CANONICAL

ubuntu[©]Canonical Ltd.

Canonical Ltd. Ubuntu 22.04 GnuTLS Cryptographic Module

Version 3.7.3-4ubuntu1.2+Fips1.1

FIPS 140-3 Non-Proprietary Security Policy

Version 1.3

Last updated: 10-22-2024

Prepared by:

atsec information security corporation

4516 Seton Center Pkwy, Suite 250

Austin, TX 78759

www.atsec.com

Table of Contents

1 General	6
1.1 Overview	6
1.2 Security Levels	6
1.3 Additional Information	6
2 Cryptographic Module Specification	7
2.1 Description	7
2.2 Tested and Vendor Affirmed Module Version and Identification	8
2.3 Excluded Components	9
2.4 Modes of Operation	9
2.5 Algorithms	10
2.6 Security Function Implementations	16
2.7 Algorithm Specific Information	22
2.8 RBG and Entropy	25
2.9 Key Generation	25
2.10 Key Establishment	26
2.11 Industry Protocols	27
2.12 Additional Information	27
3 Cryptographic Module Interfaces	28
3.1 Ports and Interfaces	28
3.2 Trusted Channel Specification	28
3.3 Control Interface Not Inhibited	28
3.4 Additional Information	28
4 Roles, Services, and Authentication	29
4.1 Authentication Methods	29
4.2 Roles	29
4.3 Approved Services	29
4.4 Non-Approved Services	36
4.5 External Software/Firmware Loaded	37
4.6 Bypass Actions and Status	37
4.7 Cryptographic Output Actions and Status	37
4.8 Additional Information	37
5 Software/Firmware Security	38
5.1 Integrity Techniques	38
5.2 Initiate on Demand	38
5.3 Open-Source Parameters	38
5.4 Additional Information	38
6 Operational Environment	39
6.1 Operational Environment Type and Requirements	39
© 2024 Canonical Ltd. / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.	Page 2

6.2 Configuration Settings and Restrictions	
6.3 Additional Information	
7 Physical Security	40
7.1 Mechanisms and Actions Required	40
7.2 User Placed Tamper Seals	40
7.3 Filler Panels	40
7.4 Fault Induction Mitigation	40
7.5 EFP/EFT Information	40
7.6 Hardness Testing Temperature Ranges	
7.7 Additional Information	41
8 Non-Invasive Security	
8.1 Mitigation Techniques	
8.2 Effectiveness	
8.3 Additional Information	
9 Sensitive Security Parameters Management	
9.1 Storage Areas	
9.2 SSP Input-Output Methods	
9.3 SSP Zeroization Methods	
9.4 SSPs	
9.5 Transitions	51
9.6 Additional Information	51
10 Self-Tests	
10.1 Pre-Operational Self-Tests	
10.2 Conditional Self-Tests	52
10.3 Periodic Self-Test Information	
10.4 Error States	65
10.5 Operator Initiation of Self-Tests	66
10.6 Additional Information	66
11 Life-Cycle Assurance	67
11.1 Installation, Initialization, and Startup Procedures	67
11.2 Administrator Guidance	
11.3 Non-Administrator Guidance	
11.4 Design and Rules	69
11.5 Maintenance Requirements	69
11.6 End of Life	69
11.7 Additional Information	69
12 Mitigation of Other Attacks	70
12.1 Attack List	70
12.2 Mitigation Effectiveness	70

12.3 Guidance and Constraints	70
12.4 Additional Information	70
Appendix A: TLS Cipher Suites	71
Appendix B. Glossary and Abbreviations	73
Appendix C. References	75

List of Tables

Table 1: Security Levels	6
Table 2: Tested Module Identification – Software, Firmware, Hybrid (Executable Code Sets)	8
Table 3: Tested Operational Environments - Software, Firmware, Hybrid	9
Table 4: Modes List and Description	9
Table 5: Approved Algorithms	14
Table 6: Vendor-Affirmed Algorithms	14
Table 7: Non-Approved, Allowed Algorithms with No Security Claimed	14
Table 8: Non-Approved, Not Allowed Algorithms	16
Table 9: Security Function Implementations	22
Table 10: Entropy Certificates	25
Table 11: Entropy Sources	25
Table 12: Ports and Interfaces	28
Table 13: Roles	29
Table 14: Approved Services	35
Table 15: Non-Approved Services	37
Table 16: EFP/EFT Information	40
Table 17: Hardness Testing Temperatures	41
Table 18: Storage Areas	43
Table 19: SSP Input-Output Methods	43
Table 20: SSP Zeroization Methods	44
Table 21: SSP Table 1	48
Table 22: SSP Table 2	51
Table 23: Pre-Operational Self-Tests	52
Table 24: Conditional Self-Tests	59
Table 25: Pre-Operational Periodic Information	60
Table 26: Conditional Periodic Information	65
Table 27: Error States	66

List of Figures

Figure 1: Block Diagram7

1 General

1.1 Overview

This document is the non-proprietary FIPS 140-3 Security Policy for version 3.7.3-4ubuntu1.2+Fips1.1 of the Canonical Ltd. Ubuntu 22.04 GnuTLS Cryptographic Module. It has a one-to-one mapping to SP 800-140B starting with section B.2.1 named "General" that maps to section 1 in this document and ending with section B.2.12 named "Mitigation of other attacks" that maps to section 12 in this document.

1.2 Security Levels

Section	Title	Security Level
1	General	1
2	Cryptographic module specification	1
3	Cryptographic module interfaces	1
4	Roles, services, and authentication	1
5	Software/Firmware security	1
6	Operational environment	1
7	Physical security	N/A
8	Non-invasive security	N/A
9	Sensitive security parameter management	1
10	Self-tests	1
11	Life-cycle assurance	1
12	Mitigation of other attacks	N/A
	Overall Level	1

Table 1: Security Levels

1.3 Additional Information

N/A

2 Cryptographic Module Specification 2.1 Description

Purpose and Use:

The Canonical Ltd. Ubuntu 22.04 GnuTLS Cryptographic Module (hereafter referred to as "the module") provides cryptographic services to applications running in the user space of the underlying operating system through a C language Application Program Interface (API).

Module Type: Software

Module Embodiment: MultiChipStand

Module Characteristics:

Cryptographic Boundary:

The software block diagram below shows the cryptographic boundary of the module, and its interfaces with the operational environment.

Figure 1: Block Diagram

Tested Operational Environment's Physical Perimeter (TOEPP):

The TOEPP (tested operational environment's physical perimeter) of the module is defined as the general-purpose computer on which the module is installed.

2.2 Tested and Vendor Affirmed Module Version and Identification

Tested Module Identification – Hardware:

N/A for this module.

Tested Module Identification – Software, Firmware, Hybrid (Executable Code Sets):

Package or File Name	Software/ Firmware Version	Features	Integrity Test
libgnutls.so.30, libnettle.so.8, libhogweed.so.6, libgmp.so.10 on Supermicro SYS-1019P- WTR	3.7.3- 4ubuntu1.2+Fips1.1	N/A	HMAC-SHA2-256
libgnutls.so.30, libnettle.so.8, libhogweed.so.6, libgmp.so.10 on Amazon Web Services (AWS) c6g.metal	3.7.3- 4ubuntu1.2+Fips1.1	N/A	HMAC-SHA2-256
libgnutls.so.30, libnettle.so.8, libhogweed.so.6, libgmp.so.10 on IBM z15	3.7.3- 4ubuntu1.2+Fips1.1	N/A	HMAC-SHA2-256

Table 2: Tested Module Identification – Software, Firmware, Hybrid (Executable Code Sets)

Tested Module Identification – Hybrid Disjoint Hardware:

N/A for this module.

Tested Operational Environments - Software, Firmware, Hybrid:

Operating System	Hardware Platform	Processors	PAA/PAI	Hypervisor or Host OS	Version(s)
Ubuntu 22.04 LTS (Jammy Jellyfish)	Supermicro SYS- 1019P-WTR	Intel® Xeon® Gold 6226	Yes	N/A	3.7.3- 4ubuntu1.2+Fips1.1
Ubuntu 22.04 LTS (Jammy Jellyfish)	Amazon Web Services (AWS) c6g.metal	AWS Graviton2	Yes	N/A	3.7.3- 4ubuntu1.2+Fips1.1
Ubuntu 22.04 LTS (Jammy Jellyfish)	IBM z15	z15	Yes	N/A	3.7.3- 4ubuntu1.2+Fips1.1

Operating System	Hardware Platform	Processors	PAA/PAI	Hypervisor or Host OS	Version(s)
Ubuntu 22.04 LTS (Jammy Jellyfish)	Supermicro SYS- 1019P-WTR	Intel® Xeon® Gold 6226	No	N/A	3.7.3- 4ubuntu1.2+Fips1.1
Ubuntu 22.04 LTS (Jammy Jellyfish)	Amazon Web Services (AWS) c6g.metal	AWS Graviton2	No	N/A	3.7.3- 4ubuntu1.2+Fips1.1
Ubuntu 22.04 LTS (Jammy Jellyfish)	IBM z15	z15	No	N/A	3.7.3- 4ubuntu1.2+Fips1.1

Table 3: Tested Operational Environments - Software, Firmware, Hybrid

The module makes use of hardware acceleration provided by the hardware platform. Namely, AES-NI from the Intel based platform, NEON and Cryptography Extension for the Graviton2 based platform and CPACF for the z15 based platforms, listed in the *Tested Operational Environments - Software, Firmware, Hybrid* table. Out of these, only CPACF is considered as PAI and other two are considered as PAA.

Vendor-Affirmed Operational Environments - Software, Firmware, Hybrid:

N/A for this module.

CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

2.3 Excluded Components

N/A

2.4 Modes of Operation

Modes List and Description:

Mode Name	Description	Туре	Status Indicator
Approved	Automatically entered whenever an	Approved	Equivalent to the indicator
mode	approved service is requested		of the requested service
Non-approved	Automatically entered whenever a	Non-	Equivalent to the indicator
mode	non-approved service is requested	Approved	of the requested service

Table 4: Modes List and Description

When the module starts up successfully, after passing all the pre-operational and conditional cryptographic algorithms self-tests (CASTs), the module is operating in the approved mode of operation by default. Please see section 4 for the details on service indicator provided by the module that identifies when an approved service is called.

Mode Change Instructions and Status:

If the module is in the approved mode, it can be transitioned to the non-approved mode by calling one of the non-approved services listed in section 4. If the module is in the non-approved mode, the module can be transitioned to the approved mode by calling one of the approved services listed in section 4.

