wolfSSL Inc.
wolfCrypt

FIPS 140-2 Cryptographic Module
Non-Proprietary Security Policy

Version: 2.16
Date: October 8, 2018

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 1 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Table of Contents

3 R 114 o Yo [T 1 4 ' T o ROt 4
1.1 Hardware and Physical Cryptographic BOUNary.........cccuviiiieiiecciiiiieeee ettt e e e 6
1.2 Software and Logical Cryptographic BoOUNaryc.ooccciiiiiieei et eectrree e e 7
ST |V [o [T o) A O T o T=Y =1 o o PSRRI 7
2 Cryptographic FUNCHIONAlitY......ccciimeiiiiiiiiiiciiiiiciiieicnienece e resasseeseenesssssennsssssssnanns 8
2.1 Critical SECUNITY PArameEterSuuiiiie i ccciiieiee e e ettt e e e e et ee e e e e e et re e e e e e e e s nbeaeeeeeseeeannrasaeaaeaan 12
D A V1 o] Lol =NV 12
3 Roles, Services, and AUuthentiCation.......cccciviieiiiiieiiiieiiiiierceree et reeieeeteeesesnsesnseranens 13
3.1 ASSUMPLION OF ROIES..uiiiiieiiceeee et e e e e et e e e e e e ettt re e e e e e eeaanraaeeeeeeans 13
Y= oV (ol TP PP POPPPTOUPPPPROE 13
Y= | B L OO P N 16
5 PRYSICAl SECUNItY ..ccuuriiiiiieiiiiiiricnitincc et renas e s seene e s senasssssssnssssssssnesssssennssssnaen 16
6 Operational ENVIroNMEeNtiiiieeiiiiiiiiciiiecnneeneiesreenesiesseneessssssnsssessensssssssenssssssaes 17
7 Mitigation of Other Attacks POlIiCYcciieeuiiiiiiniiiiiiiiiiiceinnreneecresneesseneessessensssessens 17
8 Security Rules and GUIANCe.......cccuciiiieeiiiiiiiiiciiinccnieneicsrerassessennssesseenssssssennssssssennes 17
9 References and DefinitioNns........cciiieiiiiiiieiiiiiiiicnrrcrrrr e resaesessenasseenee 17
10 Appendix A — Installation INSErUCtiONSccccuuiiiiiieiiiiiiiicirc e reneeeesesnennens 20
L1O. L LiNUX INSTALLATION ... e s e e e e eeeasesaassesesesnsssnsnsnnssnennnnnrnnernnnne 20
10.2 LiNUX SGX INSTALLATION . .. e eieeeeeeeee e aae e aesesesssssssnsnsnsssnsnsnnnsnnnrnnnnns 21
10.3 1OS INSTALLATION ...eeeeeeeeeeeee e e s e e s e e e e s esssasssasssesesssnsssnsnsnssnnennnnnnnnnnnnnnn 22
10.4 ANAroid INSTALLATION ...uutiiiiiieieeiitieeee e e e eecirtte e e e e s esettbteseeeeeesastasseesesseasssssesasessssnssssseesesannnsnes 24
10.5 FreeRTOS INSTALLATION . . ctttceee ittt sttt s e s e e e teabase s s e e e e e s aaabaaseseeeeaeeassaaseeeeeasannenen 25
10.6 WIiNdOWS 7 INSTALLATION ..eeeieiiiiiitieeee e cctttte e e e s se sttt e e e s e e saaveae e e e e s seaananeeessessnnnsnnneeeessnnnnnes 26
10.7 WIindows SGX INSTAllationccueeiiiiiiiiiiiiee ettt e s s e s s 27
10.8 NET + OS V7.6 INSTAlation ..ceeeueiiiiiiiieeeieec ettt s e e s s 29
10.8.1 Connecting the hardware / DEBUEEING.......cccuvveererieeeeeeee ettt ettt ettt e eareas 29
10.8.2 CONTIGUIE NEEWOIK . eeiiiiiiieiciiiee ettt s e et e e e st e e e ssate e e e sbtaeessabaeeesastaeeesseaeeesnsaneennnes 30
10.8.3 Permanent iNSTallationccoocieiiieiiieie et et sbe e s aee s 30
10.9 WOITCIYPT FIPS APl ...ttt ettt e e ettt e e e et e e e et e e e e abae e e enaaeeeeenbeeeeennbaeeeennraeasansenas 31
Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 2 of 31

wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

List of Tables and Figures

Table 1 — Tested Operating ENVIFONMENTSuoiiiiiiiiiiiiieiee et ee e eeectree e e e e e e ertrae e e e e e s e snntraeeaeeseennrranes 4
Table 2 - Security Level of Security REQUIFEMENTS........ueiiiiiiie ettt e e saree e e e e e e 6
Table 3 — POrts and INtEITACESvviiiiiiie e e s s e e e e bee e s s sabe e e e snreeeesnreeas 6
Figure 1 — Module BIOCK Diagramcuueeiicuiiieiiiiieeiiteeeeciree sttt e e st e e s svae e e sabee e s snbaeeesnbaeeessaseeeesnsaeesssees 7
Table 4 — Approved and CAVP Validated Cryptographic FUNCHIONS.......ccovviiiiiiiieii e 8
Table 5 — Non-Approved but Allowed Cryptographic FUNCLIONSccuviiiiiiiieiiiieecceee e 10
Table 6 — Critical Security Parameters (CSPS)uuiiicciiie e eeciee et eree e e tte e e etee e e eare e e e eae e e e eareeeeennees 12
TADIE 7 = PUBIIC KBYS ...ttt e e e e e ebr e e e e e e e esbbbeeeeeeeeenstbssaeeeeeesasatabaeeeeeenanssres eenn 12
Table 8 — ROIES DESCIIPTION ...ciiiiiieee ettt e et e e e ete e e e e bte e e e s be e e e e ateeeeeabteeeeaataeesenteeesnnsenas 13
Table 9 — Authorized Services available in FIPS MOE.......c..ciiiiiiiiiiiiiiecccieee et 13
Table 10 — Services available in NON-FIPS MOEcccoiviiiiiiiiiie ettt sbe e 14
Table 11 — CSP Access Rights Within SEIVICESceiii it e e e e eanes 15
Table 12 — POWEI-0N SEIF-TESTS ...uviiiiiciiiee ittt e e e e e s bee e e e sabe e e s sate e e e sabeeeeesntaeeesaseeas 16
Table 13 — CoNditioNal SEIf-LESTSviiiciiiciie e e s ee e e be e e beeesseeesnteesreeenneeenns 16
LI o] [R 0= {1 =Y g ol TSRS 17
Table 15 — Acronyms and DefiNITiONSccuuiiiiiiiei i e e rre e e e ete e e e e eare e e e e aeee e enreas 18
LI o] [N Yo TU T o TN o1 =PSRN 19
Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 3 of 31

wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

1 Introduction

This document defines the Security Policy for the wolfSSL Inc. wolfCrypt (Software Versions 3.6.0, 3.6.1,
3.6.6,3.11.2,3.12.2, 3.12.4, 3.12.6, and 3.14.2) module, hereafter denoted the Module. The Module is a
cryptography software library. The Module meets FIPS 140-2 overall Level 1 requirements.

The Module is intended for use by US Federal agencies and other markets that require FIPS 140-2
validated cryptographic functionality. The Module is a software-only module, multi-chip standalone
module embodiment; the cryptographic boundary is the collection of object files from the source code
files listed in Table 16 — Source Files. No software components have been excluded from the FIPS 140-2
requirements.

Operational testing was performed for the following Operating Environments:

Table 1 - Tested Operating Environments

Operating System Processor Platform
1 | Linux 3.13 (Ubuntu) Intel® Core™ i7-3720QM CPU @2.60GHz x 8 | HP EliteBook
2 |i0Ss8.1 Apple™ A8 iPhone™ 6
3 | Android 4.4 Qualcomm Krait 400 Samsung Galaxy S5
4 FreeRTOS 7.6 ST Micro STM32F uTrust TS Reader
5 | Windows 7 (64-bit) Intel® Core™ i5 Sony Vaio Pro
6 | Linux 3.0 (SLES 11 SP4, 64- | Intel® Xeon® E3-1225 Imprivata OneSign
bit)
7 | Linux 3.0 (SLES 11 SP4, 64- | Intel® Xeon® E5-2640 Dell® PowerEdge™ r630
bit) on Microsoft Hyper-V
2012R2 Core
8 | Linux 3.0 (SLES 11 SP4, 64- | Intel® Xeon® E5-2640 Dell® PowerEdge™ r630
bit) on VMWare ESXi 5.5.0
9 | Windows 7 (64-bit) on Intel® Xeon® E5-2640 Dell® PowerEdge™ r630
VMWare ESXi 5.5.0
10 | Android Dalvik 4.2.2 NXP i.MX6 MXT-700-NC 7” touch
panel
11 | Linux 4.1.15 NXP i.MX5 NX-1200 NetLinx NX
Integrated Controller
12 | Debian 8.8 Intel Xeon® 1275v3 CA PAM 304L Server
13 | Windows Server 2012R2 Intel® Xeon® E5335 CA Technologies
PAMHAF995
14 | Windows 7 Professional Intel® Core™ i7-2640M Dell™ Latitude™ E6520
SP1
15 | Debian 8.7.0 Intel ® Xeon® E3 Family with SGX support Intel® x64 Server System
R1304SP
Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 4 of 31

wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

16 | Windows 10 Pro Intel ® Core ™ i5 with SGX support Dell™ Latitude™ 7480

17 | NET+OS v7.6 Digi International N§9210 Sigma IV infusion pump

18 | Linux 4.4 (SLES 12 SP3, 64- | Intel® Xeon® E5-2650 Dell® PowerEdge™ r720
bit) on Microsoft Hyper-V
2016 Core

19 | Linux 4.4 (SLES 12 SP3, 64- | Intel® Xeon® E5-2403 Dell® PowerEdge™ r420
bit) on VMWare ESXi 6.5.0

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 5 of 31

wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

The FIPS 140-2 security levels for the Module are as follows:

Security Requirement Security Level

Table 2 - Security Level of Security Requirements

Cryptographic Module Specification 1
Cryptographic Module Ports and Interfaces 1
Roles, Services, and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 1
Self-Tests 1
Design Assurance 1
Mitigation of Other Attacks N/A

1.1 Hardware

and Physical Cryptographic Boundary

The physical cryptographic boundary is the general purpose computer where the Module is installed. The

Module relies on the computer system where it is running for input/output devices.

Table 3 — Ports and Interfaces

Description Logical Interface Type

APl entry point Control in
API function parameters Data in
APl return value Status out
API function parameters Data out

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2

wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Page 6 of 31

1.2 Software and Logical Cryptographic Boundary

Figure 1 depicts the Module operational environment.

General Purpose Computer-Physical Boundary

Application - Out of Validation Scope

Caller CSPs

API Calls

API Entry Points
e.g. AES_CBC_Encrypt()

System Calls
wolfCrypt FIPS Module

System Calls

Operating System

A A A A

Y Y v v

CPU Memory Hard Disk 1/0O Ports

Figure 1 — Module Block Diagram

The above diagram shows the Logical Boundary highlighted in red contained within the Physical Boundary.
The Logical Boundary contains all FIPS APl entry points. The Logical Boundary is invoked by the Application
through the API Calls.

