
 Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 1 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Microsoft FIPS 140 Validation
Microsoft Azure Linux OpenSSL Cryptographic Library (version

2.0)

Non-Proprietary

Security Policy Document

Version Number 1.4
Updated On May 16th, 2024

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 2 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

© 2024 Microsoft Corporation. All rights reserved.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 3 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Version History

Version Date Summary of changes

1.0 September 17, 2021 Draft sent to NIST CMVP

1.1 March 14, 2023 Updates from CMVP feedback

1.2 April 5, 2023 Updates from CMVP feedback

1.3 April 18, 2023 Updates from CMVP feedback

1.4 May 16th,2024 Renaming updates

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 4 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

TABLE OF CONTENTS

SECURITY POLICY DOCUMENT ...1

VERSION HISTORY ..3

1 INTRODUCTION ...6

1.1 LIST OF CRYPTOGRAPHIC MODULE LIBRARIES AND BINARIES ..6

1.2 VALIDATED PLATFORMS ..6

1.3 MODES OF OPERATION ...6

1.4 CRYPTOGRAPHIC BOUNDARY ..7

1.5 FIPS 140-2 APPROVED ALGORITHMS ..7

1.6 NON-APPROVED ALGORITHMS ... 12

1.7 HARDWARE BLOCK DIAGRAM... 14

2 CRYPTOGRAPHIC MODULE PORTS AND INTERFACES .. 14

3 ROLES, SERVICES AND AUTHENTICATION ... 15

3.1 ROLES ... 15

3.2 SERVICES ... 15

3.3 AUTHENTICATION .. 16

4 FINITE STATE MODEL ... 16

4.1 STATE DESCRIPTIONS .. 18

5 OPERATIONAL ENVIRONMENT... 19

5.1 SINGLE OPERATOR ... 19

6 CRYPTOGRAPHIC KEY MANAGEMENT .. 19

6.1 RANDOM NUMBER AND KEY GENERATION .. 19

6.2 KEY AND CSP MANAGEMENT SUMMARY .. 19

6.3 KEY AND CSP ACCESS ... 20

6.4 KEY AND CSP STORAGE .. 20

6.5 KEY AND CSP ZEROIZATION ... 20

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 5 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

6.6 KEY ESTABLISHMENT .. 20

6.7 KEY AND CSP ENTRY AND OUTPUT .. 21

7 SELF-TESTS .. 21

7.1 POWER-ON SELF-TESTS .. 21

7.2 CONDITIONAL TESTS ... 22

8 GUIDANCE .. 23

8.1 CRYPTO OFFICER GUIDANCE ... 23

8.1.1 MODULE INSTALLATION .. 23

8.1.2 OPERATING ENVIRONMENT CONFIGURATION ... 23

8.2 USER GUIDANCE ... 23

8.2.1 TLS AND DIFFIE-HELLMAN .. 23

8.2.2 TLS AND RSA KEY TRANSPORT .. 23

8.2.3 AES-GCM-IV... 24

8.2.4 TRIPLE-DES KEYS ... 24

8.2.5 RSA AND DSA KEYS ... 24

8.2.6 HANDLING SELF-TEST ERRORS ... 24

8.2.7 KEY DERIVATION USING SP 800-132 PBKDF ... 25

9 MITIGATION OF OTHER ATTACKS ... 25

10 SECURITY LEVELS ... 26

11 ADDITIONAL DETAILS .. 26

12 GLOSSARY AND ABBREVIATIONS ... 26

13 REFERENCES .. 27

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 6 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1 Introduction
The Microsoft Azure Linux OpenSSL Cryptographic Library1 (the “module”) is a general-purpose,

software-based cryptographic module that supports FIPS 140-2 approved cryptographic algorithms. The

codebase of the module is a combination of standard OpenSSL shared libraries and custom development

work by Microsoft. It provides an application programming interface (API) for use by programs that

require cryptographic functionality. The module is implemented as a set of shared libraries and binary

files.

1.1 List of Cryptographic Module Libraries and Binaries
The module includes the following libraries and binaries:

Library or Binary Description

/usr/lib64/.libcrypto.so.1.1.1k.hmac Integrity check HMAC value for libcrypto

/usr/lib64/.libssl.so.1.1.k.hmac Integrity check HMAC value for libssl

/usr/lib64/libcrypto.so.1.1.1k Shared library for cryptographic algorithms

/usr/lib64/libssl.so.1.1.1k Shared library for TLS/DTLS network protocols

The following package is required for the module to operate:

Package Name Description

openssl-libs-1.1.1k-13.cm1.x86_64.rpm Red Hat Package Manager (RPM) package that
delivers the module binaries.

1.2 Validated Platforms
The module has been validated on the following platforms:

Test Platform Processor Operating System Configuration

Azure Compute C2030 Server Intel® Xeon® Platinum
8272CL (Intel x64)

Azure Linux 2.0 With and without
AES-NI (PAA)

Azure Host Hypervisor,
running on Azure Compute
C2030 Server

Intel® Xeon® Platinum
8272CL (Intel x64)

Azure Linux 2.0 With and without
AES-NI (PAA)

1.3 Modes of Operation
The module supports two modes of operation:

1. FIPS-approved mode: This is the approved mode of operation. In this mode, only approved

security functions with sufficient security strength can be used.

1 The Microsoft Azure Linux OpenSSL Cryptographic Library in this validation is based on OpenSSL version 1.1.1k-
13.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 7 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

2. Non-FIPS approved mode: This is the non-approved mode of operation. In this mode, non-

approved security functions can also be used.