Degraded Mode Description:

N/A

2.5 Algorithms

Approved Algorithms:

Algorithm	CAVP Cert	Properties	Reference
AES-CBC	A3665	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-CCM	A3665	Key Length - 128, 256	SP 800-38C
AES-GCM	A3665	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
HMAC-SHA-1	A3665	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 224	A3665	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 256	A3665	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 384	A3665	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 512	A3665	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
SHA-1	A3665	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-224	A3665	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-256	A3665	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-384	A3665	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-512	A3665	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
AES-CBC	A3667	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-CMAC	A3667	Direction - Generation, Verification Key Length - 128, 256	SP 800-38B
AES-GCM	A3667	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
AES-GMAC	A3667	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
Counter DRBG	A3667	Prediction Resistance - No Mode - AES-256 Derivation Function Enabled - No	SP 800-90A Rev. 1
ECDSA KeyGen (FIPS186-4)	A3667	Curve - P-256, P-384, P-521 Secret Generation Mode - Testing Candidates	FIPS 186-4

© 2024 Canonical Ltd. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Algorithm	CAVP Cert	Properties	Reference
ECDSA KeyVer (FIPS186-4)	A3667	Сигve - Р-256, Р-384, Р-521	FIPS 186-4
ECDSA SigGen (FIPS186-4)	A3667	Component - No Curve - P-256, P-384, P-521 Hash Algorithm - SHA2-224, SHA2-256, SHA2-384, SHA2- 512	FIPS 186-4
ECDSA SigVer (FIPS186-4)	A3667	Component - No Curve - P-256, P-384, P-521 Hash Algorithm - SHA2-224, SHA2-256, SHA2-384, SHA2- 512	FIPS 186-4
HMAC-SHA-1	A3667	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 224	A3667	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 256	A3667	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 384	A3667	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 512	A3667	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
KAS-ECC-SSC Sp800-56Ar3	A3667	Domain Parameter Generation Methods - P-256, P-384, P-521 Scheme - ephemeralUnified - KAS Role - initiator, responder	SP 800-56A Rev. 3
KAS-FFC-SSC Sp800-56Ar3	A3667	Domain Parameter Generation Methods - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP- 2048, MODP-3072, MODP-4096, MODP-6144, MODP- 8192 Scheme - dhEphem - KAS Role - initiator, responder	SP 800-56A Rev. 3
KDF TLS (CVL)	A3667	TLS Version - v1.0/1.1	SP 800-135 Rev. 1
PBKDF	A3667	Iteration Count - Iteration Count: 10-1000 Increment 1 Password Length - Password Length: 8-128 Increment 1	SP 800-132
RSA KeyGen (FIPS186-4)	A3667	Key Generation Mode - B.3.2 Modulo - 2048, 3072, 4096 Hash Algorithm - SHA2-384 Primality Tests - Table C.2 Private Key Format - Standard	FIPS 186-4
RSA SigGen (FIPS186-4)	A3667	Signature Type - PKCS 1.5, PKCSPSS Modulo - 2048, 3072, 4096	FIPS 186-4
RSA SigVer (FIPS186-4)	A3667	Signature Type - PKCS 1.5, PKCSPSS Modulo - 2048, 3072, 4096	FIPS 186-4
Safe Primes Key Generation	A3667	Safe Prime Groups - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192	SP 800-56A Rev. 3
SHA-1	A3667	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-224	A3667	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-256	A3667	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4

Algorithm	CAVP Cert	Properties	Reference
SHA2-384	A3667	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-512	A3667	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
TLS v1.2 KDF RFC7627 (CVL)	A3667	Hash Algorithm - SHA2-256, SHA2-384	SP 800-135 Rev. 1
AES-CBC	A3708	Direction - Decrypt, Encrypt Key Lenath - 128, 192, 256	SP 800-38A
AES-CCM	A3708	Key Length - 128, 256	SP 800-38C
AES-CMAC	A3708	Direction - Generation, Verification Key Length - 128, 256	SP 800-38B
AES-GCM	A3708	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
AES-CBC	A3709	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-GCM	A3709	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
AES-CBC	A3711	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-CCM	A3711	Key Length - 128, 256	SP 800-38C
AES-CMAC	A3711	Direction - Generation, Verification Key Length - 128, 256	SP 800-38B
AES-GCM	A3711	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
AES-CBC	A3712	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-GCM	A3712	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
AES-CBC	A3713	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-GCM	A3713	Direction - Decrypt, Encrypt IV Generation - External IV Generation Mode - 8.2.1 Key Length - 128, 256	SP 800-38D
AES-CBC	A3714	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-CMAC	A3714	Direction - Generation, Verification Key Length - 128, 256	SP 800-38B
HMAC-SHA-1	A3714	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 224	A3714	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 256	A3714	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 384	A3714	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1

Algorithm	CAVP Cert	Properties	Reference
HMAC-SHA2- 512	A3714	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
SHA-1	A3714	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-224	A3714	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-256	A3714	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-384	A3714	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-512	A3714	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
AES-CFB8	A3670	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-CFB8	A3716	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-CFB8	A3717	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-XTS Testing Revision 2.0	A3668	Direction - Decrypt, Encrypt Key Length - 128, 256	SP 800-38E
HMAC-SHA-1	A3710	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 224	A3710	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 256	A3710	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 384	A3710	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
HMAC-SHA2- 512	A3710	Key Length - Key Length: 112-524288 Increment 8	FIPS 198-1
SHA-1	A3710	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-224	A3710	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-256	A3710	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-384	A3710	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
SHA2-512	A3710	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 180-4
KDA HKDF Sp800-56Cr1	A3666	Derived Key Length - 2048 Shared Secret Length - Shared Secret Length: 224-65336 Increment 8 HMAC Algorithm - SHA2-224, SHA2-256, SHA2-384, SHA2-512	SP 800-56C Rev. 2
SHA3-224	A3669	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202
SHA3-256	A3669	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202
SHA3-384	A3669	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202
SHA3-512	A3669	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202

Algorithm	CAVP Cert	Properties	Reference
SHA3-224	A3715	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202
SHA3-256	A3715	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202
SHA3-384	A3715	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202
SHA3-512	A3715	Message Length - Message Length: 0-65536 Increment 8 Large Message Sizes - 1, 2, 4, 8	FIPS 202

Table 5: Approved Algorithms

Vendor-Affirmed Algorithms:

Name	Properties	Implementation	Reference
CKG (asymmetric)	RSA:Asymmetric ECDSA:Asymmetric EC Diffie-Hellman :Asymmetric Safe primes:Asymmetric	N/A	SP 800-133r2 section 4 example 1 without the use of V (refer to additional comment 2 of IG D.H)
CKG (symmetric)	AES:Symmetric HMAC:Symmetric	N/A	SP 800-133r2 section 4 example 1 without the use of V (refer to additional comment 2 of IG D.H)

Table 6: Vendor-Affirmed Algorithms

Non-Approved, Allowed Algorithms:

N/A for this module.

Non-Approved, Allowed Algorithms with No Security Claimed:

Name	Caveat	Use and Function
MD5	Only allowed as the PRF in TLSv1.0 and	Message digest used in TLS 1.0 / 1.1 KDF only
,	v1.1 per IG 2.4.A	for legacy use

Table 7: Non-Approved, Allowed Algorithms with No Security Claimed

Non-Approved, Not Allowed Algorithms:

Name	Use and Function
Blowfish	Symmetric encryption; Symmetric
	decryption
Camellia	Symmetric encryption; Symmetric
	decryption
CAST	Symmetric encryption; Symmetric
	decryption
ChaCha20	Symmetric encryption; Symmetric
	decryption
Chacha20 and Poly1305	Authenticated encryption; Authenticated
	decryption
CMAC with Triple-DES	Message authentication code (MAC)

© 2024 Canonical Ltd. / atsec information security.

Name	Use and Function
DES	Symmetric encryption; Symmetric
	decryption
Diffie-Hellman (with domain parameters other than	Key agreement; Shared secret
safe primes)	computation
DSA	Key generation; Domain parameter
	generation; Digital signature generation;
	Digital signature verification
ECDSA (with curves other than P-256, P-384, P-512)	Key generation; Public key verification
ECDSA (WITH CURVES OTHER THAN P-256, P-384, P-512 OF	Digital signature generation; Digital
1145111011CU0115 0U1101 U11411 SHAZ-224, SHAZ-250, SHAZ-	signature verification
FC Diffie-Hellman (with curves other than P-256 P-384	Key agreement: Shared secret
P-512	computation
GMAC	Message authentication code (MAC)
GOST	Symmetric encryption: Symmetric
	decryption: Message digest
HMAC (with keys smaller than 112-bits)	Message authentication code (MAC)
HMAC (with GOST)	Message authentication code (MAC)
MD2, MD4, MD5	Message digest; Message authentication
	code (MAC)
PBKDF (with non-approved message digest algorithms	Key derivation
or using input parameters not meeting requirements	
stated in section 2.7 of the security policy)	
RC2, RC4	Symmetric encryption; Symmetric
	decryption
RMD160	Message digest; Message authentication
PSA (with kove employ than 2048 bits of greater than	
	Key generation
RSA (with keys smaller than 2048 bits or greater than	Digital signature generation
4096 bits and/or hash functions other than SHA2-224.	
SHA2-256, SHA2-384, SHA2-512)	
RSA (with keys smaller than 1024 bits or greater than	Digital signature verification
4096 bits and/or hash functions other than SHA2-224,	
SHA2-256, SHA2-384, SHA2-512)	
RSA (encapsulation and un-encapsulation with any key	Key encapsulation; Key un-encapsulation
sizes)	
Salsa20	Symmetric encryption; Symmetric
	decryption
SEED	Symmetric encryption; Symmetric
Corport	Georyption
Serpenc	decryption
	Key agreement
STREEBOG	Message digest: Message authentication
SINCEBOO	code (MAC)
Triple-DES	Symmetric encryption: Symmetric
	decryption
Twofish	Symmetric encryption; Symmetric
	decryption
UMAC	Message authentication code (MAC)
Yarrow	Random number generation
AES-GCM (when not used in the context of the TLS	Symmetric encryption; Symmetric
protocol)	decryption

Table 8: Non-Approved, Not Allowed Algorithms

2.6 Security Function Implementations

Name	Туре	Description	Properties	Algorithms
Symmetric	BC-UnAuth	Symmetric	AES-CBC:128,	AES-CBC
encryption	BC-Auth	encryption. AES-GCM	192, 256-bit keys	AES-CBC
		is considered	with 128-256 bits	AES-CBC
		approved by the	of key strength	AES-CBC
		module only used in	AES-CCM:128,	AES-CBC
		the context of the	256-bit keys with	AES-CBC
		TLS protocol.	128 and 256 bits	AES-CBC
			of key strength	AES-CBC
			AES-GCM:128,	AES-CCM
			256-bit keys with	AES-CCM
			128 and 256 bits	AES-CCM
			of key strength	AES-GCM
			AES-CFB8:128,	AES-GCM
			192, 256-bit keys	AES-GCM
			with 128-256 bits	AES-GCM
			of key strength	AES-GCM
			AES-XTS Testing	AES-GCM
			Revision 2.0:128,	AES-GCM
			256-bit keys with	AES-CFB8
			128 and 256 bits	AES-CFB8
			of key strength	AES-CFB8
				AES-XTS Testing
				Revision 2.0
Symmetric	BC-UnAuth	Symmetric	AES-CBC:128,	AES-CBC
decryption	BC-Auth	decryption. AES-GCM	192, 256-bit keys	AES-CBC
		is considered	with 128-256 bits	AES-CBC
		approved by the	of key strength	AES-CBC
		module only used in	AES-CCM:128,	AES-CBC
		the context of the	256-bit keys with	AES-CBC
		TLS protocol	128 and 256 bits	AES-CBC
			of key strength	AES-CBC
			AES-GCM:128,	AES-CCM
			256-bit keys with	AES-CCM
			128 and 256 bits	AES-CCM
			of key strength	AES-GCM
			AES-CFB8:128,	AES-GCM
			192, 256-bit keys	AES-GCM
			with 128-256 bits	AES-GCM
			of key strength	AES-GCM
			AES-XTS Testing	AES-GCM
			Revision 2.0:128,	AES-GCM
			256-bit keys with	AES-CFB8
			128 and 256 bits	AES-CFB8
			of key strength	AES-CFB8
				AES-XTS Testing
				Revision 2.0
Message	MAC	Message	HMAC-SHA-	HMAC-SHA-1
authentication		authentication code	1:112-524288 bit	HMAC-SHA-1
code (MAC)		(MAC)	keys with	HMAC-SHA-1

© 2024 Canonical Ltd. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Name	Туре	Description	Properties	Algorithms
	- 7		strength of 112-	HMAC-SHA-1
			256 bits	HMAC-SHA2-224
			HMAC-SHA2-	HMAC-SHA2-224
			224:112-524288	HMAC-SHA2-224
			bit keys with	HMAC-SHA2-224
			strength of 112-	HMAC-SHA2-256
			256 bits	HMAC-SHA2-256
			HMAC-SHA2-	HMAC-SHA2-256
			256:112-524288	HMAC-SHA2-256
			bit keys with	HMAC-SHA2-384
			strength of 112-	HMAC-SHA2-384
			256 bits	HMAC-SHA2-384
			HMAC-SHA2-	HMAC-SHA2-384
			384:112-524288	HMAC-SHA2-512
			bit keys with	HMAC-SHA2-512
			strength of 112-	HMAC-SHA2-512
			256 bits	HMAC-SHA2-512
			HMAC-SHA2-	SHA-1
			512:112-524288	SHA-1
			bit keys with	SHA-1
			strength of 112-	SHA-1
			256 bits	SHA2-224
			AES-CMAC:128,	SHA2-224
			256-bit keys with	SHA2-224
			128 and 256 bits	SHA2-224
			of key strength	SHA2-256
			AES-GMAC:128,	SHA2-256
			256-bit keys with	SHA2-256
			128 and 256 Dits	SHA2-256
			of key strength	SHA2-384
				SHA2-512
				SHA2-512
				SHA2-512
				ALS-CMAC
				AES CMAC
Message digest	SHA	Message digest		SHA-1
incodige digese	5117	incosage algest		SHA-1
				SHA-1
				SHA-1
				SHA2-224
				SHA2-256
				SHA2-384

