
SUSE Linux Enterprise Server OpenSSL
Cryptographic Module

version 4.1.1

FIPS 140-2 Non-Proprietary Security Policy

Doc version 4.1.5

Last update: 2023-09-27

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

©2023 SUSE, LLC / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Table of contents
1 Cryptographic Module Specifcation ... 3

1.1 Module Overview ... 3
1.2 Modes of Operation ... 5

2 Cryptographic Module Ports and Interfaces .. 6
3 Roles, Services and Authentication .. 7

3.1 Roles ... 7
3.2 Services .. 7
3.3 Operator Authentication ... 10
3.4 Algorithms .. 10
3.5 Allowed Algorithms ... 15

3.5.1 Non-Approved Algorithms .. 16
4 Physical Security ... 17
5 Operational Environment .. 18

5.1 Policy ... 18
6 Cryptographic Key Management ... 19

6.1 Random Number Generation .. 20
6.2 Key/CSP Generation .. 20
6.3 Key Agreement / Key Transport / Key Derivation .. 20
6.4 Key/CSP Entry and Output .. 22
6.5 Key/CSP Storage ... 22
6.6 Key/CSP Zeroization .. 22

7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) 23
8 Self Tests .. 24

8.1 Power-Up Tests ... 24
8.1.1 Integrity Tests ... 24
8.1.2 Cryptographic Algorithm Tests .. 24

8.2 On-Demand Self-Tests .. 25
8.3 Conditional Tests .. 25

9 Guidance .. 26
9.1 Crypto Ofcer Guidance ... 26

9.1.1 Module Installation .. 26
9.1.2 Operating Environment Confguration ... 26
9.1.3 Operational Environment limitations ... 27

9.2 User Guidance .. 27
9.2.1 TLS ... 27
9.2.2 API Functions ... 27
9.2.3 Use of ciphers .. 27
9.2.4 AES XTS ... 27
9.2.5 AES GCM IV ... 28
9.2.6 Triple-DES encryption .. 28
9.2.7 Environment Variables .. 28
9.2.8 Key derivation using SP800-132 PBKDF ... 28

9.3 Handling FIPS Related Errors .. 29
10 Mitigation of Other Attacks .. 30

10.1 Blinding Against RSA Timing Attacks .. 30
10.2 Weak Triple-DES Key Detection .. 30

Appendix A - TLS Cipher Suites ... 31
Appendix B - CAVP certifcates .. 34
Appendix C - Glossary and Abbreviations .. 37
Appendix D - References ... 38

©2023 SUSE, LLC / atsec information security. Page 2 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

1 Cryptographic Module Specifcation
This document is the non-proprietary security policy for the SUSE Linux Enterprise Server
OpenSSL Cryptographic Module version 4.1.1. It contains the security rules under which the
module must operate and describes how this module meets the requirements as specifed in
FIPS 140-2 (Federal Information Processing Standards Publication 140-2) for a security level 1
module.

This document was prepared in partial fulfllment of the FIPS 140-2 requirements for
cryptographic modules and is intended for security ofcers, developers, system
administrators and end-users.

FIPS 140-2 details the requirements of the Governments of the U.S. and Canada for
cryptographic modules, aimed at the objective of protecting sensitive but unclassifed
information. For more information on the FIPS 140-2 standard and validation program please
refer to the NIST website at http://csrc.nist.gov/.

Throughout the document, “the OpenSSL module” and “the module” are also used to refer to
the SUSE Linux Enterprise Server OpenSSL Cryptographic Module version 4.1.1.

1.1 Module Overview
The SUSE Linux Enterprise Server OpenSSL Cryptographic Module is a software cryptographic
module that implements the Transport Layer Security (TLS) protocol versions 1.0, 1.1 and
1.2, the Datagram Transport Layer Security (DTLS) protocol versions 1.0 and 1.2, and
general-purpose cryptographic services.

This Module provides cryptographic services to applications running in the user space of the
underlying operating system through a C language application program interface (API). The
Module may utilize processor instructions to optimize and increase performance. The Module
can act as a TLS server or TLS client and interacts with other entities via TLS/DTLS network
protocols.

For the purpose of the FIPS 140-2 validation, the module is a software-only, multi-chip
standalone cryptographic module validated at overall security level 1. Table 1 shows the
security level claimed for each of the eleven sections that comprise the FIPS 140-2 standard:

FIPS 140-2 Section Security
Level

1 Cryptographic Module Specifcation 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks 1

Table 1: Security Levels

©2023 SUSE, LLC / atsec information security. Page 3 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

http://csrc.nist.gov/

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Table 2 lists the software components of the cryptographic module, which defnes its logical
boundary.

Component Description

/usr/lib64/libcrypto.so.1.1 Shared library for cryptographic algorithms.

/usr/lib64/libssl.so.1.1 Shared library for TLS/DTLS network protocols.

/usr/lib64/.libcrypto.so.1.1.hmac Integrity check HMAC value for the libcrypto shared
library.

/usr/lib64/.libssl.so.1.1.hmac Integrity check HMAC value for the libssl shared library.

Table 2: Cryptographic Module Components

The software block diagram below shows the logical boundary of the module, and its
interfaces with the operational environment.

 Figure 1: Software Block Diagram

The module is aimed to run on a general purpose computer (GPC). Table 3 shows the
platforms on which the module has been tested, and whether they use Processor Algorithm
Accelerators (PAA) or Processor Algorithm Implementations (PAI) in the cryptographic
algorithm implementations:

Platform Processor Test Confguration

Dell EMC PowerEdge 640 Intel Cascade Lake
Xeon Gold 6234

SUSE Linux Enterprise Server 15 SP2 with
and without AES-NI (PAA)

IBM System Z/15 IBM z15 SUSE Linux Enterprise Server 15 SP2 with
and without CPACF (PAI)

Gigabyte R181-T90 Cavium ThunderX2
CN9975 ARMv8

SUSE Linux Enterprise Server 15 SP2 with
and without Crypto Extensions (PAA)

Table 3: Tested Platforms

©2023 SUSE, LLC / atsec information security. Page 4 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Note: Per FIPS 140-2 IG G.5, the Cryptographic Module Validation Program (CMVP) makes no
statement as to the correct operation of the module or the security strengths of the
generated keys when this module is ported and executed in an operational environment not
listed on the validation certifcate.

The physical boundary of the module is the surface of the case of the tested platform. Figure
2 shows the hardware block diagram including major hardware components of a GPC.

Figure 2: Hardware Block Diagram

1.2 Modes of Operation
The module supports two modes of operation:

• FIPS mode (the Approved mode of operation): only approved or allowed security
functions with sufcient security strength can be used.

• non-FIPS mode (the non-Approved mode of operation): only non-approved security
functions can be used.

The module enters FIPS mode after power-up tests succeed. Once the module is operational,
the mode of operation is implicitly assumed depending on the security function invoked and
the security strength of the cryptographic keys.

Critical security parameters (CSPs) used or stored in FIPS mode are not used in non-FIPS
mode, and vice versa.

©2023 SUSE, LLC / atsec information security. Page 5 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

2 Cryptographic Module Ports and Interfaces
As a software-only module, the module does not have physical ports. For the purpose of the
FIPS 140-2 validation, the physical ports are interpreted to be the physical ports of the
hardware platform on which it runs.

The logical interfaces are the API through which applications request services, and the TLS
protocol internal state and messages sent and received from the TCP/IP protocol. The ports
and interfaces are shown in the following table.

FIPS
Interface

Physical Port Logical Interface

Data Input Ethernet ports API input parameters, kernel I/O network or fles
on flesystem, TLS protocol input messages.

Data Output Ethernet ports API output parameters, kernel I/O network or fles
on flesystem, TLS protocol output messages.

Control Input Ethernet port API function calls, API input parameters for
control.

Status Output Ethernet port API return values.

Power Input PC Power Supply Port N/A

Table 4: Ports and Interfaces

©2023 SUSE, LLC / atsec information security. Page 6 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

3 Roles, Services and Authentication

3.1 Roles
The module supports the following roles:

⚫ User role: performs cryptographic services (in both FIPS mode and non-FIPS mode),
TLS network protocol, key zeroization, get status, and on-demand self-test.

⚫ Crypto Ofcer role: performs module installation and confguration.

3.2 Services
The module provides services to the users that assume one of the available roles. All services
are shown in Table 5 and Table 6.

Table 5 lists the services available in FIPS mode. For each service, the table lists the
associated cryptographic algorithm(s), the role to perform the service, the cryptographic keys
or CSPs involved, and their access type(s). The following convention is used to specify access
rights to a CSP:

• Create: the calling application can create a new CSP.

• Read: the calling application can read the CSP.

• Update: the calling application can write a new value to the CSP.

• Zeroize: the calling application can zeroize the CSP.

• n/a: the calling application does not access any CSP or key during its operation.

The details of the approved cryptographic algorithms including the CAVP certifcate numbers
can be found in Table 7.

