

ISO/IEC 19790 and FIPS 140-3 Non-Proprietary

Security Policy

for

Firepower Management Center Virtual VMware Cryptographic Module

Last Updated: June 14, 2024, Version 0.3

Americas Headquarters: Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

© 2024 Cisco Systems, Inc. All rights reserved.

Table of Content

1	General	3
2	Cryptographic Module Specification	3
3	Cryptographic module interfaces	8
4	Roles, services, and authentication	8
5	Software/Firmware security	
6	Operational environment	12
7	Physical security	12
8	Non-invasive security	12
9	Sensitive security parameters management	12
10	Self-tests	17
11	Life-cycle assurance	18
12	Mitigation of other attacks	19

List of Figures

Figure 1 UCS C220 M5 Front view without Bezel (top) and with Bezel (bottom)	4
Figure 2 UCS C220 M5 Rear view	4
Figure 3 Block Diagram	8

List of Tables

TABLE 1 SECURITY LEVELS	3
TABLE 2 TESTED OPERATIONAL ENVIRONMENT	
TABLE 3 VENDOR AFFIRMED OPERATIONAL ENVIRONMENTS	4
TABLE 4 APPROVED ALGORITHMS	7
TABLE 5 PORTS AND INTERFACES	8
TABLE 6 ROLES, SERVICE COMMANDS, INPUT AND OUTPUT	9
TABLE 7 APPROVED SERVICES	11
TABLE 8 SSPs	16
TABLE 9 NON-DETERMINISTIC RANDOM NUMBER GENERATION SPECIFICATION	17

1 General

This is Cisco Systems, Inc. non-proprietary security policy for Firepower Management Center Virtual VMware Cryptographic Module (hereinafter referred to as the Module or FMCv) with software version 7.0.5. The following details how this module meets the security requirements of FIPS 140-3, SP 800-140 and ISO/IEC 19790 for a Security Level 1 Software cryptographic module.

The security requirements cover areas related to the design and implementation of a cryptographic module. These areas include cryptographic module specification; cryptographic module interfaces; roles, services, and authentication; software/firmware security; operational environment; physical security; non-invasive security; sensitive security parameter management; self-tests; life-cycle assurance; and mitigation of other attacks. Table 1 below indicates the actual security levels for each area of the cryptographic module.

ISO/IEC 24759:2017	ISO/IEC 24759:2017 and FIPS 140-3	Level
Section 6	Section Title	
1	General	1
2	Cryptographic module specification	1
3	Cryptographic module interfaces	1
4	Roles, services, and authentication	1
5	Software/Firmware security	1
6	Operational environment	1
7	Physical security	N/A
8	Non-invasive security	N/A
9	Sensitive security parameter management	1
10	Self-tests	1
11	Life-cycle assurance	1
12	Mitigation of other attacks	N/A

Table 1 Security Levels

The module has an overall security level of 1.

2 Cryptographic module specification

The Module is a multi-chip standalone software module deployed as the virtualized version of the Cisco Firepower Management Center with underlying operating system identified as Linux 4 (also referred to as Firepower eXtensible Operating System or FX-OS) throughout this document. The module's operational environment is non-modifiable.

The module is the administrative nerve center for managing critical Cisco network security solutions. It provides complete and unified management over firewalls, application control, intrusion prevention, URL filtering, and advanced malware protection, quickly and easily go from managing a firewall to controlling applications to investigating and remediating malware outbreaks. It is a key part of the broad and integrated Cisco Secure portfolio, delivering in-depth analysis, streamlined security management across the network and cloud, and accelerated incident investigation and response, working across Cisco and third-party technologies. The Firewall Management Center (FMC) discovers real-time information about changing network resources and operations. The Management Center is the centralized point for event and policy management for the following solutions:

- Cisco Firepower Next-Generation Firewall (NGFW)
- Cisco ASA with FirePOWER Services
- Cisco Firepower Next-Generation IPS (NGIPS)
- Cisco FirePOWER Threat Defense

• Cisco Advanced Malware Protection (AMP)

#	Operating System	Hardware Platform	Processor	PAA/Acceleration
1	Linux 4 (FX-OS) on VMware ESXi 6.7	UCS C220 M5 SFF Server	Intel Xeon Gold 6128 (Skylake)	With PAA
2	Linux 4 (FX-OS) on VMware ESXi 6.7	UCS C220 M5 SFF Server	Intel Xeon Gold 6128 (Skylake)	Without PAA
3	Linux 4 (FX-OS) on VMware ESXi 7.0	UCS C220 M5 SFF Server	Intel Xeon Gold 6128 (Skylake)	With PAA
4	Linux 4 (FX-OS) on VMware ESXi 7.0	UCS C220 M5 SFF Server	Intel Xeon Gold 6128 (Skylake)	Without PAA

The module has been tested on the following Operational Environments.

