

Huawei USG 9520/9560/9580 Firewall Non-Proprietary Security Policy

Issue	04
Date	2017-11-1

HUAWEI TECHNOLOGIES CO., LTD.

$\textbf{Copyright} \ \textcircled{\textbf{Copyright}} \ \textbf{E} \ \textbf{Huawei} \ \textbf{Technologies} \ \textbf{Co., Ltd. 2017. All rights reserved.}$

This document may be reproduced or transmitted only in its original form.

Trademarks and Permissions

and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base Bantian, Longgang Shenzhen 518129 People's Republic of China

Website: http://www.huawei.com

Email: support@huawei.com

About This Document

Purpose

This document describes the Security Policy of the Huawei USG 9520/9560/9580 Firewall.

Intended Audience

This document is intended for administrators who configure and manage the Huawei USG 9520/9560/9580 Firewall. The administrators must have good Ethernet knowledge and network management experience.

Symbol Conventions

The symbols that may be found in this document are defined as follows.

Symbol	Description
	Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.
	Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
	Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.
	Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance deterioration, or unanticipated results. NOTICE is used to address practices not related to personal injury.
III NOTE	Calls attention to important information, best practices and tips. NOTE is used to address information not related to personal injury, equipment damage, and environment deterioration.

Change History

Issue	Date	Description
04	2017-11-1	Updates per CMVP comments
03	2017-05-05	Minor fixes
02	2017-03-01	Added the USG9580 model.
01	2016-10-28	This issue is the first official release.

Contents

About This Document	ii
1 References and Definitions	1
2 Introduction	
2.1 Hardware	
2.2 Exclusion	
2.3 Modes of Operation	
3 Cryptographic Functionality	
3.1 Critical Security Parameters and Public Keys	
4 Roles, Authentication and Services	
4.1 Assumption of Roles	
4.2 Authentication Methods	
4.3 Services	
5 Self-tests	
6 Physical Security Policy	
6.1 Physical Security Mechanisms	
6.2 External Baffle Placement	
6.3 Tamper Seal Placement	
7 Operational Environment	54
8 Mitigation of Other Attacks Policy	55
9 Security Rules and Guidance	

1 References and Definitions

Table 1-1 References

Ref	Full Specification Name
ESP	Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, Internet Engineering Task Force, December 2005.
ESP-B	Law, L. and J. Solinas, "Suite B Cryptography Suites for IPsec", RFC 6379, Internet Engineering Task Force, October 2011.
LDAP	Semersheim, J., Ed., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511, Internet Engineering Task Force, June 2006.
RADIUS	Rigney, C., Rubens, A., Simpson, W. and S. Willens, "Remote Authentication Dial In User Service (RADIUS), RFC 2865, Internet Engineering Task Force, June 2000.
SSH	Ylonen, T. and C. Lonvick, "The Secure Shell (SSH) Connection Protocol", RFC 4254, Internet Engineering Task Force, January 2006.
SSH-B	K. Igoe, "Suite B Cryptography in Suites for Secure Shell (SSH)", Internet Engineering Task Force, May 2011.
TLS	Dierks, T., and E. Rescoria, "The Transport Layer Security (TLS) Protocol Version 1.2". RFC 5246, Internet Engineering Task Force, August 2008.
TLS-B	Salter, M and R. Housely, "Suite B Profile for Transport Layer Security (TLS)", Internet Engineering Task Force, January 2012.

Table 1-2 Acronyms and Definitions (for terms not defined in FIPS 140-2 and associated documents)

Term	Definition
AAA	Authentication, Authorization and Accounting - access control, policy enforcement and auditing framework for computing systems, e.g., LDAP
AAPT	Anti-APT feature
CLK	Clock

Term	Definition
ESP	Encapsulated Security Payload (a subset of IPsec, Internet Protocol Security)
IKE	Internet Key Agreement, a key agreement scheme associated with IPsec (but not used by the module)
GUI	Graphical User Interface
IETF	Internet Engineering Task Force, a standards body
IPS	Intrusion Prevention System
KPM	Key-Pair Management
KX	Key Exchange
LDAP	Lightweight Directory Access Protocol
MPLS	Multiprotocol Label Switching
NTP	Network Time Protocol
OSPF	Open Shortest Path First
RFC	Request For Comment; the prefix used by IETF for internet specifications.
RIP	Routing Information Protocol
SSH	Secure Shell
VPN	Virtual Private Network
TLS	Transport Layer Security
TOD	Time of Day
TSM	Terminal Security Management
UDP	User Datagram Protocol
MPU	Main Processing Unit
SPU	Service Processing Unit
SPC	Service Processing Card
FPIC	Flexible Plug-in Card
LPU	Line Processing Unit
SFU	Switch Fabric Unit

2 Introduction

HUAWEI USG 9520/9560/9580 Firewall are multi-chip standalone cryptographic modules enclosed in hard, commercial grade metal chassis. The cryptographic boundary for these modules is the enclosure. The primary purpose of these modules is to provide secure remote access to internal resources via the Internet Protocol (IP). The modules provide network interfaces for data input and output. The appliance encryption technology uses FIPS approved algorithms. FIPS-approved algorithms are approved by the U.S. government for protecting unclassified data.

The module is designated as a limited operational environment under the FIPS 140-2 definitions. The module includes a firmware load service to support necessary updates. New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into this module is out of the scope of this validation and requires a separate FIPS 140-2 validation.

The USG9500 series are distributed firewall implementations, meaning the management and control functionality is implemented in a separate processor (with standby duplicate). The systems can then use multiple Service Processing Unit (SPU) cards to load balance core firewall functionality. Line Processing Unit (LPU) cards are used to scale the network port connectivity. There is a fixed Switched Fabric Unit (SFU) which connects the multiple LPUs and SPUs.

	Module	HW P/N and Version	FW Version
1	USG9520	02350FRU Rev D.2	V500R001C50
2	USG9560	02350FRW Rev D.2	V500R001C50
3	USG9580	02350FRX Rev D.2	V500R001C50

Table 2-1 Cryptographic module configurations

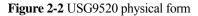
Card type	Top P/N Rev
SPU-X3-B	03056640
SPU-X3-B2	03056989
SPU-X8X16-B	03056638
SPC-20-O-E8KE	03056636
SPU-X3-20-O-E8KE	03056634
SPU-X8X16-20-O-E8KE	03056635
SPC-APPSEC-FW	03056688
SPUA-20-O-H	03057426
SPUA-20-O-M	03057427
SPCA-20-O-H&M	03057429
SPUB-20-O-H	03057520
SPUB-20-O-M	03057518
SPCB-20-O-H&M	03057522

Table 2-2 SPU/SPCs configurations

The USG9520/9560/9580 service processing unit (SPU) is in the flexible plug-in card (FPIC) structure. It processes security services in a centralized manner. An FPIC SPU consists of two parts: mother board and service processing card (SPC). The USG9520/9560/9580 provides multiple models of SPUs with different performance. Each SPU mother board can hold one or two SPCs. CPUs are installed on SPCs. The SPU-X3-B, SPU-X3-B2, and SPU-X8X16-B are mother boards. By default, a mother board does not have any service processing capabilities and must be used together with SPCs.