1.3 Modes of Operation

The Module supports a FIPS Approved mode of operation and a non-FIPS Approved mode of operation.
FIPS Approved algorithms are listed in Table 4. Non-FIPS Approved but allowed algorithms are listed in
Table 5. The module is in the Approved mode of operation when any of the cryptographic functions listed
in Table 4 and Table 5 are invoked by the calling application.

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 7 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

The Module is in the non-FIPS Approved mode of operation when any of the non-Approved cryptographic
functions are invoked by the calling application (not recommended for applications requiring a FIPS 140-
2 validated module). Critical Security Parameters (CSPs) are not shared between the FIPS Approved mode
of operation and the non-FIPS Approved mode of operation.

For installation instructions, see Appendix A — Installation Instructions.

The conditions for using the module in an Approved mode of operation are:

1. The module is a cryptographic library and it is intended to be used with a calling application.
The calling application is responsible for the usage of the primitives in the correct sequence.

2. The module relies on an entropy source external to the module boundary. The module contains
an Approved DRBG which generates random strings whose strengths are modified by available
entropy.

3. The keys used by the module for cryptographic purposes are determined by the calling
application. The calling application is required to provide keys in accordance with FIPS 140-2
requirements.

2 Cryptographic Functionality

The Module implements the FIPS Approved and Non-Approved but Allowed cryptographic functions listed
in the tables below.

Table 4 — Approved and CAVP Validated Cryptographic Functions

Algorithm Description Cert #
AES [FIPS 197, SP 800-38A] 3157
Functions: Encryption, Decryption 3330

Modes: CBC, CTR 3417

Key sizes: 128, 192, 256 bits 3490

3508

4635

4643

4772

5244

5325

5447

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 8 of 31

wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Algorithm
DRBG

Description
[SP 800-90A]

Functions: Hash DRBG
Security Strengths: 256 bits

Cert #

650
775
821
863
875
1561
1566
1651
2006
2055
2132

HMAC

[FIPS 198-1]
Functions: Generation, Verification
SHA sizes: SHA-1, SHA-256, SHA-384, and SHA-512

1990
2121
2175
2228
2241
3068
3075
3183
3471
3523
3605

RSA

[FIPS 186-4, and PKCS #1 v2.1 (PKCS1.5)]
Functions: Signature Generation, Signature Verification
Key sizes: 1024 (verification only), 2048

1602
1710
1749
1791
1803
2530
2534
2612
2804
2853
2923

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Page 9 of 31

Algorithm
SHA

Description

[FIPS 180-4]

Functions: Digital Signature Generation, Digital Signature Verification,
non-Digital Signature Applications

SHA sizes: SHA-1, SHA-256, SHA-384, SHA-512

Cert #

2614
2763
2823
2882
2893
3799
3806
3915
4222
4277
4366

Triple-DES (TDES)

[SP 800-20]

Functions: Encryption, Decryption
Modes: TCBC

Key sizes: 3-key

1800
1901
1928
1966
1972
2465
2470
2535
2652
2687
2737

Table 5 — Non-Approved but Allowed Cryptographic Functions

Algorithm Description

RSA Primitives
and Operations

[IG D.9]

Per IG D.9, RSA is an allowed method for supporting key transport in an Approved
FIPS mode of operation. RSA may be used by a calling application as part of a key
encapsulation scheme. No keys are established into the module using RSA.

Key sizes: 2048 bits

When used for system level key establishment this service provides 112 bits of

security.

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Page 10 of 31

Algorithm Description

Non-SP 800-56A [IG D.8]

Co'm|'oliiant DH Per IG D.8, Scenario 6 — non-Approved (not compliant with SP 800-56A) primitive
Primitive only, a partial DH key agreement scheme is allowed in an Approved FIPS mode of
operation. No keys are established into the module using DH.

Key agreement; key establishment methodology provides 112 bits of encryption

strength.
Non-SP 800-56A [IG D.8]

Co.mpl.iant ECDH Per IG D.8, Scenario 6 — non-Approved (not compliant with SP 800-56A) primitive
Primitive only, a partial ECDH key agreement scheme is allowed in an Approved FIPS mode of
operation. No keys are established into the module using ECDH.

Key agreement; key establishment methodology provides 256 bits of encryption
strength.

MDS5 for use [IG D.2]

within TLS

MD?5 is allowed in an Approved mode of operation when used as part of an approved
key transport scheme (e.g. SSL v3.1) where no security is provided by the algorithm.

Non-Approved Cryptographic Functions for use in non-FIPS mode only:

e AES GCM (non-compliant)
e RSA Signature Generation with 1024 bit key

e DES

e MD5

e RC4

e RIPEMD-160
e HMAC-MD5

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 11 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

2.1 Critical Security Parameters

All CSPs used by the Module are described in this section. All usage of these CSPs by the Module (including
all CSP lifecycle states) is described in the services detailed in Section 4. The CSP names correspond to the
API parameter inputs.

Table 6 — Critical Security Parameters (CSPs)

CSP Description / Usage

Hash_DRBG Entropy input V (440) and C (440)

HMAC Key Keyed Hash key

AES EDK AES (128/192/256) encrypt/decrypt key

TDES EDK TDES (3-Key) encrypt/decrypt key

RSA KDK Private component of an RSA key pair (2048bit), used by RSA key establishment
RSA SGK Private component of an RSA key pair (2048bit), used by RSA signature generation
DH Private Private Key Agreement Key

2.2 Public Keys
Table 7 — Public Keys

Key Description / Usage

RSA KEK Public component of an RSA key pair (2048bit), used by RSA key establishment
RSA VK Public component for an RSA key pair (2048bit), used by RSA signature verification
DH Public Public Key Agreement Key

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 12 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

3 Roles, Services, and Authentication

3.1 Assumption of Roles

The Module supports two distinct operator roles, User and Cryptographic Officer (CO). The cryptographic
module does not provide an authentication or identification method of its own. The CO and the User
roles are implicitly identified by the service requested.