Table 2 Tested Operational Environment

Figure 1 UCS C220 M5 Front view without Bezel (top) and with Bezel (bottom)¹

Figure 2 UCS C220 M5 Rear view

In addition to the platforms listed in Table 2, Cisco has also tested the module on the following platforms and claims vendor affirmation on them.

#	Operating System	Hardware Platform
1	Linux 4 (FX-OS)	C220 M5 w/KVM/AWS
2	Linux 4 (FX-OS)	C240 M5 w/ESXi/KVM/AWS
3	Linux 4 (FX-OS)	C480 M5 w/ESXi/KVM/AWS
4	Linux 4 (FX-OS)	E160-M3 w/ESXi/KVM/AWS
5	Linux 4 (FX-OS)	E180D-M3 w/ESXi/KVM/AWS

 Table 3 Vendor Affirmed Operational Environments

¹ <u>https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c220m5-sff-specsheet.pdf</u>

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed on the validation certificate.

Mode of operation

The module has one approved mode of operation and is always in the approved mode of operation after initial operations are performed (See Section 11). The module does not claim implementation of a degraded mode of operation. Section 4 provides details on the service indicator implemented by the module.

The table below lists all Approved or Vendor-affirmed security functions of the module, including specific key size(s) -in bits otherwise noted- employed for approved services, and implemented modes of operation. There are some algorithm modes that were tested but not implemented by the module. Only the algorithms, modes, and key sizes that are implemented by the module are shown in this table.

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key	Use/Function
			Strength(s)	
A2952 and	AES	CBC	Key Length: 128 and 256	Symmetric Encryption and
A3376	[FIPS 197;		bits	Decryption.
	SP800-38A]			
A2952 and	AES	GCM	Key Length: 128 and 256	Authenticated Symmetric
A3376	[FIPS 197;		bits	Encryption and Decryption
A2952 and	SP 800-38D] KDF SSH	KDF SSH	N/A	Key derivation function
A2952 and A3376	[SP 800-135rev1]	KDF 55H	IN/A	used in SSHv2
A3370	(CVL)			used III SSTIV2
A2952 and	TLS v1.2 KDF	TLS v1.2 KDF RFC7627	N/A	Key derivation in TLSv1.2
A3376	RFC7627			with RFC7627 KDF with
	[RFC7627]			Extended Master Secret
	(CVL)			
A2952 and	CTR_DRBG	AES-256	N/A	Random number
A3376	[SP 800-90Arev1]	Derivation Function		generation
		Enabled;		
		Prediction Resistance: Yes		
A2952 and	ECDSA	ECDSA KeyGen	Curves: P-256, P-384, P-	ECDSA keypair
A3376 A2952 and	[FIPS 186-4] ECDSA	ECDSA KeyVer	521 Curves: P-256, P-384, P-	generation ECDSA keypair
A2952 and A3376	[FIPS 186-4]	ECDSA Reyver	521	verification
A3370 A2952 and	ECDSA	ECDSA SigGen	Curves: P-256, P-384, P-	ECDSA signature
A3376	[FIPS 186-4]	ECDSA Sigocii	521	generation
A2952 and	ECDSA	ECDSA SigVer	Curves: P-256, P-384, P-	ECDSA Signature
A3376	[FIPS 186-4]	C C	521	verification
A2952 and	HMAC	HMAC-SHA-1	Key Length: 112 bits or	Keyed Hash
A3376	[FIPS 198-1]		greater	
A2952 and	HMAC	HMAC-SHA2-256	Key Length: 112 bits or	Keyed Hash
A3376	[FIPS 198-1]		greater	
A2952 and	HMAC	HMAC-SHA2-384	Key Length: 112 bits or	Keyed Hash
A3376	[FIPS 198-1]		greater Key Length: 112 bits or	Kanad Haab
A2952 and A3376	HMAC [FIPS 198-1]	HMAC-SHA2-512	Key Length: 112 bits or greater	Keyed Hash
A3370 A2952 and	KAS-SSC	KAS-ECC-SSC:	Curves: P-256, P-384, P-	KAS-ECC shared secret
A3376	[SP 800-56Arev3]	Scheme:	521;	computation
1.0010		ephemeralUnified:	,	
		KAS Role: initiator,	Key establishment	
		responder	methodology provides	
			between 128 and 256	

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key	Use/Function
een	Standard		Strength(s)	
			bits of encryption	
			strength	
1 2 0 7 2 1	W. L. G.			
A2952 and A3376	KAS [SP 800-56Arev3]	KAS (ECC): Scheme: ephemeralUnified	Curves: P-256, P-384 and P-521;	Key Agreement Scheme per SP800-56Arev3
A3370	[SF 800-30Alev3]	KAS Role: initiator,	F-321,	with key derivation
		responder	Key establishment	function (SP800-135rev1)
		responder	methodology provides	
		KAS-SSC Cert. #A2952,	between 128 and 256	Note: The module's KAS
		TLSv1.2 KDF RFC7627	bits of encryption	(ECC) implementation is
		Cert. #A2952;	strength	FIPS140-3 IG D.F
				Scenario 2 (path 2)
		KAS-SSC Cert. #A3376,		compliant
		TLSv1.2 KDF RFC7627		
A2952 and	KAS-SSC	Cert. #A3376 KAS-FFC-SSC:	MODP-2048;	KAS-FFC shared secret
A2952 and A3376	[SP 800-56Arev3]	Scheme: dhEphem:	WODF-2048,	computation
113370		KAS Role: initiator,	Key establishment	computation
		responder	methodology provides	
		-	between 112 bits of	
			encryption strength	
A2952 and	KAS	KAS (FFC):	MODP-2048;	Key Agreement Scheme
A3376	[SP 800-56Arev3]	Scheme: dhEphem	IZ	per SP800-56Arev3
		KAS Role: initiator, responder	Key establishment methodology provides	with key derivation function (SP800-135rev1)
		responder	between 112 bits of	Tunction (SF800-1551ev1)
		KAS-SSC #A2952, KDF	encryption strength	Note: The module's KAS
		SSH Cert. #A2952;	·····), ·······························	(FFC) implementation is
				FIPS140-3 IG D.F
		KAS-SSC Cert. #A3376,		Scenario 2 (path 2)
		KDF SSH Cert. #A3376		compliant
A2952 and	RSA	RSA KeyGen: - Mode: B.3.4	Modulus: 2048/3072 bits	RSA keypair generation
A3376	[FIPS 186-4]	- Mode: B.3.4 - 2048/3072 Modulus		
A2952 and	RSA	RSA SigGen:	Modulus: 2048/3072 bits	RSA signature generation
A3376	[FIPS 186-4]	- PKCSv1.5	Wodulus. 20+0/3072 bits	KSA signature generation
	[]	- 2048/3072 Modulus with		
		SHA2-256/384/512		
A2952 and	RSA	RSA SigVer:	Modulus: 2048/3072 bits	RSA signature verification
A3376	[FIPS 186-4]	- PKCSv1.5		
		- 2048/3072 Modulus with		
A2952 and	Sofo Drimos V	SHA2-256/384/512	Safa Drima Crowner	KAS EEC Vormein Jamein
A2952 and A3376	Safe Primes Key Generation	KeyGen for KAS-SSC (FFC)	Safe Prime Groups: MODP-2048	KAS-FFC Keypair domain parameters generation
113370	[SP 800-56Arev3]			Parameters generation
A2952 and	SHS	SHA-1	N/A	Message Digest
A3376	[FIPS 180-4]			
A2952 and	SHS	SHA2-256	N/A	Message Digest
A3376	[FIPS 180-4]			
A2952 and	SHS	SHA2-384	N/A	Message Digest
A3376	[FIPS 180-4]			M D'
A2952 and	SHS	SHA2-512	N/A	Message Digest
A3376	[FIPS 180-4]		1	

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use/Function
Vendor Affirmed	CKG (SP800-133rev2)	Section 5.1, Section 5.2	Cryptographic Key Generation; SP 800- 133rev2 and IG D.H.	Key Generation. Note: The cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per section 5 in SP800- 133rev2 (vendor affirmed). A seed (i.e., the random value) used in asymmetric key generation is a direct output from SP800-90Arev1 CTR DRBG.

Table 4 Approved Algorithms

Notes:

- Algorithm Cert. #A2952 was tested for the OE with PAA
- Algorithm Cert. #A3376 was tested for the OE without PAA
- The module's AES-GCM implementation conforms to FIPS 140-3 IG C.H scenario #1 following RFC 5288 for TLS. The module is compatible with TLSv1.2 and provides support for the acceptable GCM cipher suites from SP 800-52 Rev1, Section 3.3.1. The operations of one of the two parties involved in the TLS key establishment scheme were performed entirely within the cryptographic boundary of the module being validated. The counter portion of the IV is set by the module within its cryptographic boundary. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, to encounter this condition will trigger a handshake to establish a new encryption key. In case the module's power is lost and then restored, a new key for use with the AES GCM encryption/decryption shall be established.
- No parts of SSH and TLS protocols, other than the KDFs, have been tested by the CAVP and CMVP.
- In accordance with FIPS 140-3 IG D.H, the cryptographic module performs Cryptographic Key Generation as per section 5 in SP800-133rev2. The resulting generated seed used in the asymmetric key generation is the unmodified output from SP800-90Arev1 DRBG.