 Table 2-3 Opaque enclosure and tamper seal

Module	Number	Version
External Baffle	99089JEB	A.2
Tamper seal	4057-113016	A.3


The FIPS 140-2 security levels for the module are as follows:

Security Requirement	Security Level
Cryptographic Module Specification	2
Cryptographic Module Ports and Interfaces	2
Roles, Services, and Authentication	2
Finite State Model	2
Physical Security	2
Operational Environment	N/A
Cryptographic Key Management	2
EMI/EMC	2
Self-Tests	2
Design Assurance	3
Mitigation of Other Attacks	N/A
OVERALL Level	2

2.1 Hardware

USG9520

The USG9520 employs an integrated chassis and provides three (3) LPU/SPU slots and a flexible configuration of different SPCs on a SPU, and also supports a fixed combination of a SPU and SPCs and may include blank faceplates when interface cards are not used in FIPS approved. The module's support for multiple MPUs, SFUs, power modules and fans provides fault tolerance (redundancy). Figure 2-2 shows the physical forms of the USG9520. Table 2-5 shows the corresponding ports and interfaces for main chassis of the USG9520.

Front Panel

Port	Description	Logical Interface Type
Console	Serial console (2)	Control in, Data in, Data Out, Status out
AUX	Auxiliary port (2)	Control in, Data in, Status out
SPU/LPU slot	Line Processing Unit/Service Processing Unit slot (3)	Control in, Data in, Data Out, Status out
LEDs	ACT (Active/standby) (2), Alarm (2), Run (2), OFL (2), Power (4), fan (1)	Status out
Mgmt	Management Ethernet connection (2)	Control in, Data in, Data out, Status out
OFL	Hot swap button (2)	Control in
RESET	Reset button (2)	Control in
TOD	Disabled by firmware (2)	N/A
CLK	Disabled by firmware (2)	N/A
Power	Two power inputs with switches	Power

Table 2-5 USG9520 ports and interfaces for main chassis

USG9560

The USG9560 employs an integrated chassis and provides eight (8) LPU/SPU slots a flexible configuration of different SPCs on a SPU, and also supports a fixed combination of a SPU and SPCs and may include blank faceplates when interface cards are not used in FIPS approved mode. The module's SRUs, SFUs, power modules, and fans work in redundancy mode. Figure 2-2 shows the physical forms of the USG9560. Table 2-6 shows the corresponding ports and interfaces for main chassis of the USG9560.

Figure 2-3 USG9560 physical form

Port	Description	Logical Interface Type
Console	Serial console (2)	Control in, Data in, Data Out, Status out
AUX	Auxiliary port (2)	Control in, Data in, Status out
LEDs	ACT (Active/standby) (2), Alarm (2), Run (2), OFL (2), Power (8), fan (2), CF	Status out
Mgmt	Management Ethernet connection (2)	Control in, Data in, Data out, Status out
CTL-ETH-SFP	Disabled by firmware (2)	N/A
CF slot	CF card slot (2)	Covered with tamper seal in Approved mode - not accessible
CF button	CF card button	Control in
LPU/SPU slots	Line Processing Unit/ Service Processing Unit interfaces (8)	Control in, Data in, Data Out, Status out
OFL	Hot swap button (2)	Control in
RESET	Reset button (2)	Control in
USB	Disabled by firmware (2)	Covered with tamper seal in Approved mode - not accessible
CLK	Disabled by firmware (4)	N/A
CMU	Disabled by firmware	N/A
Power	Four power inputs with switches	Power

Table 2-6 USG9560 ports and interfaces for main chassis

USG9580

The USG9580 employs an integrated chassis and provides sixteen (16) LPU/SPU slots which can support a flexible configuration of different SPCs on a SPU, and also supports a fixed combination of a SPU and SPCs and may include blank faceplates when interface cards are not used in FIPS approved mode. The module's SRUs, SFUs, power modules, and fans work in redundancy mode. Figure 2-34 shows the physical forms of the USG9580. Table 2-7 shows the corresponding ports and interfaces for main chassis of the USG9580.

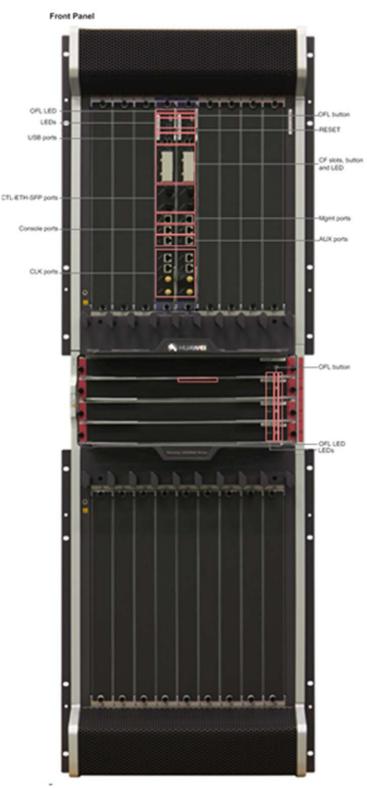
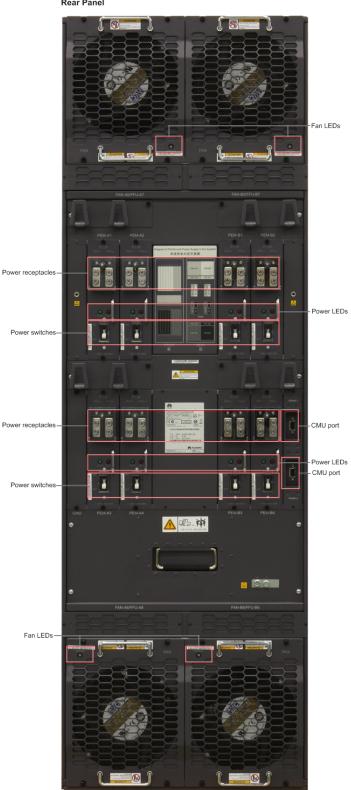



Figure 2-4 USG9580 physical form

Rear Panel

Port	Description	Logical Interface Type
Console	Serial console (2)	Control in, Data in, Data out, Status out
AUX	Auxiliary port (2)	Control in, Data in, Status out
LEDs	ACT (Active/standby) (2), Alarm (2), MPU Run (2), SFU Run (4), MPU OFL (2), SFU OFL (4), Power (16), fan (4), CF	Status out
Mgmt	Management Ethernet connection (2)	Control in, Data in, Data out, Status out
CTL-ETH-SFP	Disabled by firmware (2)	N/A
CF slot	CF card slot (2)	Covered with tamper seal in Approved mode - not accessible
CF button	CF card button	Control in
OFL	MPU Hot swap button (2), SFU Hot swap button (4)	Control in
RESET	Reset button (2)	Control in
USB	Disabled by firmware (2)	Covered with tamper seal in Approved mode - not accessible
CLK	Disabled by firmware (4)	N/A
LPU/SPU slots	Line Processing Unit/ Service Processing Unit interfaces (16)	Control in, Data in, Data Out, Status out
CMU	Disabled by firmware (2)	N/A
Power	Eight power inputs with switches	Power

Table 2-7 USG9580 ports and interfaces for main chassis

SPUs and SPCs

The USG 9520/9560/9580 supports three (3) SPUs and four (4) Service Processing Cards (SPCs). The SPU provides two (2) half-width slots, and each slot can house a SPC. The USG 9520/9560/9580 supports flexible configuration of different SPCs on a SPU and also supports a fixed combination of a SPU and SPCs. The only difference between the fixed combination and the optional combination is the model of the panel, but the panel interface is completely the same.

Figure 2-5 SPU-X3-B front panel

Figure 2-6 SPU-X8X16-B front panel

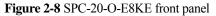


Figure 2-7 SPU-X3-B2 front panel

Table 2-8 SPU ports and interfaces

Port	Description	Logical Interface Type
LEDs	Run, OFL	Status out
OFL	Hot swap button	Control in

Figure 2-9 SPC-APPSEC-FW front panel

Figure 2-10 SPCA-20-O-H&M front panel

Figure 2-11 SPCB-20-O-H&M front panel

Table 2-9 SPC ports and interfaces

Port	Description	Logical Interface Type
LEDs	Run, OFL	Status out
OFL	Hot swap button	Control in

2.2 Exclusion

The USG 9520/9560/9580 supports the following LPUs: LPUF-240, and LPUF-120. The LPUF provides two (2) half-width slots, and each slot can house a FPIC. The panel difference between two (2) LPUs is only the silkscreen of the board name. The LPUs and FPICs are not involved in any security-related service, and do not bring any security risk. The LPUs do not process any keys or CSPs.

Module	Top P/N Rev
FW-LPUF-120	03056682 B.6
FW-LPUF-240	03056683 B.6
FW-6X10G-SFP+	03056684 B.5
FW-1X100G-CFP	03056685 B.5
FW-12X10G-SFP+	03056686 B.5
FW-20X1G-RJ45	03056890 B.3
FW-3X40G-QSFP+	03056848 B.5
E8KE-X-101-24XG E-SFP	03056633 A.3

Table 2-10 USG 9520/9560/9580 LPUs

The following uses LPUF-240 as an example.

Figure 2-12 LPUF-240 panel

Table 2-11 LPU ports and interfaces

Port	Description	Logical Interface Type
LEDs	Run, OFL	Status out
OFL	Hot swap button	Control in

LPUF-240/LPUF-120 and FPICs

The LPUF-240/LPUF-120 supports the following FPICs:

- FW-6X10GE-SFP+
- FW-12X10GE-SFP+
- FW-1X100GE-CFP
- FW-20X1G-RJ45
- FW-3X40G-QSFP+

• E8KE-X-101-24XGE-SFP

Figure 2-13 FW-6X10GE-SFP+ front panel

FW-6X10G-SFP+	\bigcirc
	ትøቁ ትøቁ ትøቁ ትøቁ ትኦት ትøቁ ትøቁ
	• 6 • 7 • 0 • 2 • 7 • 0 • 0 · 2

 Table 2-12 FW-6X10GE-SFP+ ports and interfaces

Port	Description	Logical Interface Type
LEDs	Status, L/A (6)	Status out
Ethernet	Network traffic connections (6)	Control in, Data in, Data out, Status out

Figure 2-14 FW-12X10GE-SFP+ front panel

Table 2-13 FW-12X10GE-SFP+ ports and interfaces

Port	Description	Logical Interface Type
LEDs	Status, L/A(12)	Status out
Ethernet	Network traffic connections (12)	Control in, Data in, Data out, Status out

Figure 2-15 FW-1X100GE-CFP front panel

Port	Description	Logical Interface Type
LEDs	Status, L/A	Status out
Ethernet	Network traffic connection	Control in, Data in, Data out, Status out

 Table 2-14 FW-1X100GE-CFP ports and interfaces

Figure 2-16 FW-20X1G-RJ45 front panel

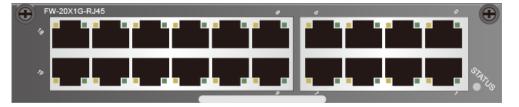


Table 2-15 FW-20X1G-RJ45 ports and interfaces

Port	Description	Logical Interface Type
LEDs	Status	Status out
Ethernet	Network traffic connections (20)	Control in, Data in, Data out, Status out

Figure 2-17 FW-3X40G-QSFP+ front panel

Table 2-16 FW-3X40G-QSFP+ ports and interfaces

Port	Description	Logical Interface Type
LEDs	Status, L/A (3)	Status out
Ethernet	Network traffic connections (3)	Control in, Data in, Data out, Status out

Figure 2-18 E8KE-X-101-24XGE-SFP front panel

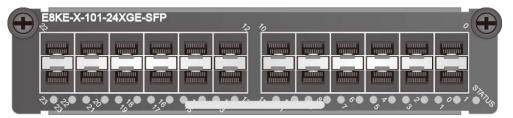


Table 2-17 E8KE-X-101-24XGE-SFP ports and interfaces

Port	Description	Logical Interface Type
LEDs	Status, L/A (24)	Status out
Ethernet	Network traffic connections (24)	Control in, Data in, Data out, Status out

2.3 Modes of Operation

The module supports both Approved and non-Approved modes of operation. By default, the module comes configured in the non-Approved mode. In the non-Approved mode, the additional ciphersuites shown in Table 3-2 are available. In addition, SSH v1.5 and SNMP v1/2 are available for configuration, administration and monitoring.

See 9 Security Rules and Guidance for additional Approved mode operation guidance.

3 Cryptographic Functionality

The cryptographic protocols and primitives implemented and used by the modules are listed in this section. Table 3-1 and Table 3-2 list the TLS ciphersuites available in the Approved and non-Approved modes, respectively. Table 3-3 lists the SSH security methods; unlike TLS ciphersuites, SSH methods are independently selectable and may be used in any combination. Table 3-4 lists the IPsec security methods.

The module supports HTTPS using TLS ciphersuites below in the Approved mode, supporting STS to redirect all HTTP connections to HTTPS (with TLS) and to assure that a user cannot accidentally downgrade browser security.

Cipher Suite String(IETF enumeration)	TLS	КХ	Cipher	Digest
TLS1_CK_RSA_WITH_AES_256_SHA	1.1, 1.2	RSA	AES-256	SHA-1 SHA-2
TLS1_CK_RSA_WITH_AES_128_SHA	1.1, 1.2	RSA	AES-128	SHA-2
TLS1_CK_DHE_RSA_WITH_AES_256_SHA	1.1, 1.2	DH	AES-256	SHA
TLS1_CK_DHE_RSA_WITH_AES_128_SHA	1.1, 1.2	DH	AES-128	SHA
TLS12_CK_RSA_AES_256_CBC_SHA256	1.2	RSA	AES-256	SHA-2

Table 3-1 TLS ciphersuites used in the Approved mode

Table 3-2 TLS ciphersuites used in the non-Approved mode

Cipher Suite String (OpenSSL Enumeration)	TLS	KX	Cipher	Digest
TLS_RSA_WITH_DES_CBC_SHA	1.0, 1.1, 1.2	RSA	DES	SHA-1
TLS_RSA_WITH_RC4_128_MD5	1.2	RSA	RC4	MD5
TLS_RSA_WITH_RC4_128_SHA	1.2	RSA	RC4	SHA-1
TLS_RSA_WITH_NULL_MD5	1.0	RSA	NULL	MD5
TLS_RSA_WITH_NULL_SHA	1.0	RSA	NULL	SHA-1