The mode may be determined either by policy or by executing an approved security function. FIPS

approved mode may be enabled by adding “fips=1” to the kernel command line or by calling the

OpenSSL API, FIPS_mode_set.

The module verifies the integrity of the runtime executable by performing an integrity check that

leverages an HMAC-SHA-256 digest computed at build time. If the digests match, the power-up self-test

is performed. All data output is inhibited if the model is in a self-test state. If the self-test passes, the

module is operational. If the self-test fails, the module goes into an error state and is not functional.

1.4 Cryptographic Boundary
The Microsoft Azure Linux OpenSSL Cryptographic Library is defined as a multi-chip standalone module.

The logical cryptographic boundary of the module is the set of shared library files and their integrity

check HMAC files, as described in the List of Cryptographic Module Libraries and Binaries. The following

software block diagram depicts the logical boundary of the module.

1.5 FIPS 140-2 Approved Algorithms
The Microsoft Azure Linux OpenSSL Cryptographic Library implements the following FIPS-140-2
Approved algorithms:2

2 This module may not use some of the capabilities described in each CAVP certificate. Per FIPS 140-2 IG G.5, the
CMVP makes no statement as to the correct operation of the Module or the security strengths of the generated
keys when those are ported and executed in an operational environment not listed on the validation certificate.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 8 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Purpose Standards, Modes, and
Methods

Keys and CSPs CAVP
Certificate

AES Encryption and
Decryption

FIPS 197 (AES)
NIST SP 800-38A (CBC,
CFB1, CFB8, CFB128, CTR,
ECB)
NIST SP 800-38C (CCM)
NIST SP 800-38D (GCM)
NIST SP 800-38E (XTS3)
NIST SP 800-38F (KW, KWP)

AES keys 128 bits,
192 bits (except
XTS-AES) and 256
bits

A2665

MAC Generation
and Verification

NIST SP 800-38B (CMAC) Mac length 128 bits # A2665

Triple-DES4 Encryption and
Decryption

NIST SP 800-67 Rev2
NIST SP 800-38A (ECB)
NIST SP 800-38A (CBC, OFB,
CFB1, CFB8, CFB64)

Triple-DES keys 168
bits

A2665

Mac Generation
and Verification

NIST SP 800-67 Rev2
NIST SP 800-38B (CMAC)

A2665

DSA Domain
Parameters
Generation and
Verification, Key
Generation,
Signature
Generation

FIPS 186-4

DSA keys:

• L=2048,
N=224

• L=2048,
N=256

• L=3072,
N=256

A2665

Signature
Verification

DSA keys:

• L=1024,
N=160

• L=2048,
N=224

• L=2048,
N=256

• L=3072,
N=256

1024-bit DSA
signature
verification for
legacy use.

A2665

RSA Key Generation FIPS 186-4 Appendix B.3.3

RSA keys:

• 2048 bits

• 3072 bits

• 4096 bits

A2665

3 AES XTS must be used only to protect data at rest and the caller needs to ensure that the length of data
encrypted does not exceed 2^20 AES blocks.
4 After December 31, 2023, Triple-DES is Approved for only decryption.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 9 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Purpose Standards, Modes, and
Methods

Keys and CSPs CAVP
Certificate

Signature
Generation

FIPS 186-4
PKCS#1 v1.5 and PSS

SHA-224, SHA-256, SHA-
384, SHA-512

RSA keys:

• 2048 bits

• 3072 bits

• 4096 bits

A2665

Signature
Verification

FIPS 186-4
PKCS#1 v1.5 and PSS

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512

RSA keys:

• 1024 bits

• 2048 bits

• 3072 bits

• 4096 bits

1024-bit RSA
signature
verification for
legacy use

A2665

Signature
Generation

ANSI X9.31

SHA-256, SHA-384, SHA-
512

RSA keys:

• 2048 bits

• 3072 bits

• 4096 bits

A2665

Signature
Verification

ANSI X9.31

SHA-1, SHA-256, SHA-384,
SHA-512

RSA keys:

• 1024 bits

• 2048 bits

• 3072 bits

• 4096 bits

1024-bit RSA
signature
verification for
legacy use

A2665

ECDSA Key Pair
Generation and
Public Key
Verification

FIPS 186-4

ECDSA keys based
on P-256, P-384 or
P-521 curve

A2665

Signature
Generation

FIPS 186-4

SHA-224, SHA-256, SHA-
384, SHA-512

ECDSA keys based
on P-224, P-256, P-
384 or P-521 curve

A2665

Signature
Verification

A2665

DRBG Random
Number
Generation

NIST SP 800-90A Rev1
(CTR_DRBG)

AES-128, AES-192, AES-256

Entropy input string,
seed, C, V, and Key

A2665

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 10 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Purpose Standards, Modes, and
Methods

Keys and CSPs CAVP
Certificate

NIST SP 800-90A Rev1
(Hash_DRBG,
HMAC_DRBG)