As the module can only be operated in the Approved mode of operation, and any algorithms not listed in the table 4 above will be rejected by the module while in the approved mode, the tables defined in SP800-140B for the following categories are missing from this document.

- Non-Approved Algorithms Allowed in Approved Mode of Operation
- Non-Approved Algorithms Allowed in Approved Mode of Operation with No Security Claimed
- Non-Approved Algorithms Not Allowed in Approved Mode of Operation

Cryptographic boundary

The module is defined as a multi-chip standalone software module (inside red dashed area). The cryptographic boundary includes all of the module's software components, including Guest OS, API and FOM Crypto Library (Cisco FIPS Object Module). The physical perimeter is the Tested Operational Environment's Physical Perimeter (TOEPP) on which the module runs.

Tested Platform TOEPP

Processor	
Hypervisor	
Guest OS / FMC	
API FOM	
FOM	

Figure 3 Block Diagram

Note: Block Diagram above comprises the following components:

- Processor = Chip on the tested platform to handle all processes.
- API = Host API between hypervisor and processor
- Hypervisor = VMWare ESXi 6.7 and 7.0
- Guest OS/FMC = Linux 4 (FX-OS)
- API = Guest API between the FMC Module and FOM Crypto library
- FOM = Cisco FIPS Object Module (FOM) Crypto Library

3 Cryptographic module interfaces

The module's physical perimeter encompasses the case of the tested platform mentioned in Table 2. The module provides its logical interfaces via Application Programming Interface (API) calls. The module's logical interfaces provided by the module are mapped onto the FIPS 140-3 logical interfaces (data input, data output, control output and status output) as follows.

Physical Port	Logical Interface	Data that passes over port/interface	
N/A	Data Input Interface	Arguments for an API call that provide the data to be used or processed by the module.	
N/A	Data Output Interface	Arguments output from an API call.	
N/A	Control Input Interface	Arguments for an API call used to control and configure module operation.	
N/A	Control Output Interface	N/A	
N/A	Status Output Interface	Return values, and or log messages.	

Table 5 Ports and Interfaces

4 Roles, services, and authentication

The module supports Crypto Officer (CO) role. The cryptographic module does not provide any authentication methods. The module does not allow concurrent operators. The Crypto Officer is implicitly assumed based on the service requested. The module provides the following services to the Crypto Officer.

Role	Service	Input	Output
Crypto Officer	Show Status	API command to show status	Module's current status
Crypto Officer	Show Version	API commands to show version	Module's name/ID and versioning information
Crypto Officer	Perform Self-Tests	API commands to conduct on- demand Self-Tests	Status of the self-tests results
Crypto Officer	Perform Zeroization	API commands to conduct Zeroization operation or Power down the tested platform	Status of the SSPs zeroization
Crypto Officer	Configure Network	API Commands to configure the module	Status of the completion of network related configuration
Crypto Officer	Configure SSHv2 Function	API commands to configure SSHv2	Status of the completion of SSHv2 configuration
Crypto Officer	Configure HTTPS over TLSv1.2 Function	API commands to configure HTTPS over TLSv1.2	Status of the completion of HTTPS over TLSv1.2 configuration
Crypto Officer	Run SSHv2 Function	API commands to execute SSHv2 service	Status of SSHv2 secure tunnel establishment
Crypto Officer	Run HTTPS over TLSv1.2 Function	API commands to execute HTTPS over TLSv1.2 service	Status of HTTPS over TLSv1.2 secure tunnel establishment

Table 7 below lists all approved services that can be used in the approved mode of operation. The abbreviations of the access rights to keys and SSPs have the following interpretation:

G = **Generate**: The module generates or derives the SSP.

R = **Read**: The SSP is read from the module.

W = **Write**: The SSP is updated, imported, or written to the module.

E = **Execute**: The module uses the SSP in performing a cryptographic operation.

Z = **Zeroise**: The module zeroises the SSP.

N/A = The service does not access any SSP during its operation.

Services	Description	Approved Security Functions	Keys and /or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Show Status	Provide Module's current status	N/A	N/A	Crypto Officer	N/A	None
Show Version	Provide Module's name/ID and versioning information	N/A	N/A	Crypto Officer	N/A	None
Perform Self-Tests	Perform Self- Tests (Pre- operational self- tests and Conditional Self- Tests)	N/A	N/A	Crypto Officer	N/A	None
Perform Zeroization	Perform Zeroization	N/A	All SSPs	Crypto Officer	Z	None
Configure Network	Sets configuration of the systems	N/A	N/A	Crypto Officer	N/A	None
Configure SSHv2 Function	Configure SSHv2 Function	AES-CBC; CKG;	Diffie-Hellman Private Key;	Crypto Officer	W, E	Global Indicator and SSHv2