Cipher Suite String (OpenSSL Enumeration)	TLS	КХ	Cipher	Digest
TLS_DHE_RSA_WITH_DES_CBC_S HA	1.2	DH	DES	SHA-1
TLS_DHE_DSS_WITH_3DES_EDE_ CBC_SHA	1.2	DH (2048)	Triple-DES	SHA-1
TLS_DHE_DSS_WITH_AES_128_C BC_SHA256	1.2	DH (2048)	AES-128	SHA-256
TLS_DHE_DSS_WITH_AES_128_C BC_SHA	1.0, 1.1, 1.2	DH (2048)	AES-256	SHA-1
TLS_DHE_DSS_WITH_AES_256_C BC_SHA256	1.2	DH	AES-256	SHA-256
TLS_DHE_DSS_WITH_AES_256_C BC_SHA	1.0, 1.1, 1.2	DH	AES-256	SHA-1
TLS_DHE_DSS_WITH_AES_128_C BC_SHA256	1.2	DH	AES-128	SHA-256
TLS1_CK_RSA_RC4_128_SHA	1.1,1.2	RSA	AES-256	SHA-1

The module uses SSHv2 over a shell interface via the console serial port to perform limited module configuration and administration.

SSH Security Methods	Approved Mode	Non-Approved Mode		
Key Exchange				
diffie-hellman-group-exchange-shal	Х	Х		
diffie-hellman-group14-sha1	Х	Х		
diffie-hellman-group1-sha1		Х		
Server Host Key (Authentication)				
ssh-dsa		Х		
ssh-rsa	Х	Х		
ssh-ecdsa	Х	Х		
Digest				
hmac-sha2-256	Х	X		
hmac-md5-96		X		
hmac-md5		X		

SSH Security Methods	Approved Mode	Non-Approved Mode
hmac-sha1	X	Х
hmac-sha2-256-96	X	Х
hmac-sha1-96	X	Х
Cipher		
DES_CBC		Х
Triple-DES	X	Х
AES128_CBC	X	Х
AES128_CTR	X	Х
AES256_CBC	X	Х
AES256_CTR	X	Х

In the non-Approved mode, the module supports SSH v1.5 with the same set of algorithms listed above.

The module uses IPsec ESP mode for data transport, using AES-128, AES-192 and AES-256 in CBC or GCM mode with IKE v1/v2 key exchange. GCM IV constructed per IG A.5 scenario 2.

Cipher Suite String (IETF Enumeration)	Cipher	Digest
AES128-CBC-SHA	AES-128	SHA-1
AES128-CBC-SHA256	AES-128	SHA-256
AES128-CBC-SHA384	AES-128	SHA-384
AES128-CBC-SHA512	AES-128	SHA-512
AES128-GCM	AES-128	GMAC
AES256-CBC-SHA	AES-256	SHA-1
AES256-CBC-SHA256	AES-256	SHA-256
AES256-CBC-SHA384	AES-256	SHA-384
AES256-CBC-SHA512	AES-256	SHA-512
AES256-GCM	AES-256	GMAC
AES192-CBC-SHA	AES-192	SHA-1
AES192-CBC-SHA256	AES-192	SHA-256
AES192-CBC-SHA384	AES-192	SHA-384

Table 3-4 Available IPsec ESP cipher and digest methods

Cipher Suite String (IETF Enumeration)	Cipher	Digest
AES192-CBC-SHA512	AES-192	SHA-512
AES192-GCM	AES-192	GCM
3DES-CBC-SHA	3DES	SHA-1
3DES-CBC-SHA256	3DES	SHA-256
3DES-CBC-SHA384	3DES	SHA-384
3DES-CBC-SHA512	3DES	SHA-512

The module uses SNMP (exclusively using AES and HMAC-SHA cryptography as defined in RFC2574, RFC 3414 and RFC 3826 SNMP extension specifications) for module configuration reporting and status monitoring only.

Table 3-5, Table 3-6 and Table 3-7 list all Approved, Allowed and non-Approved algorithms used by the library, respectively.

Table 3-5	Approved algorithm	ns
-----------	--------------------	----

CAVP	Algorithm	Standard	Mode/Method	Strength 1	Use			
Library: V	Library: VPP							
4451	AES	FIPS 197, SP 800-38A	CBC, CFB	128, 192,256	Data Encryption/Decry ption			
4451/ 2393 2954	AES/Triple- DES HMAC	SP800-38F	Key Wrap	128,192, 256	Key Establishment			
Vendor Affirmed	СКС	SP 800-133	N/A		Key Generation			
1152	CVL SNMP KDF ³	SP800-135	SHA-1		KDF used to derive SNMP AES and HMAC keys			
	CVL SSH KDF	SP800-135	SHA-1		KDF used to derive SSH v2 session keys			
	CVL TLS KDF	SP800-135	SHA-256, 384, 512		Tested but not used by the module			
1153	CVL ECC CDH	SP 800-56A	P-256 P-384 P-521		Shared key calculation			
1442	DRBG ²	SP	CTR_DRBG	256	Deterministic Random Bit			

CAVP	Algorithm	Standard	Mode/Method	Strength 1	Use
		800-90A			Generation
1084	ECDSA	FIPS186-4	P-256 SHA-256 P-384 SHA-384 P-521 SHA-512 P-256 P-384 P-521 P-256 SHA-256 P-384 SHA-384 P-521 SHA-512		Signature Generation Key Pair Generation Signature Verification
2954	HMAC	FIPS 198-1 IG A.8	HMAC-SHA-1 128 HMAC-SHA-22 192 4 256 6 256 HMAC-SHA-38 4 HMAC-SHA-51 2 2 HMAC-SHA-1- 96 96		Message Authentication
2432	RSA	FIPS 186-2 FIPS186-4	Mod 2048,3072 Mod 2048,3072,4096 (SHA-1/256/384/512) Sig. Gen w/SHA-1 for protocol use only Mod 1024,2048,3072,4096 (SHA-1/256/384/512)		RSA Key Generation Signature Generation Signature Verification
3664	SHS	FIPS 180-4	SHA-1, SHA-224 SHA-384,SHA-51		Message Digest Generation
2393	Triple-DES	SP 800-67	TCBC 3-Key		Data Encryption/Decry ption
Library: Op	benSSL		·		
4450	AES	FIPS 197, SP 800-38A	CBC, GCM	128, 192,256	Data Encryption/Decry ption
1150	CVL TLS ³ KDF	SP800-135	TLS 1.0/1.1/1.2 (SHA-256) (SHA-384/512 tested but not used)		KDF used to derive TLS session keys
	CVL IKE KDF	SP800-135	IKEv1/2: 2048 (SHA-1, 256, 384, 512)		KDF used to derive IKE v1/v2 session keys
	CVL	SP	P-256 P-384 P-521		Shared key

CAVP	Algorithm	Standard	Mode/Method	Strength	Use
1151	ECC CDH	800-56A			calculation
1441	DRBG ²	SP 800-90A	CTR_DRBG 256		Deterministic Random Bit Generation
2953	НМАС	FIPS 198-1	HMAC-SHA-1 HMAC-SHA-22 4 HMAC-SHA-25 6 HMAC-SHA-38 4 HMAC-SHA-51 2	128 192 256	Message Authentication
2431	RSA	FIPS 186-4	Mod 2048,3072 Mod 2048,3072,4096 (SHA-1/256/384/512) Sig. Gen w/SHA-1 for protocol use only Mod 1024, 2048, 3072, 4096 (SHA-1/256/384/512)		RSA Key Generation Signature Generation Signature Verification
3663	SHS	FIPS 180-4	SHA-1, SHA-224, SHA-256, SHA-384,SHA-512		Message Digest Generation
2392	Triple-DES	SP 800-67	ТСВС	3-Кеу	Data Encryption/Decry ption

Table 3-6 Allowed algorithms

Algorithm	(Establishment) Strength	Use
Diffie-Hellman	(CVL. Certs. 1150 and 1152) Provides 112, 128 or 256 bits of encryption strength.	Key establishment.
EC Diffie-Hellman	(CVL Certs. 1151 and 1153) Provides 112, 128 or 256 bits of encryption strength.	Key establishment.
MD5	No strength claimed.	TLS 1.0/1.1 KDF
NDRNG	Internal entropy source with rationale to support the claimed DRBG security strength.	DRBG (Certs. #1441 and #1442) entropy input.
RSA Key Wrapping	Provides 112 or 128 bits of encryption strength.	Key establishment.

¹Strength indicates DRBG Strength, Key Lengths, Curves or Moduli

² Prediction resistance; block_cipher_df used for instantiation.

³No parts of the TLS, SSH, and SNMP protocols, other than the KDF, have been reviewed or tested by the CAVP

Algorithm	Use
DES	Encryption/Decryption in SSL VPN and IPsec.
DH Group 1	For key exchange within SSH, IPSec.
DH Group 2	For key exchange within IPSec.
DH Group 5	For key exchange within IPSec.
DSA (non-compliant)	For use within SSH.
HMAC-MD5	For use within SSH.
MD5	Hashing of non-security relevant data.
RC4	Element of the TLS ciphersuite allowed only in non-Approved mode.
RSA	512-bit or 1024-bit key sizes for Signature generation.
SM2	Create key pair.
Triple-DES (Two-key)	Encryption/Decryption that provides only 80 bits of security.

Table 3-7 Non-Approved algorithms (used only in the non-Approved mode)

3.1 Critical Security Parameters and Public Keys

All Critical Security Parameters (CSPs) used by the module are described in this section. Symmetric keys generated internally to the module are the result of unmodified output from the DRBG.

Table	3-8	CSPs
-------	-----	------

Name	Description and Use
DRBG-SEED	Seed material used to seed or reseed the DRBG; entropy input to the block_cipher_df used to instantiate the Approved CTR_DRBG.
DRBG-STATE	SP 800-90A CTR_DRBG V and Key values (AES-256 Key, 128-bit V, per IG 14.5).
IPSec-SENC	ESP Session Encryption key. AES-128, AES-192, AES-256 or

Name	Description and Use		
	3DES key for IPsec ESP tunnel message encryption/decryption.		
IPSec-SMAC	ESP Session Authentication Key. HMAC-SHA-1, HMAC-SHA2-256, HMAC-SHA2-384 or HMAC-SHA2-512 for IPSec ESP tunnel message authentication.		
IKE-DH-PRIV	IKE ephemeral Diffie-Hellman private key for key exchange.		
IKE-MS	IKE master secret, used for SP800-135 key derivation.		
IKE-PSK	IKE Pre-Share Session Key.		
KPM-Priv	KPM private key. RSA (n=2048) or ECDSA (P-521) private key used for KMP session establishment		
KPM-SENC	AES-256 or 3-Key Triple-DES key for KPM message encryption.		
PKI-DMAC	HMAC-SHA1/SHA-256/SHA-384/SHA-512 key used to verify certificate request signature message authenticity.		
SNMP-SENC	SNMP (RFC 2574/3414/3826) session encryption key. AES-128 key used to encrypt/decrypt SNMP messages.		
SNMP-DMAC	SNMP (RFC 2574/3414/3826) session authentication key. HMAC-SHA-1-96 key used to verify SNMP message authenticity.		
MPLS-SENC	MPLS (RFC 3031/3036/3034/3443/2547/4182) session encryption key. AES-256 key used to encrypt/decrypt MPLS messages.		
MPLS-DMAC	MPLS (RFC 3031/3036/3034/3443/2547/4182) session authentication key. HMAC-SHA-1 key used to verify MPLS message authenticity.		
SSH-DH	SSH Diffie-Hellman private component (2048-bit). Ephemeral DH private key used in SSH.		
SSH-Priv	SSH private key. RSA (n=2048) or ECDSA (P-256, P-384) private key used to establish SSH sessions.		
SSH-SENC	SSH session encryption key. AES-128, AES-256 or 3-Key Triple-DES key for SSH message encryption/decryption.		
SSH-DMAC	SSH session authentication key. HMAC-SHA1/HMAC-SHA-256 session key for SSH message authenticity.		
TLS-Host-Priv	AMC TLS private key. RSA (n=2048, n=3072,n=4096) or ECDSA (P-256, P-384) private key used to establish TLS sessions.		
TLS-DH-Priv	TLS Diffie-Hellman private component (2048-bit). Ephemeral DH private key used in TLS.		
TLS-PMS	TLS pre-master secret (size dependent on the key exchange method) used to derive TLS-SENC and TLS-DMAC.		
TLS-SENC	TLS session encryption key. AES-128, AES-256 or 3-Key Triple-DES key for TLS message encryption/decryption.		
TLS-DMAC	TLS session authentication key. HMAC-SHA-1/SHA-256 160-bit		

Name	Description and Use		
	session key for TLS message authenticity.		
AUTH-PW	Authentication Passwords, minimum of 8 characters, printable character set (96 unique values).		
External Server Pre-Shared Key	Pre-shared key for RADIUS/TACACS/AD/LDAP server authentication.		
TSM Server Pre-Shared Key	TSM server pre-shared key, can use 3-Key Tripe-DES or AES-128 for message encrypt/decrypt, the default is AES-128.		
SLOG-SENC	Session log encryption key. AES-256 bit key for session log encryption/decryption.		
SLOG-DMAC	HMAC-SHA-256 key used to verify session log message header authenticity.		
LDB-DMAC	Log database encryption key. AES-256 bit key for database content encryption/decryption.		
SecUpate-Priv	Security update private key. RSA (n=2048, n=3072) or ECDSA (P-256, P-384) private key used to digitally sign content security requests.		
SecUpdate-SENC	URL filtering or IPS/AV update session encryption Key. AES-128 bit for session message encryption/decryption.		
SecUpdate-DMAC	URL filtering or IPS/AV update session authentication key. HMAC-SHA-256 key used to verify session message authenticity.		
SSL Proxy Key	SSL proxy encryption/decryption key. The FIPS approved encryption algorithms (AES, Triple-DES) support SSL proxy session encrypt/decrypt.		
NTP-ShareKey	HMAC-SHA-256 key used for NTP Message integrity check		
RIP-sharekey	HMAC-SHA-256 key used for RIP Message integrity check		
OSPF-key	OSPF share key, used for OSPF message integrity check. HMAC-SHA-256 algorithm is used.		
keychain	HMAC-SHA-256 used for router protocol Message integrity.		