Table 8 lists all operator roles supported by the Module. The Module does not support a maintenance
role or bypass capability.

Table 8 — Roles Description

Role ID Role Description Authentication Type Authentication Data
co The Cryptographic Officer None None

Role is assigned the Zeroize

service.
User The User Role is assigned all None None

services except Zeroize.

3.2 Services

All services implemented by the Module are listed in the tables below with a description of service CSP
access. The calling application may use the wolfCrypt_GetStatus_fips() APl to determine the current
status of the Module. A return code of 0 means the Module is in a state without errors. Any other return
code is the specific error state of the module.

Table 9 — Authorized Services available in FIPS mode

Service Description Role

Module Reset Reset the Module by restarting the application calling the Module. User
(Self-test) Does not access CSPs.

Show status Functions that give module status feedback. Does not access CSPs. User
Zeroize Functions that destroy CSPs. FreeRng_fips destroys RNG CSPs. All co

other services automatically overwrite memory bound CSPs.
Cleanup of the stack is the duty of the application. Restarting the
general purpose computer clears all CSPs in RAM.

Random number Uses the SP 800-90A DRBG for random number generation. This User
generation service is not used by the module to generate keys for the
module’s use. It merely outputs random numbers per the calling
application’s request.

Symmetric Used to encrypt and decrypt data using AES EDK and TDES EDK. User
encrypt/decrypt CSPs passed in by the application

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 13 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Service ‘ Description Role

Message digest Used to generate a SHA-1 or SHA-2 message digest. MD5 used User
only to support TLS 1.1 and lower. Does not access CSPs.

Keyed hash Used to generate or verify data integrity with HMAC. The HMAC User
Key is passed in by the application.

Key transport Used to encrypt or decrypt a key value on behalf of the application. User
RSA KDK and RSA KEK are passed in by the calling application.
When decrypting a key value, a symmetric key is output to the
calling application.

Key agreement Used for DH key agreement on behalf of the application. The DH User
keys are passed in by the calling application. A symmetric key is
output to the calling application.

Digital signature Used to generate or verify RSA digital signatures. RSA SGK and RSA User
VK are passing in by the calling application.

Table 10 — Services available in non-FIPS mode

Service Description

AES GCM Used to encrypt and decrypt data using AES GCM

Message digest MD5 MD5 message digest not an approved FIPS cryptographic function.

DES Single DES symmetric encrypt/decrypt not an approved FIPS cryptographic
function.

RC4 RC4 symmetric encrypt/decrypt not an approved FIPS cryptographic function.

HMAC MD5 Keyed hash using MD5 is not an approved FIPS cryptographic function.

Message digest RIPEMD- | RIPEMD-160 digest not an approved FIPS cryptographic function.
160

Digital Signature Used to generate RSA 1024-bit digital signatures. RSA SGK and RSA VK are
passed in by the calling application.

See Chapter 10: wolfCrypt Usage Reference in the wolfSSL Manual for additional information on the
cryptographic services listed in this section.

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 14 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Table 11 — CSP Access Rights within Services, defines the relationship between access to CSPs and the
different module services. The modes of access shown in the table are defined as:

e R =Read: The module reads the CSP. The read access is typically performed before the module
uses the CSP.

e E =Execute: The module executes using the CSP.

e 7 =Zeroize: The module zeroizes the CSP.

Table 11 — CSP Access Rights within Services

Service

Hash_DRBG
DH Private

Module Reset (Self-test) - - - - - - -

Show Status - - - - - - -
Zeroize z z z z z z z
Random number generation R,E - - - - - -
Symmetric encrypt/decrypt - - R,E,Z R,E,Z - - -

Message digest - - - - - - -
Keyed hash - R,E,Z - - - - -

Key transport - - - - R,E,Z - -

Key agreement - - - - - - R,E,Z

Digital signature - - - - - R,E,Z -

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 15 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

4 Self-tests

Each time the Module is powered up it tests that the cryptographic algorithms still operate correctly and
that sensitive data have not been damaged. The Module provides a default entry point to automatically
run the power on self-tests compliant with IG 9.10. Power on self-tests are available on demand by
reloading the Module.

On power-on or reset, the Module performs the self-tests described in Table 12. All KATs must complete
successfully prior to any other use of cryptography by the Module. If one of the KATs fails, the Module
enters the self-test failure error state. To recover from an error state, reload the Module into memory.

During the FIPS 140-2 validation testing process, InfoGard Laboratories verified that the HASH DRBG
implements the required Health Testing described in SP 800-90A Section 11.3. InfoGard Laboratories is
accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) to perform cryptographic
testing under Lab Code 100432-0.

Table 12 — Power-on Self-tests

Test Target Description

Software Integrity HMAC-SHA-256
AES KATs: Encryption, Decryption
Modes: CBC
Key sizes: 128 bits
DRBG KATs: HASH DRBG
Security Strengths: 256 bits
HMAC KATs
SHA sizes: SHA-1, SHA-512
RSA KATs: Signature Generation, Signature Verification
Key sizes: 2048 bits
TDES KATs: Encryption, Decryption
Modes: TCBC,
Key sizes: 3-key

Table 13 — Conditional Self-tests

Test Target Description

DRBG DRBG Continuous Test performed when a random value is requested from the DRBG.