Name	Туре	Description	Properties	Algorithms
		-	-	SHA2-384
				SHA2-384
				SHA2-384
				SHA2-512
				SHA3-224
				SHA3-256
				SHA3-384
				SHA3-312
				SHA3-256
				SHA3-384
				SHA3-512
Deterministic	CKG	Deterministic random	Counter	Counter DRBG
random bit	DRBG	bit generation in	DRBG:256-bit	
generation		compliance with	keys with 256	
		SP800-90AF1	DICS OF KEY	
Acummetrickey	AcumKauDaia	Acummetric key		
Asymmetric Key	KovCop	Asymmetric key		(EIDS186_4)
generation		generation	256 P-384 P-	
	CING		521 elliptic	(FIPS186-4)
			curves with 128-	Safe Primes Kev
			256 bits of key	Generation
			strength	Counter DRBG
			RSA KeyGen	
			(FIPS186-	
			4):2048, 3072,	
			4096-bit keys	
			with 112-149 bits	
			of key strength	
			Safe Primes Key	
			Generation:2048,	
			3072, 4096,	
			6144, 8192-DIL	
			200 bits of kov	
			strength	
Public kev	AsymKevPair-	Public key verification	ECDSA KevVer	ECDSA KevVer
verification	KeyVer		(FIPS186-4):P-	(FIPS186-4)
			256, P-384, P-	, , ,
			521 elliptic	
			curves with 128-	
			256 bits of key	
			strength	
Digital signature	DigSig-SigGen	Digital signature	ECDSA SigGen	ECDSA SigGen
generation		generation	(FIPS186-4):P-	(FIPS186-4)
			256, P-384, P-	RSA SigGen
				(FIPS186-4)
			256 bits of	
			230 DILS OI	SHA2-224
			RSA SiaGen	SHA2-224

Name	Туре	Description	Properties	Algorithms
			(FIPS186- 4):2048, 3072, 4096-bit keys with 112-149 bits of key strength	SHA2-224 SHA2-256 SHA2-256 SHA2-256 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-512 SHA2-512 SHA2-512 SHA2-512
Digital signature verification	DigSig-SigVer	Digital signature verification	ECDSA SigVer (FIPS186-4):P- 256, P-384, P- 521 elliptic curves with 128- 256 bits of key strength RSA SigVer (FIPS186- 4):2048, 3072, 4096-bit keys with 112-149 bits of key strength	ECDSA SigVer (FIPS186-4) RSA SigVer (FIPS186-4) SHA2-224 SHA2-224 SHA2-224 SHA2-256 SHA2-256 SHA2-256 SHA2-256 SHA2-256 SHA2-256 SHA2-256 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-384 SHA2-512 SHA2-512 SHA2-512
(EC Diffie- Hellman) shared secret computation	KAS-SSC	EC Diffie-Hellman shared secret computation compliant with scenario 2(1) of IG D.F	KAS-ECC-SSC Sp800-56Ar3:P- 256, P-384, P- 521 elliptic curves with 128- 256 bits of strength	KAS-ECC-SSC Sp800-56Ar3
(Diffie-Hellman) shared secret computation	KAS-SSC	EC Diffie-Hellman shared secret computation compliant with scenario 2(1) of IG D.F	KAS-FFC-SSC Sp800- 56Ar3:2048, 3072, 4096, 6144, 8192-bit keys with 112- 200 bits of key strength	KAS-FFC-SSC Sp800-56Ar3
Key derivation	KAS-135KDF KAS-56CKDF PBKDF	Key derivation	KDF TLS (CVL):TLS derived secret with 112 to 256 bits of key strength PBKDF:128-4096	KDF TLS PBKDF TLS v1.2 KDF RFC7627 KDA HKDF Sp800-56Cr1 HMAC-SHA-1

Name	Туре	Description	Properties	Algorithms
		•	bit keys with	HMAC-SHA-1
			strength of 128-	HMAC-SHA-1
			256 bits	HMAC-SHA-1
			TLS v1.2 KDF	HMAC-SHA2-224
			RFC7627	HMAC-SHA2-224
			(CVL):TLS	HMAC-SHA2-224
			derived secret	HMAC-SHA2-224
			with 112 to 256	HMAC-SHA2-256
			bits of key	HMAC-SHA2-256
			strength	HMAC-SHA2-256
			KDA HKDF	HMAC-SHA2-256
			Sp800-56Cr1:TLS	HMAC-SHA2-384
			derived secret	HMAC-SHA2-384
			with 112 to 256	HMAC-SHA2-384
			bits of key	HMAC-SHA2-384
			strength	HMAC-SHA2-512
				SHA-1
				SHA2-224
				SHA2-256
				SHA2-384
				SHA2-512
				SHA2-512
				SHA2-512
		Kara	AFC CDC:120	SHAZ-51Z
key wrapping	ктэ-мгар	Ney	102 256 his low	
			with 128-256 bits	AES-CCM
		CCM or AES-CBC with	of key strength	
		HMAC with 128-hit or	ΔFS-CCM·128	AES-GCM
		256-hit keys used in	256-hit kave with	AES-GCM
		the context of the	128 and 256 hite	AFS-GCM
			of key strength	AFS-GCM
		compliance with IG	AFS-GCM·128	AFS-GCM
		D.G and additional	256-bit keys with	AES-GCM
		comment 8 of IG D G	128 and 256 hits	AFS-CBC
			of key strength	AES-CBC
			HMAC-SHA-	AES-CBC
			1:112-524288 bit	AES-CBC
			keys with	AES-CBC
			strength of 112-	AFS-CBC

Name	Туре	Description	Properties	Algorithms
			256 bits	AES-CBC
			HMAC-SHA2-	AES-CBC
			224:112-524288	HMAC-SHA-1
			bit keys with	HMAC-SHA-1
			strength of 112-	HMAC-SHA-1
			256 bits	HMAC-SHA-1
			HMAC-SHA2-	HMAC-SHA2-224
			256:112-524288	HMAC-SHA2-224
			bit keys with	HMAC-SHA2-224
			strength of 112-	HMAC-SHA2-224
			256 bits	HMAC-SHA2-256
			HMAC-SHA2-	HMAC-SHA2-256
			384:112-524288	HMAC-SHA2-256
			bit keys with	HMAC-SHA2-256
			strength of 112-	HMAC-SHA2-384
			256 bits	HMAC-SHA2-384
			HMAC-SHA2-	HMAC-SHA2-384
			512:112-524288	HMAC-SHA2-384
			bit keys with	HMAC-SHA2-512
			strength of 112-	HMAC-SHA2-512
			256 DIES	HMAC-SHA2-512
				HMAC-SHAZ-51Z
				SHA-1
				SHAZ-224 SHAD 324
				SHAZ-224 SHA2 324
				SHA2-224 SHA2-224
				SHA2-224 SHA2-256
				SHA2-256
				SHA2-256
				SHA2-256
				SHA2-384
				SHA2-512
EC Diffie-	KAS-Full	EC Diffie-Hellman	KAS-ECC-SSC	KAS-ECC-SSC
Hellman		compliant with	Sp800-56Ar3:P-	Sp800-56Ar3
		scenario 2(2) of IG D.F	256, P-384, P-	KDF TLS
			521 elliptic	TLS v1.2 KDF
			curves with 128-	RFC7627
			256 bits of	KDA HKDF
			strength	Sp800-56Cr1
			KDF TLS	
			(CVL):TLS	
			derived secret	
			with 112 to 256	
			bits of key	
	1		strenath	

Name	Туре	Description	Properties	Algorithms
			TLS v1.2 KDF RFC7627 (CVL):TLS derived secret with 112 to 256 bits of key strength KDA HKDF Sp800-56Cr1:TLS derived secret with 112 to 256 bits of key strength	
Diffie-Hellman	KAS-Full	Diffie-Hellman compliant with scenario 2(2) of IG D.F	KAS-FFC-SSC SP800- 56Ar3:2048, 3072, 4096, 6144, 8192-bit keys with 112- 200 bits of key strength KDF TLS (CVL):TLS derived secret with 112 to 256 bits of key strength TLS v1.2 KDF RFC7627 (CVL):TLS derived secret with 112 to 256 bits of key strength KDA HKDF Sp800-56Cr1:TLS derived secret with 112 to 256 bits of key strength KDA HKDF	KAS-FFC-SSC Sp800-56Ar3 KDF TLS TLS v1.2 KDF RFC7627 KDA HKDF Sp800-56Cr1

Table 9: Security Function Implementations

2.7 Algorithm Specific Information

Hash Algorithms

In compliance with IG C.B, every approved hash algorithm implementation was CAVP tested and validated on all the module's operational environments. Section 2.5 of this security policy contains a table of the CAVP certificates of the approved hash functions.

For the higher-level algorithms that use the approved hash functions - Counter DRBG, ECDSA SigGen, ECDSA SigVer, HMAC, KDA HKDF Sp800-56Cr1, KDF TLS (CVL), TLS v1.2 KDF RFC7627 (CVL), PBKDF2, RSA SigGen, RSA SigVer – every implemented combination for which CAVP testing exists was CAVP

tested and validated on all the module's operational environments. Section 2.5 of this security policy contains a table of the CAVP certificates of these higher-level algorithms.

SHA-3

The module provides SHA-3 hash functions compliant with IG C.C. Every implementation of each SHA-3 function was tested and validated on all the module's operating environments. SHAKE functions are not implemented. SHA-3 hash functions are not used as part of a higher-level algorithm.

RSA Key Generation

In compliance with IG C.E, the module generates RSA signature keys using an approved method of FIPS 186-4: generation of random primes that are provably prime. The CAVP certificate #A3667 indicates that the RSA key generating algorithm has been tested and validated for conformance to the methods in FIPS 186-4.

RSA Signature Generation and Signature Verification

The module provides RSA signature generation and signature verification compliant with IG C.F. The module supports RSA modulus lengths of 2048, 3072, and 4096 bits for both signature generation and signature verification. The RSA signature generation and signature verification implementations have been tested for all implemented RSA modulus lengths. The number of Miller-Rabin tests is consistent with the bit sizes of p and q from Table B.1 of FIPS 186-4.

AES-GCM

The module implements AES GCM for being used in the TLS v1.2 and v1.3 protocols. AES GCM IV generation is compliant with [FIPS140-3_IG] IG C.H for both protocols as follows:

- For TLS v1.2, IV generation is compliant with scenario 1.a of IG C.H and [RFC5288]. The module supports acceptable AES-GCM cipher suites from section 3.3.1 of [SP800-52rev2].
- For TLS v1.3, IV generation is compliant with scenario 5 of IG C.H and [RFC8446]. The module supports acceptable AES-GCM cipher suites from section 3.3.1 of [SP800-52rev2].

The IV generated in both scenarios is only used within the context of the TLS protocol implementation. The nonce_explicit part of the IV does not exhaust the maximum number of possible values for a given session key. The design of the TLS protocol in this module implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all its possible values.

In case the module's power is lost and then restored, the key used for the AES GCM encryption or decryption shall be redistributed.

AES-XTS

The AES algorithm in XTS mode can only be used for the cryptographic protection of data on storage devices, as specified in SP800-38E. The length of a single data unit encrypted with the AES-XTS shall not exceed 2²⁰ AES blocks, that is 16MB of data.

To meet the requirement stated in IG C.I, the module implements a check that ensures, before performing any cryptographic operation, that the two AES keys used in AES-XTS mode are not identical.

Key Agreement Methods

To comply with the assurances found in Section 5.6.2 of SP 800-56Ar3, the operator must use the module together with an application that implements the TLS protocol. Additionally, the module's approved

"Asymmetric key generation" service must be used to generate ephemeral Diffie-Hellman or EC Diffie-Hellman key pairs, or the key pairs must be obtained from another FIPS-validated module.