Table 3-9 Public Keys

Name	Description and Use		
ROOT-CA	Huawei Root CA. RSA 2048 X.509 Certificate; Used to prove the identity of the device.		
PACKAGE-CA	Package CA certificate. RSA 2048 X.509 Certificate; Used to verify the validity of legacy Huawei Images at firmware load.		
IKE-Pub	IKE Diffie-Hellman public component. Ephemeral DH public key used in IKE. DH (L= 2048 bit)		

Name	Description and Use	
SSH-Pub	SSH public key. RSA (n=2048) or ECDSA (P-521) public key used for SSH session establishment.	
SSH-DH-Pub	SSH Diffie-Hellman public component. Ephemeral DH public key used in SSH. DH (L=2048 bit)	
TLS-Host-Pub	TLS public key. RSA (n=2048, n=3072, or n=4096) or ECDSA (P-521) public key used for TLS session establishment.	
TLS-DH-Pub	TLS Diffie-Hellman public component (2048 bit). Ephemeral DH public key used in TLS.	
AAPT-CA	Sandbox's CA certificate. When the module and sandbox use HTTPS for data transmission, the module verifies the opposite CA certificate to determine the authenticity of the sandbox.	
KPM-Pub	KPM module public key. RSA (n=2048) or ECDSA (P-521) public key used for KPM session establishment.	
SecUpdate-Pub	SecUpdate module public key. RSA (n=2048) or ECDSA (P-521) public key used for content security session establishment.	

4 Roles, Authentication and Services

4.1 Assumption of Roles

The module does not support a maintenance role or bypass capability. The module supports concurrent use by VPN End Users and administrative users. The cryptographic module enforces the separation of roles by the partitioning of major subsystems (such as VPN traffic vs. shell or administrative functions), and by partitioning of the administrative interfaces (e.g., by organization of the web GUI pages). Authentication status does not persist across module power cycles. To change roles, an operator must first log out, and then log in using another role.

Table 4-1 lists the available roles; the options for authentication types and data are common across roles.

Role		Authentication	
ID	Description	Туре	Data
Root Administrator (CO)	The Root Administrator role is initially assigned to the default "admin" operator account. It has full access to administer and configure the module as well as delegate admin access control rights to Administrators.	Identity-based (using Local password verification) or Role-based (using Transitive trust with authentication server) dependent on the configured	Username and PIN or X.509 certificate
Audit User (AU)	Accesses audit policies and audit logs for diagnostic information.	the configured policy.	
API Administrator (AA)	Invokes an API to access the module. Performs only basic network configurations, monitoring and diagnosis, and API administrator configurations. Not available in Approved mode since the API service is disabled by		

Table 4-1 Roles description

Role		Authentication	
	default.		
Administrator (AD)	Configures and monitors the module per delegated access right assigned by the Root Administrator. The role performs most of the system operations except advanced operations, such as creating administrators.		
End User (EU)	FIPS User accessing the virtual private network resources via an encrypted connection.		

4.2 Authentication Methods

Internet access certification mode is configurable, based on the configuration of the authentication strategy. The module provides three authentication mechanisms, including:

- Username and password authentication
- Certificate-base authentication
- Pre-shared key authentication

Table 4-2 lists the relationship of authentication mechanisms with the services and strength of each authentication mechanism.

Authenticatio n Mechanism	Services	Strength of Mechanism
Username and password authentication	 All available services to CO, AD, and AU, referring to Table 4-3 Network traffic security (EU) VPN network traffic-remote VPN access (EU) VPN network traffic-site to site VPN access (EU) 	The minimum password length is eight (8) characters. The password may contain at least three (3) types of the following characters: uppercase letters (A to Z), lowercase letters (a to z), digits (0 to 9), and special characters, allowing for 94 possible characters, with some minor restriction rules. The probability of false authentication is 1/(94^8) ,which is significantly less than 1/1,000,000. The module supports lockout mechanism, which disables a user account after a configured number of unsuccessful attempts to authenticate. A locked-out user cannot successfully log in again until the user account is unlocked. By default, a user is allowed to fail three (3) times per

 Table 4-2 Authentication mechanisms for services and strength of mechanisms

Authenticatio n Mechanism	Services	Strength of Mechanism
		 minute, but this can be configured to allow up to five (5) failed attempts. The probability of successfully authenticating to the module within a one minute period is 5/(94^8), which is less than 1/100,000. The password entry feedback mechanism does not provide information that could be used to guess or determine the authentication data.
Certificate-base authentication	 VPN network traffic-remote VPN access (EU) VPN network traffic-site to site VPN access (EU) 	The module supports certificate-based authentication using 2048 bit RSA keys in FIPS mode. Such keys possess an equivalent strength of 112 bits. The probability of false authentication is $1/(2^{112})$, which is less than $1/1,000,000$. The module supports at most 30,000 new sessions per second to authenticate in a one-minute period; so the probability of successfully authenticating to the module within a one-minute period is $(60x30,000)/(2^{112})$, which is less than 1/100,000.
Pre-shared key authentication	 VPN network traffic-remote VPN access (EU) VPN network traffic-site to site VPN access (EU) 	The minimum pre-shared key length is eight (8) characters. The password may contain at least three (3) types of the following characters: uppercase letters (A to Z), lowercase letters (a to z), digits (0 to 9), and special characters, allowing for 94 possible characters. The odds of guessing a password are 1/(94^8), which is significantly less than 1/1,000,000. The module supports at most 30,000 new sessions per second to authenticate in a one-minute period; so the probability of successfully authenticating to the module within a one-minute period is (60x30,000)/(94^8), which is less than 1/100,000.

4.3 Services

All services implemented by the module are summarized next, with additional detail following #EN-US_TOPIC_0041170623/fig3793169591839 provided for traceability of cryptographic functionality and access to CSPs and public keys by services.

Service	Description	CO	AD	AU	AA	EU
Reset to Factory Defaults	Restoring the module to factory conditions via the CLI command or Web GUI and is the means of providing zeroization keys and CSPs.	X	X ^[4]			
Module Reset	Rebooting the module via the reset CLI command or WebGUI. This service executes the suite of self-tests required by FIPS 140-2.	X	X			
Configure System (includes Firmware Update)	Update module firmware, license management, SNMP configuration, file management, and logging configuration.	X	X		X	
Configure Network	Network interface configuration and management.	Х	Х		Х	
Configure Policy	VPN access policy configuration.	X	Х		X	
Status Monitoring and Reporting	Including Monitor and Dashboard GUI, providing module status (CPU usage, etc.) and logs.	X	X			
Configure audit policy and view audit logs	Including monitoring users' online behavior (HTTP, FTP, QQ and email operations etc.).			X		
Management through API	Including basic network configurations, monitoring and diagnosis, and API administrator configurations.				Х	
User Management and Authentication	Creating users, configuring external authentication servers and setting access rights.	Х	X ^[5]		Х	
VPN network traffic	Providing VPN services through IPsec, SSL, L2TP, GRE and MPLS.					Х
Network traffic security	Traditional firewall features such as application and content filtering, anti-virus, email filtering, IPS, etc.					Х

 Table 4-3 Authenticated module services

Service	Description
Module Reset (Includes Self-test)	Rebooting the module via the reset button. This service executes the suite of self-tests required by FIPS 140-2.
Network Traffic Management	Load balancing, quality of service, bandwidth management and normal traffic.
Show Status	Providing the current status of the cryptographic module.

 Table 4-4 Unauthenticated module services

^[4] Access level configured by the CO

^[5] Cannot create additional COs

Table 4-5 Services only available in Non-FIPS mode

Services	Description					
Telnet	Using telnet to remotely manage and maintain several devices without the need to connect each device to a terminal; data is transmitted using TCP in plain text, which is a potential security risk.					
NETCONF	Invokes an API to access the module					
RESTCONF	Invokes an API to access the module					
SNMP(v1,v2c)	Configuration, administration and monitoring					
FTP	Using ftp to transfer file in plain text is a potential security risk					
SSHv1.0 SSHv1.5	It's not safe to connect to remote machine via SSHv1					
PKI(Key Pair Create)	Running command "pki rsa local-key-pair create key-name" is not allowed in FIPS mode					

Table 4-6 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as:

- G = Generate: The module generates the CSP (unmodified output of DRBG).
- R = Read: The module reads the CSP. The read access is typically performed before the module uses the CSP.
- E = Execute: The module executes using the CSP.
- W = Write: The module writes the CSP. The write access is typically performed after a CSP is imported into the module, when the module generates a CSP, or when the module overwrites an existing CSP.
- Z = Zeroize: The module zeroizes the CSP.

		1	2		-		-	-		20-3		-	-				-				-		
	-	е		U	_						U	ų		y					÷				
	DRBG-SEED	DRBG-STATE	IPsec-SENC	IPsec-DMAC	IKE-DH-Priv			.2	KPM-SENC	Å	SNMP-SENC	SNMP-DMAC	MPLS-SENC	MPLS-DMAC		5	¥	SSH-DMAC	rLS-Host-Priv	rls-DH-Priv	s	ų	R
	6-S	S-9	-SI	9.	Ħ	IKE-MS	N24-BX	KPM-Priv	-SE	PKI-DMAC	IP-S	-	S-S	S-D	HO-HSS	SSH-Priv	SSH-SENC	a.	Ę	DH	TLS-PMS	TLS-SENC	TLS-DMAC
Unauthenticated Services	8	8	Se	Se	÷.	÷	-	PIM	PIM	KF	NR	NR	IL	UPL	-HS	SH-	SH-	SH-	LS-	-SI	-SI	-SI	-SI
Module reset	GEZ	G		-	G	G		G	*	•	S	S	~	~	SG	G	S	S	F	F	-	-	F
		-			-			-			-			-	0								
Network Traffic Management	-	-		-							-		-		-				-	-			-
Show Status	-	-		-		-		-					-						-			-	-
Root Admin Authenticated Services	2																						
Reset to Factory Defaults		Z	Ζ	Ζ	Z	Ζ	WZ	Z	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Z	Z	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ
Module Reset	GEZ	G			-			G			-				G	G			-				-
Configure System (including	-	Е		-		-		-			W	W	-		-		-		-	-			-
firmware update) Configure Network								()						·	-	<u></u>				<u></u>		<u></u>	
Configure Policy		-				_	RWZ	_															
Status Monitoring and Reporting																							
User Management and																							
Authentication	-	E		-			-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
Admin Authenticated Services																							
Reset to Factory Defaults		Ζ	Ζ	Ζ	Ζ	Ζ	WZ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ
Module Reset	GEZ	G		-		-		G		-	-		-		G	G			-	-			-
Configure System (including	-	E								_	w	w										_	
firmware update)	1000	-	-		-	-	-	<u> </u>	-		**	**	-		-	_	-	_	-		-	223	-
Configure Network															-								
Configure Policy	-						RWZ								-								-
Status Monitoring and Reporting		E			-		-	-		-	-	-		-	-	-		-		-	-	-	-
User Management and	_	Е		_	-	-	-					-	-		-				_	2			_
Authentication		1999	1. 1	-			2		-				-	0.0	_		-		_	0.1	_	0.0	_
Audit User Authenticated Services																							
Configure audit policy and view			2 8		2.0		2	10.1		1.1		12.1		- 		10.0		10.0					
audit logs	-			-	-	-					-		-				-	-		<u></u>	-		-
uuun ioga	1								-		-		-		-		1		1	0	-		-
User Authenticated Services																							
	· · · ·	-	05	OF	05	OF	-	10-1		200	-	-	05	OF		8.0		1	OF	OF	05	OF	or
VPN Network Traffic	-	E	GE	GE	GE	GE	E	-	-	-	E	E	GE	GE	-	-	-	-	GE	GE	GE	GE	GE
Network Traffic Security	-	Ε						Ε	GE	GE	-		-	-	Е	Ε	GE	GE	-	-		-	-

Table 4-6 CSP access rights within services

Unauthenticated Services	AUTH-PW	External Server Pre-shared	TSM Server Pre-Shared Key	SLOG-SENC	SLOG-DMAC	LDB-DMAC	SecUpate-Priv	SecUpdate-SENC	SecUpdate-DMAC	SSL Proxy Key	NTP-ShareKey	R IP-S ha re key	OS PF- key	Keychain	ROOT-CA	PACKAG E-CA	IKE-Pub	SSH-Pub	SSH-DH-Pub	TLS-Host-Pub	TLS-DH-Pub	AAPT-CA	KPM-Pub	SecUpdate-Pub
Module reset	-		-	-	-	G	G	-	-	-	Ζ	Ζ	Ζ	Ζ			-			-	-		-	-
Network Traffic Management	-		-		-		-	-	1	1	-	1	1	-	-					I	-		-	-
Show Status	-		-	-	-		-	-	-	-	-	-	-		-	-	-		-	-	-		-	
Root Admin Authenticated Services	_	7	7	Z	Z	7	7	7	Z	Z	Z	Z	Z	7	W	W								
Reset to Factory Defaults Module Reset	Z	Z	Z	-	-	G	ZG	Z	-	2	Z	Z	Z	Z	VV	E	-				-		-	-
Configure System (including	-			-	-	0	0	-					_	4	- 2	L			-		-		-	
firmware update)	-	-	-	-	-	-	-	-	-	-	G	G	G				-	-	-	-	-			E
Configure Network					-		-		-	-		-		G					-		-	-		-
Configure Policy	-	-			-	-				-	-	-					-		-		-		-	
Status Monitoring and Reporting User Management and	w	w	 GW	GW			-		-	-			-					E	GRE	E	 E	-	 E	
Authentication						_																		
Admin Authenticated Services	2. 11																ļ.,							
Reset to Factory Defaults	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Z	Ζ	Ζ	Ζ	W	W	-	-	-				-	-
Module Reset	-				-	G			-	-	Ζ	Ζ	Ζ	Ζ	-	Е	-			-			-	
Configure System (including firmware update)	-	-	-	-	-	-	-	-	-	-	G	G	G	-	-	-	-	-	-	-	-	-	-	E
Configure Network	-						-	-	-		-			G					-	-				
Configure Policy	-		-				-		-		-						-		-	-	-		-	-
Status Monitoring and Reporting	-		-	GW	-	-	-		-	-							-		-		-		-	
User Management and Authentication	W	w	GW	-	-	-	-	-	-	-						-	-	E	GRE	E	E		E	-
Audit User Authenticated Services																								
Configure audit policy and view audit logs	-		_		-	E	-		-	2	220	-		-	-		-	-	-		-	-	-	
User Authenticated Services																								
VPN Network Traffic	E	E	E	E	GE	-	-	-	-	1	-	E	E	-	E	-	GRE WZ	E	E	E	E		Е	-
Network Traffic Security	-	-			-		GE	GE	GE	GE	-	E	E					E	E	Е	Е	Е	Е	

The Module Reset service instantiates the DRBG, with 262,144 bit entropy input (DRBG-EI) produced by the Allowed NDRNG. The generation of DRBG-State uses the [SP 800-90A] CTR_DRBG (AES256). The Zeroization of session keys by this service covers the case of module shutdown or power-cycle while a secure channels session (SSH, TLS, IPsec or SNMP) is active.