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512

A2665

SHS Hashing FIPS 180-4

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-
512/224, SHA-512/256

N/A # A2665

SHA-3 Hashing FIPS 202

SHA3-224, SHA3-256,

SHA3-384, SHA3-512,

SHAKE-128, SHAKE-256

N/A # A2665

HMAC Message
Integrity

FIPS 198-1

HMAC-SHA-1, HMAC-SHA-
224, HMAC-SHA-256,
HMAC-SHA-384, HMAC-
SHA-512, SHA-512/224,
SHA-512/256

At least 112 bits
HMAC key

A2665

HMAC-SHA3-224, HMAC-
SHA3-256, HMAC-SHA3-
384, HMAC-SHA3-512

A2665

KAS-ECC-SSC EC Diffie-
Hellman Key
Agreement

NIST SP 800-56A Rev3
Scheme: ephemeralUnified
KAS Role: initiator,
responder

P-224, P-256, P-384,
P-521

A2665

KAS-FFC-SSC Diffie-Hellman
Key Agreement

NIST SP 800-56A Rev3
Scheme: dhEphemeral
KAS Role: initiator,
responder

MODP-2048,
MODP-3072,
MODP-4096,
MODP-6144,
MODP-8192
ffdhe2048,
ffdhe3072,
ffdhe4096,
ffdhe6144,
ffdhe8192

A2665

Key
Agreement
Scheme
(ECC/FFC)

Key Agreement
Scheme per SP
800-56A Rev3
with key

NIST SP 800-56A Rev3
NIST SP 800-135 Rev1

KAS (ECC):

KAS (ECC): P-224, P-
256, P-384, P-521.

KAS (FFC):

A2665

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 11 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Purpose Standards, Modes, and
Methods

Keys and CSPs CAVP
Certificate

KAS
(KAS-SSC
CAVP #
A2665, CVL #
A2665);

derivation
function (SP
800-135 Rev1)

Scheme: ephemeralUnified
KAS Role: initiator,
responder

KAS (FFC):
Scheme: dhEphemeral
KAS Role: initiator,
responder

MODP-2048, MODP-
3072, MODP-4096,
MODP-6144, MODP-
8192
ffdhe2048,
ffdhe3072,
ffdhe4096,
ffdhe6144,
ffdhe8192

Key
Agreement
Scheme
(ECC/FFC)

KAS
(KAS-SSC
CAVP #
A2665, KDA
A2665);

Key Agreement
Scheme per SP
800-56A Rev3
with key
derivation
algorithm (SP
800-56C Rev2)

NIST SP 800-56A Rev3
NIST SP 800-56C Rev2

KAS (ECC):
Scheme: ephemeralUnified
KAS Role: initiator,
responder

KAS (FFC):
Scheme: dhEphemeral
KAS Role: initiator,
responder

KAS (ECC): P-224, P-
256, P-384, P-521.

KAS (FFC):
MODP-2048, MODP-
3072, MODP-4096,
MODP-6144, MODP-
8192
ffdhe2048,
ffdhe3072,
ffdhe4096,
ffdhe6144,
ffdhe8192

A2665

Safe Primes Diffie-Hellman
Key Agreement

NIST SP 800-56A Rev3
Generation and Verification

MODP-2048,
MODP-3072,
MODP-4096,
MODP-6144,
MODP-8192
ffdhe2048,
ffdhe3072,
ffdhe4096,
ffdhe6144,
ffdhe8192

A2665

(CVL) TLS-
KDF5

Key Derivation
in TLS

NIST SP 800-135 Rev1 Derived Key, TLS
Pre-Master Secret,
Master Secret

A2665

PBKDF Password-Based
Key Derivation

NIST SP 800-132

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA3-
224, SHA3-256, SHA3-384,
SHA3-512

PBKDF password
PBKDF Derived Key

A2665

(CVL) SSH
KDF

Secure Shell Key
Derivation

NIST SP 800-135 Rev1 SSH KDF Derived
Key

A2665

5 Per IG D.11, the TLS and SSH protocols have not been reviewed or tested by the CAVP and CMVP.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 12 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Algorithm Purpose Standards, Modes, and
Methods

Keys and CSPs CAVP
Certificate

KDA
OneStep

Single-Step Key
Derivation

NIST SP 800-56C Rev2

SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512

Derived Key # A2665

KTS Key
Establishment

NIST SP 800-38F

AES KW, KWP
AES CCM
AES GCM

AES keys 128, 192,
256 bits

A2665

NIST SP 800-38F

AES CBC and HMAC

AES keys 128, 192,
256 bits

A2665

NIST SP 800-38F

Triple-DES CBC and HMAC6

Triple DES keys 168
bits

Encryption strength
of 112 bits.

A2665

ENT CPU time jitter
entropy source

NIST SP 800-90B N/A N/A

1.6 Non-Approved Algorithms
The following tables present the non-FIPS 140-2 approved algorithms implemented by the module. One

non-approved algorithm is allowed in FIPS-approved mode:

Algorithm Usage Keys/CSPs

MD5 Message digest for TLS. (This is
the only usage allowed in
Approved mode; all other MD5
usage causes the module to
operate in non-FIPS mode.)

Note: No security is claimed for
MD5.