As part of this service, the module will internally perform the full public key validation of the generated public key. The module's shared secret computation service will internally perform the full public key validation of the peer public key, complying with Sections 5.6.2.2.1 and 5.6.2.2.2 of SP 800-56Ar3.

Key Transport Methods

Please refer to section 2.10 of this security policy.

Cryptographic Key Generation

In compliance with IG D.H, the module generates symmetric keys and seeds for asymmetric keys using the method described in section 4 example 1 of SP 800-133r2 without the use of V (direct DRBG output as described in additional comment 2 of IG D.H).

Please refer to section 2.9 for more information on the key generation methods employed by the module.

DRBGs

In compliance with IG D.L, the entropy input, DRBG seed, DRBG internal state (values of V and Key) are considered CSPs.

The DRBG internal state is contained within the DRBG mechanism boundary and is not accessible by other mechanisms.

PBKDF2

The module provides password-based key derivation (PBKDF), compliant with SP800-132 and IG D.N. The module supports option 1a from section 5.4 of SP800-132, in which the Master Key (MK) or a segment of it is used directly as the Data Protection Key (DPK).

In accordance with SP800-132, the following requirements shall be met.

- Derived keys shall only be used in storage applications. The Master Key (MK) shall not be used for other purposes. The length of the MK or DPK shall be 112 bits or more (this is verified by the module to determine the service is approved).
- A portion of the salt, with a length of at least 128 bits (this is verified by the module to determine the service is approved), shall be generated randomly using the SP800-90Arev1 DRBG.
- The iteration count shall be selected as large as possible, as long as the time required to generate the key using the entered password is acceptable for the users. The minimum value shall be 1000 (this is verified by the module to determine the service is approved).
- Passwords or passphrases, used as an input for the PBKDF, shall not be used as cryptographic keys.
- The length of the password or passphrase shall be of at least 8 characters (this is verified by the module to determine the service is approved), and shall consist of lower-case, upper-case, and numeric characters. The probability of guessing the value is estimated to be 1/62^{8} = 10^{-14}, which is less than 2^{-112}. If the password consists of only digits (worst case), the probability of guessing the value is estimated to be 10^{-14}.

The requirements of input parameters (derived key length, salt length, iteration count and password length) are verified by the module when providing the service indicator.

The calling application shall also observe the rest of the requirements and recommendations specified in SP800-132.

TLS v1.2 KDF

In compliance with IG D.Q, the module supports the TLS 1.2 KDF with the extended master secret: TLS v1.2 KDF RFC7627 (CVL).

2.8 RBG and Entropy

Cert	Vendor
Number	Name
E60	Canonical

Table 10: Entropy Certificates

Name	Туре	Operational Environment	Sample Size	Entropy per Sample	Conditioning Component
Userspace CPU Time Jitter RNG Entropy Source	Non- Physical	Ubuntu 22.04 LTS (Jammy Jellyfish) on Supermicro SYS-1019P-WTR on Intel® Xeon® Gold 6226; Ubuntu 22.04 LTS (Jammy Jellyfish) on Amazon Web Services (AWS) c6g.metal on AWS Graviton2; Ubuntu 22.04 LTS (Jammy Jellyfish) on IBM z15 on z15	256	256	LFSR

Table 11: Entropy Sources

The module implements CTR_DRBG with AES-256, according to SP800-90Arev1, without a derivation function and without prediction resistance. The module uses an SP800-90B-compliant entropy source as specified above. This entropy source is located within the physical perimeter, but outside of the cryptographic boundary of the module. The public use document of the entropy source is found at:

https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/entropy/E60 PublicUse.pdf

The module obtains 384 bits from the entropy source to seed the DRBG, and 256 bits to reseed it, sufficient to provide a DRBG with 256 bits of security strength. The largest key strength generated by the module is 256 bits.

2.9 Key Generation

The module generates symmetric keys and seeds for asymmetric keys using the method described in section 4 example 1 of SP 800-133r2 without the use of V (direct output of DRBG as described in additional comment 2 of IG D.H).

The module generates the following keys:

- RSA (asymmetric): 2048, 3072, 4096-bit keys with 112-149 bits of key strength
- ECDSA (asymmetric): P-256, P-384, P-521 elliptic curves with 128-256 bits of key strength

- ECDH (asymmetric): P-256, P-384, P-521 elliptic curves with 128-256 bits of key strength
- Safe Primes (asymmetric): 2048, 3072, 4096, 6144, 8192-bit keys with 112-200 bits of key strength
- AES (symmetric): 128, 192, 256-bit keys with 128-256 bits of key strength
- HMAC (symmetric): 112-524288 bit keys with 112-256 bits of key strength

The generation of RSA keys is compliant with section B.3.2 of FIPS 186-4 (provable primes).

The generation of ECDSA keys is compliant with section B.4.2 of FIPS186-4 (testing candidates).

The generation of EC Diffie-Hellman keys is performed using the ECDSA key generation method, which is compliant with FIPS 186-4 and SP 800-56Ar3.

The generation of Diffie-Hellman keys is compliant with SP 800-56Ar3 (testing candidates). The module generates keys using safe primes defined in RFC7919 and RFC3526.

Additionally, the module implements the following key derivation methods:

- KDF TLS (CVL), compliant with SP800-135r1: derivation of secret keys in the context of TLS 1.0/1.1
- TLS v1.2 KDF RFC7627 (CVL), compliant with SP800-135r1: derivation of secret keys in the context of TLS 1.2
- KDA HKDF Sp800-56Cr1, compliant with SP800-56Cr1: derivation of secret keys in the context of SP800-56Ar3 key agreement schemes
- PBKDF2, compliant with option 1a of SP800-132: derivation of keys for use in storage applications

2.10 Key Establishment

Key Agreement

The module provides Diffie-Hellman and EC Diffie-Hellman shared secret computation compliant with SP800-56Arev3, in accordance with scenario 2 (1) of IG D.F and used as part of the TLS protocol key exchange in accordance with scenario 2 (2) of IG D.F; that is, the shared secret computation (KAS-FFC-SSC and KAS-ECC-SSC) followed by the derivation of the keying material using KDF TLS (CVL), TLS v1.2 KDF RFC7627 (CVL), or KDA HKDF Sp800-56Cr1. The Diffie-Hellman shared secret computation, EC Diffie-Hellman shared secret computation, KDF TLS (CVL), TLS v1.2 KDF RFC7627 (CVL), and KDA HKDF Sp800-56Cr1 have been CAVP tested.

The EC Diffie-Hellman shared secret computation uses the Ephemeral Unified Model. The module supports EC Diffie-Hellman shared secret computation with P-256, P-384, and P-521 curves which have a security strength of 128-256 bits.

The Diffie-Hellman shared secret computation uses the DH Ephemeral scheme. The module supports Diffie-Hellman shared secret computation with the MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192, ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, and ffdhe8192 groups which have a security strength of 112-200 bits.

Key Transport

The module provides key wrapping (KTS), compliant with IG D.G, using AES-CCM, AES-GCM, and AES-CBC with HMAC, used in the context of the TLS protocol cipher suites with 128-bit or 256-bit keys, with strengths of 128 bits and 256 bits respectively. When using AES-CBC with HMAC, the entire wrapped message is authenticated. AES-CCM, AES-GCM, AES-GCM, and HMAC have been tested and validated by the CAVP and the algorithms' certificate numbers are in section 2.5 of the security policy.

2.11 Industry Protocols

The TLS protocol implementation provides both server and client sides. To operate in the approved mode, digital certificates used for server and client authentication shall comply with the restrictions of key size and message digest algorithms imposed by SP800-131Arev2.

No parts of the TLS protocol, other than the approved cryptographic algorithms and the KDFs, have been tested by the CAVP and CMVP.

2.12 Additional Information

N/A

3 Cryptographic Module Interfaces

3.1 Ports and Interfaces

Physical Port	Logical Interface(s)	Data That Passes
N/A	Data Input	API input parameters, kernel I/O network or files on filesystem, TLS protocol input messages.
N/A	Data Output	API output parameters, kernel I/O network or files on filesystem, TLS protocol output messages.
N/A	Control Input	API function calls, API input parameters for control.
N/A	Status Output	API return codes, API output parameters for status output.

Table 12: Ports and Interfaces

The module does not have a control output interface.

3.2 Trusted Channel Specification

N/A

3.3 Control Interface Not Inhibited

N/A

3.4 Additional Information

N/A

4 Roles, Services, and Authentication

4.1 Authentication Methods

N/A for this module.

4.2 Roles

Name	Туре	Operator Type	Authentication Methods
Crypto Officer	Role	Crypto Officer	None
Table 13: Roles			

4.3 Approved Services

Name	Descript	Indicator	Inputs	Outputs	Security	SSP
-	ion				Functions	Access
Symmetri c key generatio n	Generate AES and HMAC key	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Key size	Key	Determini stic random bit generatio n	Crypto Officer - AES key: G,R - HMAC key: G,R
Symmetri c encryptio n	Perform AES encryptio n	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Key, IV (for AEAD), Plainte xt	Ciphertext, MAC tag (for AEAD)	Symmetri c encryptio n	Crypto Officer - AES key: W,E
Symmetri c decryptio n	Perform AES decryptio n	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Key, IV (for AEAD), Ciphert ext, , MAC tag (for AEAD)	Plaintext	Symmetri c decryptio n	Crypto Officer - AES key: W,E
Asymmetr ic key generatio n	Generate RSA, DH, or ECDSA/E CDH key pairs	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	RSA key size, Elliptic Curve, or Safe prime group	Key pair	Asymmetr ic key generatio n	Crypto Officer - RSA public key: G,R - RSA private key: G,R - ECDSA public key: G,R - ECDSA private key: G,R - EC Diffie-

© 2024 Canonical Ltd. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Name	Descript ion	Indicator	Inputs	Outputs	Security Functions	SSP Access
						Hellman public key: G,R - EC Diffie- Hellman private key: G,R - Diffie- Hellman public key: G,R - Diffie- Hellman private key: G,R - Intermed iate key generati on value: G,E,Z
Digital signature generatio n	Generate RSA or ECDSA signature	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Messag e, hash algorith m, private key	Digital signature	Digital signature generatio n	Crypto Officer - RSA private key: W,E - ECDSA private key: W.F
Digital signature verificatio n	Verify RSA or ECDSA signature	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Messag e, signatu re, hash algorith m, public key	Verificatio n result (success/fa ilure)	Digital signature verificatio n	Crypto Officer - RSA public key: W,E - ECDSA public key: W.E
Public key verificatio n	Verify ECDSA public key	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	ECDSA public key	Verificatio n result (success/fa ilure)	Public key verificatio n	Crypto Officer - ECDSA public key: W,E
Random number generatio n	Generate random bitstrings	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Numbe r of bits	Random bytes	Determini stic random bit generatio n	Crypto Officer - Entropy input: W,E - DRBG seed: G,E - DRBG internal state: V

Name	Descript ion	Indicator	Inputs	Outputs	Security Functions	SSP Access
						value, key: G,E
Message digest	Compute SHA hashes	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Messag e	Hash digest	Message digest	Crypto Officer
Message authentic ation code (MAC)	Compute AES- based CMAC or AES- based GMAC or HMAC	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Messag e, HMAC key or AES key	Message authenticat ion code (MAC)	Message authentic ation code (MAC)	Crypto Officer - AES key: W,E - HMAC key: W,E
Diffie- Hellman shared secret computati on	Perform DH shared secret computa tion	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Diffie- Hellma n private key, Diffie- Hellma n public key from peer	Shared secret	(Diffie- Hellman) shared secret computati on	Crypto Officer - Diffie- Hellman public key: W,E - Diffie- Hellman private key: W,E - Diffie- Hellman Shared secret: G,R
EC Diffie- Hellman shared secret computati on	Perform ECDH shared secret computa tion	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	EC Diffie- Hellma n private key, EC Diffie- Hellma n public key from peer	Shared secret	(EC Diffie- Hellman) shared secret computati on	Crypto Officer - EC Diffie- Hellman public key: W,E - EC Diffie- Hellman private key: W,E - EC Diffie- Hellman Shared secret: G,R
HMAC- based key derivation	Perform key derivatio n	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Diffie- Hellma n shared secret or EC Diffie-	HKDF derived key	Key derivation	Crypto Officer - Diffie- Hellman Shared secret: W,E