5 Physical Security

The FIPS 140-2 Area 5 Physical Security requirements do not apply because the Module is a software
module.

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 16 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

6 Operational Environment

The tested environments place user processes into segregated spaces. A process is logically removed
from all other processes by the hardware and Operating System. Since the Module exists inside the
process space of the application this environment implicitly satisfies requirement for a single user mode.

7 Mitigation of Other Attacks Policy

The Module is not intended to mitigate against attacks that are outside the scope of FIPS 140-2.

8 Security Rules and Guidance

The Module design corresponds to the Module security rules. This section documents the security rules
enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 1
module.

1. The Module provides two distinct operator roles: User and Cryptographic Officer.
2. Power-on self-tests do not require any operator action.

3. Data output is inhibited during self-tests, zeroization, and error states.

4

Status information does not contain CSPs or sensitive data that if misused could lead to a
compromise of the Module.

There are no restrictions on which keys or CSPs are zeroized by the zeroization service.
The calling application is the single operator of the Module.
The Module does not support manual key entry.

The Module does not have any external input/output devices used for entry/output of data.

L 0 N o U

The module does not support key generation.

9 References and Definitions
The following standards are referred to in this Security Policy.

Table 14 — References

Abbreviation Full Specification Name

[FIPS140-2] Security Requirements for Cryptographic Modules, May 25, 2001

[SP800-131A] Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths, January 2011

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 17 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Table 15 — Acronyms and Definitions

Acronym Definition

AES Advanced Encryption Standard

API Application Programming Interface

co Cryptographic Officer

CSpP Critical Security Parameter

DES Data Encryption Standard

DH Diffie-Hellman

DRBG Deterministic Random Bit Generator
ECDH Elliptic Curve Diffie-Hellman

FIPS Federal Information Processing Standard
HMAC Keyed-Hash Message Authentication Code
RSA Rivest, Shamir, and Adleman Algorithm
SSL Secure Sockets Layer

TDES Triple-DES

TLS Transport Layer Security

SHA Secure Hash Algorithm

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 18 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

The source code files in Table 16 create the object files of the wolfCrypt module on each supported
operating environment.

Table 16 — Source Files

Source File Name Description

aes.c AES algorithm

des3.c TDES algorithm

fips.c FIPS entry point and APl wrappers
fips_test.c Power on Self Tests

hmac.c HMAC algorithm

random.c DRBG algorithm

rsa.c RSA algorithm

sha.c SHA algorithm

sha256.c SHA-256 algorithm

sha512.c SHA-512 algorithm

wolfcrypt_first.c First FIPS function and Read Only address
wolfcrypt_last.c Last FIPS function and Read Only address

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 19 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

10 Appendix A — Installation Instructions

This Appendix describes using wolfCrypt in FIPS 140-2 mode as a software component. The intended
audience is Users and Crypto Officers using/needing FIPS software.

10.1 Linux INSTALLATION

wolfCrypt in FIPS mode requires the wolfCrypt FIPS library version 3.6.0 or later. The wolfCrypt FIPS
releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.0-commercial-fips-linux.7z
746341ac6d88b0d6de02277af5086275361ed106c9ec07559aa57508e218b3f5

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.0-commercial-fips-linux.7z

When prompted, enter the password. The password is provided in the distribution email.
To build and install wolfCrypt with FIPS:

./configure --enable-fips

make check

sudo make install

If for some reason you have not received the library with FIPS support the ./configure step will fail.
Please contact wolfSSL.

‘make check’ will verify the build and that the library is operating correctly. If ‘make check’ fails this
probably means the In Core Integrity check has failed. To verify this do:

./wolfcrypt/test/testwolfcrypt
MD5 test passed!

in my Fips callback, ok = 0, err = -203 message = In Core
Integrity check FIPS error

hash =
622B4F8714276FF8845DD49DD3AA27FF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hashllinto

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 20 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

verifyCore[] in fips test.c and rebuild

Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
./ctaocrypt/src/fips_test.c with this new value. After updating verifyCore, re-compile the wolfSSL library
by running ‘make check’ again. The In Core Integrity checksum will vary with compiler versions and
runtime library versions.

10.2 Linux SGX INSTALLATION

wolfCrypt in FIPS mode with SGX Enclave support requires the wolfCrypt FIPS library version 3.12.4 or
later. The wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.13.0-commercial-fips—-SGX.7z
746341ac6d88b0d6de02277af5b86275361ed106c9ec0755%9aa57508e218b3£5

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.13.0-commercial-fips—-SGX.7z

When prompted, enter the password. The password is provided in the distribution email.
To build and install wolfCrypt with FIPS:

cd wolfssl-3.13.0-commercial-fips-SGX/fips/SGX/Linux-SGX-
Harness/static-1lib-dir

./build.sh

This will build a static library for linking with Enclaves. If for some reason you have not received the
library with FIPS SGX support this will fail. Please contact wolfSSL.

cd wolfssl-3.13.0-commercial-fips—-SGX/fips/SGX/Linux-SGX-Harness
./build.sh
./App -t

The test application will verify the build and that the library is operating correctly. If ./App -t fails this
probably means the In Core Integrity check has failed. To verify this do:

./App -t

Crypt Test:

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 21 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Starting Power On Self Test
Power On Self Test FAILURE
error test passed!
base64 test passed!

baseb64 test passed!

MD5 test passed!