Services	Description	Security Functions		Roles	Access rights to Keys and/or SSPs	Indicator
		KDF SSH; CTR_DRBG; HMAC-SHA-1; HMAC-SHA2- 256; HMAC-SHA2- 384; HMAC-SHA2- 512; KAS-FFC-SSC; KAS (FFC); RSA KeyGen; RSA SigGen; RSA SigGen; RSA SigVer; Safe Primes Key Generation; SHA-1; SHA2-256; SHA2-384; SHA2-512	Diffie-Hellman Public Key; Peer Diffie-Hellman Public Key; Diffie-Hellman Shared Secret; RSA Private Key; RSA Public Key; SSH Session Integrity Key; SSH Session Key			success log message
Configure HTTPS over TLSv1.2 Function	Configure HTTPS over TLSv1.2 Function	AES-CBC; AES-GCM; CKG; TLS v1.2 KDF RFC7627; CTR_DRBG; ECDSA KeyGen; ECDSA KeyGen; ECDSA SigGen; ECDSA SigVer; HMAC-SHA-1; HMAC-SHA2- 256; HMAC-SHA2- 384; HMAC-SHA2- 384; HMAC-SHA2- 512; KAS-ECC-SSC; KAS (ECC); RSA KeyGen; RSA SigGen; RSA SigGen; RSA SigVer; SHA-1; SHA2-256; SHA2-384; SHA2-512	EC Diffie-Hellman Private Key; EC Diffie-Hellman Public Key; Peer EC Diffie-Hellman Public Key; EC Diffie-Hellman Shared Secret; ECDSA Private Key; ECDSA Public Key; RSA Private Key; RSA Public Key; TLS master secret; TLS Session Key; TLS Session Integrity Key	Crypto Officer	W, E	Global Indicator and HTTPS over TLSv1.2 success log message
Run SSHv2 Function	Execute SSHv2 Function	AES-CBC; CKG; KDF SSH; CTR_DRBG; HMAC-SHA-1; HMAC-SHA2- 256;	DRBG entropy input; DRBG Seed, Internal State V value, and Key; Diffie-Hellman Private Key;	Crypto Officer	W, E	Global Indicator and SSHv2 success log message

Services	Description	Approved Security Functions	Keys and /or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
		HMAC-SHA2- 384; HMAC-SHA2- 512; KAS-FFC-SSC; KAS (FFC); RSA KeyGen; RSA SigGen; RSA SigGen; RSA SigVer; Safe Primes Key Generation; SHA-1; SHA2-256; SHA2-384; SHA2-512	Diffie-Hellman Public Key; Peer Diffie-Hellman Public Key; Diffie-Hellman Shared Secret; RSA Private Key; RSA Public Key; SSH Session Integrity Key; SSH Session Key			
Run HTTPS over TLSv1.2 Function	Execute HTTPS over TLSv1.2 Function	AES-CBC; CKG; TLS v1.2 KDF RFC7627; CTR_DRBG; ECDSA KeyGen; ECDSA KeyGen; ECDSA SigGen; ECDSA SigGen; ECDSA SigVer; HMAC-SHA-1; HMAC-SHA2- 256; HMAC-SHA2- 384; HMAC-SHA2- 384; HMAC-SHA2- 512; KAS-ECC-SSC; KAS (ECC); RSA KeyGen; RSA SigGen; RSA SigGen; RSA SigVer; SHA-1; SHA2-256; SHA2-384; SHA2-512	DRBG entropy input; DRBG Seed, Internal State V value, and Key; EC Diffie-Hellman Private Key; EC Diffie-Hellman Public Key; Peer EC Diffie-Hellman Public Key; EC Diffie-Hellman Shared Secret; ECDSA Private Key; ECDSA Public Key; RSA Private Key; RSA Public Key; TLS master secret; TLS Session Integrity Key	Crypto Officer	W, E	Global Indicator and HTTPS over TLSv1.2 success log message

Table 7 Approved Services

As the module can only be operated in the Approved mode of operation, as such any algorithms not listed in Table 4 above will be rejected by the module while in the approved mode, the table required defined in SP800-140B for Non-Approved Services is missing from this document.

The module doesn't support self-initiated cryptographic output capability and cryptographic Bypass capability services.

5 Software/Firmware security

Integrity techniques

The module is provided in the form of binary executable code. To ensure the software security, the module is protected by HMAC-SHA2-512 (HMAC Certs. #A2952 or #A3376) algorithm. The software integrity test key (non-SSP) was preloaded to the module's binary the factory and used for software integrity test only at the pre-operational self-test. At Module's initialization, the integrity of the runtime executable is verified using a HMAC-SHA2-512 digest which is compared to a value computed at build time. If at the load time the MAC does not match the stored, known MAC value, the module would enter to an Error state with all crypto functionality inhibited.