Name	Descript ion	Indicator	Inputs	Outputs	Security Functions	SSP Access
Transport	Provide	gnutls_fips140_get_opera	Hellma n shared secret Cipher-	Return	Symmetri	- EC Diffie- Hellman Shared secret: W,E - HKDF derived key: G,R Crypto
Layer Security (TLS) network protocol	supporte d cipher suites in approved mode	tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	suites (see Append ix A for the comple te list of valid cipher suites), Digital Certific ate, Public and Private Keys, Applica tion Data	codes and/or log messages, Application data	c encryptio n Symmetri c decryptio n Message authentic ation code (MAC) Digital signature generatio n Digital signature verificatio n (EC Diffie- Hellman) shared secret computati on (Diffie- Hellman) shared secret computati on (Diffie- Hellman) shared secret computati on (EC Diffie- Hellman) shared secret computati on Key derivation Key wrapping	Officer - RSA public key: W,E - ECDSA public key: W,E - Diffie- Hellman public key: W,E - EC Diffie- Hellman public key: W,E - EC Diffie- Hellman public key: W,E - EC Diffie- Hellman public key: W,E - EC Diffie- Hellman public key: W,E - EC Diffie- Hellman private key: W,E - TLS pre- master secret: G,E - TLS derived secret: G,E - RSA private key: W,E - ECDSA private key: W,E - EC - RSA private key: W,E - ECDSA private key: W,E - ECDSA private key: W,E - ECDSA

ubuntu[©]Canonical Ltd. Ubuntu 22.04 GnuTLS Cryptographic Module

Name	Descript ion	Indicator	Inputs	Outputs	Security Functions	SSP Access
Show status	Show module status	Implicit (always approved)	None	Return codes and/or log messages	None	Crypto Officer
Zeroizatio	Zeroize SSPs	Implicit (always approved)	Context containi ng SSPs	None	None	Crypto Officer - AES key: Z - HMAC key: Z - RSA public key: Z - RSA private key: Z - ECDSA private key: Z - ECDSA private key: Z - ECDSA private key: Z - Diffie- Hellman private key: Z - EC Diffie- Hellman private key: Z - EC Diffie- Hellman Shared secret: Z - PBKDF passwor d or passphra se: Z

Name	Descript ion	Indicator	Inputs	Outputs	Security Functions	SSP Access
Self-tests	Perform	Implicit (always approved)	Module	Result of	None	Access - PBKDF derived key: Z - Entropy input: Z - DRBG seed: Z - DRBG internal state: V value, key: Z - TLS pre- master secret: Z - TLS master secret: Z - TLS derived secret: Z - HKDF derived secret: Z - HKDF - H
Show module	Show module	Implicit (always approved)	None	(pass/fail) Name and version	None	Crypto Officer
name and version	name and version			informatio n		
TLS key derivation	Perform key derivatio n	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	TLS pre- master secret	TLS derived secret	Key derivation	Crypto Officer - TLS pre- master secret: W,E - TLS master secret: G,E - TLS derived secret: G,R

Name	Descript	Indicator	Inputs	Outputs	Security	SSP
Password- based key derivation	Perform key derivatio n	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	PBKDF passwo rd or passphr ase	PBKDF derived key	Key derivation	Crypto Officer - PBKDF passwor d or passphra se: W,E - PBKDF derived key: G,R
Diffie- Hellman	Perform DH key agreeme nt	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	Diffie- Hellma n private key, Diffie- Hellma n public key from peer	HKDF derived key, TLS derived secret	Diffie- Hellman	Crypto Officer - Diffie- Hellman public key: W,E - Diffie- Hellman private key: W,E - TLS derived secret: G,R - HKDF derived key: G,R
EC Diffie- Hellman	Perform ECDH key agreeme nt	gnutls_fips140_get_opera tion_state() returns GNUTLS_FIPS140_OP_APP ROVED	EC Diffie- Hellma n private key, EC Diffie- Hellma n public key from peer	HKDF derived key, TLS derived secret	EC Diffie- Hellman	Crypto Officer - EC Diffie- Hellman public key: W,E - EC Diffie- Hellman private key: W,E - TLS derived secret: G,R - HKDF derived key: G,R

Table 14: Approved Services

The "Indicator" column shows the service indicator API functions that must be used to verify the service indicator for each of the services. The function gnutls_fips140_get_operation_state() indicates GNUTLS_FIPS140_OP_NOT_APPROVED or GNUTLS_FIPS140_OP_APPROVED depending on whether the API invoked corresponds to an approved or non-approved algorithm.

4.4 Non-Approved Services

Name	Description	Algorithms	Role
Symmetric	Blowfish, Camellia, CAST, ChaCha20,	Blowfish	CO
encryption;	DES, Salsa20, SEED, Serpent, Triple-DES,	Camellia	
Symmetric	Twofish, AES-GCM (when not used in	CAST	
decryption (non-	the context of the TLS protocol), GOST,	ChaCha20	
approved)	RC2, RC4	DES	
		Salsa20	
		SEED	
		Serpent	
		Triple-DES	
		Twofish	
		AES-GCM (when not used in	
		the context of the TLS	
		GOST	
		RC2, RC4	60
Authenticated	Chacha20 and Poly1305	Chacha20 and Poly1305	0
encryption,			
Message	HMAC (with COST) HMAC (with keys	HMAC (with COST)	<u> </u>
authentication code	smaller than 112-bits) LIMAC (MAC	HMAC (with keys smaller	0
	with Triple-DES_GMAC	than 112-bits)	
(non-approved)	with hipte-bes, diffAc		
		CMAC with Triple-DFS	
		GMAC	
Message digest	MD2, MD4, MD5, RMD160, STREEBOG,	MD2. MD4. MD5	со
(non-approved)	GOST	RMD160	
		STREEBOG	
		GOST	
Key derivation	PBKDF (with non-approved message	PBKDF (with non-approved	CO
(non-approved)	digest algorithms or using input	message digest algorithms	
	parameters not meeting requirements	or using input parameters	
	stated in section 2.7 of the security	not meeting requirements	
	policy)	stated in section 2.7 of the	
		security policy)	
Domain parameter	DSA	DSA	со
generation (non-			
approved)			
Public key	ECDSA (with curves other than P-256, P-	ECDSA (with curves other	CO
verification (non-	384, P-512)	than P-256, P-384, P-512)	
approved)			60
Key generation	RSA (WITH Keys smaller than 2048 bits or	RSA (WITH KEYS SMaller than	0
(non-approved)	greater than 4096 bits), DSA, ECDSA	2048 DIts or greater than	
	512)	DOA ECDEA (with curves other	
		than D-256 D 204 D 512)	
Digital signature	PSA (with keys smaller than 1024 bits or	DSA (with keys smaller than	<u> </u>
	areater than 4096 bits and/or bach	1024 bits or greater than	
approved)	functions other than $SH\Delta 2-224$ $SH\Delta 2-$	4096 bits and/or bash	
SPP:0100)	256, SHA2-384, SHA2-512), DSA, FCDSA	functions other than SHA2-	

© 2024 Canonical Ltd. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.
Name	Description	Algorithms	Role
	(with curves other than P-256, P-384, P- 512 or hash functions other than SHA2- 224, SHA2-256, SHA2-384, SHA2-512)	224, SHA2-256, SHA2-384, SHA2-512) DSA ECDSA (with curves other than P-256, P-384, P-512 or hash functions other than SHA2-224, SHA2-256, SHA2- 384, SHA2-512)	
Digital signature generation (non- approved)	RSA (with keys smaller than 2048 bits or greater than 4096 bits and/or hash functions other than SHA2-224, SHA2- 256, SHA2-384, SHA2-512), DSA, ECDSA (with curves other than P-256, P-384, P- 512 or hash functions other than SHA2- 224, SHA2-256, SHA2-384, SHA2-512)	RSA (with keys smaller than 2048 bits or greater than 4096 bits and/or hash functions other than SHA2- 224, SHA2-256, SHA2-384, SHA2-512) ECDSA (with curves other than P-256, P-384, P-512 or hash functions other than SHA2-224, SHA2-256, SHA2- 384, SHA2-512) DSA	СО
Key agreement; Shared secret computation (non- approved)	SRP, Diffie-Hellman (with domain parameters other than safe primes), EC Diffie-Hellman (with curves other than P-256, P-384, P-512)	SRP Diffie-Hellman (with domain parameters other than safe primes) EC Diffie-Hellman (with curves other than P-256, P- 384, P-512)	СО
Key encapsulation; Key un- encapsulation (non- approved)	RSA (encapsulation and un- encapsulation with any key sizes)	RSA (encapsulation and un- encapsulation with any key sizes)	со
Random number generation (non- approved)	Yаггоw	Yarrow	CO

Table 15: Non-Approved Services

4.5 External Software/Firmware Loaded

The module does not support the loading of external software/firmware.

4.6 Bypass Actions and Status

N/A

4.7 Cryptographic Output Actions and Status

N/A

4.8 Additional Information

N/A

5 Software/Firmware Security

5.1 Integrity Techniques

The integrity of the module is verified by comparing an HMAC-SHA2-256 value calculated at run time with the HMAC value stored in the .hmac file that was computed at build time for each software component of the module listed in section 2. If the HMAC values do not match, the test fails, and the module enters the error state.

5.2 Initiate on Demand

The pre-operational integrity self-test can be initiated on demand by calling the Self-Test service (via the gnutls_fips140_run_self_tests() function) or by powering-off and reloading the module. During the execution of the on-demand integrity self-test, services are not available, and no data output is possible.

5.3 Open-Source Parameters

N/A

5.4 Additional Information

6 Operational Environment

6.1 Operational Environment Type and Requirements

Type of Operational Environment: Modifiable

How Requirements are Satisfied:

N/A

6.2 Configuration Settings and Restrictions

The module shall be installed as stated in section 11. The operating system provides process isolation and memory protection mechanisms that ensure appropriate separation for memory access among the processes on the system. Each process has control over its own data and uncontrolled access to the data of other processes is prevented.

6.3 Additional Information

7 Physical Security

The module is comprised of software only, and therefore this section is not applicable.

7.1 Mechanisms and Actions Required

N/A for this module.

N/A

7.2 User Placed Tamper Seals

Number:

Placement:

Surface Preparation:

Operator Responsible for Securing Unused Seals:

Part Numbers:

N/A

7.3 Filler Panels

N/A

7.4 Fault Induction Mitigation

N/A

7.5 EFP/EFT Information

Temp/Voltage Type	Temperature or Voltage	EFP or EFT	Result
LowTemperature			
HighTemperature			
LowVoltage			
HighVoltage			

Table 16: EFP/EFT Information

7.6 Hardness Testing Temperature Ranges

Temperature	Temperature
Туре	
LowTemperature	
HighTemperature	

 $\ensuremath{\mathbb{C}}$ 2024 Canonical Ltd. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Table 17: Hardness Testing Temperatures

7.7 Additional Information

8 Non-Invasive Security

This module does not implement any non-invasive security mechanism, and therefore this section is not applicable.