N/A

The remainder of the non-approved algorithms may not be used in FIPS-approved mode. Any use of the

following non-approved algorithms will cause the Module to operate in the non-FIPS mode:

Algorithm Usage Keys/CSPs

6 After December 31, 2023, Triple-DES is Approved for only decryption.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 13 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

RSA (encrypt, decrypt) Key wrapping, Key
establishment

RSA keys

RSA with key sizes not listed in
the approved-algorithms table

Sign, verify and key generation RSA keys

Digital Signature Generation
(DSA, ECDSA, and RSA) using
SHA-1

Sign DSA, ECDSA, and RSA keys

DSA with key sizes not listed in
the approved-algorithms table

Sign, verify, and key generation DSA keys

KAS-FFC-SSC using any key size
not listed in the Approved-
algorithms table

Key agreement Diffie-Hellman keys

KAS-ECC-SSC with P-192 curve,
K-curves, B-curves, and non-
NIST curves

Key agreement

EC Diffie-Hellman private key

ECDSA with curves not listed in
the approved-algorithms table

Key Pair Generation, Public Key
Verification, Signature
Generation, Signature
Verification

ECDSA keys

AES-OCB Authenticated encryption and
decryption

Symmetric key

AES-OFB Encryption and Decryption

AES keys

Camellia Encryption and decryption Symmetric key

CAST Encryption and decryption Symmetric key

DES Encryption and decryption Symmetric key

2-Key 3DES Encryption and decryption Symmetric key

IDEA Encryption and decryption Symmetric key

KBKDF Key derivation Derived key

RFC-3961 KDF Key derivation Derived key

RFC 7914 KDF Key derivation Derived key

HKDF Key derivation Derived key

MD2 Hash function N/A

MD4 Hash function N/A

MD5 Hash function N/A

RC2 Encryption and decryption Symmetric key

RC4 Encryption and decryption Symmetric key

RC5 Encryption and decryption Symmetric key

RIPEMD Hash function N/A

Whirlpool Hash function N/A

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 14 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

1.7 Hardware Block Diagram
The Microsoft Azure Linux OpenSSL Cryptographic Library is a multi-chip standalone software module.

The physical boundary of the module is the physical boundary of the computer that contains the

module. The following hardware block diagram depicts the hardware components used by the module

and the physical module boundary.

2 Cryptographic Module Ports and Interfaces
The Microsoft Azure Linux OpenSSL Cryptographic Library is a software module and has no physical

ports of its own. The physical ports of the module are interpreted as those on the underlying hardware

platform. The logical interfaces are the application program interface (API) through which applications

request services. The table below describes the logical interfaces and the physical ports they leverage:

Logical Interface Physical Port Description

Data Input Ethernet ports API input parameters

Data Output Ethernet ports API output parameters

Control Input Keyboard, serial port, Ethernet port,
network

API function calls

Status Output Serial port, Ethernet port, network API return codes and error messages

Power Input PC power supply port N/A

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 15 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

3 Roles, Services and Authentication

3.1 Roles
The module supports two roles: User and Crypto Officer. The User and Crypto Officer roles are implicitly

assumed by the party accessing services implemented by the Module.

• User role: Performs all services except module installation. This is the role assumed by calling

applications.

• Crypto Officer role: Performs module installation and configuration.

3.2 Services
The following tables provide a mapping of the available services, algorithms, Critical Security

Parameters, and access types that the module provides. The FIPS 140-2 Approved services available in

FIPS mode include the following:

Service Keys, CSPs Role Access

Symmetric
encryption/decryption

AES and Triple-DES keys User Read, Execute

Asymmetric key
generation

RSA, DSA, and ECDSA private keys User Read, Write, Execute

Digital signature
generation and
verification

RSA, DSA, and ECDSA private keys User Read, Execute

TLS network protocol AES or Triple-DES keys and HMAC keys User Read, Execute

TLS key agreement AES or Triple-DES key, RSA, DSA or
ECDSA private key, HMAC Key, Pre-
Master Secret, Master Secret, Diffie-
Hellman Private and EC Diffie-Hellman
Private

User Read, Write, Execute

Shared secret
computation

Diffie-Hellman and EC Diffie-Hellman
public and private keys, shared secret

User Read, Write

Certificate
Management

RSA, DSA, or ECDSA private keys User Read, Write, Execute

Keyed hash HMAC or CMAC keys User Read, Execute

Message digest Hashed values User N/A

Random number
generation (SP 800-
90A DBRG)

Entropy input string, seed, C, V and Key User Read, Write, Execute

Key derivation PBKDF, SSH-KDF, TLS-KDF, KDA User Read, Write, Execute

Show status None User N/A

Module initialization None User N/A

Self-test None User N/A

Zeroization All CSPs above User Read, Write, Execute

On-demand self-test None User Read, Write, Execute

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 16 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Service Keys, CSPs Role Access

Module installation None Crypto
Officer

N/A

The non-Approved services available in non-FIPS mode include the following:

Service Role Access

Asymmetric encryption/decryption using non-approved RSA key
size

User Read, Execute

Symmetric encryption/decryption using non-approved
algorithms

User Read, Execute

Hash operation using non-approved algorithms User Read, Execute

Digital signature generation and verification using non-approved
RSA, DSA, and ECDSA private key sizes

User Read, Execute

Digital signature generation using SHA-1 User Read, Execute

RSA key wrapping User Read

TLS connection using keys established by Diffie-Hellman with
non-approved key sizes

User Read, Write, Execute

TLS connection using keys established by RSA with key size less
than 2048 bits

User Read, Write, Execute

Asymmetric key generation using non-Approved RSA and DSA
key sizes

User Read, Write, Execute

3.3 Authentication
The module does not provide authentication of operators. Roles are implicitly assumed based on the

services that are executed.

4 Finite State Model
The diagram on the following page presents the module’s operational and error states.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 17 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Yes

No

Yes

No
State 2:

Power-On

State 3:

Power-On

Self-Test

Tests

Succeeded?

State 4:

Error

State 5:

User

State 7:

Conditional

Tests

Tests

Succeeded?