Service Algorithm Role Keys/CSPs Access

Cryptographic Services

Symmetric
encryption and
decryption

AES User AES key Read

Three-key Triple-DES User Three-key Triple-DES key Read

Symmetric
decryption

Two-key Triple-DES User Two-key Triple-DES key Read

RSA key generation RSA, DRBG User RSA public and private
keys

Create

RSA digital signature
generation and
verifcation

RSA, SHS User RSA public and private
keys

Read

DSA key generation DSA, DRBG User DSA public and private
keys

Create

DSA domain
parameter
generation

DSA User None n/a

DSA digital signature
generation and
verifcation

DSA, SHS User DSA public and private
keys

Read

©2023 SUSE, LLC / atsec information security. Page 7 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Algorithm Role Keys/CSPs Access

ECDSA key
generation

ECDSA, DRBG User ECDSA public and private
keys

Create

ECDSA public key
validation

ECDSA User ECDSA public key Read

ECDSA signature
generation and
verifcation

ECDSA, DRBG, SHS User ECDSA public and private
keys

Read

Random number
generation

DRBG User Entropy input string, seed
material

Read

Internal state Update

Message digest SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

User None N/A

SHA3-224, SHA3-256,
SHA3-384, SHA3-512

Message
authentication code
(MAC)

HMAC User HMAC key Read

CMAC with AES User AES key Read

CMAC with Triple-DES User Triple-DES key Read

Key encapsulation RSA User RSA public and private
keys

Read

Key wrapping AES-KW, AES-KWP User AES key Read

Dife-Hellman shared
secret computation

KAS-FFC-SSC User Dife-Hellman public and
private keys

Create,
Read

Shared secret Create

Dife-Hellman key
generation and
verifcation using
safe primes

Safe Primes Key
Generation and
Verifcation

User Dife-Hellman public and
private keys

Create,
Read

EC Dife-Hellman
shared secret
computation

KAS-ECC-SSC User EC Dife-Hellman public
and private keys

Create,
Read

Shared secret

Key derivation TLS KDF User Shared secret Read

Derived key Create

SSH KDF User Shared secret Read

Derived key Create

PBKDF KDF User Password/passphrase Read

Derived key Create

Network Protocol Services

Transport Layer
Security (TLS)

Supported cipher suites
in FIPS mode (see

User RSA, DSA or ECDSA public
and private keys

Read

©2023 SUSE, LLC / atsec information security. Page 8 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Algorithm Role Keys/CSPs Access

network protocol
v1.0, v1.1 and v1.2

Appendix A for the
complete list of valid
cipher suites)

TLS pre_master_secret,
TLS master_secret, Dife
Hellman or EC Dife
Hellman public and
private keys, AES or
Triple-DES key, HMAC key

Create

TLS extensions n/a User RSA, DSA or ECDSA public
and private keys

Read

Certifcate
management

n/a Crypto
Ofcer

RSA, DSA or ECDSA public
and private keys

Read

Other FIPS-related Services

Show status N/A User None N/A

Zeroization N/A User All CSPs Zeroize

Self-tests AES, Dife-Hellman,
DSA, EC Dife-Hellman,
ECDSA, DRBG, HMAC,
RSA, SHS, Triple-DES

User None N/A

Module installation
and confguration

N/A Crypto
Ofcer

None N/A

Module initialization N/A Crypto
Ofcer

None N/A

Table 5: Services in FIPS mode of operation

Table 6 lists the services only available in non-FIPS mode of operation. The details of the non-
approved cryptographic algorithms available in non-FIPS mode can be found in Table 9.

Service Algorithm / Modes Role Keys Access

Cryptographic Services

Symmetric
encryption and
decryption

ARIA, Blowfsh,
Camellia, CAST, CAST5,
ChaCha20, DES, RC2,
RC4, SEED, and
Poly1305

User Symmetric key Read

Symmetric
encryption

Two-key Triple-DES User Two-key Triple-DES key Read

Authenticated
encryption cipher for
encryption and
decryption

AES and SHA from
multi-bufer or stitch
implementations listed
in Table 9

User AES key, HMAC key Read

Asymmetric key
generation

RSA, DSA and ECDSA
restrictions listed in
Table 9

User RSA, DSA or ECDSA public
and private keys

Create

Digital signature
generation and
verifcation

RSA, DSA and ECDSA
and message digest
restrictions listed in
Table 9

User RSA, DSA or ECDSA public
and private keys

Read

©2023 SUSE, LLC / atsec information security. Page 9 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Service Algorithm / Modes Role Keys Access

Message digest Blake2, Gost, MD4,
MD5, MDC2, RMD160

User None N/A

Message
authentication code
(MAC)

HMAC and CMAC
restrictions listed in
Table 9
GMAC

User HMAC key, two-key Triple-
DES key

Read

RSA key
encapsulation

RSA keys smaller than
2048 bits.

User RSA key pair Read

Dife-Hellman shared
secret computation

Dife-Hellman
restrictions listed in
Table 9

User Dife-Hellman public and
private keys

Read

EC Dife-Hellman
shared secret
computation

Restrictions listed in
Table 9

User EC Dife-Hellman public
and private keys

Read

Key derivation KDF TLS v1.3 User Shared secret Read

Derived key Create

KDF PBKDF using non-
approved message
digest.

User Password/passphrase Read

Derived key Create

Network Protocol Services

Transport Layer
Security (TLS)
network protocol
v1.0, v1.1 and v1.2

Non-supported cipher
suites (see Appendix A
for the complete list of
valid cipher suites)

User RSA, DSA or ECDSA public
and private keys

Read

TLS pre_master_secret,
TLS master_secret, Dife
Hellman or EC Dife
Hellman public and
private keys, AES or
Triple-DES key, HMAC key

Create

Transport Layer
Security (TLS)
network protocol
v1.3

User RSA, DSA or ECDSA public
and private keys

Read

TLS pre_master_secret,
TLS master_secret, Dife
Hellman or EC Dife
Hellman public and
private keys, AES or
Triple-DES key, HMAC key

Create

Table 6: Services in non-FIPS mode of operation

3.3 Operator Authentication
The module does not implement user authentication. The role of the user is implicitly
assumed based on the service requested.

3.4 Algorithms
The module provides multiple implementations of algorithms for the diferent processor
architectures:

• For the Intel Xeon processor architecture.

©2023 SUSE, LLC / atsec information security. Page 10 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

◦ use of AES-NI (PAA), and SSSE3 and strict assembler instructions (non-PAA) for AES
implementations;

◦ use of AVX2, AVX, SSSE3 and strict assembler instructions for SHA
implementations (non-PAA);

◦ use of the CLMUL instruction set and strict assembler for GHASH that is used in
GCM mode (non-PAA);

◦ C implementation for all algorithms (non-PAA).

• For the IBM z15 processor architecture.

◦ use of the CPACF (PAI) and strict assembler (non-PAI) for AES, SHA and GHASH
implementations;

◦ use of the CPACF for ECDSA signature generation and verifcation (PAI);

◦ C implementation for all algorithms (non-PAI).

• For the ARMv8 processor architecture.

◦ use of the Crypto Extensions and NEON bit slicing instructions for AES and SHA
implementations (PAA);

◦ C implementation for all algorithms (non-PAA).

The module uses the most efcient implementation based on the processor’s capability. This
behavior can be also controlled through the use of the capability mask environment variables
OPENSSL_ia32cap (for Intel processors), OPENSSL_s390xcap (for IBM z/series processors) and
OPENSSL_armcap (for ARM processors). Notice that only one algorithm implementation can
be executed in runtime.

Notice that for the Transport Layer Security (TLS) protocol, no parts of this protocol, other
than the key derivation function (SP800-135 TLS KDF), have been tested by the CAVP. For
the Secure Shell (SSH) protocol, the module only implements the key derivation function
(SP800-135 SSH KDF). No other parts of this protocol are implemented.

Table 7 lists the approved algorithms, the CAVP certifcates, and other associated information
of the cryptographic implementations in FIPS mode. Please refer to Appendix B for more
detailed information about the algorithm implementations tested for each CAVP certifcate.

Algorithm Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use Standard CAVP
Certs

AES ECB, CBC, CFB1,
CFB8, CFB128, OFB,
CTR

128, 192, 256 Data Encryption
and Decryption

FIPS197,
SP800-38A

A343
A350
A351
A357
A378
A381
A508
A1498

CMAC 128, 192, 256 MAC Generation
and Verifcation

SP800-38B

CCM 128, 192, 256 Data Encryption
and Decryption

SP800-38C

XTS 128, 256 Data Encryption
and Decryption
for Data Storage

SP800-38E

KW, KWP 128, 192, 256 Key Wrapping
and Unwrapping

SP800-38F

©2023 SUSE, LLC / atsec information security. Page 11 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use Standard CAVP
Certs

GCM 128, 192, 256 Data Encryption
and Decryption

SP800-38D A339
A340
A344
A346
A349
A354
A358
A362
A370
A373
A377
A379
A509
A1498

DRBG CTR_DRBG:
AES-128, AES-192,
AES-256
with/without DF,
with/without PR

N/A Deterministic
Random Bit
Generation

SP800-90A A348
A360
A365
A369
A382
A508
A1498

Hash_DRBG:
SHA-1, SHA-224
SHA-256, SHA-384,
SHA-512
with/without PR

N/A Deterministic
Random Bit
Generation

SP800-90A A342
A363
A375
A376
A380
A383
A1498

HMAC_DRBG:
SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512
with/without PR

N/A Deterministic
Random Bit
Generation

SP800-90A A342
A363
A375
A376
A380
A383
A1498

DSA L=2048, N=224
L=2048, N=256
L=3072, N=256

Key Pair
Generation

FIPS186-4 A353
A360
A364
A365
A367
A386
A1498

SHA-224 L=2048, N=224 Domain
Parameter
GenerationSHA-256 L=2048, N=256

L=3072, N=256

SHA-224, SHA-256,
SHA-384, SHA-512

L=2048, N=224 Digital Signature
Generation

SHA-256, SHA-384,
SHA-512

L=2048, N=256
L=3072, N=256

SHA-224 L=2048, N=224 Domain
Parameter
VerifcationSHA-256 L=2048, N=256

L=3072, N=256

©2023 SUSE, LLC / atsec information security. Page 12 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use Standard CAVP
Certs

SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

L=1024, N=160
L=2048, N=224
L=2048, N=256
L=3072, N=256

Digital Signature
Verifcation

ECDSA P-256, P-384, P-521 Key Pair
Generation
Public Key
Verifcation

FIPS186-4 A353
A360
A364
A365
A367
A386
A1498

SHA-224, SHA-256,
SHA-384, SHA-512

P-224, P-256,
P-384, P-521

Digital Signature
Generation

SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

P-224, P-256,
P-384, P-521

Digital Signature
Verifcation

HMAC SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

112 or greater Message
authentication
code

FIPS198-1 A353
A360
A364
A365
A367
A386
A1498

SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

A352
A359
A368
A372
A374
A1498

KAS-ECC-
SSC

ECC
Ephemeral Unifed
Scheme

P-224, P-256,
P-384, P521

EC Dife-
Hellman Key
Agreement

SP800-
56Arev3

A684
A1498

KAS-FFC-
SSC

dhEphem Scheme
with safe prime
groups

2048, 3072, 4096,
6144, 8192

Dife-Hellman
Key Agreement

SP800-
56Arev3

A684
A1498

Safe Primes
Key
Generation
and
Verifcation

Safe Prime Groups:
fdhe2048,
fdhe3072,
fdhe4096,
fdhe6144,
fdhe8192,
MODP-2048,
MODP-3072,
MODP-4096,
MODP-6144,
MODP-8192

2048, 3072, 4096,
6144, 8192

Dife-Hellman
Key Agreement

SP800-
56Arev3

A684
A1498

KDF PBKDF HMAC-SHA-1,
HMAC-SHA-224,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512

Key Derivation SP800-132 A353
A360
A364
A365
A367
A386
A1498

©2023 SUSE, LLC / atsec information security. Page 13 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use Standard CAVP
Certs

HMAC-SHA3-224,
HMAC-SHA3-256,
HMAC-SHA3-384,
HMAC-SHA3-512

Key Derivation SP800-132 A352
A359
A368
A372
A374
A1498

KDF SSH AES with SHA-1,
SHA-256, SHA-384,
SHA-512

128, 192, 256 Key Derivation SP800-135 CVLs.
A355
A366
A371
A385
A1498

Triple-DES with
SHA-1, SHA-256,
SHA-384, SHA-512

192

KDF TLS TLS v1.0, v1.1, v1.2 Key Derivation SP800-135 CVLs.
A353
A360
A364
A365
A367
A386
A1498

RSA 2048, 3072, 4096 Key Pair
Generation

FIPS186-4 A353
A360
A364
A365
A1498
A367
A386
A1498

PKCS#1v1.5:
SHA-224, SHA-256,
SHA-384, SHA-512

2048, 3072, 4096 Digital Signature
Generation

PSS:
SHA-224, SHA-256,
SHA-384, SHA-512

2048, 3072, 4096

X9.31:
SHA-256, SHA-384,
SHA-512

2048, 3072, 4096

PKCS#1v1.5:
SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

1024, 2048, 3072,
4096

Digital Signature
Verifcation

PSS:
SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

1024, 2048, 3072,
4096

X9.31:
SHA-1, SHA-256,
SHA-384, SHA-512

1024, 2048, 3072,
4096

SHS SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512

N/A Message Digest FIPS180-4 A353
A360
A364
A365
A367
A386
A1498

©2023 SUSE, LLC / atsec information security. Page 14 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use Standard CAVP
Certs

SHA-3 SHA3-224,
SHA3-256,
SHA3-384,
SHA3-512

N/A Message Digest FIPS202 A352
A359
A368
A372
A374
A507
A1498

Triple-DES ECB, CBC, CFB1,
CFB8, CFB64, OFB

192 (two-key
Triple-DES)

Data Decryption SP800-67
SP800-38A

A341
A345
A347

192 (three-key
Triple-DES)

Data Encryption
and Decryption

CMAC 192 MAC Generation
and Verifcation

SP800-67
SP800-38B

KTS AES KW, KWP 128, 192, 256 Key Wrapping
and unwrapping

SP800-38F A343
A350
A351
A357
A378
A381
A508
A1498

AES CCM 128, 256 Key wrapping
and unwrapping
as part of the
cipher suites in
the TLS protocol

AES GCM 128, 256 A339
A340
A344
A346
A349
A354
A358
A362
A370
A373
A377
A379
A509
A1498

AES CBC and HMAC 128, 256 A343
A350
A351
A357
A378
A381
A508
A353
A360
A364
A365
A367
A386
A1498

©2023 SUSE, LLC / atsec information security. Page 15 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Mode / Method Key Lengths,
Curves or Moduli

(in bits)

Use Standard CAVP
Certs

Triple-DES CBC and
HMAC

192 A341
A345
A347
A353
A360
A364
A365
A367
A386

Table 7: Approved Cryptographic Algorithms

3.5 Allowed Algorithms
Table 8 describes the non-approved but allowed algorithms in FIPS mode:

Algorithm Use

RSA Key Encapsulation with Encryption and
Decryption Primitives with keys equal or larger than
2048 bits up to 15360 or more.

Key Establishment; allowed per
[FIPS140-2_IG] D.9

MD5 Pseudo-random function (PRF) in TLS
v1.0 and v1.1; allowed per
[SP800-52rev2]

NDRNG The module obtains the entropy data
from a NDRNG to seed the DRBG.

Table 8: Non-Approved but Allowed Algorithms

3.5.1 Non-Approved Algorithms
Table 9 shows the non-Approved cryptographic algorithms implemented in the module that
are only available in non-FIPS mode.

Algorithm Use

ARIA, Blowfsh, Camellia, CAST, CAST5,
ChaCha20, DES, RC2, RC4, SEED, SM4

Data Encryption and Decryption.

2-key Triple-DES Data Encryption.

Chacha20 and Poly1305 Authenticated Data Encryption and
Decryption.

Blake2, GHASH, MD4, MD5, RMD160, SM3 Message Digest.

GMAC, SipHash Message Authentication Code.

HMAC with less than 112-bit keys Message Authentication Code.

CMAC with 2-key Triple-DES Message Authentication Code.

SM2 Digital Signature Generation and
Verifcation.

SRP Key Agreement.

SHA-1 Digital Signature Generation, DSA Domain
Parameter Generation.

©2023 SUSE, LLC / atsec information security. Page 16 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Use

DSA with keys smaller than 2048 bits or greater
than 3072 bits.

Key Pair Generation, Domain Parameter
Generation.

DSA with keys smaller than 2048 bits or greater
than 3072 bits.
DSA with L=2048, N=256 or L=3072, N=256
and using SHA-1 or SHA-224.

Digital Signature Generation.

DSA with keys smaller than 1024 bits or greater
than 3072 bits.

Digital Signature Verifcation.

RSA with keys smaller than 2048 bits or greater
than 4096 bits.

Key Pair Generation, Domain Parameter
Verifcation, Digital Signature Generation.

RSA with keys smaller than 1024 bits or greater
than 4096 bits.

Digital Signature Verifcation.

RSA with keys smaller than 2048 bits Key Encapsulation.

ECDSA with P-192 and P-224 curves, K curves, B
curves and non-NIST curves.

Key Pair Generation and Public Key
Validation.

ECDSA with P-192 curve, K curves, B curves and
non-NIST curves.

Digital Signature Generation and
Verifcation.

Dife-Hellman with keys generated with domain
parameters other than safe primes.

Key Agreement, Shared Secret
computation.

EC Dife-Hellman with P-192 curve, K curves, B
curves and non-NIST curves.

Key Agreement, Shared Secret
computation.

Multiblock ciphers using AES in CBC mode with
128 and 256 bit keys and HMAC SHA-1 and SHA-
256 (available only in Intel processors with AES-
NI capability).

Authenticated Data Encryption and
Decryption.

AES and SHA from multi-bufer or stitch
implementations

Data Encryption and Decryption,
Message Digest.

KDF TLS for v1.3 Key Derivation.

PBKDF with non-approved message digest
algorithms.

Key Derivation.

Table 9: Non-Approved Cryptographic Algorithms

©2023 SUSE, LLC / atsec information security. Page 17 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

4 Physical Security
The module is comprised of software only and thus does not claim any physical security.

©2023 SUSE, LLC / atsec information security. Page 18 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

5 Operational Environment
This module operates in a modifable operational environment per the FIPS 140-2 level 1
specifcations. The module runs on a commercially available general-purpose operating
system executing on the hardware specifed in Table 3.

The SUSE Linux Enterprise Server operating system is used as the basis of other products
which include but are not limited to:

• SLES

• SLES for SAP

• SLED

• SLE Micro

Compliance is maintained for these products whenever the binary is found unchanged.

Note: The CMVP makes no statement as to the correct operation of the module or the
security strengths of the generated keys when so ported if the specifc operational
environment is not listed on the validation certifcate.

5.1 Policy
The operating system is restricted to a single operator; concurrent operators are explicitly
excluded.

The application that requests cryptographic services is the single user of the module.

Instrumentation tools like the ptrace system call, gdb and strace utilities, as well as other
tracing mechanisms ofered by the Linux environment such as ftrace or systemtap, shall not
be used in the operational environment. The use of any of these tools implies that the
cryptographic module is running on a non-tested operational environment.

©2023 SUSE, LLC / atsec information security. Page 19 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

6 Cryptographic Key Management
Table 10 summarizes the Critical Security Parameters (CSPs) that are used by the
cryptographic services implemented in the module:

Name Generation Entry and Output Zeroization

AES keys Key material is entered
via API parameters or
generated during Dife-
Hellman or EC Dife-
Hellman key agreement.

Keys are passed into the
module via API input
parameters in plaintext.

EVP_CIPHER_CTX_free(),
EVP_CIPHER_CTX_reset()

Triple-DES keys EVP_CIPHER_CTX_free(),
EVP_CIPHER_CTX_reset()

HMAC keys HMAC_CTX_free()

RSA public and
private keys

Public and private keys
are generated using the
FIPS 186-4 key
generation method;
random values are
obtained from the
SP800-90A DRBG.

Keys are passed into the
module via API input
parameters in plaintext.

Keys are passed out of
the module via API
output parameters in
plaintext.

RSA_free()

DSA public and
private keys

DSA_free()

ECDSA public and
private keys

EC_KEY_free()

Dife-Hellman
public and private
keys

Public and private keys
are generating using the
SP 800-56Arev3 Safe
Primes key generation
method, random values
are obtained from the
SP800-90A DRBG.

The key is passed into
the module via API input
parameters in plaintext.

Keys are passed out of
the module via API
output parameters in
plaintext.

DH_free()

EC Dife-Hellman
public and private
keys

Public and private keys
are generated using the
FIPS 186-4 key
generation method,
random values are
obtained from the
SP800 90A DRBG.

The key is passed into
the module via API input
parameters in plaintext.

Keys are passed out of
the module via API
output parameters in
plaintext.

EC_KEY_free()

Shared secret Generated during the
Dife-Hellman or EC
Dife-Hellman key
agreement and shared
secret computation.

N/A DH_free(),
EC_KEY_free()

Password or
passphrase

Not Applicable. Key
material is entered via
API parameters.

The key is passed into
the module via API input
parameters in plaintext.

EVP_PKEY_free()

Derived key Generated during the
TLS KDF, SSH KDF or
PBKDF

Keys are passed out of
the module via API
output parameters in
plaintext.

EVP_PKEY_free()

Entropy input
string and seed
material

Obtained from NDRNG N/A FIPS_drbg_free()

DRBG internal
state: V value, C
value, key (if
applicable)

Derived from entropy
input as defned in
SP800-90A

N/A FIPS_drbg_free()

©2023 SUSE, LLC / atsec information security. Page 20 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Name Generation Entry and Output Zeroization

TLS
pre_master_secret

Generated from the
SP800-90A DRBG when
module acts as a TLS
client, for RSA cipher
suites.

Received from TLS client
(network), wrapped with
TLS server's RSA public
key, when module acts
as a TLS server with RSA
cipher suites.

SSL_free(),
SSL_clear()

Generated during key
agreement for Dife-
Hellman or EC Dife-
Hellman cipher suites.

N/A

TLS master_secret Derived from TLS
pre_master_secret
using TLS KDF.

N/A SSL_free(),
SSL_clear()

Table 10: Life cycle of Keys or CSPs

The following sections describe how CSPs, in particular cryptographic keys, are managed
during its life cycle.

6.1 Random Number Generation
The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for
the creation of seeds for asymmetric keys, and server and client random numbers for the TLS
protocol. In addition, the module provides a Random Number Generation service to calling
applications.

The DRBG supports the Hash_DRBG, HMAC_DRBG and CTR_DRBG mechanisms. The DRBG is
initialized during module initialization; the module loads by default the DRBG using the
CTR_DRBG mechanism with AES-256, with derivation function, and without prediction
resistance. A diferent DRBG mechanism can be chosen through an API function call.

The module uses a Non-Deterministic Random Number Generator (NDRNG), getrandom()
system call, as the entropy source for seeding the DRBG. The NDRNG is provided by the
operational environment (i.e., Linux RNG), which is within the module’s physical boundary but
outside of the module’s logical boundary. The NDRNG provides at least 128 bits of entropy to
the DRBG during initialization (seed) and reseeding (reseed).

The Linux kernel performs conditional self-tests on the output of NDRNG to ensure that
consecutive random numbers do not repeat. The module performs the DRBG health tests as
defned in section 11.3 of [SP800-90A].

6.2 Key/CSP Generation
The module provides an SP800-90A-compliant Deterministic Random Bit Generator (DRBG)
for creation of key components of asymmetric keys, and random number generation.

The key generation methods implemented in the module for Approved services in FIPS mode
is compliant with [SP800-133].

For generating RSA, DSA and ECDSA keys the module implements asymmetric key
generation services compliant with [FIPS186-4]. A seed (i.e. the random value) used in
asymmetric key generation is directly obtained from the [SP800-90A] DRBG.

The public and private keys used in the EC Dife-Hellman key agreement schemes are
generated internally by the module using the ECDSA key generation method compliant with
[FIPS186-4] and [SP800-56Arev3]. The Dife-Hellman key agreement scheme is also
compliant with [SP800-56Arev3], and generates keys using safe primes defned in RFC7919
and RFC3526, as described in the next section.

The module generates cryptographic keys whose strengths are modifed by available entropy.

©2023 SUSE, LLC / atsec information security. Page 21 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

6.3 Key Agreement / Key Transport / Key Derivation
The module provides Dife-Hellman and EC Dife-Hellman key agreement schemes compliant
with SP800-56rev3, and used as part of the TLS protocol key exchange in accordance with
scenario X1 (2) of IG D.8; that is, the shared secret computation (KAS-FFC-SSC and KAS-ECC-
SSC) followed by the derivation of the keying material using SP800-135 KDF.

For Dife-Hellman, the module supports the use of safe primes from RFC7919 for domain
parameters and key generation, which are used in the TLS key agreement implemented by
the module.

• TLS (RFC7919)

◦ fdhe2048 (ID = 256)

◦ fdhe3072 (ID = 257)

◦ fdhe4096 (ID = 258)

◦ fdhe6144 (ID = 259)

◦ fdhe8192 (ID = 260)

The module also supports the use of safe primes from RFC3526, which are part of the
Modular Exponential (MODP) Dife-Hellman groups that can be used for Internet Key
Exchange (IKE). Note that the module only implements key generation and verifcation, and
shared secret computation using safe primes, but no part of the IKE protocol.

• IKEv2 (RFC3526)

◦ MODP-2048 (ID=14)

◦ MODP-3072 (ID=15)

◦ MODP-4096 (ID=16)

◦ MODP-6144 (ID=17)

◦ MODP-8192 (ID=18)

The module also provides the following key transport mechanisms:

• Key wrapping using AES-KW and AES-KWP.

• Key wrapping using AES-CCM, AES-GCM, and AES in CBC mode and HMAC, used by the
TLS protocol cipher suites with 128-bit or 256-bit keys.

• Key wrapping using Triple-DES in CBC mode and HMAC, used by the TLS protocol
cipher suites with 192-bit keys.

• RSA key encapsulation using private key encryption and public key decryption (also
used as part of the TLS protocol key exchange).

According to Table 2: Comparable strengths in [SP 800-57], the key sizes of AES, RSA, Dife-
Hellman and EC Dife-Hellman provides the following security strength in FIPS mode of
operation:

• AES key wrapping using AES in KW, KWP provides between 128 and 256 bits of
encryption strength.

