
partner will also register their buddy (partner and entry respectively) and both will register the Aux.
Aux only registers itself.
10 Installs the peer self-signed certificate and the local server private key so all parties can establish
trust during the TLS tunnel establishment process.
11 Starts the library and runs the FIPS 140-2 power-up self-tests. This service runs automatically when
the module is loaded.

20

A signed ticket cannot be forged without breaking the Approved signature algorithm (RSA or ECDSA).
The weakest of these algorithms is RSA-2048 with 112 bits of strength, so the probability of false
authentication for any given attempt is 1 in 2^112, which is less than 1 in 1,000,000.

The probability of false authentication over a given time period depends on the computational power
of the adversary but in any reasonable scenario (i.e. one where an attacker cannot break an Approved
algorithm) will be less than 2^80 attempts per second. This corresponds to a 60 in 2^32 probability of
success, which is less than 1 in 100,000.

2.5 Physical Security

The Cryptographic Module is a software-only cryptographic module and therefore the physical security
requirements of FIPS 140-2 do not apply.

2.6 Operational Environment

The Cryptographic Module has been tested on and found to be conformant with the requirements of
FIPS 140-2 overall Level 2. The module is installed and run on a NIAP certified Common Criteria
operating system and configured to run in a Common Criteria compliant mode of operation
(https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018). The module runs on the
following GPC platforms:

Operating System Platform CPU AES-NI
Windows Server 2016 Gigabyte GA-6LISL12 - Figure 7 Intel Core i3 X
Windows Server 2016 Gigabyte GA-6LISL - Figure 7 Intel Core i3

Figure 17 Certified Operational Environments

As shown above, testing has been performed both with and without AES-NI, as applicable.

While not tested as part of this validation, the module is capable of running on other Windows and
Linux based platforms. Per IG G.5, the vendor affirms compliance so long as the operating system is on
the NIAP PCL per FIPS 140-2 Annex B. Currently this is the case for the following operating systems:

• Windows Server 2016 on ESXi 6.5
• Oracle Linux 7.3 OSPP
• Windows 10
• Windows 10 on ESXi 6.5

When run on Linux the module is recompiled and packaged as the following distinct binary images:

OS Family Filename(s) SHA-256 Hash
Linux libekmengine_jni.so

libcrypto.so.1.0.0

libssl.so.1.0.0

108c49bafa8870dca2ebbba6a509196c937926f56466a60350a
1cbaa882753d8
c0ff6afe1ff9a6fac4fc98cfc08019d48c857ed2765aea7915c1c9
69a3a92bcd

12 The Gigabyte GA-6LISL is just a motherboard. This is the platform used for testing the Cryptographic
Module.

https://www.niap-ccevs.org/Product/CompliantCC.cfm?CCID=2019.1018

21

OS Family Filename(s) SHA-256 Hash
069582f338a3d5f67502e5e79d3846decad59a22f34d54d0757
bde2e38c36019

Figure 18 Linux Module Binary Images

The cryptographic module runs in the thread context of the calling application. This provides it with
protection from all other processes, preventing access to all keys, intermediate key generation values,
and other CSPs.

The task scheduler and architecture of the operating system maintain the integrity of the
cryptographic module.

The module supports a single operator and does not support multiple concurrent operators. The
execute only attribute is set on the module binary file in order to prevent unauthorized read or write
operations.

Both of the supported Cryptographic Module roles described in section 2.4.1 map to the User Role
specified for the Common Criteria Operating System.

The Cryptographic Module uses Syslog to record all access to services.

2.7 Cryptographic Key Management

2.7.1 Random Number Generators

The module supports an SP800-90A CTR DRBG for the generation of all internally-generated keys. The
DRBG seeding process depends on the operational environment but has been verified to provide (for
all tested OEs) a minimum of 755 bits of entropy to seed the DRBG.

2.7.2 Key Generation & Establishment

EC DH Key Agreement provides a maximum of 256 bits of security strength. RSA key unencapsulation
provides between 112 bits of security strength (from 2048-bit RSA keys) and 128+ bits of security
strength (from 4096-bit RSA keys).

AES key wrapping provides the security strength of the strength of the lesser of the wrapping key and
the wrapped key.

Private and secret keys are generated by the module using the EKM CTR-DRBG and entropy from the
calling application.

The output from this DRBG seeded by the supplied entropy is used as the basis for key generation. AES
keys are created directly from the DRBG output, whilst this output is used in the creation of private
keys according to the requirements of FIPS 186-4.

22

2.7.3 Key Tables

The TLS keys depend on the cipher suite (Signing key is RSA or ECDSA, exchange key is always EC DH).
A self-signed certificate is used. Ephemeral Diffie-Hellman is used to give forward secrecy. The default
cipher suite used by the module is TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. Each node is both
a TLS server and client when it connects to another node, so each node-node connection requires two
TLS tunnels.

Name Purpose Generation Storage, I/O Destruction
TLS Private Key.
(RSA 2048/3072/4096-
bit, ECDSA P-256, P-384,
P-521)

Used to establish TLS
tunnel for
authentication of
communication
between distributed
nodes

Module
generates
keys internally
using supplied
random data.

Stored in
RAM. I/O via
API*.

Library
shutdown.

TLS ECDHE Key.
(P-256)

Used during TLS
handshake (creates
TLS Master Secret)

Internally
generated.

Stored in
RAM.

TLS handshake
completes.

TLS Master Secret.
(384 bits)

Used by TLS KDF to
generate TLS Session
Keys

ECDHE
exchange
(KAS-ECC) and
TLS KDF.

Stored in
RAM.

TLS session
terminates.

TLS Session Keys.
(128, 256-bit AES GCM)

Used for TLS
authenticated
encryption.

Derived from
TLS KDF.

Stored in
RAM.

TLS session
terminates.

DRBG Entropy Input
(Size varies)

Seeds DRBG. Internally
generated.

Stored in
RAM.

DRBG seeding
completes.

DRBG State
(128-bit V, 256-bit Key)

Used by DRBG. Internally
generated.

Stored in
RAM.

Library
shutdown.

Key shares.
(AES, RSA, ECC, HMAC,
ECDSA)

Distributed key
components used
for operations
requiring secret or
private keys. Key
shares are the same
size as the whole key
and reveal nothing
about the whole key
in isolation.

Internally
generated.

Stored in
RAM. I/O via
API*.

Key
zeroization
service.

Figure 19 Module CSPs

23

Name Purpose Generation Storage, I/O Destruction
TLS Public Key
(RSA
2048/3072/4096-
bit, ECDSA P-256,
P-384, P-521)

Used to establish
TLS tunnel for
authentication of
communication
between
distributed nodes

Module
generates RSA
keys internally
using supplied
random data.

Stored in RAM.
I/O via API*.
Output during
TLS handshake.

Library shutdown

TLS Peer Public
Key
(RSA
2048/3072/4096-
bit, ECDSA P-256,
P-384, P-521)

Used to establish
TLS tunnel for
authentication of
communication
between
distributed nodes

Externally
generated.

Provided by TLS
peer. Stored in
RAM.

Library shutdown

TLS ECDHE Public
Keys (P-256)

Used during TLS
handshake
(creates TLS
Master Secret)

Internally
generated

Received from
client and
provided to client
during TLS
handshake.
Stored in RAM.

TLS handshake
completes.

Public key
shares. (RSA,
ECC, HMAC,
ECDSA)

Distributed key
components used
for operations
requiring secret
or private keys.
Key shares are
the same size as
the whole key
and reveal
nothing about the
whole key in
isolation.

Internally
generated.

Stored in RAM,
I/O via API*.

Key zeroization
service

Module integrity
public key (RSA
2048-bit)

Used during
software integrity
test

Externally
generated

Stored on disk,
and in RAM

N/A

Operator
authentication
public key
(RSA/ECC)

Use to verify the
signature on the
ticket presented
during operator
authentication

Externally
generated

Stored on disk,
and in RAM.
Input via API*.

N/A

Figure 20 Module Public Keys

* These methods use a GPC internal path, which is N/A as per FIPS IG 7.7.

2.7.4 Key Destruction

Key zeroization can be achieved using the Zeroize keys service to actively remove all plaintext secret
and private keys from the module.

24

2.7.5 Access to Key Material

See Figure 16, column 8 for details.

2.8 Self-Tests

In normal operation, the module uses MPC techniques to spread the load of cryptographic operation
between several nodes. However, for self-testing, the module is able to perform all of the steps of
each algorithm within the boundary of the module.

The module implements both power-up and conditional self-tests as required by FIPS 140-2.

The following two sections outline the tests that are performed.

2.8.1 Power-up Self-tests

At startup the module executes the Power-Up Self-Tests with no further inputs or actions by the
operator.

The module implements the following power-up self-tests. The module inhibits all data output while it
is operating in the Self-Test state.

Object Test
AES AES-128 ECB encrypt known answer test

AES-128 ECB decrypt known answer test
RSA Signature generation known answer test (2048-bit)

Signature verification known answer test (2048-bit)
Decryption known answer test (2048-bit)

ECDSA Signature generation known answer test (P.256 curve)
EC DH Primitive "Z" computation known answer test (P.256 curve)
HMAC HMAC-SHA-256 known answer test
AES
CMAC

AES-128 CMAC known answer test

AES key
wrap

SP 800-38F key wrapping known answer test (wrap and unwrap)

Module
integrity

SHA-256 hash of the code has a 2048-bit RSA signature used for module integrity test

DRBG SP 800-90 CTR-DRBG section 11.3 Health tests
DRBG KAT

Figure 21 EKM Power-up Self-tests

Object Test
AES AES-128 ECB encrypt known answer test

AES-128 ECB decrypt known answer test
AES-256 GCM encrypt known answer test
AES-256 GCM decrypt known answer test
AES-128 XTS encrypt known answer test
AES-128 XTS decrypt known answer test
AES-256 XTS encrypt known answer test
AES-256 XTS decrypt known answer test

RSA Signature generation known answer test (2048-bit)

25

Object Test
Signature verification known answer test (2048-bit)
Decryption known answer test (2048-bit)

ECDSA Signature generation known answer test (P.224 curve)
Signature verification known answer test (P.224 curve)

EC DH Primitive "Z" computation known answer test (P.224 curve)
SHS SHA-1 known answer test

SHA-256 known answer test
SHA-384 known answer test
SHA-512 known answer test

HMAC HMAC-SHA-1 known answer test
HMAC-SHA-256 known answer test
HMAC-SHA-384 known answer test
HMAC-SHA-512 known answer test

Figure 22 OpenSSL Power-up Self-tests

If any of the power-up known answer tests fail, the module exits with an error. While in the error state
the module inhibits all data output and all cryptographic operations are prohibited. The operator may
restart the module to re-run the power up self-tests.

In addition, the module performs the FIPS-mode OpenSSL power-up self-tests.

2.8.2 Conditional Self-tests

The module implements the following conditional self-tests:

Event Test Consequence of failure
RSA key pair is generated RSA pair-wise consistency test

(two part: sign-verify and
encrypt-decrypt)

Generated key pair is discarded

ECDSA key pair is generated ECDSA pair-wise consistency
test

Generated key pair is discarded

DRBG is invoked DRBG continuous RNG test The module returns an error
DRBG is seeded NDRNG continuous RNG test The module returns an error

Figure 23 Conditional Self-tests

2.9 Design Assurance

Unbound Tech employs industry standard best practices in the design, development, production and
maintenance of all of its products, including the FIPS 140-2 module.

This includes the use of an industry standard configuration management system that is operated in
accordance with the requirements of FIPS 140-2, such that each configuration item that forms part of
the module is stored with a label corresponding to the version of the module and that the module and
all of its associated documentation can be regenerated from the configuration management system
with reference to the relevant version number.

Design documentation for the module is maintained to provide clear and consistent information
within the document hierarchy to enable transparent traceability between corresponding areas

26

throughout the document hierarchy, for instance, between elements of this Cryptographic Module
Security Policy (CMSP) and the design documentation.

Guidance appropriate to an operator’s Role is provided with the module and provides all of the
necessary assistance to enable the secure operation of the module by an operator, including the
Approved security functions of the module.

Delivery of the Cryptographic Module to customers from the vendor is via secure download. The
module software downloaded can be verified using SHA-256 hash values that are downloaded
separately.

2.10 Mitigation of Other Attacks

The module provides key security over and above that required by FIPS 140-2.

The use of MPC techniques within the module ensures that knowledge of a key share provides no
information about the logical key that it is a part of and that compromising a single module gives an
attacker no knowledge about the secret and private keys used by that module.

3 Secure Operation

The module is delivered to an end-user as part of a larger system or product. There are no
configuration or installation options required for the module.

To ensure secure delivery of the module, a hash value of the certified module is available from
Unbound Tech upon request and this can be verified using a third-party hash tool.

3.1 Security Rules & Guidance

This section documents the security rules for the secure operation of the cryptographic module to
implement the security requirements of FIPS 140-2.

1. The module provides two distinct operator roles: User and Cryptographic Officer.

2. The module provides role-based authentication.

3. The module clears previous authentications on power cycle.

4. An operator does not have access to any cryptographic services prior to assuming an authorized
role.

5. The module allows the operator to initiate power-up self-tests by resetting the module.

6. Power up self-tests do not require any operator action.

7. Data output are inhibited during key generation, self-tests, zeroization, and error states.

8. Status information does not contain CSPs or sensitive data that if misused could lead to a
compromise of the module.

9. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.

10. The module does not support concurrent operators.

11. The module does not support a maintenance interface or role.

12. The module does not support manual key entry.

27

13. The module does not have any proprietary external input/output devices used for entry/output of
data.

14. The module does not enter or output plaintext CSPs.

15. The module does not output intermediate key values.

16. The following steps are necessary in order to connect the nodes:

• Register servers (entry, partner and auxiliary nodes)
• Set (User and Crypto Officer) Authentication certificates
• Set OpenSSL Certificates
• Start Module (for each server: entry, partner and auxiliary nodes)

3.2 Notes on GCM

Depending on the implementation, GCM is handled in two separate manners:

3.2.1 OpenSSL

The OpenSSL implementation of GCM is used solely within the context of TLS v1.2 (IG A.5 option 1a).
This implementation of TLS v1.2 occurs entirely within the module and is compliant with the
appropriate RFCs (5116, 5288, and 5289) as per IG A.5 Option 1. It has been verified during operational
testing to behave correctly. Overflow of the nonce_explicit would require 2^64 (~18.4 billion
billion) messages within the same TLS session, so this is expected to never occur. Power failure (or any
other form of module uninstantiation, planned or otherwise) terminates all TLS sessions, and by
extension the associated GCM keys, forcing operators to re-establish them.

3.2.2 EKM

The EKM implementation of GCM is used by the operator for arbitrary operations (IG A.5 option 3).
The module internally constructs IVs using operator-provided initial IVs and the message sequence
number (increments nonce_explicit). Similar to the OpenSSL implementation, 2^64 invocations
would be required for the nonce_explicit to overflow. Power failure (or any other form of module
uninstantiation, planned or otherwise) causes loss of all GCM keys and IVs, such that GCM operation
does not resume unless module operators re-establish keys and IVs.

	1 Introduction
	1.1 Identification
	1.2 Purpose
	1.3 References
	1.4 Document Organization
	1.5 Document terminology

	2 Unbound Tech EKM Cryptographic Module
	2.1 Overview
	2.2 Module Specification
	2.2.1 Hardware, Software and Firmware Components
	2.2.2 Cryptographic Boundary
	2.2.3 Scope of Evaluation
	2.2.4 Cryptographic Algorithms
	2.2.4.1 Approved Algorithms
	2.2.4.2 Non-Approved Algorithms Allowed in Approved Mode
	2.2.4.3 Non-Approved Algorithms
	2.2.4.4 TLS Supported Cipher Suites

	2.2.5 Components Excluded from the Security Requirements of the Standard

	2.3 Physical Ports and Logical Interfaces
	2.4 Roles, Services and Authentication
	2.4.1 Roles
	2.4.2 Services
	2.4.3 Authentication

	2.5 Physical Security
	2.6 Operational Environment
	2.7 Cryptographic Key Management
	2.7.1 Random Number Generators
	2.7.2 Key Generation & Establishment
	2.7.3 Key Tables
	2.7.4 Key Destruction
	2.7.5 Access to Key Material

	2.8 Self-Tests
	2.8.1 Power-up Self-tests
	2.8.2 Conditional Self-tests

	2.9 Design Assurance
	2.10 Mitigation of Other Attacks

	3 Secure Operation
	3.1 Security Rules & Guidance
	3.2 Notes on GCM
	3.2.1 OpenSSL
	3.2.2 EKM