State 1:

Crypto

Officer

(Install)

State 6:

Key

Management

State 8:

Power-Off

Unload Unload

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 18 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

4.1 State Descriptions
The module has eight distinct states, as shown in the diagram above and described in the list below.

1) Crypto Officer State

In this state, the Crypto Officer is installing the cryptographic module.

2) Power-On State

The module transitions to the Power-On state when the module (shared library) is loaded into

memory by a user-mode process created by the host operating system.

3) Power-On Self-Test (POST) State

After being loaded, the module enters the POST state when either (a) the process calls the

FIPS_mode_set() API or (b) “fips=1” is set on the Linux kernel command line. The POST state will

execute the integrity tests as well as the self-tests. Depending on the test results, the module

will either enter the Error or User states.

Below is a list of errors that may occur during POST:

• FIPS_R_MODE_ALREADY_SET – “fips mode already set”

• FIPS_R_ENTROPY_INIT_FAILED – “entropy init failed”

• FIPS_R_FINGERPRINT_DOES_NOT_MATCH – “fingerprint does not match”

• FIPS_R_SELFTEST_FAILED – “fips selftest failed”

• FIPS_R_TEST_FAILURE – “test failure”

4) Error State

The POST failed or a conditional test failed. The module will terminate upon further use.

5) User State

The POST passed. The cryptographic algorithms can now be used.

6) Key Management State

The module creates Keys/CSPs used by crypto operations, on behalf of the User application.

7) Conditional Test State

The User application is performing a cryptographic operation, and the module performs

conditional tests as appropriate. Conditional tests include DRBG self-tests and pair-wise

consistency tests. Pair-wise consistency tests will be run during certain key management

operations. If the conditional test results in a fatal error, the module will enter the error state.

8) Power-Off State

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 19 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The operating system has terminated the User process and released its memory.

5 Operational Environment
The modifiable operational environment for the module is the Azure Linux operating system, running on

one of the supported hardware platforms specified in the Validated Platforms section. Azure Linux is

installed on a bare metal server blade or runs as a virtual machine using a hypervisor on the Azure Host

computer.

5.1 Single Operator
The underlying operating system is restricted to a single operator mode of operation. The application

that uses the cryptographic services is the single user of the module, even when the module is serving

multiple clients.

6 Cryptographic Key Management

6.1 Random Number and Key Generation
The module provides an SP 800-90A Rev1 compliant Deterministic Random Bit Generator (DRBG) for the

generation of keys and random numbers. A SP 800-90B compliant CPU time jitter RNG is used as

entropy source for seeding the DRBG. The jitter RNG is implemented within module’s logical boundary.

An application can provide a nonce, personalization string, and/or additional input string, that are also

used during seeding and reseeding the DRBG as specified by SP 800-90A Rev1. The personalization string

or additional input string specified by the application is concatenated with additional personalization

data obtained from the getrandom() system call. The jitter RBG provides at least 128 bits of entropy to

the DRBG during initialization and reseeding, which means the reader should be aware that “the module

generates cryptographic keys whose strengths are modified by available entropy.”

6.2 Key and CSP Management Summary
The following table outlines the Critical Security Parameters (CSPs) used by the cryptographic services

implemented in the module. All keys / CSPs are stored in RAM.

Key or CSP Generation Zeroization

AES Symmetric Key Established via TLS handshake or
not generated but passed in as
API input parameter.

EVP_Cipher_CTX_free(),
EVP_Cipher_CTX_reset() Triple-DES Symmetric Key

HMAC Key HMAC_CTX_free()

CMAC Key Not generated, passed in as API
input parameter

CMAC_CTX_free()

RSA Public and Private Keys Generated using the FIPS 186-4
standard, with a random value
from DRBG.

RSA_free()

DSA Public and Private Keys DSA_free()

ECDSA Public and Private Keys EC_KEY_Free()

Diffie-Hellman Public and
Private Keys

Generated as specified in SP
800-56A Rev3, with a random
value from DRBG.

DH_Free()

EC Diffie-Hellman Public and
Private Keys

EC_KEY_Free()

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 20 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

Shared Secret Generated during the Diffie-
Hellman or EC Diffie-Hellman
shared secret computation.

DH_free(), EC_KEY_Free()

SP 800-90B DRBG entropy input CPU time jitter RNG FIPS_drbg_free(),
RAND_DRBG_free()

TLS 1.2 Derived Key, Pre-Master
Secret and Master Secret

Established during the TLS
handshake, derived per SP 800-
135.

SSL_free()
SSL_clear()

PBKDF Password Entered by an operator KDF_pbkdf2_free()

PBKDF Derived Key Derived per SP 800-132. KDF_pbkdf2_free()

SSH-KDF Derived Keys Derived per SP 800-135 Rev1. KDF_sshkdf_free()

KDA OneStep Derived Key SP 800-56C Rev2 KDF
mechanism

sskdf_free()

NIST SP 800-90A Rev1
HASH_DRBG:
V and C

Not generated; secret value
maintained internal to the
module

FIPS_drbg_free(),
RAND_DRBG_free()

NIST SP 800-90A Rev1
HMAC_DRBG:
V and Key

Not generated; secret value
maintained internal to the
module

FIPS_drbg_free(),
RAND_DRBG_free()

NIST SP 800-90A Rev1
CTR_DRBG:
V and Key

Not generated; secret value
maintained internal to the
module

FIPS_drbg_free(),
RAND_DRBG_free()

6.3 Key and CSP Access
When an authorized application is the module user (the User role), it has access to all key data

generated during the operation of the module. The module does not support the output of intermediate

key generation values during the key generation process.