• AES key wrapping using AES-CCM, AES-GCM, and AES in CBC mode and HMAC,
provides between 128 or 256 bits of encryption strength.

• Triple-DES key wrapping using HMAC provides 112 bits of encryption strength.

• RSA key wrapping1 provides between 112 and 256 bits of encryption strength.

• Dife-Hellman key agreement provides between 112 and 200 bits of encryption
strength.

1 Key wrapping” is used instead of “key encapsulation” to show how the algorithm will
appear in the certifcate per IG G.13.

©2023 SUSE, LLC / atsec information security. Page 22 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• EC Dife-Hellman key agreement provides between 128 and 256 bits of encryption
strength.

Note: As the module supports RSA key pairs greater than 2048 bits up to 15360 bits or more,
the encryption strength 256 bits is claimed for RSA key encapsulation.

The module supports the following key derivation methods according to [SP800-135]:

• KDF for the TLS protocol, used as pseudo-random functions (PRF) for TLSv1.0/1.1 and
TLSv1.2.

• KDF for the SSHv2 protocol.

The module also supports password-based key derivation (PBKDF). The implementation is
compliant with option 1a of [SP-800-132]. Keys derived from passwords or passphrases using
this method can only be used in storage applications.

6.4 Key/CSP Entry and Output
The module does not support manual key entry or intermediate key generation key output.
The keys are provided to the module via API input parameters in plaintext form and output
via API output parameters in plaintext form. This is allowed by [FIPS140-2_IG] IG 7.7,
according to the “CM Software to/from App Software via GPC INT Path” entry on the Key
Establishment Table.

6.5 Key/CSP Storage
Symmetric keys, HMAC keys, public and private keys are provided to the module by the
calling application via API input parameters, and are destroyed by the module when invoking
the appropriate API function calls.

The module does not perform persistent storage of keys. The keys and CSPs are stored as
plaintext in the RAM. The only exception is the HMAC key used for the Integrity Test, which is
stored in the module and relies on the operating system for protection.

6.6 Key/CSP Zeroization
The memory occupied by keys is allocated by regular memory allocation operating system
calls. The application is responsible for calling the appropriate zeroization functions provided
in the module's API and listed in Table 10. Calling the SSL_free() and SSL_clear() will zeroize
the keys and CSPs stored in the TLS protocol internal state and also invoke the corresponding
API functions listed in Table 10 to zeroize keys and CSPs. The zeroization functions overwrite
the memory occupied by keys with “zeros” and deallocate the memory with the regular
memory deallocation operating system call.

©2023 SUSE, LLC / atsec information security. Page 23 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

7 Electromagnetic Interference/Electromagnetic
Compatibility (EMI/EMC)

The test platforms as shown in Table 3 are compliant to 47 CFR FCC Part 15, Subpart B, Class
A (Business use).

©2023 SUSE, LLC / atsec information security. Page 24 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

8 Self Tests

8.1 Power-Up Tests
The module performs power-up tests when the module is loaded into memory, without
operator intervention. Power-up tests ensure that the module is not corrupted and that the
cryptographic algorithms work as expected.

While the module is executing the power-up tests, services are not available, and input and
output are inhibited. The module is not available for use by the calling application until the
power-up tests are completed successfully.

If any power-up test fails, the module returns the error code listed in section 9.3 and displays
the specifc error message associated with the returned error code, and then enters the Error
state. The subsequent calls to the module will also fail; no further cryptographic operations
are possible. If the power-up tests complete successfully, the module will return 1 in the
return code and will accept cryptographic operation service requests.

8.1.1 Integrity Tests
The integrity of the module is verifed by comparing an HMAC-SHA-256 value calculated at
run time with the HMAC value stored in the .hmac fle that was computed at build time for
each software component of the module. If the HMAC values do not match, the test fails and
the module enters the error state.

8.1.2 Cryptographic Algorithm Tests
The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in
the Approved mode of operation, using the Known Answer Tests (KAT) and Pair-wise
Consistency Tests (PCT) shown in the following table:

Algorithm Power-Up Tests

AES KAT AES ECB mode with 128-bit key, encryption and decryption
(separately tested)

KAT AES CCM mode with 192-bit key, encryption and decryption
(separately tested)

KAT AES GCM mode with 256-bit key, encryption and decryption
(separately tested)

KAT AES XTS mode with 128 and 256-bit keys, encryption and
decryption (separately tested)

CMAC KAT AES CMAC with 128, 192 and 256 bit keys, MAC generation

KAT Triple-DES CMAC, MAC generation

Dife-Hellman Primitive “Z” Computation KAT with 2048-bit key

DRBG KAT CTR_DRBG with AES with 256-bit keys with and without DF, with
and without PR

KAT Hash_DRBG with SHA-256 with and without PR

KAT HMAC_DRBG with SHA-256 with and without PR

DSA PCT DSA with L=2048, N=224 and SHA-256

EC Dife-Hellman Primitive “Z” Computation KAT with P-256 curve

ECDSA PCT ECDSA with P-256 and SHA-256

©2023 SUSE, LLC / atsec information security. Page 25 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Power-Up Tests

HMAC KAT HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384,
HMAC-SHA-512

KAT HMAC-SHA3-224, HMAC-SHA3-256, HMAC-SHA3-384,
HMAC-SHA3-512

PBKDF KDF KAT with SHA-256

RSA KAT RSA with 2048-bit key, PKCS#1 v1.5 scheme and SHA-256,
signature generation and verifcation (separately tested)

KAT RSA with 2048-bit key, PSS scheme and SHA-256, signature
generation and verifcation (separately tested)

KAT RSA with 2048-bit key, public key encryption and private key
decryption (separately tested)

SHA-3 KAT SHA3-256, SHA3-512, SHAKE-128 and SHAKE-256

SHS2 KAT SHA-1, SHA-256 and SHA-512

SSH KDF KAT with SHA256

TLS KDF KAT with SHA-256

Triple-DES KAT Triple-DES ECB mode, encryption and decryption (separately
tested)

Table 11: Self-Tests

For the KAT, the module calculates the result and compares it with the known value. If the
answer does not match the known answer, the KAT fails and the module enters the Error
state. For the PCT, if the signature generation or verifcation fails, the module enters the Error
state.

8.2 On-Demand Self-Tests
On-Demand self-tests can be invoked by powering-of and reloading the module which cause
the module to run the power-up tests again.

8.3 Conditional Tests
The module performs conditional tests on the cryptographic algorithms, using the Pair-wise
Consistency Tests (PCT) shown in the following table. If the conditional test fails, the module
returns an error code and enters the Error state. When the module is in the Error state, no
data is output and cryptographic operations are not allowed.

2 SHA-224 and SHA-384 are not required per IG 9.4.

©2023 SUSE, LLC / atsec information security. Page 26 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Algorithm Conditional Tests

DSA key
generation

PCT using SHA-256, signature generation and verifcation.

ECDSA key
generation

PCT using SHA-256, signature generation and verifcation.

RSA key
generation

PCT using SHA-256, signature generation and verifcation.

PCT public encryption and private decryption.

Table 12: Conditional Tests

©2023 SUSE, LLC / atsec information security. Page 27 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

9 Guidance

9.1 Crypto Ofcer Guidance
The binaries of the module are contained in the RPM packages for delivery. The Crypto Ofcer
shall follow this Security Policy to confgure the operational environment and install the
module to be operated as a FIPS 140-2 validated module.

The following RPM packages contain the FIPS validated module:

Processor Architecture RPM Packages

Intel 64-bit libopenssl1_1-1.1.1d-150200.11.62.1.x86_64.rpm
libopenssl1_1-hmac-1.1.1d-150200.11.62.1.x86_64.rpm

IBM z15 libopenssl1_1-1.1.1d-150200.11.62.1.s390x.rpm
libopenssl1_1-hmac-1.1.1d-150200.11.62.1.s390x.rpm

ARMv8 64-bit libopenssl1_1-1.1.1d-150200.11.62.1.aarch64.rpm
libopenssl1_1-hmac-1.1.1d-150200.11.62.1.aarch64.rpm

Table 13: RPM packages

9.1.1 Module Installation
The Crypto Ofcer can install the RPM packages containing the module as listed in Table 13
using the zypper tool. The integrity of the RPM package is automatically verifed during the
installation, and the Crypto Ofcer shall not install the RPM package if there is any integrity
error.

9.1.2 Operating Environment Confguration
The operating environment needs to be confgured to support FIPS, so the following steps
shall be performed with the root privilege:

1. Install the dracut-fps RPM package:

 # zypper install dracut-fips

2. Recreate the INITRAMFS image:

 # dracut -f

3. After regenerating the initrd, the Crypto Ofcer has to append the following parameter in
the /etc/default/grub confguration fle in the GRUB_CMDLINE_LINUX_DEFAULT line:

 fips=1

4. After editing the confguration fle, please run the following command to change the setting
in the boot loader:

 # grub2-mkconfig -o /boot/grub2/grub.cfg

If /boot or /boot/ef resides on a separate partition, the kernel parameter boot=<partition
of /boot or /boot/ef> must be supplied. The partition can be identifed with the command
"df /boot" or "df /boot/ef" respectively. For example:

 # df /boot

 Filesystem 1K-blocks Used Available Use% Mounted on

 /dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string
needs to be appended in the aforementioned grub fle:

 "boot=/dev/sda1"

©2023 SUSE, LLC / atsec information security. Page 28 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

5. Reboot to apply these settings.

Now, the operating environment is confgured to support FIPS operation. The Crypto Ofcer
should check the existence of the fle /proc/sys/crypto/fps_enabled, and verify it contains a
numeric value “1”. If the fle does not exist or does not contain “1”, the operating
environment is not confgured to support FIPS and the module will not operate as a FIPS
validated module properly.

9.1.3 Operational Environment limitations
Instrumentation tools like the ptrace system call, gdb and strace utilities, as well as other
tracing mechanisms ofered by the Linux environment such as ftrace or systemtap, shall not
be used in the operational environment. The use of any of these tools implies that the
cryptographic module is running in a non-tested operational environment.

9.2 User Guidance
In order to run in FIPS mode, the module must be operated using the FIPS Approved services,
with their corresponding FIPS Approved and FIPS allowed cryptographic algorithms provided
in this Security Policy (see section 3.2). In addition, key sizes must comply with [SP800-131A].

9.2.1 TLS
The TLS protocol implementation provides both server and client sides. In order to operate in
FIPS mode, digital certifcates used for server and client authentication shall comply with the
restrictions of key size and message digest algorithms imposed by [SP800-131A]. In addition,
for Dife-Hellman only the safe prime groups listed in RFC7919 are approved to be used in
FIPS mode.

9.2.2 API Functions
Passing “0” to the FIPS_mode_set() API function is prohibited.

Executing the CRYPTO_set_mem_functions() API function is prohibited as it performs like a
null operation in the module.

The use of any of these API functions implies that the cryptographic module is being executed
in an invalid confguration.

9.2.3 Use of ciphers
The following ciphers (usually obtained by calling the EVP_get_cipherbyname() function) use
multiblock implementations of the AES, HMAC and SHA algorithms that are not validated by
the CAVP; therefore, they cannot be used in FIPS mode of operation.

Cipher Name NID

AES-128-CBC-HMAC-SHA1 NID_aes_128_cbc_hmac_sha1

AES-256-CBC-HMAC-SHA1 NID_aes_256_cbc_hmac_sha1

AES-128-CBC-HMAC-SHA256 NID_aes_128_cbc_hmac_sha256

AES-256-CBC-HMAC-SHA256 NID_aes_256_cbc_hmac_sha256

Table 14: Ciphers not allowed in FIPS mode of operation

9.2.4 AES XTS
The AES algorithm in XTS mode can be only used for the cryptographic protection of data on
storage devices, as specifed in [SP800-38E]. The length of a single data unit encrypted with
the XTS-AES shall not exceed 2²⁰ AES blocks that is 16MB of data.

©2023 SUSE, LLC / atsec information security. Page 29 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

To meet the requirement stated in IG A.9, the module implements a check to ensure that the
two AES keys used in AES XTS mode are not identical.

Note: AES-XTS shall be used with 128 and 256-bit keys only. AES-XTS with 192-bit keys is not
an Approved service.

9.2.5 AES GCM IV
In case the module's power is lost and then restored, the key used for the AES GCM
encryption or decryption shall be redistributed.

The nonce_explicit part of the IV does not exhaust the maximum number of possible values
for a given session key. The design of the TLS protocol in this module implicitly ensures that
the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.

The AES GCM IV generation is in compliance with the [RFC5288] and shall only be used for
the TLS protocol version 1.2 to be compliant with [FIPS140-2_IG] IG A.5, provision 1 (“TLS
protocol IV generation”); in addition, the module is compliant with section 3.3.1 of [SP800-
52rev2].

When a GCM IV is used for decryption, the responsibility for the IV generation lies with the
party that performs the AES GCM encryption and therefore there is no restriction on the IV
generation.

9.2.6 Triple-DES encryption
Data encryption using the same three-key Triple-DES key shall not exceed 216 Triple-DES
blocks (2GB of data), in accordance to SP800-67 and IG A.13.

[SP800-67] imposes a restriction on the number of 64-bit block encryptions performed under
the same three-key Triple-DES key.

When the three-key Triple-DES is generated as part of a recognized IETF protocol, the module
is limited to 220 64-bit data block encryptions. This scenario occurs in the following protocols:

• Transport Layer Security (TLS) versions 1.1 and 1.2, conformant with [RFC5246]

• Secure Shell (SSH) protocol, conformant with [RFC4253]

• Internet Key Exchange (IKE) versions 1 and 2, conformant with [RFC7296]

In any other scenario, the module cannot perform more than 216 64-bit data block
encryptions.

The user is responsible for ensuring the module’s compliance with this requirement.

9.2.7 Environment Variables
OPENSSL_ENFORCE_MODULUS_BITS

Setting the environment variable OPENSSL_ENFORCE_MODULUS_BITS can restrict the module
to only generate the acceptable key sizes of RSA. If the environment variable is set, the
module enforces the generation of keys of 2048 bits or more.

9.2.8 Key derivation using SP800-132 PBKDF
The module provides password-based key derivation (PBKDF), compliant with SP800-132. The
module supports option 1a from section 5.4 of [SP800-132], in which the Master Key (MK) or a
segment of it is used directly as the Data Protection Key (DPK).

In accordance to [SP800-132], the following requirements shall be met.

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not
be used for other purposes. The length of the MK or DPK shall be of 112 bits or more.

• A portion of the salt, with a length of at least 128 bits, shall be generated randomly
using the SP800-90A DRBG.

©2023 SUSE, LLC / atsec information security. Page 30 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

• The iteration count shall be selected as large as possible, as long as the time required
to generate the key using the entered password is acceptable for the users. The
minimum value shall be 1000.

• Passwords or passphrases, used as an input for the PBKDF, shall not be used as
cryptographic keys.

• The length of the password or passphrase shall be of at least 20 characters, and shall
consist of lower-case, upper-case and numeric characters. The probability of guessing
the value is estimated to be 1/6220 = 10-36, which is less than 2-112.

The calling application shall also observe the rest of the requirements and recommendations
specifed in [SP800-132].

9.3 Handling FIPS Related Errors
When the module fails any power-on self-test or conditional test, the module will return an
error code to indicate the error and will enter the Error state. Any further cryptographic
operation is inhibited.

The calling application can obtain the module state by calling the FIPS_selftest_failed() API
function. The function returns 1 if the module is in the Error state, 0 if the module is in the
Operational state.

The following table shows the error codes and the corresponding condition:

Error Message / Codes Error Condition

FIPS_R_FINGERPRINT_DOES_NOT_MATCH (110) The integrity test fails at power-up.

FIPS_R_SELFTEST_FAILED (101) Any of the AES, CMAC, DRBG, HMAC,
SHA, or Triple-DES KATs fails at power-up.

FIPS_R_TEST_FAILURE (117) Any of the KATs for RSA, the PCT for
ECDSA or the PCT for DSA fails at power-
up.

FIPS_R_NOPR_TEST1_FAILURE (145)

FIPS_R_NOPR_TEST2_FAILURE(146)

FIPS_R_PR_TEST1_FAILURE (147)

FIPS_R_PR_TEST2_FAILURE (148)

The KAT of a DRBG fails at power-up.

FIPS_R_FIPS_SELFTEST_FAILED (106) A cryptographic operation is invoked and
the module is in the error state.

FIPS_R_PAIRWISE_TEST_FAILED (127) The PCT of a newly generated RSA, DSA
or ECDSA key pair fails during conditional
tests.

FIPS_R_ENTROPY_SOURCE_STUCK (142) The CRNGT for the NDRNG fails during
conditional tests.

Table 15: Error Codes and Error Events

These errors are reported through the regular ERR interface of the modules and can be
queried by functions such as ERR_get_error(). See the OpenSSL man pages for the function
description.

When the module is in the error state and the application calls a crypto function of the
module that cannot return an error in normal circumstances (void return functions), the error
message: “OpenSSL internal error, assertion failed: FATAL FIPS SELFTEST FAILURE” is printed

©2023 SUSE, LLC / atsec information security. Page 31 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

to stderr and the application is terminated with the abort() call. The only way to recover from
this error is to restart the application. If the failure persists, the module must be reinstalled.

©2023 SUSE, LLC / atsec information security. Page 32 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

10 Mitigation of Other Attacks

10.1 Blinding Against RSA Timing Attacks
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA
decryption or signature operations, blinding must be used to protect the RSA operation from
that attack.

The module provides the API functions RSA_blinding_on() and RSA_blinding_of() to turn the
blinding on and of for RSA. When the blinding is on, the module generates a random value to
form a blinding factor in the RSA key before the RSA key is used in the RSA cryptographic
operations.

10.2 Weak Triple-DES Key Detection
The module implements the DES_set_key_checked() for checking the weak Triple-DES key
and the correctness of the parity bits when the Triple-DES key is going to be used in Triple-
DES operations. The checking of the weak Triple-DES key is implemented in the API function
DES_is_weak_key() and the checking of the parity bits is implemented in the API function
DES_check_key_parity(). If the Triple-DES key does not pass the check, the module will return
-1 to indicate the parity check error and -2 if the Triple-DES key matches to any value listed
below:

/* Weak and semi week keys as taken from
 * %A D.W. Davies
 * %A W.L. Price
 * %T Security for Computer Networks
 * %I John Wiley & Sons
 * %D 1984
 * Many thanks to smb@ulysses.att.com (Steven Bellovin) for the reference
 * (and actual cblock values).
 */
#define NUM_WEAK_KEY 16
static const DES_cblock weak_keys[NUM_WEAK_KEY]={
 /* weak keys */
 {0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01},
 {0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
 {0x1F,0x1F,0x1F,0x1F,0x0E,0x0E,0x0E,0x0E},
 {0xE0,0xE0,0xE0,0xE0,0xF1,0xF1,0xF1,0xF1},
 /* semi-weak keys */
 {0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE},
 {0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01},
 {0x1F,0xE0,0x1F,0xE0,0x0E,0xF1,0x0E,0xF1},
 {0xE0,0x1F,0xE0,0x1F,0xF1,0x0E,0xF1,0x0E},
 {0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1},
 {0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01},
 {0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E,0xFE},
 {0xFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E},
 {0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E},
 {0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01},
 {0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1,0xFE},
 {0xFE,0xE0,0xFE,0xE0,0xFE,0xF1,0xFE,0xF1}};

Please note that there is no weak key detection by default. The caller can explicitly set the
DES_check_key to 1 or call DES_check_key_parity() and/or DES_is_weak_key() functions on its
own.

©2023 SUSE, LLC / atsec information security. Page 33 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Appendix A - TLS Cipher Suites
The module supports the following cipher suites for the TLS protocol version 1.0, 1.1 and 1.2,
compliant with section 3.3.1 of [SP800-52rev2]. Each cipher suite defnes the key exchange
algorithm, the bulk encryption algorithm (including the symmetric key size) and the MAC
algorithm.

Cipher Suite Reference

TLS_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA RFC2246

TLS_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_DSS_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DHE_DSS_WITH_AES_128_CBC_SHA RFC3268

TLS_DHE_RSA_WITH_AES_128_CBC_SHA RFC3268

TLS_DH_anon_WITH_AES_128_CBC_SHA RFC3268

TLS_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_DSS_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DHE_DSS_WITH_AES_256_CBC_SHA RFC3268

TLS_DHE_RSA_WITH_AES_256_CBC_SHA RFC3268

TLS_DH_anon_WITH_AES_256_CBC_SHA RFC3268

TLS_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 RFC5246

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 RFC5246

TLS_DH_anon_WITH_AES_128_CBC_SHA256 RFC5246

©2023 SUSE, LLC / atsec information security. Page 34 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Cipher Suite Reference

TLS_DH_anon_WITH_AES_256_CBC_SHA256 RFC5246

TLS_PSK_WITH_3DES_EDE_CBC_SHA RFC4279

TLS_PSK_WITH_AES_128_CBC_SHA RFC4279

TLS_PSK_WITH_AES_256_CBC_SHA RFC4279

TLS_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_RSA_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_RSA_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_DSS_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_DSS_WITH_AES_256_GCM_SHA384 RFC5288

TLS_DH_anon_WITH_AES_128_GCM_SHA256 RFC5288

TLS_DH_anon_WITH_AES_256_GCM_SHA384 RFC5288

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_AES_128_CBC_SHA RFC4492

TLS_ECDH_anon_WITH_AES_256_CBC_SHA RFC4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 RFC5289

©2023 SUSE, LLC / atsec information security. Page 35 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Cipher Suite Reference

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 RFC5289

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 RFC5289

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 RFC5289

TLS_RSA_WITH_AES_128_CCM RFC6655

TLS_RSA_WITH_AES_256_CCM RFC6655

TLS_DHE_RSA_WITH_AES_128_CCM RFC6655

TLS_DHE_RSA_WITH_AES_256_CCM RFC6655

TLS_RSA_WITH_AES_128_CCM_8 RFC6655

TLS_RSA_WITH_AES_256_CCM_8 RFC6655

TLS_DHE_RSA_WITH_AES_128_CCM_8 RFC6655

TLS_DHE_RSA_WITH_AES_256_CCM_8 RFC6655

Table 16: TLS Cipher Suites

©2023 SUSE, LLC / atsec information security. Page 36 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Appendix B - CAVP certifcates
The tables below show the certifcates obtained from the CAVP for all the target platforms
included in Table 3. The CAVP certifcates validate all algorithm implementations used as
approved or allowed security functions in FIPS mode of operation. The tables include the
certifcate number, the label used in the CAVP certifcate for reference and a description of
the algorithm implementation.

Cert# CAVP Label Algorithm Implementation PAA

A345 TDES_C Triple-DES C implementation. No

A378 AESNI AES using AESNI instructions. Yes

A339 AESNI_AVX AES-GCM using AESNI instructions, and AVX
instruction for multiplication and GHASH.

Yes

A373 AESNI_CLMULNI AES-GCM using AESNI instructions, and PCLMULQDQ
instruction for multiplication and GHASH.

Yes

A346 AESNI_ASM AES-GCM using AESNI, and assembler
implementation for multiplication and GHASH.

Yes

A381 AESASM AES assembler implementation. No

A344 AESASM_AVX AES-GCM using assembler implementation, and AVX
instruction for multiplication and GHASH.

No

A349 AESASM_CLMULNI AES-GCM using assembler implementation, and
PCLMULQDQ instruction for multiplication and
GHASH.

No

A370 AESASM_ASM AES-GCM using assembler implementation. No

A343 BAES_CTASM AES using SSSE3 instruction for Constant Time
assembler and Bit Slice AES.

No

A377 BAES_CTASM_AVX AES-GCM using SSSE3 instruction for Constant Time
assembler and Bit Slice AES, and AVX instruction for
multiplication and GHASH.

No

A379 BAES_CTASM_CLMULNI AES-GCM using SSSE3 instruction for Constant Time
assembler and Bit Slice, and PCLMULQDQ instruction
for multiplication and GHASH.

No

A340 BAES_CTASM_ASM AES-GCM using SSSE3 instruction for Constant Time
assembler and Bit Slice, and assembler
implementation for multiplication and GHASH.

No

A353 SHA_AVX2 All algorithms using SHA with AVX2 instruction. No

A367 SHA_AVX All algorithms using SHA with AVX instruction. No

A364 SHA_SSSE3 All algorithms using SHA with SSSE3 instruction. No

A386 SHA_ASM All algorithms using SHA assembler implementation. No

A382 DRBG_10X_AESNI CTR_DRBG with AES using AESNI instructions. Yes

A369 DRBG_10X_AESASM CTR_DRBG with AES assembler implementation. No

A348 DRBG_10X_BAES_CTASM CTR_DRBG with AES using SSSE3 instruction for
Constant Time assembler and Bit Slice AES.

No

A376 DRBG_10X_SHA_AVX2 HMAC_DRBG and Hash_DRBG with SHA using AVX2
instruction.

No

©2023 SUSE, LLC / atsec information security. Page 37 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Cert# CAVP Label Algorithm Implementation PAA

A380 DRBG_10X_SHA_AVX HMAC_DRBG and Hash_DRBG with SHA using AVX
instruction.

No

A375 DRBG_10X_SHA_SSSE3 HMAC_DRBG and Hash_DRBG with SHA using SSSE3
instruction.

No

A383 DRBG_10X_SHA_ASM HMAC_DRBG and Hash_DRBG with SHA assembler
implementation.

No

A355 SSH_AVX2 KDF SSH using SHA with AVX2 instruction. No

A371 SSH_AVX KDF SSH using SHA with AVX instruction. No

A366 SSH_SSSE3 KDF SSH using SHA with SSSE3 instruction. No

A385 SSH_ASM KDF SSH using SHA assembler implementation. No

A374 SHA3_AVX2 All algorithms using SHA-3 with AVX2 instruction. No

A372 SHA3_AVX512 All algorithms using SHA-3 with AVX instruction. No

A368 SHA3_ASM All algorithms using SHA-3 assembler
implementation.

No

A684 SP800 56A rev 3 SP800-56A rev 3 compliant implementation. No

Table 17: CAVP certifcates for the Intel Xeon processor

Cert# CAVP Label Algorithm Implementation PAI

A341 TDES_C Triple-DES C implementation. No

A360 SHA_ASM All algorithms impacted by SHA using assembler
implementation.