8.1 Mitigation Techniques

N/A

8.2 Effectiveness

N/A

8.3 Additional Information

9 Sensitive Security Parameters Management

9.1 Storage Areas

Storage Area Name	Description	Persistence Type
RAM	Temporary storage for SSPs used by the module as part of service execution.	Dynamic

Table 18: Storage Areas

9.2 SSP Input-Output Methods

Name	From	То	Format Type	Distribution Type	Entry Type	SFI or Algorithm
API input parameters	Operator calling application (within TOEPP)	Cryptographic module	Plaintext	Manual	Electronic	
API output parameters	Cryptographic module	Operator calling application (within TOEPP)	Plaintext	Manual	Electronic	

Table 19: SSP Input-Output Methods

9.3 SSP Zeroization Methods

Zeroization Method	Description	Rationale	Operator Initiation
Wipe and Free memory block allocated	Zeroizes the SSPs contained within the cipher handle.	Memory occupied by SSPs is overwritten with zeroes and then it is released, which renders the SSP values irretrievable. The completion of the zeroization routine indicates that the zeroization has been completed	To zeroize AES keys, call gnutls_cipher_deinit() or gnutls_aead_cipher_deinit(); to zeroize HMAC keys, call gnutls_hmac_deinit(); to zeroize RSA or ECDSA public/private keys, call gnutls_privkey_deinit() or gnutls_x509_privkey_deinit() or gnutls_rsa_params_deinit(); to zeroize Diffie-Hellman public/private keys, call gnutls_dh_params_clear(); to zeroize EC Diffie-Hellman public/private keys, call gnutls_pk_params_clear(); to zeroize EC Diffie-Hellman) Shared secret or (EC Diffie-Hellman) Shared secret or (EC Diffie-Hellman) Shared secret, call zeroize_key(); to zeroize entropy input, DRBG seed, or DRBG internal state, call gnutls_global_deinit(); to zeroize TLS pre- master secret, TLS master secret, TLS derived secret, or PBKDF derived key, call gnutls_deinit()

Zeroization Method	Description	Rationale	Operator Initiation
Automatic	Automatically zeroized by the module when no longer needed	Memory occupied by SSPs is overwritten with zeroes, which renders the SSP values irretrievable.	N/A
Module Reset	De-allocates the volatile memory used to store SSPs	Volatile memory used by the module is overwritten within nanoseconds when power is removed. The completion of module power-off indicates that the zeroization has been completed	By unloading and reloading the module

Table 20: SSP Zeroization Methods

All data output is inhibited when the module is performing zeroization.

9.4 SSPs

Name	Description	Size - Strength	Type - Category	Generated By	Establishe d By	Used By
AES key	Used for Symmetric encryption; Symmetric decryption; Message authenticatio n code (MAC);	128, 192, 256 bits - 128, 192, 256 bits	Symmetric key - CSP	Deterministi c random bit generation		Symmetric encryption Symmetric decryption Message authenticatio n code (MAC)
HMAC key	Used for Message Authenticatio n Code (MAC)	112 to 256 bits - 112 to 256 bits	Symmetric key - CSP	Deterministi c random bit generation		Message authenticatio n code (MAC)
RSA public key	Used for Digital signature verification; Transport Layer Security (TLS) network protocol	2048, 3072, 4096-bit modulus - 112, 128, 149 bits	Public key - PSP	Asymmetric key generation		Digital signature verification
RSA private key	Used for Digital signature generation; Transport Layer Security (TLS)	2048, 3072, 4096-bit modulus - 112, 128, 149 bits	Private key - CSP	Asymmetric key generation		Digital signature generation

Name	Description	Size - Strength	Type - Category	Generated By	Establishe d By	Used By
	network protocol					
ECDSA public key	Used for Digital signature verification; Public key verification; Transport Layer Security (TLS) network protocol	P-256, P- 384, P- 521 - 128, 192, 256 bits	Public key - PSP	Asymmetric key generation		Digital signature verification
ECDSA private key	Used for Digital signature generation; Transport Layer Security (TLS) network protocol	P-256, P- 384, P- 521 - 128, 192, 256 bits	Private key - CSP	Asymmetric key generation		Digital signature generation
Diffie- Hellman public key	Used for Shared secret computation; Transport Layer Security (TLS) network protocol	ffdhe204 8, ffdhe307 2, ffdhe409 6, ffdhe614 4, ffdhe819 2, MODP- 2048, MODP- 3072, MODP- 3072, MODP- 4096, MODP- 6144, MODP- 6144, MODP- 8192 - 112 to 200 bits	Public key - PSP	Asymmetric key generation		(Diffie- Hellman) shared secret computation
Diffie- Hellman private key	Used for Shared secret computation; Transport Layer Security (TLS) network protocol	ffdhe204 8, ffdhe307 2, ffdhe409 6, ffdhe614 4, ffdhe819 2, MODP- 2048,	Private key - CSP	Asymmetric key generation		(Diffie- Hellman) shared secret computation

Name	Description	Size - Strength	Type - Category	Generated By	Establishe d By	Used By
EC Diffie- Hellman	Used for Shared secret	MODP- 3072, MODP- 4096, MODP- 6144, MODP- 8192 - 112 to 200 bits P-256, P- 384, P- 521 - 128	Public key - PSP	Asymmetric key		(EC Diffie- Hellman)
public key	Transport Layer Security (TLS) network protocol	192, 256 bits		generation		computation
EC Diffie- Hellman private key	Used for Shared secret computation; Transport Layer Security (TLS) network protocol	P-256, P- 384, P- 521 - 128, 192, 256 bits	Private key - CSP	Asymmetric key generation		(EC Diffie- Hellman) shared secret computation
Diffie- Hellman Shared secret	Used for Key derivation	ffdhe204 8, ffdhe307 2, ffdhe409 6, ffdhe614 4, ffdhe819 2, MODP- 2048, MODP- 3072, MODP- 3072, MODP- 4096, MODP- 6144, MODP- 8192 - 112 to 200 bits	Shared secret - CSP		(Diffie- Hellman) shared secret computatio n	Key derivation
EC Diffie- Hellman Shared secret	Used for Key derivation	P-256, P- 384, P- 521 - 128, 192, 256 bits	Shared secret - CSP		(EC Diffie- Hellman) shared secret computatio n	Key derivation

Name	Description	Size - Strength	Type - Category	Generated By	Establishe d By	Used By
PBKDF password or passphrase	Used for Key derivation	20 character s or more - N/A	Password - CSP			Key derivation
PBKDF derived key	Used for protection of storage data	112 to 256 bits - 112 to 256 bits	Symmetric key - CSP	Key derivation		
Entropy input	Used for Random number generation	256 to 384 bits - 256 bits	Entropy Input - CSP			Deterministic random bit generation
DRBG seed	Used for Random number generation	256 to 384 bits - 256 to 384 bits	Seed - CSP	Deterministi c random bit generation		Deterministic random bit generation
DRBG internal state: V value, key	Used for Random number generation. This SSP is a CSP in compliance with IG D.L	V: 128 bits; Key: 256 bits - 256 bits	Internal state - CSP	Deterministi c random bit generation		Deterministic random bit generation
TLS pre- master secret	Used for Transport Layer Security (TLS) network protocol	ffdhe204 8, ffdhe307 2, ffdhe409 6, ffdhe614 4, ffdhe819 2, MODP- 2048, MODP- 3072, MODP- 3072, MODP- 4096, MODP- 6144, MODP- 8192, P- 256, P- 384, P- 521 - 112 to 256 bits	Shared secret - CSP		(EC Diffie- Hellman) shared secret computatio n (Diffie- Hellman) shared secret computatio n	Key derivation
TLS master secret	Used for Transport Layer Security (TLS) network protocol	384 bits - 112 to 256 bits	Intermediat e secret value - CSP	Key derivation		Key derivation

ubuntu[©]Canonical Ltd. Ubuntu 22.04 GnuTLS Cryptographic Module

Name	Description	Size - Strength	Type - Category	Generated By	Establishe d By	Used By
TLS derived secret	Used in Transport Layer Security (TLS)	112 to 256 bits - 112 to 256 bits	Derived key - CSP	Key derivation		
	network protocol					
Intermediat e key generation	Used in Asymmetric key	256 to 8192 bits - 112 to 256 bits	Intermediat e key generation	Asymmetric key generation		Asymmetric key generation
HKDF derived key	Key derived from HKDF	112 to 256 bits - 112 to 256 bits	Symmetric key - CSP	Key derivation		

Table 21: SSP Table 1

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
AES key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	DRBG internal state: V value, key:Generated from
HMAC key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	DRBG internal state: V value, key:Generated from
RSA public key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	RSA private key:Paired With Intermediate key generation value:Generated from
RSA private key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	RSA public key:Paired With Intermediate key generation value:Generated from
ECDSA public key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	ECDSA private key:Paired With Intermediate key generation value:Generated from

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
ECDSA private key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	ECDSA public key:Paired With Intermediate key generation value:Generated from
Diffie- Hellman public key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	Diffie-Hellman Shared secret:Used to compute Diffie-Hellman private key:Paired With Intermediate key generation value:Generated from
Diffie- Hellman private key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	Diffie-Hellman Shared secret:Used to compute Diffie-Hellman public key:Paired With Intermediate key generation value:Generated from
EC Diffie- Hellman public key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	EC Diffie-Hellman Shared secret:Used to compute EC Diffie-Hellman private key:Paired With Intermediate key generation value:Generated from
EC Diffie- Hellman private key	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	EC Diffie-Hellman Shared secret: Used to compute EC Diffie-Hellman public key:Paired With Intermediate key generation value:Generated from
Diffie- Hellman Shared secret	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	Diffie-Hellman public key:Computed using Diffie-Hellman private key:Computed using HKDF derived key:Used to derive
EC Diffie- Hellman Shared secret	API input parameters API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated	EC Diffie-Hellman public key:Computed using EC Diffie-Hellman private key:Computed using

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
				Module Reset	HKDF derived key:Used to derive
PBKDF password or passphrase	API input parameters	RAM:Plaintext	From service invocation to service completion	Automatic	PBKDF derived key:Used to derive
PBKDF derived key	API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	PBKDF password or passphrase:Derived From
Entropy input		RAM:Plaintext	Until explicitly zeroized by operator	Automatic Module Reset	DRBG seed:Used to compute
DRBG seed		RAM:Plaintext	Until explicitly zeroized by operator	Automatic Module Reset	Entropy input:Computed from DRBG internal state: V value, key:Used to compute
DRBG internal state: V value, key		RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	DRBG seed:Computed from
TLS pre- master secret		RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	TLS master secret:Used to compute
TLS master secret		RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	TLS pre-master secret:Computed from TLS derived secret:Used to derive
TLS derived secret	API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	TLS master secret:Derived From
Intermediate key		RAM:Plaintext	From service invocation	Automatic	RSA public key:Intermediate value obtained during

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
generation value			to service completion		generated of RSA private key:Intermediate value obtained during generated of ECDSA public key:Intermediate value obtained during generated of ECDSA private key:Intermediate value obtained during generated of Diffie-Hellman public key:Intermediate value obtained during generated of Diffie-Hellman private key:Intermediate value obtained during generated of EC Diffie-Hellman public key:Intermediate value obtained during generated of EC Diffie-Hellman public key:Intermediate value obtained during generated of EC Diffie-Hellman private key:Intermediate value obtained during generated of EC Diffie-Hellman
HKDF derived key	API output parameters	RAM:Plaintext	Until explicitly zeroized by operator	Wipe and Free memory block allocated Module Reset	Diffie-Hellman Shared secret:Derived From EC Diffie-Hellman Shared secret:Derived From

Table 22: SSP Table 2

9.5 Transitions

N/A

9.6 Additional Information

10 Self-Tests

The module performs the pre-operational self-test and cryptographic algorithm self-tests (CASTs) automatically when the module is loaded into memory. The module's services are not available for use and data input and output are inhibited until the pre-operational tests and CASTs are completed successfully. If any of the pre-operational integrity self-tests or CASTs fail, an error message is returned and the module transitions to the error state.