CSPs defined in an Approved mode of operation are not to be accessed or shared while in a non-

Approved mode of operation. CSPs shall not be generated while in a non-approved mode.

6.4 Key and CSP Storage
Symmetric and asymmetric keys are provided to the module by the appropriate API input parameters

and are destroyed when released by the appropriate API function calls. The module does not perform

persistent storage of keys. The keys and CSPs are stored as plaintext in RAM.

6.5 Key and CSP Zeroization
The application that uses the module is responsible for key destruction and zeroization. The module

provides API functions for key generation and destruction.

6.6 Key Establishment
The module provides Diffie-Hellman and EC Diffie-Hellman key agreement with the following security

strengths:

• Diffie-Hellman provides between 112 and 200 bits of encryption strength.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 21 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

• EC Diffie-Hellman provides between 112 and 256 bits of encryption strength.

The module provides AES and Triple-DES key wrapping with the following security strengths:

• AES (SP 800-38F) - using GCM, CCM, AES-KW, AES-KWP and approved block chaining modes with

HMAC for authentication:

o Between 128 and 256 bits of encryption strength.

• Triple-DES (SP 800-38F) – using approved block chaining modes with HMAC for authentication.

o 112 bits of encryption strength.

6.7 Key and CSP Entry and Output
The module will import from, or export to, all keys or CSPs to the authorized application. When

importing a key or CSP into the module, it is entered as plaintext form. When exporting a key or CSP

from the module it will be in plaintext form if required by the application which requested the export.

7 Self-Tests
The module performs self-tests to ensure integrity and correct functionality. Some functions require

continuous verification, such as the random number generator. The module will not perform

cryptographic functions while in its self-test or error states. If the self-test fails, the module enters the

error state and future cryptographic function calls fail. If the self-test passes, the module is loaded and

cryptographic functions are available for use.

During module initialization, the module performs power-on tests, which start with the HMAC integrity

test. No operator inputs or actions are required to run these tests. To execute the power-on tests on

demand, an application has to unload the module from memory, then re-load and re-initialize it.

See section 8.2.6 for additional details on detecting possible self-test errors and recovery procedures.

7.1 Power-On Self-Tests
Algorithm Use Self-Test Type

AES (ECB, CCM, GCM,
XTS modes)

Encryption and
Decryption

Cryptographic Algorithm Self-Test, Known
Answer Test (KAT) for each mode. Encryption
and decryption are tested separately.

AES (CMAC) Mac Generation and
Verification

KAT

Triple-DES (ECB, CBC) Encryption and
Decryption

KAT. Encryption and decryption are tested
separately.

Triple-DES (CMAC) Mac Generation and
Verification

KAT

DSA Domain Parameters
(PQG) Generation and
Verification

Pair-wise Consistency Test (PCT).

DSA Signature Generation
and Verification

PCT

DSA Key Generation PCT

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 22 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

RSA Key Generation PCT

RSA Signature Generation
and Verification

KAT, with signature generation and verification
tested separately.

ECDSA Key Pair Generation
and Verification

PCT

ECDSA Signature Generation
and Verification

PCT

SP 800-90A DRBG Rev1
(CTR, Hash, HMAC)

DRBG KAT (Health tests specified in section 11.3 of SP
800-90A Rev1)

SHA-1, SHA-2, SHA-3 Hashing KAT

HMAC-SHA-256 Module Integrity KAT

HMAC (HMAC-SHA-1, -
224, -256, -384, -512, -
512/224, -512/256)

Message Integrity KAT

KAS-ECC-SSC EC Diffie-Hellman Key
Agreement

Primitive “Z” computation KAT.

KAS-FFC-SSC, Safe
Primes

Diffie-Hellman Key
Agreement

 Primitive “Z” computation KAT.

(CVL) TLS-KDF, (CVL)
SSH KDF, PBKDF, KDA
OneStep

Key Derivation KAT

7.2 Conditional Tests
Algorithm Generation

DSA PCT, signature generation and verification.

RSA PCT, signature generation and verification; encryption and
decryption.

ECDSA PCT, signature generation and verification.

KAS-FFC-SSC Key Agreement Owner assurance of public key validity is implemented as
specified by SP 800-56A Rev3 section 5.6.2.1.3. For public
key validation, if Q is provided as part of the domain
parameters, a full validation according to SP 800-56A Rev3
section 5.6.2.3.1 is performed. If Q is not provided, a partial
validation according to SP 800-56A Rev3 section 5.6.2.3.2 is
performed.

KAS-ECC-SSC Key Agreement The module performs partial verification for ephemeral keys,
per SP 800-56A Rev3 section 5.6.2.3.4, and full validation for
other keys, per SP 800-56A rev3 section 5.6.2.3.3.

ENT SP 800-90B Repetition Count Test and Adaptive Proportion
Test as defined in sections 4.4.1 and 4.4.2 respectively.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 23 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

8 Guidance

8.1 Crypto Officer Guidance

8.1.1 Module Installation

Crypto Officers use the Installation instructions to install the Module in their environment.

The version of the RPM containing the FIPS validated module is stated in section 1. The integrity of the

RPM is automatically verified during the installation and the Crypto Officer shall not install the RPM file

if the RPM tool indicates an integrity error.

8.1.2 Operating Environment Configuration

To configure the operating environment to support FIPS, perform the following steps.

• Install the dracut-fips package:

dnf install dracut-fips

• Regenerate the initramfs

mkinitrd

• Modify the mariner.cfg file:

Append fips=1 to variable mariner_cmdline in /boot/mariner.cfg.

• Reboot the system.

• Check that the file /proc/sys/crypto/fips_enabled contains 1.

8.2 User Guidance

8.2.1 TLS and Diffie-Hellman

As required by SP 800-131A Rev2, Diffie-Hellman with keys smaller than 2048 bits must not be used.

However, the TLS protocol cannot enforce the support of FIPS approved Diffie-Hellman key sizes.

To enforce FIPS 140-2 compliance, the crypto officer must:

• If the module is used as a TLS server, the Diffie-Hellman parameters of “SSL_CTX_set_tmp_dh”

must be 2048 bits or larger

• If the module is used as a TLS client, the TLS server must be configured to only offer keys of 2048

bits or larger

8.2.2 TLS and RSA Key Transport

As required by IG D.9, RSA key encapsulation must not be used. To enforce FIPS 140-2 compliance, the

crypto officer must ensure TLS does not use the following ciphers:

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 24 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

• AES256-GCM-SHA384

• AES128-GCM-SHA256

• AES256-SHA256

• AES128-SHA256

• AES256-SHA

• AES128-SHA

8.2.3 AES-GCM-IV

• In case the module's power is lost and then restored, the key used for the AES GCM encryption

or decryption shall be redistributed.

• The nonce_explicit part of the IV does not exhaust the maximum number of possible values for a

given session key. The design of the TLS protocol in this module implicitly ensures that the

nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.

• The AES GCM IV generation shall only be used for the TLS protocol version 1.2, and complies

with [RFC5288]. Therefore, AES GCM IV generation is compliant with Scenario 1a from [FIPS140-

2_IG] IG A.5.

• When a GCM IV is used for decryption, the responsibility for the IV generation lies with the party

that performs the AES GCM encryption and therefore there is no restriction on the IV

generation.

• The module supports the TLS_*_GCM_* ciphersuites from SP 800-52 Rev2, section 3.3.1.

8.2.4 Triple-DES keys

According to IG A.13, the same Triple-DES key shall not be used to encrypt more than 216 64- bit blocks

of data. It is the user’s responsibility to make sure that the module complies with this requirement and

that the module does not exceed this limit.

8.2.5 RSA and DSA keys

The Module allows the use of 1024 bit RSA and DSA keys for legacy purposes, including signature

generation. RSA must be used with either 2048, 3072 or 4096-bit keys because larger key sizes have not

been CAVP tested. DSA must be used with either 2048 or 3072-bit keys because larger key sizes have not

been CAVP tested. To comply with the requirements of FIPS 140-2, a user must therefore only use keys

with 2048 bits or 3072 bits in FIPS Approved mode. Application can enforce the key generation bit

length restriction for RSA and DSA keys by setting the environment variable

OPENSSL_ENFORCE_MODULUS_BITS. This environment variable ensures that 1024-bit keys cannot be

generated.

8.2.6 Handling Self-Test Errors

If a self-test fails, the module enters the error state. These errors are reported through ERR interface.

The user can query information about the error using module interfaces such as ERR_get_error(), see

the OpenSSL manual for additional information. While in error state, any calls to a cryptographic service

of the module returns an error with the error message: 'FATAL FIPS SELFTEST FAILURE' printed to stderr

and the module is terminated with the abort() call.

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 25 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

The only way to recover from the error state is to restart the module. For a hard error such as a failed

POST, it may not be recoverable. If the restart of the module does not clear the error, the module

should be reinstalled.

8.2.7 Key derivation using SP 800-132 PBKDF

The module supports option 1(a) of section 5.4 from SP 800-132: master key (or a segment of it) is used

as the data protection key. The following requirements must be met:

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not be used

for other purposes. The length of the MK or DPK shall be of 112 bits or more.

• A portion of the salt, with a length of at least 128 bits, shall be generated randomly using the SP

800-90A DRBG.

• The iteration count shall be selected as large as possible, as long as the time required to

generate the key using the entered password is acceptable for the users. The minimum value

shall be 1000.

• Passwords or passphrases, used as an input for the PBKDF, shall not be used as cryptographic

keys.

• The length of the password or passphrase shall be of at least 20 characters, and shall consist of

lower-case, upper-case and numeric characters.

9 Mitigation of Other Attacks
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA decryption

or signature operations, blinding must be used to protect the RSA operation from that attack. The API

function RSA_blinding_on() turns blinding on for the RSA key and generates a random blinding factor.

The random number generator must be seeded prior to calling RSA_blinding_on().

For Weak Triple-DES keys, there is no weak key detection by default. The caller can explicitly set the

DES_check_key to 1 or call DES_check_key_parity() and/or DES_is_weak_key() functions on its own.