MD4 test passed!

in my Fips callback, ok = 0, err = -203
message = In Core Integrity check FIPS error
hash =

E4E2899B697F1BC3B8ET73F625C13E7899388DD08BCA7107C805660DDFOBEFG4F
In core integrity hash check failure, copy above hash
into verifyCore[] in fips test.c and rebuild
SHA test failed!
error = -1700
Crypt Test: Return code -1

Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
./ctaocrypt/src/fips_test.c with this new value. After updating verifyCore, re-compile the static library
and the application again. The In Core Integrity checksum will vary with compiler versions and runtime
library versions.

10.3 iOS INSTALLATION

wolfCrypt in FIPS mode requires the wolfCrypt FIPS library version 3.6.0 or later. The wolfCrypt FIPS
releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.0-commercial-fips-ios.7z
32f7bfcbd4ce250da3cd43a3d944abd443elbelcd508e80elefo6d4ab2ba3fdeanl3

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 22 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

To unpack the bundle:

7za x wolfssl-3.6.0-commercial-fips-ios.7z

When prompted, enter the password. The password is provided in the distribution email.
wolfCrypt with FIPS for iOS is used as a static library. One has to:

1. Build the library

2. Link it against their application

3. Getthe In Core Integrity check value from the target platform

4. Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
ctaocrypt/src/fips_test.c with this new value

Rebuild the library

6. Relink it into the application

ol

To build and install wolfCrypt with FIPS:

1. In Xcode open the project IDE/iOS/wolfssl-FIPS.xcodeproj
Select the build type and target
Archive the code to make a release library
If using a release library, click on the libwolfssl.a item in the file list, on the right pane click the
copy button on the Full Path, open that path in the Finder, but delete everything after
"Products" in the path, then pick the end product that was built, copy the header directory and
the libwolfssl.a file into your project
5. Inyour application project, add the following preprocessor macros:

e |PHONE

e HAVE_FIPS

e HAVE_HASHDRBG

e HAVE_AESGCM

e WOLFSSL_SHAS512

e WOLFSSL_SHA384

HwnN

e NO_MD4
e NO_HC128
e NO_RABBIT
e NO_DSA

e NO_PWDBASED

6. Build the project

7. Run the code on your target hardware with the standard cable connected, the default FIPS
check failure should be output in the output window in Xcode

The first run should indicate the In Core Integrity check has failed:

in my Fips callback, ok = 0, err = -203 message = In Core
Integrity check FIPS error
hash =

622B4F8714276FF8845DD49DD3AA2T7TFF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hash into
verifyCore[] in fips test.c and rebuild

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 23 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target
hardware, and build type.

10.4 Android INSTALLATION

wolfCrypt in FIPS mode for Android requires the wolfCrypt Android FIPS library version 3.6.0 or later.
The wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.0-commercial-fips—-android.7z
99c01cbf9c75d787££34470e8c810af66c1443148ae8caf568a7¢c96e10419900

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:
7za x wolfssl-3.6.0-commercial-fips—-android.7z
When prompted, enter the password. The password is provided in the distribution email.

The wolfCrypt FIPS for Android bundle contains the wolfSSL library, the wolfCrypt FIPS library (used to
create the crypto boundary), the wolfCrypt INI wrapper, and a sample Android NDK application
(demonstrating how to correctly include wolfSSL, wolfCrypt FIPS, and wolfCrypt-JNI in an Android.mk
file).

In order to build the wolfCrypt JNI wrapper and the wolfCrypt Android NDK sample application, Java, the
Android SDK, and the Android NDK need to be installed on the development machine in use.

wolfSSL and wolfCrypt FIPS for Android are compiled as part of an Android NDK application's build
process. Each Android NDK application has an Android.mk build file that controls the compilation of
native shared libraries. This Android.mk file should be modified to compile shared libraries.

Both wolfCrypt FIPS and wolfCrypt JNI can be compiled by Android.mk, by following the example shown
in the "Android NDK Sample App" (wolfcrypt-android-ndk). The Android.mk file for this project is located
at:

./IDE/Android/wolfcrypt—-android-ndk/jni/Android.mk

This sample demonstrates the correct use of source files, order of source files, and preprocessor defines
to use.

The native shared libraries need to be loaded by the main Activity in a static block, in the correct order.
Applications will need to call System.loadLibrary() in a static code block for both the wolfCrypt FIPS and
wolfCrypt JNI shared libraries.

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 24 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

The FIPS library contains a self-check verify hash. Since the library is compiled as a shared library and is
position independent, the library looks the same to every application that builds against it, and the code
can be verified.

The library provides the function wolfCrypt GetCoreHash fips () thatreturns astring with the
check value calculated with the existing code. The verifyCorein fips test.c will needto be
updated with this value, the library rebuilt then relinked into your application.

10.5 FreeRTOS INSTALLATION

wolfCrypt in FIPS mode for FreeRTOS requires the wolfCrypt FIPS library version 3.6.1 or later. The
wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.1l-commercial-fips-freertos.7z

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.1-commercial-fips-freertos.7z

When prompted, enter the password. The password is provided in the distribution email.

The wolfCrypt FIPS for FreeRTOS bundle contains the wolfSSL library and the wolfCrypt FIPS library. To
build wolfCrypt with FIPS for FreeRTOS:

1. Build and link the library against the application or pull the source code and header files into the
project with these preprocessor definitions:
- FREERTOS
- HAVE_FIPS
- NO_DSA
- NO_PSK
- NO_MD4
- NO_HC128
- NO_PWDBASED
- HAVE_HASHDRBG
- WOLFSSL_SHA384
- WOLFSSL_SHA512
- NO_RC4
- NO_RABBIT
2. Get the In Core Integrity check value from the target platform by running the application on the
target platform and obtaining the “hash” value that is given in the output. The first run should
indicate the In Core Integrity check has failed:

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 25 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

in my Fips callback, ok = 0, err = -203 message = In Core

Integrity check FIPS error

hash =
622B4F8714276FF8845DD49DD3AA2TFF68A8226C50D5651D320D914A566
0B3F5

In core integrity hash check failure, copy above hash into
verifyCore[] in fips test.c and rebuild

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target
hardware, and build type.

3. Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
ctaocrypt/src/fips_test.c with this new value.

4. Rebuild the library.

5. Relink it into the application.

10.6 Windows 7 INSTALLATION

wolfCrypt in FIPS mode for Windows 7 requires the wolfCrypt FIPS library version 3.6.6 or later. The
wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.6.6-commercial-fips-windows.7z
02da35d0a4d6b8e777236£e30da7a6££93834fb16939%al6da663773£1b34cf0

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:

7za x wolfssl-3.6.6-commercial-fips-windows.7z

When prompted, enter the password. The password is provided in the distribution email.
wolfCrypt with FIPS for Windows is used as a static library. One has to:

1. Build the library

2. Link it against their application

3. Getthe In Core Integrity check value from the target platform

4. Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
fips_test.c with this new value

Rebuild the library

6. Relink it into the application

bl

To build and install wolfCrypt with FIPS:

1. In Visual Studio open IDE\WIN\wolfssl-fips.sin

Select the build type and target (Release x64)

Build the solution

The library should be in the directory IDE\WIN\Release\x64 as wolfssl-fips.lib, it can be added to
your project

spwnN

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 26 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

5. Inyour application project, add the following preprocessor macros:
e HAVE_FIPS
e HAVE_HASHDRBG
e HAVE_AESGCM
e WOLFSSL_SHA512
e WOLFSSL_SHA384

e NO_MD4
e NO_HC128
e NO_RABBIT
e NO_DSA

e NO_PWDBASED

6. Build the solution

7. Run the code from the Release\x64 directory, the default FIPS check failure should be output in
the shell

The first run should indicate the In Core Integrity check has failed:

in my Fips callback, ok = 0, err = -203 message = In Core
Integrity check FIPS error
hash =

622B4F8714276FF8845DD49DD3AA2T7TFF68A8226C50D5651D320D914A5660B3F5

In core integrity hash check failure, copy above hash into
verifyCore[] in fips test.c and rebuild

The In Core Integrity checksum will vary with compiler versions, runtime library versions, target
hardware, and build type.

Note: if using 32-bit builds, one must disable Randomize Base Address. For Operating Environments 13
and 14 of “Table 1 — Tested Operating Environments”, enable the option RSA_LOW_MEM (add the
define to <wolfssl-root>/IDE/WIN/user_settings.h)

10.7 Windows SGX Installation

wolfCrypt in FIPS mode with SGX Support on Windows requires the wolfCrypt FIPS library version 3.12.4
or later. The wolfCrypt FIPS releases can be obtained with a link provided by wolfSSL through direct
email.

To verify the fingerprint of the package, calculate the SHA-256 sum using a FIPS 140-2 validated
cryptographic module. The following command serves as an example:

shasum -a 256 wolfssl-3.13.0-commercial-fips-SGX.7z
02da35d0a4d6b8e777236£e30da7a6££93834£fb16939%al6da663773£1b34cf0

And compare the sum to the sum provided with the package. If for some reason the sums do not match
stop using the module and contact wolfSSL.

To unpack the bundle:
7za x wolfssl-3.13.0-commercial-fips-SGX.7z
When prompted, enter the password. The password is provided in the distribution email.

wolfCrypt with FIPS and SGX Support for Windows is used as a static library. One has to:

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 27 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

Build the library

Link it against their application

Get the In Core Integrity check value from the target platform

10. Copy the value given for "hash" in the output, and replace the value of "verifyCore[]" in
fips_test.c with this new value

11. Rebuild the library

12. Relink it into the application

L o N

To build and install wolfCrypt with FIPS and SGX Support:

8. In Visual Studio open fips\SGX\Windows-SGX-Harness-and-optest\static-lib-dir\wolfSSL_SGX.sIn

9. Select the build type and target (Debug Win32)

10. Build the solution

11. The library should be in the directory ...static-lib-dir\Debug\Win32 as wolfssl.lib, it can be added
to your project.

12. An example application “Benchmarks” has been provided in fips\SGX\Windows-SGX-Harness-
and-optest\Benchmarks.sIn

13. Settings are included in fips\SGX\Windows-SGX-Harness-and-optest\user-settings directory
along with the pre-processor macros that are set in the Enclave and Benchmark Apps built by
the Benchmarks.sln

14. Build the provided example solution

15. Run the code from the Debug)\ directory, the default FIPS check failure should be output in the
shell

The first run should indicate the In Core Integrity check has failed:

benchmark.exe -t

Crypt Test:

Starting Power On Self Test
Power On Self Test FAILURE
error test passed!
base64 test passed!

baseb64 test passed!

MD5 test passed!

MD4 test passed!

in my Fips callback, ok = 0, err = -203
message = In Core Integrity check FIPS error
hash =

E4E2899B697F1BC3B8ET73F625C13E7899388DD0O8BCAT7107C805660DDFOBEF64F

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 28 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

In core integrity hash check failure, copy above hash
into verifyCore[] in fips test.c and rebuild
SHA test failed!
error = -1700
Crypt Test: Return code -1
The In Core Integrity checksum will vary with compiler versions, runtime library versions, target
hardware, and build type.