10.1 Pre-Operational Self-Tests

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details
HMAC-SHA2- 256 (A3665)	SHA2-256	KAT	SW/FW Integrity	Module becomes operational and services are available for use	MAC tag computation and verification
HMAC-SHA2- 256 (A3667)	SHA2-256	КАТ	SW/FW Integrity	Module becomes operational and services are available for use	MAC tag computation and verification
HMAC-SHA2- 256 (A3714)	SHA2-256	KAT	SW/FW Integrity	Module becomes operational and services are available for use	MAC tag computation and verification
HMAC-SHA2- 256 (A3710)	SHA2-256	КАТ	SW/FW Integrity	Module becomes operational and services are available for use	MAC tag computation and verification

Table 23: Pre-Operational Self-Tests

10.2 Conditional Self-Tests

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
AES-CBC (A3665)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CBC (A3667)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CBC (A3708)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CBC (A3709)	256-bit key	KAT	CAST	Module becomes operational and services	Encryption, Decryption	On module initialization

© 2024 Canonical Ltd. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
				are available for use		
AES-CBC (A3711)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CBC (A3712)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CBC (A3713)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CBC (A3714)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CFB8 (A3670)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CFB8 (A3716)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-CFB8 (A3717)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-GCM (A3665)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-GCM (A3667)	256-bit key	KAT	CAST	Module becomes operational	Encryption, Decryption	On module initialization

Algorithm or Test	Test Properties	Test Method	Test	Indicator	Details	Conditions
		Meenod	Type	and services are available for use		
AES-GCM (A3708)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-GCM (A3709)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-GCM (A3711)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-GCM (A3712)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-GCM (A3713)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
AES-XTS Testing Revision 2.0 (A3668)	256-bit key	КАТ	CAST	Module becomes operational and services are available for use	Encryption, Decryption	On module initialization
KAS-FFC-SSC Sp800-56Ar3 (A3667)	3072-bit key and safe prime ffdhe3072	КАТ	CAST	Module becomes operational and services are available for use	Primitive "Z" computation	On module initialization
Counter DRBG (A3667)	256-bit key without DF, without PR	КАТ	CAST	Module becomes operational and services are available for use	Random bit generation	On module initialization
KAS-ECC- SSC Sp800-	P-256	KAT	CAST	Module becomes	Primitive "Z" Computation	On module initialization

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
56Ar3 (A3667)				operational and services are available for use		
ECDSA SigGen (FIPS186-4) (A3667)	P-256 using SHA2-256	КАТ	CAST	Module becomes operational and services are available for use	Signature generation	On module initialization
ECDSA SigVer (FIPS186-4) (A3667)	P-256 using SHA2-256	КАТ	CAST	Module becomes operational and services are available for use	Signature verification	On module initialization
KDA HKDF Sp800-56Cr1 (A3666)	HMAC- SHA2-256	КАТ	CAST	Module becomes operational and services are available for use	Key derivation	On module initialization
HMAC-SHA- 1 (A3665)	SHA-1	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC-SHA- 1 (A3667)	SHA-1	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC-SHA- 1 (A3714)	SHA-1	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC-SHA- 1 (A3710)	SHA-1	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-224 (A3665)	SHA-224	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
HMAC- SHA2-224 (A3667)	SHA-224	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-224 (A3714)	SHA-224	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-224 (A3710)	SHA-224	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-256 (A3665)	SHA-256	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-256 (A3667)	SHA-256	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-256 (A3714)	SHA-256	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-256 (A3710)	SHA-256	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-384 (A3665)	SHA-384	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-384 (A3667)	SHA-384	KAT	CAST	Module becomes operational and services	MAC generation	On module initialization

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
				are available for use		
HMAC- SHA2-384 (A3714)	SHA-384	KAT	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-384 (A3710)	SHA-384	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-512 (A3665)	SHA-512	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-512 (A3667)	SHA-512	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-512 (A3714)	SHA-512	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
HMAC- SHA2-512 (A3710)	SHA-512	КАТ	CAST	Module becomes operational and services are available for use	MAC generation	On module initialization
PBKDF (A3667)	HMAC- SHA2-256	КАТ	CAST	Module becomes operational and services are available for use	Key derivation	On module initialization
RSA SigGen (FIPS186-4) (A3667)	2048-bit key using SHA2- 256	КАТ	CAST	Module becomes operational and services are available for use	Signature generation	On module initialization
RSA SigVer (FIPS186-4) (A3667)	2048-bit key using SHA2- 256	КАТ	CAST	Module becomes operational	Signature verification	On module initialization

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
				and services are available for use		
SHA3-224 (A3669)	SHA3-224	KAT	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization
SHA3-224 (A3715)	SHA3-224	KAT	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization
SHA3-256 (A3669)	SHA3-256	KAT	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization
SHA3-256 (A3715)	SHA3-256	КАТ	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization
SHA3-384 (A3669)	SHA3-384	KAT	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization
SHA3-384 (A3715)	SHA3-384	KAT	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization
SHA3-512 (A3669)	SHA3-512	KAT	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization
SHA3-512 (A3715)	SHA3-512	KAT	CAST	Module becomes operational and services are available for use	Hash digest	On module initialization

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details	Conditions
TLS v1.2 KDF RFC7627 (A3667)	HMAC- SHA2-256	КАТ	CAST	Module becomes operational and services are available for use	Key derivation, using extended master secret	On module initialization
ECDSA KeyGen (FIPS186-4) (A3667)	SHA2-256	PCT	PCT	Module remains operational and services remain available for use	Signature generation and verification	After every ECDSA and ECDH key generation
RSA KeyGen (FIPS186-4) (A3667)	SHA2-256	PCT	PCT	Module remains operational and services remain available for use	Signature generation and verification	After every RSA key generation
Safe Primes Key Generation (A3667)	Section 5.6.2.1.4 of SP800- 56Arev3	PCT	PCT	Module remains operational and services remain available for use	Modular exponentiation with private key	After every Diffie- Hellman key generation

Table 24: Conditional Self-Tests

10.3 Periodic Self-Test Information

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
HMAC-SHA2- 256 (A3665)	КАТ	SW/FW Integrity	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 256 (A3667)	КАТ	SW/FW Integrity	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 256 (A3714)	КАТ	SW/FW Integrity	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 256 (A3710)	КАТ	SW/FW Integrity	On demand	Manually by unloading then loading module, or by calling the

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
				gnutls_fips140_run_self_tests() function

Table 25: Pre-Operational Periodic Information

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
AES-CBC (A3665)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CBC (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CBC (A3708)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CBC (A3709)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CBC (A3711)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CBC (A3712)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CBC (A3713)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CBC (A3714)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CFB8 (A3670)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
AES-CFB8 (A3716)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-CFB8 (A3717)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-GCM (A3665)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-GCM (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-GCM (A3708)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-GCM (A3709)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-GCM (A3711)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-GCM (A3712)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-GCM (A3713)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
AES-XTS Testing Revision 2.0 (A3668)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
KAS-FFC-SSC Sp800-56Ar3 (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
				gnutls_fips140_run_self_tests() function
Counter DRBG (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
KAS-ECC-SSC Sp800-56Ar3 (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
ECDSA SigGen (FIPS186-4) (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
ECDSA SigVer (FIPS186-4) (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
KDA HKDF Sp800-56Cr1 (A3666)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA-1 (A3665)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA-1 (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA-1 (A3714)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA-1 (A3710)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 224 (A3665)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
HMAC-SHA2- 224 (A3667)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 224 (A3714)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 224 (A3710)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 256 (A3665)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 256 (A3667)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 256 (A3714)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 256 (A3710)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 384 (A3665)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 384 (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 384 (A3714)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 384 (A3710)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
				gnutls_fips140_run_self_tests() function
HMAC-SHA2- 512 (A3665)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 512 (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 512 (A3714)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
HMAC-SHA2- 512 (A3710)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
PBKDF (A3667)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
RSA SigGen (FIPS186-4) (A3667)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
RSA SigVer (FIPS186-4) (A3667)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
SHA3-224 (A3669)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
SHA3-224 (A3715)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
SHA3-256 (A3669)	KAT	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
SHA3-256 (A3715)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
SHA3-384 (A3669)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
SHA3-384 (A3715)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
SHA3-512 (A3669)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
SHA3-512 (A3715)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
TLS v1.2 KDF RFC7627 (A3667)	КАТ	CAST	On demand	Manually by unloading then loading module, or by calling the gnutls_fips140_run_self_tests() function
ECDSA KeyGen (FIPS186-4) (A3667)	PCT	PCT	On demand	By calling the "Asymmetric key Generation" service
RSA KeyGen (FIPS186-4) (A3667)	РСТ	РСТ	On demand	By calling the "Asymmetric key Generation" service
Safe Primes Key Generation (A3667)	PCT	PCT	On demand	By calling the "Asymmetric key Generation" service

Table 26: Conditional Periodic Information

10.4 Error States

Name	Description	Conditions	Recovery Method	Indicator
Error State	Prevents any cryptographic related operations and data output	When the integrity test or KAT (not the DRBG KAT) fail; When the DRBG	Restarting the module	GNUTLS_E_SELF_TEST_ERROR (-400); GNUTLS_E_RANDOM_FAILED (-206); GNUTLS_E_PK_GENERATION_ERROR (- 403); GNUTLS_E_LIB_IN_ERROR_STATE (- 402)

Name	Description	Conditions	Recovery Method	Indicator
		KAT fails;		
		When a newly		
		generated RSA,		
		ECDSA, Diffie-		
		Hellman or EC		
		Diffie-Hellman		
		key pair fails the		
		PCT;		
		When the		
		module is in		
		error state and		
		caller requests		
		cryptographic		
		operations;		

Table 27: Error States

The calling application can obtain the module state by calling the gnutls_fips140_get_operation_state() API function. The function returns GNUTLS_FIPS140_OP_ERROR if the module is in the Error state.

10.5 Operator Initiation of Self-Tests

The operator can initiate the pre-operational integrity self-test and cryptographic algorithm self-tests by calling the Self-Test service (via the gnutls_fips140_run_self_tests() function) or by powering-off and reloading the module. The operator can initiate a pairwise consistency self-test by calling the "Asymmetric key generation" service. During the execution of the pre-operational integrity self-test and cryptographic algorithm self-tests, services are not available, and no data output is possible.

10.6 Additional Information

11 Life-Cycle Assurance

11.1 Installation, Initialization, and Startup Procedures

11.1.1 Configuration of the Operating Environment

The module needs to be set to run in the FIPS validated operational environment. This can be enabled automatically via the Ubuntu Advantage tool after attaching your subscription.

(1) To install the tool, type the following commands:

\$ sudo apt update

\$ sudo apt install ubuntu-advantage-tools

(2) To activate the Ubuntu Pro subscription run:

\$ sudo pro attach <your_pro_token>

(3) To enable the FIPS validated operational environment run:

\$ sudo pro enable fips

(4) To verify that the FIPS validated operational environment is enabled run:

\$ sudo pro status

The pro client will install the necessary packages that are part of the FIPS validated operational environment, including the kernel and the bootloader. After this step you MUST reboot to enter the FIPS validated operational environment. The reboot will boot into the kernel of the FIPS validated operational environment and create the /proc/sys/crypto/fips_enabled entry which tells the FIPS certified modules to run in the approved mode of operation. If you do not reboot after installing and configuring the bootloader, you will not be in the FIPS validated operational environment.

To verify that the FIPS validated operational environment is enabled after the reboot check the /proc/sys/crypto/fips_enabled file and ensure it is set to 1. If it is set to 0, the FIPS modules will not run in the approved mode of operation. If the file is missing, the correct kernel (which is part of the FIPS validated operational environment) is not installed. You can verify that the FIPS validated operational environment has been properly enabled with the pro status command.

Instrumentation tools like the ptrace system call, gdb and strace utilities, as well as other tracing mechanisms offered by the Linux environment such as ftrace or systemtap, shall not be used in the operational environment. The use of any of these tools implies that the cryptographic module is running in a non-tested operational environment.

If the module is not installed, initialized, and configured according to this section, the module is in a noncompliant state. If the module is in a non-compliant state, it can be placed into the compliant state by un-initializing and uninstalling the module and then installing, initializing, and configuring the module according to this section.