Weak Triple-DES keys may be detected by the following code:

/*-

* Weak and semi weak keys as taken from

* %A D.W. Davies

* %A W.L. Price

* %T Security for Computer Networks

* %I John Wiley & Sons

* %D 1984

*/

#define NUM_WEAK_KEY 16

static const DES_cblock weak_keys[NUM_WEAK_KEY] = {

 /* weak keys */

 {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01},

 {0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE},

 {0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E},

 {0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1},

 /* semi-weak keys */

 {0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE},

 {0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01},

 {0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1},

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 26 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

 {0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E},

 {0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1},

 {0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01},

 {0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE},

 {0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E},

 {0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E},

 {0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01},

 {0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE},

 {0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1}

};

10 Security Levels
The security level for each FIPS 140-2 security requirement is given in the following table.

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks 1

11 Additional Details
For more information about FIPS 140 validations of Microsoft products, please see:

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

12 Glossary and Abbreviations
• AES: Advanced Encryption Standard

• CAVP: Cryptographic Algorithm Validation Program

• CSP: Critical Security Parameter

• DES: Data Encryption Standard

• DRBG: Deterministic Random Bit Generator

• DSA: Digital Signature Algorithm

• ECB: Electronic Codebook

• HMAC: Hash Message Authentication Code

• OS: Operating System

• RNG: Random Number Generator

https://docs.microsoft.com/en-us/windows/security/threat-protection/fips-140-validation

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 27 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

• RSA: Rivest, Shamir, Adleman

• SHA: Secure Hash Algorithm

• SHS: Secure Hash Standard

13 References
• FIPS 140-2, Security Requirements for Cryptographic Modules,

https://csrc.nist.gov/publications/detail/fips/140/2/final

• FIPS 180-4, Secure Hash Standard (SHS),

https://csrc.nist.gov/publications/detail/fips/180/4/final

• FIPS 186-4, Digital Signature Standard (DSS),

https://csrc.nist.gov/publications/detail/fips/186/4/final

• FIPS 197, Advanced Encryption Standard (AES),

https://csrc.nist.gov/publications/detail/fips/197/final

• FIPS 198-1, The Keyed-Hash Message Authentication Code (HMAC),

https://csrc.nist.gov/publications/detail/fips/198/1/final

• FIPS 202, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions,

https://csrc.nist.gov/publications/detail/fips/202/final

• SP 800-38A, Recommendation for Block Cipher Modes of Operation: Methods and Techniques,

https://csrc.nist.gov/publications/detail/sp/800-38a/final

• SP 800-38B, Recommendation for Block Cipher Modes of Operation: the CMAC Mode for

Authentication, https://csrc.nist.gov/publications/detail/sp/800-38b/final

• SP 800-38C, Recommendation for Block Cipher Modes of Operation: the CCM Mode for

Authentication and Confidentiality, https://csrc.nist.gov/publications/detail/sp/800-38c/final

• NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, https://csrc.nist.gov/publications/detail/sp/800-38d/final

• NIST SP 800-38E, Recommendation for Block Cipher Modes of Operation: the XTS-AES Mode

for Confidentiality on Storage Devices, https://csrc.nist.gov/publications/detail/sp/800-

38e/final

• NIST SP 800-38F, Recommendation for Block Cipher Modes of Operation: Methods for Key

Wrapping, https://csrc.nist.gov/publications/detail/sp/800-38f/final

• NIST SP 800-52 Rev.2, Guidelines for the Selection, Configuration, and Use of Transport Layer

Security (TLS) Implementations, https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final

• NIST SP 800-56A Rev. 3, Recommendation for Pair-Wise Key-Establishment Schemes Using

Discrete Logarithm Cryptography, https://csrc.nist.gov/publications/detail/sp/800-56a/rev-

3/final

• NIST SP 800-56C Rev. 2, Recommendation for Key-Derivation Methods in Key-Establishment

Schemes, https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final

• NIST SP 800-67 Rev. 2, Recommendation for the Triple Data Encryption Algorithm (TDEA)

Block Cipher, https://csrc.nist.gov/publications/detail/sp/800-67/rev-2/final

https://csrc.nist.gov/publications/detail/fips/140/2/final
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/197/final
https://csrc.nist.gov/publications/detail/fips/198/1/final
https://csrc.nist.gov/publications/detail/fips/202/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38b/final
https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://csrc.nist.gov/publications/detail/sp/800-38e/final
https://csrc.nist.gov/publications/detail/sp/800-38f/final
https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
https://csrc.nist.gov/publications/detail/sp/800-56a/rev-3/final
https://csrc.nist.gov/publications/detail/sp/800-56c/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-67/rev-2/final

Microsoft Azure Linux OpenSSL Cryptographic Library Security Policy Document

© 2024 Microsoft Corporation. All Rights Reserved Page 28 of 28
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision).

• NIST SP 800-90A Rev. 1, Recommendation for Random Number Generation Using

Deterministic Random Bit Generators, https://csrc.nist.gov/publications/detail/sp/800-90a/rev-

1/final

• NIST SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation,

https://csrc.nist.gov/publications/detail/sp/800-90b/final

• NIST SP 800-131A Rev. 2, Transitioning the Use of Cryptographic Algorithms and Key Lengths,

https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final

• NIST SP 800-132, Recommendation for Password-Based Key Derivation: Part 1: Storage

Applications, https://csrc.nist.gov/publications/detail/sp/800-132/final

• NIST SP 800-135 Rev. 1, Recommendation for Existing Application-Specific Key Derivation

Functions, https://csrc.nist.gov/publications/detail/sp/800-135/rev-1/final

• ANSI X9.31, Digital Signatures Using Reversible Public Key Cryptography for the Financial

Services Industry (rDSA), https://standards.globalspec.com/std/1955293/ANSI%20X9.31

https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
https://csrc.nist.gov/publications/detail/sp/800-132/final
https://csrc.nist.gov/publications/detail/sp/800-135/rev-1/final
https://standards.globalspec.com/std/1955293/ANSI%20X9.31