Integrity test on-demand

Integrity test is performed as part of the pre-operational self-tests. It is automatically executed at poweron. The operator can power-cycle or reboot the tested platform to initiate the software integrity test ondemand.

6 Operational environment

The module is a software module, which is operated in a modifiable operational environment per FIPS 140-3 level 1 specifications. The module's software version running on each tested platform is 7.0.5.

The module has control over its own SSPs. The process and memory management functionality of the host device's OS prevents unauthorized access to plaintext private and secret keys, intermediate key generation values and other SSPs by external processes during module execution. The module only allows access to SSPs through its well-defined API. The operational environments provide the capability to separate individual application processes from each other by preventing uncontrolled access to CSPs and uncontrolled modifications of SSPs regardless of whether this data is in the process memory or stored on persistent storage within the operational environment. Processes that are spawned by the module are owned by the module and are not owned by external processes/operators.

7 Physical security

The FIPS 140-3 physical security requirements do not apply to the Module since it is a software module.

8 Non-invasive security

Currently, non-invasive security is not required by FIPS 140-3 (see NIST SP 800-140F). The requirements of this area are not applicable to the module.

9 Sensitive security parameters management

The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the module.

Key/SSP Name Type	Strength	Security Function and Cert Number	Generation	Import/ Export	Esta blish ment	Storage	Zeroization	Use & related Keys
DRBG entropy	384 bits	CTR_DRBG	Obtained from the Entropy	Import to the module via	N/A	N/A: The module	Automatic zeroization	Random Number
input (CSP)		#A2952 or #A3376	Source within	Module's API		does not provide	when the tested	Generation

Key/SSP Name Type	Strength	Security Function and Cert Number	Generation	Import/ Export	Esta blish ment	Storage	Zeroization	Use & related Keys
			TOEPP (GPS INT Pathways)	Export: No		persistent keys/SSPs storage.	platform is powered down	
DRBG Seed, Internal State V value, and Key (CSP)	256 bits	CTR_DRBG #A2952 or #A3376	Internally Derived from entropy input string as defined by SP800- 90Arev1	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Random Number Generation
Diffie- Hellman Private Key (CSP)	MODP- 2048	CKG; CTR_DRBG; KAS (FFC); KAS-FFC- SSC; Safe Primes Key Generation #A2952 or #A3376	Internally generated conformant to SP800-133r2 (CKG) using SP800-56A rev3 Diffie- Hellman key generation method, and the random value used in key generation is generated using SP800- 90ARev1 DRBG	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive Diffie- Hellman Shared Secret
Diffie- Hellman Public Key (PSP)	MODP- 2048	KAS (FFC); KAS-FFC- SSC; Safe Primes Key Generation #A2952 or #A3376	Internally derived per the Diffie- Hellman key agreement (SP800- 56Arev3)	Import: No Export: to the SSH Peer application	N/A	N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive Diffie- Hellman Shared Secret
Peer Diffie- Hellman Public Key (PSP)	MODP- 2048	N/A	N/A	Import: to the Module via API Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive Diffie- Hellman Shared Secret
Diffie- Hellman Shared Secret (CSP)	MODP- 2048	KAS-FFC- SSC #A2952 or #A3376	Internally generated using SP800- 56Arev3 DH shared secret computation	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive SSH session related keys

Key/SSP Name Type	Strength	Security Function and Cert Number	Generation	Import/ Export	Esta blish ment	Storage	Zeroization	Use & related Keys
EC Diffie- Hellman Private Key (CSP)	P-256, P- 384 and P-521	CKG; CTR_DRBG; KAS (ECC); KAS-ECC- SSC #A2952 or #A3376	Internally generated conformant to SP800-133r2 (CKG) using SP800-56A rev3 EC Diffie- Hellman key generation method, and the random value used in key generation is generated using SP800- 90Arev1 DRBG	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive EC Diffie- Hellman Shared Secret
EC Diffie- Hellman Public Key (PSP)	P-256, P- 384 and P-521	KAS (ECC); KAS-ECC- SSC #A2952 or #A3376	Internally derived per the EC Diffie- Hellman key agreement (SP800- 56Arev3)	Import: No Export: to the TLS Peer application	N/A	N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive EC Diffie- Hellman Shared Secret
Peer EC Diffie- Hellman Public Key (PSP)	P-256, P- 384 and P-521	N/A	N/A	Import: to the Module via API Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive EC Diffie- Hellman Shared Secret
EC Diffie- Hellman Shared Secret (CSP)	P-256, P- 384 and P-521	KAS-ECC- SSC #A2952 or #A3376	Internally generated using SP800- 56Ar3 ECDH shared secret computation	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive TLS session related keys
ECDSA Private Key (CSP)	P-256, P- 384 and P-521	CKG; CTR_DRBG; ECDSA KeyGen; ECDSA KeyVer; ECDSA SigGen; #A2952 or #A3376	Internally generated conformant to SP800-133r2 (CKG) using FIPS 186-4 ECDSA key generation method, and the random value used in key generation is generated using SP800-	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and Verification used in TLS