11.1.2 Delivery of the Module

On the Supermicro SYS-1019P-WTR hardware platform with the Intel Xeon Gold 6226 processor, the module is delivered through the following Ubuntu packages:

libgnutls30_3.7.3-4ubuntu1.2+Fips1.1_amd64.deb libnettle8_3.7.3-1ubuntu0.1~Fips1_amd64.deb libhogweed6_3.7.3-1ubuntu0.1~Fips1_amd64.deb libgmp10_6.2.1+dfsg-3ubuntu1+Fips1_amd64.deb

On the Amazon Web Services (AWS) c6g.metal hardware platform with the AWS Graviton2 processor, the module is delivered through the following Ubuntu packages:

libgnutls30_3.7.3-4ubuntu1.2+Fips1.1_arm64.deb libnettle8_3.7.3-1ubuntu0.1~Fips1_arm64.deb libhogweed6_3.7.3-1ubuntu0.1~Fips1_arm64.deb libgmp10_6.2.1+dfsg-3ubuntu1+Fips1_arm64.deb

On the IBM z15 hardware platform with the z15 processor, the module is delivered through the following Ubuntu packages:

libgnutls30_3.7.3-4ubuntu1.2+Fips1.1_s390x.deb libnettle8_3.7.3-1ubuntu0.1~Fips1_s390x.deb libhogweed6_3.7.3-1ubuntu0.1~Fips1_s390x.deb libgmp10_6.2.1+dfsg-3ubuntu1+Fips1_s390x.deb

11.1.3 Installation of the Module

After the operating environment has been configured according to the instructions of section 11.1.1, the Crypto Officer can install the Ubuntu packages containing the module using the Advanced Package Tool (APT) with the following commands:

\$ sudo apt-get install libgnutls30=3.7.3-4ubuntu1.2+Fips1.1

\$ sudo apt-get install libgmp10=2:6.2.1+dfsg-3ubuntu1+Fips1

\$ sudo apt-get install libhogweed6=3.7.3-1ubuntu0.1~Fips1

\$ sudo apt-get install libnettle8=3.7.3-1ubuntu0.1~Fips1

All the Ubuntu packages are associated with hashes for integrity check. The integrity of the Ubuntu package is automatically verified by the packing tool during the installation of the module. The Crypto Officer shall not install the package if the integrity fails.

The module cannot use the following environment variables:

GNUTLS_NO_EXPLICIT_INIT GNUTLS_SKIP_FIPS_INTEGRITY_CHECKS

The module can only be used with the cryptographic algorithms provided. Therefore, the following API functions are forbidden in the approved mode of operation:

gnutls_crypto_register_cipher gnutls_crypto_register_aead_cipher gnutls_crypto_register_mac gnutls_crypto_register_digest gnutls_privkey_import_ext4

11.2 Administrator Guidance

The Crypto Officer shall follow this Security Policy to configure the operational environment and install the module to be operated in the approved mode.

The output of the "Show module name and version" service is:

"Canonical Ltd. Ubuntu 22.04 GnuTLS Cryptographic Module" and "3.7.3-4ubuntu1.2+Fips1.1".

11.3 Non-Administrator Guidance

The approved security functions are listed in section 2.6 of this security policy.

The logical interfaces available to the users of the cryptographic module are listed in section 3.1.

For the secure operation of the module, the operator must follow the instructions in section 11.1 of this security policy.

11.4 Design and Rules

N/A

11.5 Maintenance Requirements

N/A

11.6 End of Life

For secure sanitization of the cryptographic module, the module needs first to be powered off, which will zeroize all keys and CSPs in volatile memory. The module does not possess persistent storage of SSPs, so further sanitization steps are not needed.

11.7 Additional Information

12 Mitigation of Other Attacks

The module does not mitigate other attacks.

12.1 Attack List

N/A

12.2 Mitigation Effectiveness

N/A

12.3 Guidance and Constraints

N/A

12.4 Additional Information

Appendix A: TLS Cipher Suites

The module supports the following cipher suites for the TLS protocol version 1.0, 1.1, 1.2 and 1.3, compliant with section 3.3.1 of SP800-52rev2. Each cipher suite defines the key exchange algorithm, the bulk encryption algorithm (including the symmetric key size) and the MAC algorithm.

Cipher Suite	ID	Reference
TLS_DH_RSA_WITH_AES_128_CBC_SHA	{0x00,0x31}	RFC3268
TLS_DHE_RSA_WITH_AES_128_CBC_SHA	{0x00,0x33}	RFC3268
TLS_DH_RSA_WITH_AES_256_CBC_SHA	{ 0x00, 0x37 }	RFC3268
TLS_DHE_RSA_WITH_AES_256_CBC_SHA	{ 0x00, 0x39 }	RFC3268
TLS_DH_RSA_WITH_AES_128_CBC_SHA256	{ 0x00,0x3F }	RFC5246
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256	{ 0x00,0x67 }	RFC5246
TLS_DH_RSA_WITH_AES_256_CBC_SHA256	{ 0x00,0x69 }	RFC5246
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256	{ 0x00,0x6B }	RFC5246
TLS_PSK_WITH_AES_128_CBC_SHA	{ 0x00, 0x8C }	RFC4279
TLS_PSK_WITH_AES_256_CBC_SHA	{ 0x00, 0x8D }	RFC4279
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	{ 0x00, 0x9E }	RFC5288
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	{ 0x00, 0x9F }	RFC5288
TLS_DH_RSA_WITH_AES_128_GCM_SHA256	{ 0x00, 0xA0 }	RFC5288
TLS_DH_RSA_WITH_AES_256_GCM_SHA384	{0x00, 0xA1}	RFC5288
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA	{ 0xC0, 0x04 }	RFC4492
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA	{ 0xC0, 0x05 }	RFC4492
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA	{ 0xC0, 0x09 }	RFC4492
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA	{ 0xC0, 0x0A }	RFC4492
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA	{ 0xC0, 0x0E }	RFC4492
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA	{ 0xC0, 0x0F }	RFC4492
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA	{0xC0, 0x13}	RFC4492
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA	{ 0xC0, 0x14 }	RFC4492

© 2024 Canonical Ltd. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Cipher Suite	ID	Reference
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256	{0xC0, 0x23}	RFC5289
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384	{0xC0, 0x24}	RFC5289
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256	{ 0xC0, 0x25 }	RFC5289
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384	{0xC0, 0x26}	RFC5289
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256	{ 0xC0, 0x27 }	RFC5289
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384	{0xC0, 0x28}	RFC5289
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256	{ 0xC0, 0x29 }	RFC5289
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384	{ 0xC0, 0x2A }	RFC5289
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	{0xC0, 0x2B}	RFC5289
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	{0xC0, 0x2C}	RFC5289
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256	{ 0xC0, 0x2D }	RFC5289
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384	{ 0xC0, 0x2E }	RFC5289
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	{0xC0, 0x2F}	RFC5289
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	{ 0xC0, 0x30 }	RFC5289
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256	{0xC0, 0x31}	RFC5289
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384	{ 0xC0, 0x32 }	RFC5289
TLS_DHE_RSA_WITH_AES_128_CCM	{ 0xC0, 0x9E }	RFC6655
TLS_DHE_RSA_WITH_AES_256_CCM	{ 0xC0, 0x9F }	RFC6655
TLS_DHE_RSA_WITH_AES_128_CCM_8	{ 0xC0, 0xA2 }	RFC6655
TLS_DHE_RSA_WITH_AES_256_CCM_8	{ 0xC0, 0xA3 }	RFC6655
TLS_AES_128_GCM_SHA256	{0x13,0x01}	RFC8446
TLS_AES_256_GCM_SHA384	{0x13,0x02}	RFC8446
TLS_AES_128_CCM_SHA256	{0x13,0x04}	RFC8446
TLS_AES_128_CCM_8_SHA256	{0x13,0x05}	RFC8446
Appendix B. Glossary and Abbreviations

AES	Advanced Encryption Standard
AES-NI	Advanced Encryption Standard New Instructions
CAVP	Cryptographic Algorithm Validation Program
СВС	Cipher Block Chaining
ССМ	Counter with Cipher Block Chaining-Message Authentication Code
CFB	Cipher Feedback
СМАС	Cipher-based Message Authentication Code
СМУР	Cryptographic Module Validation Program
CPACF	Central Processor Assist for Cryptographic Function
CSP	Critical Security Parameter
CTR	Counter Mode
DF	Derivation Function
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ECC	Elliptic Curve Cryptography
FFC	Finite Field Cryptography
FIPS	Federal Information Processing Standards Publication
FSM	Finite State Model
GCM	Galois Counter Mode
НМАС	Hash Message Authentication Code
KAS	Key Agreement Schema
ΚΑΤ	Known Answer Test
ΜΑϹ	Message Authentication Code
NIST	National Institute of Science and Technology
OFB	Output Feedback
OS	Operating System
ΡΑΑ	Processor Algorithm Acceleration
ΡΑΙ	Processor Algorithm Implementation
PR	Prediction Resistance
PSS	Probabilistic Signature Scheme
RNG	Random Number Generator
RSA	Rivest, Shamir, Addleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard

SSH	Secure Shell
SSP	Sensitive Security Parameter

XTS XEX-based Tweaked-codebook mode with cipher text Stealing

Appendix C. References

FIPS140-3	FIPS PUB 140-3 - Security Requirements For Cryptographic Modules March 2019
	https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
FIPS140-3_IG	Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation Program
	March 2024
	<u>https://csrc.nist.gov/csrc/media/Projects/cryptographic-module-validation- program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf</u>
FIPS180-4	Secure Hash Standard (SHS) August 2015
	https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
FIPS186-4	Digital Signature Standard (DSS) July 2013
	https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
FIPS197	Advanced Encryption Standard November 2001
	https://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
FIPS198-1	The Keyed Hash Message Authentication Code (HMAC) July 2008
	https://csrc.nist.gov/publications/rips/rips198-1/FIPS-198-1_rinal.pdr
FIPS202	SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions
	August 2015 <u>https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf</u>
PKCS#1	Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1 February 2003
	https://www.ietf.org/rfc/rfc3447.txt
RFC3394	Advanced Encryption Standard (AES) Key Wrap Algorithm September 2002
	https://www.ietf.org/rfc/rfc3394.txt
RFC5649	Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm
	https://www.ietf.org/rfc/rfc5649.txt
SP800-38A	NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of Operation Methods and Techniques
	December 2001
	<u>https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800- 38a.pdf</u>

SP800-38B	NIST Special Publication 800-38B - Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication May 2005 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
SP800-38C	NIST Special Publication 800-38C - Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality May 2004
	https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
SP800-38D	NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC November 2007
	https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800- 38d.pdf
SP800-38E	NIST Special Publication 800-38E - Recommendation for Block Cipher Modes of Operation: The XTS AES Mode for Confidentiality on Storage Devices January 2010
	https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800- 38e.pdfhttps://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800- 38E.pdf
SP800-38F	NIST Special Publication 800-38F - Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping December 2012 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
SP800-38G	NIST Special Publication 800-38G - Recommendation for Block Cipher Modes of Operation: Methods for Format - Preserving Encryption March 2016
	https://hvtpubs.nist.gov/histpubs/specialPublications/NiST.SP.800-38G.pdf
SP800-52rev2	NIST Special Publication 800-52 Revision 2 - Guidelines for the Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations August 2019
	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
SP800-56Arev3	NIST Special Publication 800-56A Revision 3 - Recommendation for Pair Wise Key Establishment Schemes Using Discrete Logarithm Cryptography April 2018 https://pylpubs.pist.gov/pistpubs/SpecialPublications/NIST SP 800-56Ar3.pdf
SP800-56Crev2	NIST Special Publication 800-56C Revision 2 - Recommendation for Key Derivation through Extraction-then-Expansion
	August 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
SP800-57rev5	NIST Special Publication 800-57 Part 1 Revision 5 - Recommendation for Key Management Part 1: General May 2020
	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

SP800-90Arev1	NIST Special Publication 800-90A Revision 1 - Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
SP800-90B	NIST Special Publication 800-90B - Recommendation for the Entropy Sources Used for Random Bit Generation January 2018
	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
SP800-108rev1	NIST Special Publication 800-108 Revision 1 - Recommendation for Key Derivation Using Pseudorandom Functions (Revised) August 2022
	https://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
SP800-131Arev2	NIST Special Publication 800-131 Revision 2 - Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths March 2019
	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
SP800-132	NIST Special Publication 800-132 - Recommendation for Password-Based Key Derivation - Part 1: Storage Applications December 2010
	<u>https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-</u> 132.pdf
SP800-133rev2	NIST Special Publication 800-133 Revision 2 - Recommendation for Cryptographic Key Generation June 2020
	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf
SP800-135rev1	NIST Special Publication 800-135 Revision 1 - Recommendation for Existing Application-Specific Key Derivation Functions December 2011
	<u>https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-</u> 135r1.pdf
SP800-140B	NIST Special Publication 800-140B - CMVP Security Policy Requirements
	https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf