Rosetta microSDHC™ FIPS 140-2 Non-Proprietary Security Policy

This document may be freely reproduced and distributed whole and intact, including this copyright notice.

Revision: 1.1

© Copyright 2012-2016 SPYRUS, Inc. All rights reserved.

Document number: 554-31001-02

This document (and the software described in it) is furnished under license and may be used or copied only in accordance with the terms and conditions of such license. This document is provided for informational purposes only and is subject to change without notice. SPYRUS, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of SPYRUS, Inc.

Trademarks

SPYRUS, the SPYRUS logos, LYNKS Privacy Card, Security In A Box, SPEX/, SPYCOS, Multisession, Hydra Privacy Card, Hydra PC, Hydra PC Digital Attaché, En-Sign, Cryptocalculator, Talisman/DS, WebWallet, Rosetta, Signal Identity Manager, SPYRUS Enterprise Management System (SEMS), PocketVault, Portable Workplace, Secure Pocket Drive, WorkSafe, MySafeID, Toughboot, Enforcing Trust in Cyberspace, Personal Access Reader, Security to the Edge, Suite B On Board, Secured By SPYRUS, Talisman/SAM, WEBREG, WEBSAFE, Terisa Systems, DeviceSSL, TLS Platinum, and TLS Gold are either registered trademarks or trademarks of SPYRUS in the United States and/or other countries.

All other trademarks are the property of their respective owners.

Contents

1. Introduction	
1.1 Rosetta microSDHC™ Overview	1
1.2 Rosetta microSDHC™ Implementation	1
1.3 Rosetta microSDHC™ Cryptographic Boundary	2
1.4 Approved Mode of Operation	2
1.5 FIPS 140-2 Security Levels	5
2. Ports and Interfaces	6
3. Roles and Services	
3.1 Services	8
4. Identification and Authentication	11
4.1 Initialization Overview	11
4.2 Authentication	12
4.3 Strength of Authentication	13
4.3.1 Obscuration of Feedback	13
4.3.2 Non-weakening Effect of Feedback	
4.3.3 Generation of Random Numbers	
5 Key Management	
5.1 CSP Management	
5.2 Public Key Management Parameters	
5.3 CSP Access Matrix	
5.4 Destruction of Keys and CSPs	
6 Setup and Initialization	
7 Physical Security	
8 Self-Tests	
9 Mitigation of Other Attacks	
Appendix A: Critical Security Parameters and Public Keys	

1. Introduction

This Security Policy specifies the security rules under which the Rosetta microSDHC[™] module operates. The Rosetta microSDHC[™] module conforms to FIPS 140-2 Security Requirements for Cryptographic Modules.

Included in these rules are those derived from the security requirements of FIPS 140-2 and additionally, those imposed by SPYRUS, Inc. These rules, in total, define the interrelationship between:

- 1. Operators,
- 2. Services, and
- 3. Critical Security Parameters (CSPs).

The terms "Rosetta microSDHC™", and "module" are synonymous.

1.1 Rosetta microSDHC™ Overview

The Rosetta microSDHC[™] module is the latest addition to the SPYRUS family of cryptographic module ICs that enable both smart card and USB cryptographic tokens.

The cryptographic module enables security critical capabilities such as operator authentication, message privacy, integrity, authentication, and non-repudiation; and secure storage, all within a tamper-evident protective coating. The cryptographic module communicates with a host computer via the ports/interfaces defined in Table 2-1.

1.2 Rosetta microSDHC™ Implementation

The Rosetta microSDHC™ module is implemented as a multiple-chip embedded module as defined by FIPS 140-2.

The cryptographic module is available in a microSD embodiment with product name: Rosetta microSDHC™.

The term "microSDHC™" refers to the cryptographic module IC packaged in the microSDHC (micro Secure Digital High Capacity) form factor, defined as the Rosetta microSDHC™ product.

All Interfaces have been tested and are compliant with FIPS 140-2. Product Identification (including unique part number) for the Rosetta microSDHC[™] module is shown in the table below:

Table 1-1 Ro	setta micro	SDHCTM	Product 7	Identification
Table 1-1 IN	iscua iiiici	M71711X	I I OUULL	iuciililaiivii

Form Factor	Part Number(s)	Capacity	FW Version
Rosetta microSDHC™	851314011F	4GB	3.0.2
	851314012F	8GB	3.0.2
	851314013F	16GB	3.0.2

Images of the above form factor are shown in Figure 1 below.

Figure 1 Rosetta microSDHCTM with the Rosetta microSDHCTM Form Factor

1.3 Rosetta microSDHC™ Cryptographic Boundary

The Cryptographic Boundary is defined to be the physical perimeter of the Rosetta microSDHC[™] and the potting material it is embedded in (see Figure 2).

No hardware or firmware components that comprise the Rosetta microSDHC™ are excluded from the requirements of FIPS 140-2.

1.4 Approved Mode of Operation

The module only operates in an Approved mode of operation.

The Rosetta microSDHC™ Approved mode of operation is comprised of the Rosetta microSDHC™ command set.

Approved mode of operation commands which are successfully completed will return a standard success return code. The Error return codes are dependent upon the cause of the failure. Services available under the Approved mode of operation are detailed in Table 3-1 of this Security Policy.

The Rosetta microSDHC[™] supports the following FIPS 140-2 Approved algorithms:

Table 1-2 Rosetta microSDHC™ Approved Algorithms

Approved Algorithms	Certificate #
Encryption & Decryption	
Three-Key Triple-DES	1772
AES (128-bit, 192-bit, 256-bit key)	3028
Digital Signatures and Key Generation	
ECDSA (key generation, signature generation and signature verification) [P-256, P-384, P-521]	578
RSA 2048 (key generation, signature generation and signature verification)	1611
Message Authentication Code	
HMAC (Minimum 112 bit key)	1913
Hash	
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	2529
Key Agreement / Key Establishment	
CVL (Section 5.7.1.2: ECC CDH Primitive) [P-256, P-384, P-521]	419
KAS [P-256, P-384, P-521]	52
KTS (AES KW with 128-bit, 192-bit, 256-bit key)	3115
Approved Deterministic Random Bit Generator	
SP800-90A DRBG	658

Approved ECDSA (Cert. #578). The Digital Signature will provide between 128-bits to 256-bits of equivalent computational resistance to attack depending upon the size of the curves that are used (P-256, P-384, P-521).

Approved RSA (Cert. #1611). The Digital Signature with a 2048 key size will provide 112 bits of equivalent computational resistance to attack.

Approved SP800-56A, Section 5.7.1.2: ECC CDH Primitive (Cert. #419). The key establishment process will provide between 128-bits to 256-bits of equivalent computational resistance to attack depending upon the size of the ECC CDH curves that are used (P-256, P-384, P-521).

Approved KAS ECC (Cert. #52). The key establishment process will provide between 128-bits to 256-bits of equivalent computational resistance to attack depending upon the size of the keys that are used (P-256, P-384, P-521).

Approved KTS (AES Cert. #3115; key establishment methodology provides between 128 and 256 bits of encryption strength).

The following are available as "non-Approved" algorithms but allowed in FIPS mode:

Table 1-3 Rosetta microSDHC™ Non-Approved but allowed Algorithms

Algorithms
RNG
HW NDRNG (Only used for seeding Approved SP800-90A
DRBG)
Key Wrap & Unwrap
RSA (key wrapping; key establishment methodology
provides 112 bits of encryption strength)

1.5 FIPS 140-2 Security Levels

The cryptographic module complies with the requirements for FIPS 140-2 validation to the levels defined in Table 1-4. The FIPS 140-2 overall rating of the cryptographic module is Level 3.

Table 1-4 FIPS 140-2 Certification Levels

FIPS 140-2 Category	Level
Cryptographic Module Specification	3
Cryptographic Module Ports and Interfaces	3
3. Roles, Services, and Authentication	3
4. Finite State Model	3
5. Physical Security	3
Operational Environment	N/A
7. Cryptographic Key Management	3
8. EMI/EMC*	3
9. Self-tests	3
10. Design Assurance	3
11. Mitigation of Other Attacks	N/A
Overall Security Level	3

^{*}Note: The cryptographic module conforms to Level 3 EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Class B.

2. Ports and Interfaces

The Rosetta microSDHC™ form factor has 8 pins as described in the table below:

Table 2-1 Pins and Logical Interfaces

Pin	Name	Function	FIPS 140-2 Logical Interface
1	DAT2	Data in/out (byte 2)	Data Input / Data Output; Status
		,	Output
2	CD/DAT3	Card Detect / Data in/out	Data Input / Data Output; Status
		(byte 3)	Output
3	CMD	Command Response	Control Input
4	VDD	Supply Voltage	Power Interface
5	CLK	Clock	Control Input
6	VSS	Ground	Power Interface
7	DAT1	Data in/out (byte 0)	Data Input / Data Output; Status
		,	Output
8	DAT0	Data in/out (byte 1)	Data Input / Data Output; Status
		. ,	Output

The Rosetta microSDHC™ pinout is shown in the diagram below (Figure 2) with the cryptographic boundary indicated.

Figure 2 Rosetta microSDHCTM form factor pinout and cryptographic boundary

3. Roles and Services

The module supports two roles, Crypto-officer and User, and enforces the separation of these roles by restricting the services available to each one.

<u>Crypto-officer Role</u>: The Crypto-officer is responsible for initializing the module. Before issuing the module Rosetta microSDHC[™] to an end User, the Crypto-officer initializes the module with private keying material and certificate information. The Crypto-officer cannot use private keys loaded on the module. The module validates the Crypto-officer identity before accepting any initialization commands. The Crypto-officer is also referred to as the Site Security Officer (SSO).

<u>User Role</u>: The User role is available after the module has been loaded with a User personality. The User can load, generate and use private keys.

The module validates the User identity before access is granted.

3.1 Services

The following table (Table 3-1) describes the services provided by the module. The User/SSO column denotes the roles that may execute the service.

Table 3-1 Rosetta microSDHC $^{\text{TM}}$ Module Services

Service	Description	User / SSO
AES UNWRAPKEY	Supports key export by using the AES unwrap key process to decrypt a wrapped key data block, and then storing it in the internal key register or the key file.	User
AES WRAPKEY	Supports key export by using the AES wrap key process to encrypt the internal symmetric key data that is transmitted to the host.	User
AUTHENTICATE SECURE CHANNEL	Validates the secure channel between the host and the module.	User, SSO
BLOCK PIN	Blocks user PIN access. Resets attempt count for the User PIN to zero and prohibits User PIN logon until an UNBLOCK PIN command is executed by the SSO / Administrator role.	User, SSO
CHANGE PASSWORD	Change the User password or SSO password.	User, SSO
CHECK PASSWORD	User / SSO Inputs a password Phrase to authenticate the SSO or the User.	User, SSO
CREATE	A file of type DF, SF, or EF is created ¹ .	User, SSO
DECRYPT	Performs a decryption process on the input data and sets up the plaintext data for retrieval. Supports multiple modes of decryption for user data.	User
DELETE	Deletion of a file or directory.	User, SSO
DIRECTORY	Retrieval of directory.	User, SSO
ECC GENERATE KEY	Creates an ECC public/private key pair for signing/verifying or transport.	User
ECDH COMPUTE SECRET	Generates a shared secret, Z, and either returns it to the caller or caches it for use with the KDF function.	User
ECDSA SIGN	Computation of a digital signature using the ECDSA algorithm using the hash value.	User
ECDSA VERIFY	Performs an ECDSA signature verification on the provided hash data. The signature is returned using SPYRUS Elliptic Curve RAW encoding.	User, SSO
ENCRYPT	Performs a symmetric encryption process on the input data and returns the ciphertext data. Supports multiple modes of encryption for user data. Get Response must be issued to retrieve the data.	User

7

 $^{^{\}rm 1}$ Refer to ISO/IEC 7816-4 for definition of file types and file system

Service	Description	User / SSO
ENVELOPE	Sends the APDU commands through the secure	User,
	channel established previously between the host	SSO
	and the module. The session key is generated	
	during the secure channel establishment (see	
	Manage Secure Channel). The encryption mode	
	used is the AES CBC mode.	
EXTEND	Extension of the length of a file or directory.	User,
		SSO
FIPS_INFO	Returns a value indicating whether the module is in	User,
	FIPS Mode (1) or not (0).	SSO
GENERATE HMAC KEY	Generates an HMAC key and initializes the currently	User
	selected file for use with the HMAC commands.	
GENERATE IV	See Generate Symmetric Key Command	User
GENERATE RANDOM	Generates a random number and also handles the	User
	generation of Initialization Vectors (IVs) and	
	Message Encryption Keys (MEKs). Can be invoked	
	prior to authentication (GET UNAUTHENTICATED	
	RANDOM)	
GENERATE SYMMETRIC	Used to generate Message Encryption Keys	User
KEY	(MEKs). It can also generate random numbers and	3 55.
	IVs.	
GET PUBLIC	Retrieves the public key information of an ECC key.	User,
	,	SSO
GET RESPONSE	Retrieval of the module response.	User,
		SSO
	Retrieves firmware version of module.	User,
GET SPYCOS VERSION	Traineree iiimware version or measie.	SSO
GET STATUS	Query on the current status of a File.	User,
021 01/1100	Query on the current states of a rine.	SSO
HASH FINALIZE	Completes the hash operation and returns the hash	User,
THOUTH HAVE LEE	value.	SSO
HASH INITIALIZE	Initializes internal state to prepare for hashing	User,
HASHINIHALIZE	operations.	SSO
HASH PROCESS	Optional function called to hash a block of data	User,
TIAGITI NOCESS	when its length is an even multiple of the hash	SSO
	algorithm block size.	330
HMAC FINALIZE	Processes any remaining bytes in the message and	User
TIMAC FINALIZE	retrieves the HMAC value.	0561
HMAC INITIALIZE	Generates a HMAC message authentication code.	User
HMAC PROCESS	Processes the message in even multiples of the	User
TIMAC PROCESS	-	0361
IMPORT HMAC KEY	hash algorithm's block size. Imports an HMAC key and initialize the currently	User
I IIVII OKT I IIVIAC KET	selected file for use with the HMAC commands.	USEI
INIT PIN FILE	Used to generate the K of N authentication shared	SSO
I IIIII PIIN FILE	data to the current selected PIN file. Upon a	
	successful execution of the Init PIN File command,	
	two external shared secrets and two logon PINs	
	are generated with the default values.	
KDFEXTERNAL	Passes the external KDF data to the hash function.	User
KDFFINAL	Completes the generation of the key and queues it	User
	for output to the host.	
KDFINTERNAL	Passes the KDF data found inside the module to the	User
	hash function.	

Service	Description	User / SSO
KDFSTART	Sets up the internal hash engine for hashing the	User
	subsequent data. The hash type is determined by	
	the settings in specified input parameters.	
LOAD CRYPTOGRAPHIC	Supports RSA / ECDSA signature verification or	User,
DATA	RSA Wrap Key operation.	SSO
LOAD IV	See Load Key.	See Load Key
LOAD KEY	An overloaded function that performs Load MEK	User
	(Message Encryption Key), Load IV, or Delete Key.	
LOAD SECRET	Loads one of two authentication codes required for	User,
	K of N logon. This is a prerequisite to changing the	SSO
	Admin/SSO password, User password, or either of the authentication codes.	
LOCK	Disables all operations on this file. The file can still	User,
LOCK	be selected and the status information can still be	SSO
	retrieved, but its contents cannot be accessed.	000
MANAGE SECURE	Establishes the secure channel between the host	User,
CHANNEL	and the module. Specific codes, sent by the host,	SSO
0	initialize and terminate the secure channel.	
READ BINARY	Binary read from a file, given the offset and length.	User,
		SSO
RSA GENERATE KEYPAIR	Creates an RSA key pair to be used for	User
	signing/verifying or transport. The user must have	
	created the RSA keying file (with appropriate access	
	controls) prior to issuing the GENERATE command.	
RSA SIGN DATA	Signing a message or data object using RSA	User
	signature.	
RSA UNWRAP KEY	Enables completion of public key exchange of a	User
DOA VEDIEV SIGNATURE	MEK.	Lloor
RSA VERIFY SIGNATURE	Verifying an RSA signature on a message.	User, SSO
		330
RSA WRAP KEY	Invocation of an RSA Key wrap service.	User
SELECT	Setting a current file within a logical channel.	User,
		SSO
SELF TEST	Automatically performed at power-up and can be	User,
OFTIVEY	executed on-demand via power cycling the module.	SSO
SET KEY	Setting one of the 3 key pointers to the key registers	User
	to be used for encryption and decryption using the following symmetric encryption algorithms: AES,	
	3TDES.	
UNBLOCK PIN	Used by an SSO to restore User PIN logon access.	SSO
UNLOCK	Enable a previously Locked file.	User,
		SSO
UPDATE BINARY	Update of the data in the currently selected EF ² with	User,
	the data provided.	SSO
XAUTH ENROLL	Set up the shared symmetric key for use with the	User,
	challenge and response authentication process.	SSO
XAUTH EXTERNAL	Submits the encrypted result of the challenge data	User,
AUTHENTICATION	retrieved from the XAUTH Get Challenge	SSO
	command.	

 $^{^2}$ Refer to ISO/IEC 7816-4 for definition of file types

Service	Description	User / SSO	
XAUTH GET CHALLENGE	Establishes the challenge and response	User,	
	authentication process by first requesting the	SSO	
	random challenge for the current session. The		
	resulting challenge data is output to the host to		
	calculate the encrypted response for use in		
	comparison with the XAUTH External		
	Authentication command.		
ZEROIZE	Zeroization of the module. Performed using	User,	
	DELETE FILE with recursive argument.	SSO	

In addition to the services listed above in Table 3-1, the following non-security relevant services may be executed while the operator is unauthenticated:

- CREATE
- DELETE
- DIRECTORY
- EXTEND
- FIPS INFO
- GET UNAUTHENTICATED RANDOM
- GET RESPONSE
- GET SPYCOS VERSION
- GET STATUS
- READ BINARY
- SELECT
- SELF TEST
- UPDATE BINARY

4. Identification and Authentication

4.1 Initialization Overview

The module is initialized at the factory with a Default SSO PASSWORD Phrase. The SSO must change the default value during logon to make the module ready for initialization. During initialization the module allows the execution of only the commands required to complete the initialization process.

Before a User can access or operate the module, the SSO must initialize it with the User PASSWORD Phrase. The SSO is authorized to log on to the module any time after initialization to change parameters. The module allows 10 consecutive failed SSO logon attempts before it zeroizes all key material and initialization values. In the *zeroized* state, the SSO must use the Default SSO PASSWORD Phrase to log on to the module and must reinitialize all module parameters.

A User must log on to a module to access any on-board cryptographic functions. To log on the User must provide the correct User PASSWORD Phrase. The module allows 10

consecutive failed logon attempts before it blocks the stored User Password. User information stored in the module in non-volatile memory remains resident.

4.2 Authentication

The module implements identity-based authentication which is accomplished by PIN or Password³ entry by the operator. On invocation by the operator, the module waits for authentication of the User or SSO role by entry of a Password Phrase. There is only one User and one SSO Password allowed per module. Multiple User and SSO accounts are not permitted. The authentication password strength available for each supported role is indicated in Table 4-2 below.

Table 4-1 Identification and Authentication Roles and Data

Role	Type of Authentication	Authentication Data – (Strength)
Crypto-officer (SSO)	Identity-based	Password (6 - 20 Bytes)
User	Identity-based	Password (6 - 20 Bytes)

Once a valid PASSWORD Phrase has been accepted the module cryptographic services may be accessed. The CHECK PASSWORD command includes either the User PASSWORD Phrase as a parameter (or) the SSO PASSWORD Phrase as a parameter. If successful, either the User or SSO gains access to the module.

The module stores the number of logon attempts in non-volatile memory. The count is reset after every successful entry of a User PASSWORD Phrase by a User and after every successful entry of the SSO PASSWORD Phrase by the SSO. If the User role fails to logon to the module in 10 consecutive attempts, the module will zeroize the User PASSWORD Phrase, block all of the User Private Keys and Public Keys, block all of the User Key Registers and disallow User access. The module then transitions to a state that is initialized only for the SSO to perform restorative actions. Restorative actions performed by the SSO may include reloading of initialization parameters, unblocking the User PASSWORD Phrase, or zeroization of the module. When the module is powered up after zeroization, it will transition to the Zeroized State, where it will only accept the Default SSO PASSWORD Phrase. After the Default SSO PASSWORD Phrase has been accepted, the module transitions to the Uninitialized State and must be reinitialized, as described in section 6.

³ The terms PIN and Password and PASSWORD Phrase are used synonymously in this document.

4.3 Strength of Authentication

The strength of the authentication mechanism conforms to the following specifications in Table 4-2. The calculations are based on the enforced minimum PASSWORD Phrase size of 6 bytes.

Table 4-2 Strength of Authentication

Authentication Mechanism	Strength of Mechanism
Single Password-entry attempt / False Acceptance	The probability that a random 6-byte Password-entry
Rate	(using only 93 keyboard characters4) attempt will
	succeed or a false acceptance will occur is 1.5456185
	x 10 ⁻¹² . The requirement for a single–attempt / false
	acceptance rate of no more than 1 in 1,000,000 (i.e.
	less than a probability of 10 ⁻⁶) is therefore met.
Multiple Password-entry attempts in one minute	There is a maximum bound of 10 successive failed
	authentication attempts before zeroization occurs.
	The probability of a successful attack of multiple
	attempts in a one minute period is no more than
	1.5456185 x 10 ⁻¹¹ due to the enforced maximum
	number of logon attempts. This is less than one in
	100,000 (i.e., 1 x10 ⁻⁵), as required.

4.3.1 Obscuration of Feedback

Feedback of authentication data to an operator is obscured during authentication (e.g., no visible display of characters result when entering a password). The PASSWORD Phrase value is input to the CHECK PASSWORD command as a parameter by the calling application. No return code or pointer to a return value that contains the PASSWORD Phrase is provided.

4.3.2 Non-weakening Effect of Feedback

Feedback provided to an operator during an attempted authentication shall not weaken the strength of the authentication mechanism. The only feedback provided by the CHECK PASSWORD command is a return code denoting success or failure of the operation. This information in no way affects the probability of success or failure in either single or multiple attacks.

4.3.3 Generation of Random Numbers

The GENERATE RANDOM command can be invoked only after authentication of the User. The SP800-90A DRBG algorithm is used for all authenticated RNG calls.

⁴ The character set available for PINs is at least all alphanumeric characters (upper and lower cases) and 31 special keyboard characters comprising the set {~!@#\$%^&*()_+-={}[]|\:;"'<,>.?/}.

5 Key Management

5.1 CSP Management

Table 5-1 Rosetta microSDHC™ CSPs

CSP Designation	Use
ECDSA Private Key	The Private Key of the User employed in Elliptic Curve digital
	signing operations.
ECC CDH Private Key	Used in ECC CDH key agreement.
Hash DRBG Seed	Used only in generating the initial state of the SP800-90A Hash_DRBG.
HMAC Key	Used to generate HMAC message authentication code.
Message Encryption Key	AES Secret Key for User data encryption/decryption and key
(MEK)	wrapping. Three-Key Triple-DES Secret Key for User data
	encryption/decryption only.
RSA Private Key for Digital	The Private Key of the User employed in RSA digital signing
Signatures	operations.
RSA Private Key for Key	The Private Key of the User employed in RSA Key Unwrapping.
Establishment	
Secure Channel Session	ECDH / AES key used to encrypt and decrypt PASSWORD data
Key	transmitted to the module.
SSO PASSWORD Phrase	A secret 6 – 20 bytes value used for SSO authentication.
User PASSWORD Phrase	A secret 6 – 20 bytes value used for User authentication.
ECC CDH Shared Secret	Used in ECC CDH key agreement.
KDF State	Used in ECC CDH key agreement.

5.2 Public Key Management Parameters

Table 5-2 Rosetta microSDHC™ Public Key Management Parameters

Key	Use
Management	
Parameter	
ECDSA Public Key	The Public Key of the User employed in Elliptic Curve digital signing
	operations.
RSA Public Key for	The Public Key of the User employed in RSA digital signature verification
Digital Signatures	operations.
RSA Public Key for	The Public Key of the User employed in RSA Key Wrapping.
Key Establishment	
ECC CDH Public	Used in ECC CDH key agreement.
Key	

5.3 CSP Access Matrix

The following table (Table 5-3) shows the services (see section 3.1) of the Rosetta microSDHC™, the roles (see section 3) capable of performing the service, the CSPs (see section 5.1) that are accessed by the service and the mode of access (see next paragraph) required for each CSP. The following convention is used: If only one of the roles applies to the service, that role appears alone. If both roles may execute the service, then "User, SSO" is indicated. If either one (but not the other) then "User" or "SSO" is

indicated. In the last option it is a matter of organizational policy which of the roles may execute the service.

Access modes are R (read), W (write) and E (execute). Destruction is represented as a W.

Table 5-3 Rosetta microSDHCTM Access Matrix

Service	User / SSO	Access Type	CSP Access
AES UNWRAPKEY	User	R,E	AES Secret Key
AES WRAPKEY	User	R,E	AES Secret Key
AUTHENTICATE SECURE	User,	R,W	ECC CDH Private Key
CHANNEL	SSO	w	Secure Channel Session Key
		W,E	ECC CDH Shared Secret
		W,E	KDF State
BLOCK PIN	User,	Е	User Password Phrase
	SSO	E	SSO Password Phrase
CHANGE PASSWORD	User,	W	User Password Phrase
	SSO	W	SSO Password Phrase
CHECK PASSWORD	User,	R	User Password Phrase
	SSO	R	SSO Password Phrase
CREATE	User,	N/A	N/A
	SSO		
DECRYPT	User	R	AES/TDES Secret Key
DELETE	User,	N/A	N/A
	SSO		
DIRECTORY	User,	N/A	N/A
	SSO		
ECC GENERATE KEY	User	W	ECC CDH Private Key
ECDH COMPUTE SECRET	User	N/A	N/A
ECDSA SIGN	User	R	ECDSA Private Key
ECDSA VERIFY	User,	R	ECDSA Private Key
	SSO		
ENCRYPT	User	R	AES/TDES Secret Key
ENVELOPE	User,	R,E	Secure Channel Session Key
	SSO		
EXTEND	User,	N/A	N/A
	SSO		
FIPS_INFO	User,	N/A	N/A
	SSO		
GENERATE HMAC KEY	User	R,E	HMAC Key
GENERATE IV	User	N/A	N/A
GENERATE RANDOM	User	R	HASH DRBG Seed
GENERATE SYMMETRIC	User	W	MEK
KEY			
GET PUBLIC	User,	N/A	N/A
	SSO		
GET RESPONSE	User,	N/A	N/A
	SSO		
GET SPYCOS VERSION	User,	N/A	N/A
	SSO		
GET STATUS	User,	N/A	N/A
	SSO		

Service	User / SSO	Access Type	CSP Access
HASH FINALIZE	User,	N/A	N/A
	SSO		,, .
HASH INITIALIZE	User,	N/A	N/A
	SSO		
HASH PROCESS	User,	N/A	N/A
	SSO		
HMAC FINALIZE	User	W	HMAC Key
HMAC INITIALIZE	User	W	HMAC Key
HMAC PROCESS	User	W	HMAC Key
IMPORT HMAC KEY	User	R,W	HMAC Key
INIT PIN FILE	SSO	R,W	User Password Phrase
		R,W	SSO Password Phrase
KDFEXTERNAL	User	N/A	N/A
KDFFINAL	User	W	N/A
KDFINTERNAL	User	N/A	N/A
KDFSTART	User	N/A	N/A
LOAD CRYPTOGRAPHIC	User,	N/A	N/A
DATA	SSO		
LOAD IV	User	N/A	N/A
LOAD KEY	User	W	MEK
LOAD SECRET	User,	R	User Password Phrase
	SSO	R	SSO Password Phrase
LOCK	User, SSO	N/A	N/A
MANAGE SECURE	User,	W, E	ECC CDH Private Key
CHANNEL	SSO	W	Secure Channel Session Key
READ BINARY	User, SSO	N/A	N/A
RSA GENERATE KEYPAIR	User	W	RSA Private Key for Digital Signatures
		W	RSA Private Key for Key Establishment
RSA SIGN DATA	User	R,E	RSA Private Key for Digital Signatures
RSA UNWRAP KEY	User	R	RSA Private Key for Key Establishment
		R	MEK
RSA VERIFY SIGNATURE	User, SSO	R,E	RSA Private Key for Digital Signatures
RSA WRAP KEY	User	R	RSA Private Key for Key Establishment
		W	MEK
SELECT	User, SSO	N/A	N/A
SELF TEST	User, SSO	N/A	N/A
SET KEY		NI/A	N/A
UNBLOCK PIN	User SSO	N/A W	User Password Phrase
ONDLOCK FIN	330	W	SSO Password Phrase
UNLOCK	User,	N/A	N/A
CINECOIL	SSO	13// 1	1.47.5
UPDATE BINARY	User,	N/A	N/A
VALIE 1 5 1 5 6 1	SSO	21/2	1.1/2
XAUTH ENROLL	User, SSO	N/A	N/A
XAUTH EXTERNAL	User,	N/A	N/A
AUTHENTICATION	SSO		

Service	User / SSO	Access Type	CSP Access
XAUTH GET CHALLENGE	User, SSO	N/A	N/A
ZEROIZE	User, SSO	W	ECDSA Private Key ECC CDH Private Key Hash DRBG Seed HMAC Key Message Encryption Key (MEK) RSA Private Key for Digital Signatures RSA Private Key for Key Establishment Secure Channel Session Key SSO Password Phrase User Password Phrase ECC CDH Shared Secret KDF State

5.4 Destruction of Keys and CSPs

The module has the ability to destroy all keys and CSPs by a recursive DELETE command. All keys and CSPs are stored in files. The contents of the file(s) being recursively deleted are erased and over written. Should a power-down occur during the execution of the recursive DELETE, the action of zeroization will resume on a subsequent power-on event, ensuring that access to zeroized information is prevented.

6 Setup and Initialization

The uninitialized module has only a root directory with minimal version and manufacturing information in specific files. There is no information pertaining to the User or SSO or their authentication data, such as Passwords, stored on the uninitialized module as shipped to the customer.

Initialization of the module is accomplished by setting up a security domain by following the procedures below:

- The SSO creates a new application directory on the module;
- The SSO creates a PIN file that is associated with the SSO and User;
- The SSO initializes the PIN files:
- The SSO may optionally set a default Password or set the User PASSWORD Phrase:
 - If the User PASSWORD Phrase is set by the SSO, the User will not be able to change their Password.
- The SSO uses FIPS INFO command to confirm FIPS mode.

The module is now in FIPS mode and operators may logon with the CHECK PASSWORD command. See section 4.2 for a description of the CHECK PASSWORD process.

7 Physical Security

The module is packaged to meet FIPS 140-2 Level 3 Security. The chip is packaged with physical security mechanisms that destroy the chip if physical attacks are launched against it. This is achieved using a hard, opaque, tamper-evident coating on the chip.

The module hardness testing was only performed at a single temperature and no assurance is provided for Level 3 hardness conformance at any other temperature.

Table 7-1 Inspection of Physical Security Mechanisms

Form Factor	Physical Security Mechanisms	Recommended Frequency of Inspection/Test	Inspection/Test Guidance Details
Rosetta microSDHC™	Hard, opaque, tamper-evident coating.	As often as feasible, based upon organization security policy.	Inspect the case of the Rosetta microSDHC™ cover for indicators of penetration (e.g. drill holes, cutting), cracking or other damage. If any signs of suspicious activity are observed, return the cryptographic module to SPYRUS.

8 Self-Tests

The module performs both power-on and conditional self-tests. The power-on self-tests run automatically when power is restored to the module, without requiring any actions or inputs from the operator.

The module performs the following power-on self-tests:

- Firmware Integrity Test with 160-bit Error Detection Code
- Cryptographic algorithm known answer tests (KAT) for:
 - Three-key Triple-DES KAT (encrypt)
 - Three-key Triple-DES KAT (decrypt)
 - AES KAT (encrypt)
 - AES KAT (decrypt)
 - ECDSA KAT (sign)
 - ECDSA KAT (verify)
 - ECC CDH (Primitive "Z" Computation) KAT
 - RSA KAT (sign)
 - RSA KAT (verify)
 - HMAC (SHA-1, SHA-256, SHA-512) KAT
 - SP800-90A DRBG KAT

Power cycling allows either the User or SSO to perform any or all of the above tests on demand.

The module performs the following conditional tests:

- ECDSA Pairwise Consistency Test
- ECC CDH Pairwise Consistency Test
- RSA Pairwise Consistency Test
- Continuous test for Approved SP800-90A DRBG
- Continuous test for non-Approved NDRNG

9 Mitigation of Other Attacks

The module is not claimed to mitigate against any specific attacks.

Table 9-1 Mitigation of Other Attacks

Other Attacks	Mitigation Mechanism	Specific limitations
Not applicable.	Not applicable.	Not applicable.

Appendix A: Critical Security Parameters and Public Keys

The module supports the following CSPs:

- 1. ECDSA Private Key
- Type: X9.62
- Use: The Private Key of the User employed in Elliptic Curve digital signing operations.
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method.
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Key-to-Entity: User
- Zeroization: Actively overwritten during ZEROIZE service

2. ECC CDH Private Key

- Type: SP 800-56A
- Use: Used in ECC CDH key agreement.
- Generation: As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the elliptic curve is the output of the SP800-90A DRBG; this is Approved as per SP800-56A.
- Establishment: N/A
- Entry: N/A
- Output: N/A
- Storage: Plaintext; transient in RAM
- Key-to-Entity: User
- Zeroization: Actively overwritten after channel closure; actively overwritten during ZEROIZE service

3. Hash DRBG Seed

- Type: SP800-90A
- Use: Used only in generating the initial state of the SP800-90A DRBG
- Generation: Internally generated using the NDRNG
- Establishment: N/A
- Entry: N/AOutput: N/AStorage: N/A
- Key-to-entity: Process
- Zeroization: Actively overwritten during ZEROIZE service

4. HMAC Key

- Type: FIPS 198 HMAC Key
- Use: Used to generate HMAC message authentication code

- Generation: As per SP800-133 Section 7.1, key generation is performed as per the "Direct Generation" of Symmetric Keys which is an Approved key generation method.
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Plaintext; stored in key register
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

5. Message Encryption Key (MEK)

- Type: AES 128, 192, 256 ECB/CBC/CTR Secret Key, Three-key Triple-DES ECB/CBC Secret key
- Use: AES Secret Key for User data encryption/decryption and key wrapping. Three-Key Triple-DES Secret Key for User data encryption/decryption only.
- Generation: As per SP800-133 Section 7.1, key generation is performed as per the "Direct Generation" of Symmetric Keys which is an Approved key generation method.
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with RSA 2048
- Storage: Plaintext; stored in key register
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

6. RSA Private Key for Digital Signatures

- Type: FIPS 186-4
- Use: The Private Key of the User employed in RSA digital signing operations
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method.
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

7. RSA Private Key for Key Establishment

- Type: FIPS 186-4
- Use: The Private Key of the User employed in RSA Key Unwrapping
- Generation: As per SP800-133 Section 6.2, key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Key-to-entity: User
- Zeroization: Actively overwritten during ZEROIZE service

- 8. Secure Channel Session Key
- Type: AES-256 CBC
- Use: AES-256 CBC key used to encrypt and decrypt data transmitted to the module
- Generation: N/A
- Establishment: ECC CDH key agreement as per SP800-56A; allowed method as per FIPS 140-2 IG D.8 Scenario 1
- Entry: N/AOutput: N/A
- Storage: Plaintext; Transient in RAM
- Key-to-entity: User
- Zeroization: Actively overwritten after channel closure; actively overwritten during ZEROIZE service

9. SSO Password Phrase

- Type: 6 20 byte Password Phrase
- Use: A secret 6 20 byte value used for Crypto-officer (SSO) authentication that is externally created by SSO during initialization
- Generation: N/AEstablishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Zeroization: Actively overwritten when CHECK PASSWORD and CHANGE PASSWORD services are executed by the SSO; actively overwritten during ZEROIZE service

10. User Password Phrase

- Type: 6 20 byte Password Phrase
- Use: A secret 6 20 byte value used for User authentication that is externally created by SSO during initialization
- Generation: N/AEstablishment: N/A
- Entry: Encrypted with AES-256
- Output: N/A
- Storage: Plaintext; stored in EEPROM
- Zeroization: Actively overwritten when CHECK PASSWORD and CHANGE PASSWORD services are executed by the User; Actively overwritten during ZEROIZE service

11. ECC CDH Shared Secret

- Type: SP 800-56A
- Use: Used in ECC CDH key agreement.
- Generation: N/A
- Establishment: ECC CDH key agreement as per SP800-56A; allowed method as per FIPS 140-2 IG D.8 Scenario 1
- Entry: N/A - Output: N/A

- Storage: Plaintext; transient in RAM
- Key-to-Entity: User
- Zeroization: Actively overwritten upon successful completion of SP800-56A; actively overwritten during ZEROIZE service

12. KDF State

- Type: SP 800-56A (SHA-256 Auxiliary Function H)
- Use: Used in ECC CDH key agreement.
- Generation: N/A
- Establishment: ECC CDH key agreement as per SP800-56A; allowed method as per FIPS 140-2 IG D.8 Scenario 1
- Entry: N/AOutput: N/A
- Storage: Plaintext; transient in RAM
- Key-to-Entity: User
- Zeroization: Actively overwritten upon successful completion of SP800-56A; actively overwritten during ZEROIZE service

The module supports the following public keys:

- 1. ECDSA Public Key:
- Type: X9.62
- Use: The Public Key of the User employed in Elliptic Curve digital signing operations
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Encrypted; stored in EEPROM
- Key-to-entity: User

2. RSA Public Key for Digital Signatures

- Type: FIPS 186-4
- Use: The Public Key of the User employed in RSA digital signature verification operations
- Generation: As per SP800-133 Section 6.1, key generation is performed as per FIPS 186-4 which is an Approved key generation method
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Encrypted; stored in EEPROM
- Key-to-entity: User

3. RSA Public Key for Key Establishment

- Type: FIPS 186-4
- Use: The Public Key of the User employed in RSA Key Wrapping

- Generation: As per SP800-133 Section 6.2, key generation is performed as per FIPS 186-4; this is an allowed method as per FIPS 140-2 IG D.9
- Establishment: N/A
- Entry: Encrypted with AES-256
- Output: Encrypted with AES-256
- Storage: Encrypted; stored in EEPROM
- Key-to-entity: User
 - 4. ECC CDH Public Key
- Type: SP 800-56A
- Use: Used in ECC CDH key agreement.
- Generation: As per SP800-133 Section 6.2, the random value (K) needed to generate key pairs for the elliptic curve is the output of the SP800-90A DRBG; this is Approved as per SP800-56A.
- Establishment: N/A
- Entry: N/A
- Output: Plaintext
- Storage: Plaintext; transient in RAM
- Key-to-Entity: User