10.8 NET + OS v7.6 Installation

Browse to where the Digi NET + OS build environment is located. The sub-directory path will be: “...\DIGI-
BAXTER\Digi\Digi NET+0S 7.6\GNU Tools\”

Find and double-click “Digi NET + OS 7.6 Build Environment”
Execute this command: “cd <path-to>/netos_sources/src/wolfssl/
Execute the “make” command which will build and output libwolfssl.a

Next change directory to the application. By default examples are provided, see wolfssl/examples/client
for reference. In each application directory there will be a “32b/” directory which contains the makefile
for the application and a dependency on libwolfssl.a. There is also a appconf.h header file in the root
directory of each example which can be used to configure the application stack and other variable
parameters for the application. From the 32b/ directory of the application execute the “make” command
to build the app and link libwolfssl.a. Once complete make sure that the image and debug binaries
“image.elf” and “image.bin” were successfully generated.

10.8.1 Connecting the hardware / Debugging

To test and debug an application connect a Digi JTAG LINK debugger to the device and host computer.
Connect a Serial modem cable to P3 on the device and to a host computer running a Terminal service such
as “Tera Term” for windows or “CoolTerm” for macQOS to view device outpu.

Use the <path-to>\SEGGER\JLinkARM_V408I\ JLinkGDBServer.exe to connect to the ARM9 core. Once all
three lower indicators are green you may now execute the command “gdbtk -se image.elf” from the “Digi
NET + OS 7.6 Build Environment” (run from the 32b/ directory of the app to be debugged/tested).

Click “Yes” if prompted while the binary is being downloaded. Once the download is complete a debug
window will open, select “Continue” (Little icon with two curly braces and a right-facing red arrow).

The first time the application is executed and makes a call into the FIPS module you will see the NETOS
FIPS callback return a message similar to this:

in my Fips callback, ok = 0, err = -203
message = In Core Integrity check FIPS error
hash =

E4E2899B697F1BC3B8ET73F625C13E7899388DD08BCAT7107C805660DDFOBEF64F

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 29 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

In core integrity hash check failure, copy above hash
into verifyCore[] in fips test.c and rebuild

SHA test failed!

error = -1700

Crypt Test: Return code -1

Once vyou see this message copy the hash and modify the source file <path-
to>/netos_sources/src/wolfssl/ctaocrypt/src/fips_test.c. Search for the variable “verifyCore” and paste
the new hash over the old. Return to the wolfSSL root directory i.e. <path-to>/netos_sources/src/wolfssl/
and re-build libwolfssl.a by running “make clean && make localclean && make”. Then return to the
application directory (for example) <path-to>/netos_sources/src/wolfssl/examples/client/32b and run
“make clean && make”. This will recompile the application with the updated libwolfssl.a which now has
an updated hash. Debug the application a second time. Now the call into the wolfCrypt module should
succeed.

10.8.2 Configure Network

Using the Terminal Interface press a button within the first five seconds of the launch to configure the
board to connect to a wireless network. Once configured ensure the device is assigned an IP address. This
IP will be used to permanently flash image.bin to the device once app is debugged and working as
expected.

10.8.3 Permanent installation

Once the app has been debugged, the in-core hash is updated and the device has received an IP address.
Use the “Digi NET + OS 7.6 Build Environment” to launch a file transfer protocol connection to the device
using the IP address assigned to it. Example:

ftp 192.168.1.119

The default user name is “root” the default password is “password”. Once the ftp connection is
established switch to binary mode and “put” the image.bin that was compiled for the application.

10.8.3.1 “Digi NET + OS 7.6 Build Environment” exchange
ftp 192.168.1.119

Connected to 192.168.1.119.

220 NET+0S 7.6.1.8 FTP server ready.
Name (192.168.1.119:nick): root

331 User root OK, send password.
Password:

230 Password OK.

Remote system type is NET+ARM.

ftp> binary

200 Type set to I.

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 30 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

ftp> put image.bin

200 PORT command Ok.

150 About to open data connection.
226 Transfer complete

2520448 bytes sent in 7.01 seconds (359345 bytes/s)
10.8.3.2 Serial Port Terminal Application exchange

At the same time the above is occurring in the Serial Port Terminal Application you should see the
following messages printed out:

Checksum passed, writing to flash...
Firmware updated, quit the session to restart.

Once you see the firmware was successfully updated return to the ftp connection and type “quit”. Upon
the ftp service disconnecting the board will automatically reset itself and launch the newly installed
application.

If the FIPS module ever enters an error state the only solution to recover from that error state is to power
off the device and power it back on again. Power cycling will return the device to a working state.

10.9 wolfCrypt FIPS API

wolfCrypt adds the string _fips to all FIPS mode APls. For example, ShaUpdate() becomes
ShaUpdate_fips(). The FIPS mode functions can be called directly, but they can also be used through
macros.

HAVE_FIPS is defined when using wolfCrypt in FIPS mode and that creates a macro for each function with
FIPS support. For the above example, a user with an application calling ShaUpdate() can recompile with
the FIPS module and automatically get ShaUpdate_fips() support without changing their source code. Of
course, recompilation is necessary with the correct macros defined.

A new error return code:
FIPS_NOT_ALLOWED_E
may be returned from any of these functions used directly or even indirectly.

The error is returned when the Power-On Self-Tests (POST) are not yet complete or they have failed. POST
is done automatically as a default entry point when using the library, no user interaction is required to
start the tests. To see the current status including any error code at any time «call
wolfCrypt_GetStatus_fips(). For example, if the AES Known Answer Test failed during POS GetStatus may
return

AES_KAT_FIPS_E

Copyright © wolfSSL Inc., 2018 Version wolfCrypt 3.6.0, 3.6.1, 3.6.6, 3.11.2, 3.12.2, 3.12.4, 3.12.6, and 3.14.2 Page 31 of 31
wolfSSL Inc. Public Material — May be reproduced only in its original entirety (without revision).