Yes

A342 DRBG_10X_SHA_ASM HMAC_DRBG and Hash_DRBG with SHA using
assembler implementation.

Yes

A359 SHA3_ASM All algorithms using SHA-3 assembler
implementation.

Yes

A350 AESASM AES with assembler implementation. Yes

A354 AESASM_ASM AES-GCM using assembler implementation. Yes

A385 SSH_ASM KDF SSH using SHA assembler implementation. Yes

A684 SP800 56A rev 3 SP800-56A rev 3 compliant implementation. Yes

A1498 ALL_NOPAI All algorithm implementations without CPACF No

Table 18: CAVP certifcates for the IBM z15 processor

©2023 SUSE, LLC / atsec information security. Page 38 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Cert# CAVP Label Algorithm Implementation PAA

A347 TDES_C Triple-DES C implementation No

A352 SHA3_ASM All algorithms impacted by SHA-3 using assembler
implementation.

No

A365 SHA_ASM All algorithms impacted by SHA using assembler
implementation.

No

A363 DRBG_10X_SHA_ASM HMAC_DRBG and Hash_DRBG using SHA assembler
implementation.

No

A351 CE AES using Crypto Extensions Yes

A358 CE_GCM AES-GCM using Crypto Extensions. Yes

A357 VPAES AES using NEON bit slicing implementation. Yes

A362 VPAES_GCM AES-GCM using NEON bit slicing implementation. Yes

A507 NEON SHA using NEON implementation. Yes

A508 AES_C AES using generic C implementation. No

A509 AES_C_GCM AES-GCM using generic C implementation. No

A385 SSH_ASM KDF SSH using SHA assembler implementation. No

A684 SP800 56A rev 3 SP800-56A rev 3 compliant implementation. No

Table 19: CAVP certifcates for the ARMv8 processor

©2023 SUSE, LLC / atsec information security. Page 39 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Appendix C - Glossary and Abbreviations

AES Advanced Encryption Specifcation

AES_NI Intel® Advanced Encryption Standard (AES) New Instructions

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining Message Authentication Code

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption Standard

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

HMAC Hash Message Authentication Code

MAC Message Authentication Code

NIST National Institute of Science and Technology

PKCS Public Key Cryptography Standards

RNG Random Number Generator

RPM Red hat Package Manager

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TDES Triple-DES

XTS XEX Tweakable Block Cipher with Ciphertext Stealing

©2023 SUSE, LLC / atsec information security. Page 40 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

Appendix D - References
FIPS 140-2 FIPS PUB 140-2 - Security Requirements for Cryptographic

Modules
https://csrc.nist.gov/publications/fps/fps140-2/fps1402.pdf

FIPS 140-2_IG Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program
December 3, 2019
https://csrc.nist.gov/groups/STM/cmvp/documents/fps140-
2/FIPS1402IG.pdf

FIPS180-4 Secure Hash Standard (SHS)
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
https://csrc.nist.gov/publications/fps/fps197/fps-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
https://csrc.nist.gov/publications/fps/fps198-1/FIPS-198-1_fnal.pdf

FIPS202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifcations Version 2.1
https://www.ietf.org/rfc/rfc3447.txt

RFC2246 The TLS Protocol Version 1.0
https://www.ietf.org/rfc/rfc2246.txt

RFC3268 Advanced Encryption Standard (AES) Ciphersuites for Transport
Layer Security (TLS)
https://www.ietf.org/rfc/rfc3268.txt

RFC4279 Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)
https://www.ietf.org/rfc/rfc4279.txt

RFC4346 The Transport Layer Security (TLS) Protocol Version 1.1
https://www.ietf.org/rfc/rfc4346.txt

RFC4492 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS)
https://www.ietf.org/rfc/rfc4492.txt

RFC5116 An Interface and Algorithms for Authenticated Encryption
https://www.ietf.org/rfc/rfc5116.txt

RFC5246 The Transport Layer Security (TLS) Protocol Version 1.2
https://tools.ietf.org/html/rfc5246.txt

RFC5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS
https://tools.ietf.org/html/rfc5288.txt

©2023 SUSE, LLC / atsec information security. Page 41 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

https://tools.ietf.org/html/rfc5288.txt
https://tools.ietf.org/html/rfc5246.txt%20
https://www.ietf.org/rfc/rfc5116.txt%20
https://www.ietf.org/rfc/rfc4492.txt%20
https://www.ietf.org/rfc/rfc4346.txt%20
https://www.ietf.org/rfc/rfc4279.txt%20
https://www.ietf.org/rfc/rfc3268.txt%20
https://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc3447.txt
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

RFC5487 Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES
Galois Counter Mode
https://tools.ietf.org/html/rfc5487.txt

RFC5489 ECDHE_PSK Cipher Suites for Transport Layer Security (TLS)
https://tools.ietf.org/html/rfc5489.txt

RFC6655 AES-CCM Cipher Suites for Transport Layer Security (TLS)
https://tools.ietf.org/html/rfc6655.txt

RFC7251 AES-CCM Elliptic Curve Cryptography (ECC) Cipher Suites for TLS
https://tools.ietf.org/html/rfc7251.txt

RFC7296 Internet Key Exchange Protocol Version 2 (IKEv2)
https://tools.ietf.org/html/rfc7296.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block
Cipher Modes of Operation Methods and Techniques
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block
Cipher Modes of Operation: The CMAC Mode for Authentication
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block
Cipher Modes of Operation: the CCM Mode for Authentication and
Confdentiality
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38c.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38d.pdf

SP800-38E NIST Special Publication 800-38E - Recommendation for Block
Cipher Modes of Operation: The XTS AES Mode for Confdentiality
on Storage Devices
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
38e.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block
Cipher Modes of Operation: Methods for Key Wrapping
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800-52rev2 NIST Special Publication 800-52 Revision 2 - Guidelines for the
Selection, Confguration, and Use of Transport Layer Security
(TLS) Implementations
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

SP800-56Arev3 NIST Special Publication 800-56Ar3 - Recommendation for Pair-
Wise Key-Establishment Schemes Using Discrete Logarithm
Cryptography
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
56Ar3.pdf

©2023 SUSE, LLC / atsec information security. Page 42 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://tools.ietf.org/html/rfc7296.txt
https://tools.ietf.org/html/rfc7251.txt
https://tools.ietf.org/html/rfc6655.txt
https://tools.ietf.org/html/rfc5489.txt
https://tools.ietf.org/html/rfc5487.txt

SUSE Linux Enterprise Server OpenSSL Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

SP800-67 NIST Special Publication 800-67 Revision 2 - Recommendation for
the Triple Data Encryption Algorithm (TDEA) Block Cipher
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf

SP800-90A NIST Special Publication 800-90A Revision 1 - Recommendation
for Random Number Generation Using Deterministic Random Bit
Generators
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
90Ar1.pdf

SP800-131A NIST Special Publication 800-131A Revision 1- Transitions:
Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
90Ar1.pdf

SP800-132 NIST Special Publication 800-132 - Recommendation for
Password-Based Key Derivation - Part 1: Storage Applications
httpss://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
132.pdf

©2023 SUSE, LLC / atsec information security. Page 43 of 43
This document can be reproduced and distributed only whole and intact, including this copyright notice.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf

	1 Cryptographic Module Specification
	1.1 Module Overview
	1.2 Modes of Operation

	2 Cryptographic Module Ports and Interfaces
	3 Roles, Services and Authentication
	3.1 Roles
	3.2 Services
	3.3 Operator Authentication
	3.4 Algorithms
	3.5 Allowed Algorithms
	3.5.1 Non-Approved Algorithms

	4 Physical Security
	5 Operational Environment
	5.1 Policy

	6 Cryptographic Key Management
	6.1 Random Number Generation
	6.2 Key/CSP Generation
	6.3 Key Agreement / Key Transport / Key Derivation
	6.4 Key/CSP Entry and Output
	6.5 Key/CSP Storage
	6.6 Key/CSP Zeroization

	7 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	8 Self Tests
	8.1 Power-Up Tests
	8.1.1 Integrity Tests
	8.1.2 Cryptographic Algorithm Tests

	8.2 On-Demand Self-Tests
	8.3 Conditional Tests

	9 Guidance
	9.1 Crypto Officer Guidance
	9.1.1 Module Installation
	9.1.2 Operating Environment Configuration
	9.1.3 Operational Environment limitations

	9.2 User Guidance
	9.2.1 TLS
	9.2.2 API Functions
	9.2.3 Use of ciphers
	9.2.4 AES XTS
	9.2.5 AES GCM IV
	9.2.6 Triple-DES encryption
	9.2.7 Environment Variables
	9.2.8 Key derivation using SP800-132 PBKDF

	9.3 Handling FIPS Related Errors

	10 Mitigation of Other Attacks
	10.1 Blinding Against RSA Timing Attacks
	10.2 Weak Triple-DES Key Detection

	Appendix A - TLS Cipher Suites
	Appendix B - CAVP certificates
	Appendix C - Glossary and Abbreviations
	Appendix D - References