Key/SSP Name Type	Strength	Security Function and Cert Number	Generation	Import/ Export	Esta blish ment	Storage	Zeroization	Use & related Keys
			90Arev1 DRBG					
ECDSA Public Key (PSP)	P-256, P- 384 and P-521	ECDSA KeyGen; ECDSA KeyVer; ECDSA SigVer; #A2952 or #A3376	Internally derived per the FIPS 186-4 ECDSA key generation method	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and Verification used in TLS
RSA Private Key (CSP)	2048 and 3072 bits	CKG; CTR_DRBG; RSA KeyGen; RSA SigGen; #A2952 or #A3376	Internally generated conformant to SP800-133r2 (CKG) using FIPS 186-4 RSA key generation method, and the random value used in the key generation is generated using SP800- 90Arev1 DRBG	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and Verification used in SSH or TLS
RSA Public Key (PSP)	2048 and 3072 bits	KeyGen; RSA SigVer; #A2952 or #A3376	Internally derived per the FIPS 186-4 RSA key generation method	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and Verification used in SSH or TLS
SSH Session Integrity Key (CSP)	160 bits	KDF SSH; HMAC-SHA-1 #A2952 or #A3376	Internally Derived per the key derivation function defined in SP800-135 KDF (KDF- SSH).	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when SSH session is terminated or when the tested platform is powered down	Used for SSH session integrity protection.
SSH Session Key (CSP)	128/256 bits	AES-CBC; KDF SSH; #A2952 or #A3376	Internally Generated via key derivation function defined in SP800-135 KDF (KDF- SSH)	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when SSH session is terminated or when the tested platform is	Used for SSH session confidentiality protection

Key/SSP Name Type	Strength	Security Function and Cert Number	Generation	Import/ Export	Esta blish ment	Storage	Zeroization	Use & related Keys
							powered down	
TLS Master Secret (CSP)	48 Bytes	Keying Material	Internally Derived per the key derivation function defined in SP800-135 KDF (KDF- TLS v1.2 RFC7627)	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when TLS session is terminated or when the tested platform is powered down	Keying material used to derive other TLS keys
TLS Session Key (CSP)	128/256 bits	AES-CBC; AES-GCM; TLS v1.2 KDF RFC7627; #A2952 or #A3376	Internally Derived per the key derivation function defined in SP800-135 KDF (KDF- TLS v1.2 RFC7627)	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when TLS session is terminated or when the tested platform is powered down	Used for TLS session confidentiality protection
TLS Session Integrity Key (CSP)	256-384 bits	TLS v1.2 KDF RFC7627; HMAC- SHA2-256; HMAC- SHA2-384; #A2952 or #A3376	Internally Derived per the key derivation function defined in SP800-135 KDF (KDF- TLS v1.2 RFC7627)	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when TLS session is terminated or when the tested platform is powered down	Used for TLS session integrity protection

Table 8 SSPs

RBG entropy source

Entropy sources	Minimum number of bits of entropy	Details
Entropy within the TOEPP was passively Load Into the module to seed the 800- 90Arev1 DRBG by the Operating System.	At least 112 bits	 While operating in the approved mode, the entropy and seeding material for the SP800-90Arev1 DRBG are provided by the external calling application (and not by the Module) which is outside the module's cryptographic boundary but contained within the module's Tested Operational Environment's Physical Perimeter (TOEPP) boundary. The module receives a LOAD command with entropy obtained from the entropy source (Intel CPU processor with instructions RDRand) inside the TOEPP. The minimum effective strength of the SP 800-90Arev1 DRBG seed is required to be at least 112 bits when used in an approved mode of operation, therefore the minimum number of bits of entropy requested when the Module makes a call to the SP 800-90Arev1 DRBG is at least 112 bits. Per the IG 9.3.A Entropy Caveats, the following caveat applies: <i>No assurance of the minimum strength of generated SSPs (e.g., keys)</i>.

 Table 9 Non-Deterministic Random Number Generation Specification

10 Self-tests

When the module is loaded or instantiated (after being powered off, rebooted, etc.), the module runs preoperational self-tests. The operating system is responsible for the initialization process and loading of the Module. The module is designed with a default entry point (DEP) which ensures that the self-tests are initiated automatically when the module is loaded. Prior to the module providing any data output via the data output interface, the module would perform and pass the pre-operational self-tests. A software integrity test is performed on the runtime image of the module with HMAC-SHA2-512 algorithm. Prior to the firmware integrity test, the module conducts a HMAC-SHA2-512 Cryptographic Algorithm Self-test (CAST). If the CAST on the HMAC-SHA2-512 is successful, the HMAC value of the runtime image is recalculated and compared with the stored HMAC value pre-computed at compilation time. Following the successful pre-operational self-tests, the module would execute the Conditional Cryptographic Algorithm Self-tests (CASTs) for all approved cryptographic algorithms implemented by the module during powerup as well.

The self-test success or failure messages (e.g., *Error: Signature RSA test failure* or *ECDH P-256 test failure*) were logged, which is functioning as the self-test status indicator. If any one of the self-tests fails, the module transitions into an error state and outputs the error message via the module's status output interface. While the module is in the error state, all data through the data output interface and all cryptographic operations are disabled. The only method to recover from the error state is to power cycle the device which results in the module being reloaded into memory and reperforming the pre-operational software integrity test and the Conditional CASTs. The module will only enter into the operational state after successfully passing the preoperational software integrity test and the Conditional CASTs.

Below are the details of the self-tests conducted by the module.

Pre-operational self-tests:

- Pre-operational software integrity test
 - HMAC-SHA-512 KAT
 - Software Integrity Test (using HMAC-SHA-512)

Please note that the module conducts HMAC-SHA-512 KAT self-test before the integrity test is performed.

Conditional self-test

- Conditional cryptographic algorithm self-tests (CASTs)
 - o AES-CBC 256 bits Encrypt KAT
 - o AES-CBC 256 bits Decrypt KAT
 - o AES-GCM 256 bits Authenticated Encrypt KAT
 - AES-GCM 256 bits Authenticated Decrypt KAT
 - CTR_DRBG Instantiate KAT
 - CTR_DRBG Generate KAT
 - CTR_DRBG Reseed KAT Note: CTR_DRBG Health Tests: Generate, Reseed, Instantiate functions per Section 11.3 of SP 800-90Arev1
 - o ECDSA P-256 with SHA-256 SigGen KAT
 - $\circ~$ ECDSA P-256 with SHA-256 SigVer KAT
 - HMAC-SHA-1 KAT
 - HMAC-SHA-256 KAT
 - HMAC-SHA-384 KAT
 - HMAC-SHA-512 KAT
 - KAS-ECC-SSC Primitive Z KAT
 - KAS-ECC-SSC Primitive Z KAT
 - o RSA 2048 bits modulus with SHA-256 SigGen KAT
 - o RSA 2048 bits modulus with SHA-256 SigVer KAT
 - o SHA-1 KAT
 - o KDF-SSH KAT
 - KDF-TLS KAT

The module generates RSA, ECDSA, KAS-ECC and KAS-FFC asymmetric keys and performs all required pair-wise consistency tests on the newly generated key pairs as detailed below.

- Conditional pair-wise consistency tests (PCTs)
 - RSA PCT
 - ECDSA PCT
 - KAS-ECC PCT
 - KAS-FFC PCT

Periodic/Self-tests on-demand

The module performs on-demand self-tests initiated by the operator, by power-cycling or rebooting the tested platform. The full suite of self-tests is then executed. The same procedure may be employed by the operator to perform periodic self-tests. In addition, it is recommended for the Crypto Officer to perform the periodic tests a minimum of once every 60 days to ensure all components are functioning correctly.

11 Life-cycle assurance

11.1 Secure operations

The module meets all the Level 1 requirements for FIPS 140-3. The validated Module's executable file Cisco_Firepower_Mgmt_Center_Virtual300_VMware-7.0.5-72-disk1.vmdk is the only allowable software image file running on the respective test platform listed in the Table 2 above while in the approved mode. The Crypto Officer must configure and enforce the following initialization steps:

Step 1: For all Management Centers, the setup process must be completed by logging into the Management Center's web interface and specifying initial configuration options on a setup page.

Step 2: Choose System > Configuration (Choose SSH or HTTPS or a combination of these options to specify which ports you want to enable for these IP addresses).

Step 3: System>Licenses>Smart Licenses, add and verify licenses (*Firepower Management Center Configuration Guide provides more detailed information*).

Install AES SMART license to use AES (for data traffic and SSH).

Step 4: System > Configuration; Devices > Platform Settings; STIG Compliance, choose Enable STIG Compliance; Click on save. This sets the approved mode of operation. The CO shall only use approved cryptographic algorithms listed in Section 2.2 above.

Step 5: Reboot the security appliances.

12 Mitigation of other attacks

The requirements under INCITS+ISO+IEC 19790+2012[2014], section 7.12 "Mitigation of other attacks", are not applicable to the module since the module currently doesn't support any mitigation of other attacks services.