The *Show Status* service and *Network Traffic Management* service do not access CSPs or public keys.

There is a limit of 2^28 encryptions with the same Triple-DES key. The user is responsible for ensuring the module does not surpass this limit.

5 Self-tests

Each time the module is powered up it tests that the cryptographic algorithms still operate correctly and that sensitive data has not been damaged. Power-up self-tests are available on demand by power cycling the module.

On power-up or reset, the module performs the self-tests described below. All KATs must be completed successfully prior to any other use of cryptography by the module. If one of the KATs fails, the self-test is interrupted, and the module enters the Critical Failure error state.

Test Target (Cert. #)	Description						
BOOTROM	Integrity check with 16-bit CRC.						
Firmware Integrity	Integrity check with digital signature (cms) using RSA(2048) and SHA256.						
AES OpenSSL (#4450)	Separate encrypt, decrypt KATs using 256-bit keys CBC.						
AES VPP (#4451)	Separate encrypt, decrypt KATs using 256-bit keys CBC and 256-bit keys CFB.						
DRBG OpenSSL (#1441)	AES-256 CTR DRBG test. Performed conditionally (where initial use at power-up is the condition) per SP 800-90 Section 11.3.						
DRBG VPP (#1442)	AES-256 CTR DRBG test. Performed conditionally (where initial use at power-up is the condition) per SP 800-90 Section 11.3.						
HMAC OpenSSL (#2953)	Separate HMAC generation and verification KATs, using SHA-256						
HMAC VPP (#2954)	Separate HMAC generation and verification KATs, using SHA-256						
RSA OpenSSL (#2431)	Separate KATs of n=2048 bit signature generation and signature verification.						
RSA VPP (#2432)	Separate KATs of n=2048 and n=3072 bit signature generation and signature verification.						

 Table 5-1 Power-up self-tests

Test Target (Cert. #)	Description
SHS OpenSSL (#3663)	Separate KATs of SHA-1, SHA-256, SHA-512
SHS VPP (#3664)	Separate KATs of SHA-1, SHA-256, SHA-512
Triple-DES OpenSSL (#2392)	Separate encrypt, decrypt KATs using 3-key TCBC.
Triple-DES VPP (#2393)	Separate encrypt, decrypt KATs using 3-key TCBC.
ECDSA VPP(#1084)	Signature generation and signature verifications using P-256 and SHA256.
AES GCM OpenSSL #4450)	Separate encrypt and decrypt, 256 key length.
ECDH OpenSSL (#1151)	Shared secret calculation using P-256 KAT.
ECDH VPP (#1153)	Shared secret calculation using P-256 KAT.

Table 5-2 Conditional self-tests

Test Target	Description			
NDRNG	AS09.42 Continuous RNG Test performed on each NDRNG access.			
DRBG AS09.42 Continuous RNG Test performed on each DRBG a				
RSA	RSA Pairwise Consistency Test performed on each RSA key pair generation.			
ECDSA	Pairwise consistency test on each generation of a key pair.			
Patch,Module and Firmware	Integrity check with digital signature (cms) using RSA(2048) and SHA256.			

If all power-up self-tests succeed, the system will display the following message on the console:

```
Fips power-up self-test end ... passed
```

If any of the power-up self-tests fails, the module enters an error state. The following error message would be seen on the console and the module would be forced to reboot:

```
Self-tests failed!
The system will reboot.(Reason=Self-tests failed)
```

If any of the conditional tests fails, the system will display the following error message of the specific condition:

condutional-test-name conditional tests failed!

6 Physical Security Policy

6.1 Physical Security Mechanisms

The cryptographic modules each include the following physical security mechanisms:

- Production-grade components and production-grade opaque enclosure
- Tamper-evident material and tamper-evident seals
- Protected vents

The USG 9520/9560/9580 Firewall is a multi-chip standalone module that consists of production-grade components that include standard passivation. Chip components are protected by an opaque enclosure. There are tamper-evident seals that are applied on the modules by the CO. All unused seals are to be controlled by the CO. The seals prevent removal of the opaque enclosure without evidence. The CO must ensure that the module surface is clean and dry. Tamper-evident seals must be pressed firmly onto the adhering surfaces during installation and once applied the CO shall permit 24 hours of cure time for all tamper-evident seals. The CO should inspect the seals and external baffles for evidence of tamper every 30 days. If the seals show evidence of tamper, the CO should assume that the module has been compromised and contact Customer Support.

🛄 ΝΟΤΕ

For ordering information of opaque enclosures and tamper seals, see Table 2-3.

6.2 External Baffle Placement

In order to mitigate the risk of determining the composition or implementation of the module due to heat dissipation holes, external baffles shall be installed in the following locations:

- On the left side of the USG9520/9580 chassis (viewed facing the front panel)
- On the panel of the USG9520/9560/9580 SPCs

🛄 ΝΟΤΕ

After the external baffles have been applied to the USG 9520/9560/9580, the operational temperature range will be 0°C to 40°C.

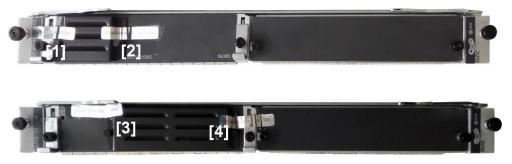
The following is the installation location of each product's opaque enclosure:

USG9520

Figure 6-1 USG9520 opaque enclosure placement

[1]: opaque enclosure installation location

USG9580


Figure 6-2 USG9580 opaque enclosure placement

[1]: opaque enclosure installation location

USG9520/9560/9580 SPCs

There are two types of heat dissipation holes on the SPC panel. Figure 6-3 shows the installation location of the opaque enclosure for each SPC. You need to affix the opaque enclosure to the panel of the SPC with screws.

[1][2][3][4]: Indicate the installation locations of the screws

6.3 Tamper Seal Placement

The following is the installation location of each product's tamper-evident seals.

USG9520

The USG9520 provides three (3) SPU/LPU slots to hold LPUs or SPUs. By default, these slots are installed with filler panels. After SPUs are installed, the USG9520 can process services. After LPUs are installed, the USG9520 can access networks through interfaces on the LPUs. Please complete installation of opaque enclosures and tamper-evident seals on the SPU/SPC/LPUs referring to USG9520/9560/9580 SPUs, SPCs and LPUs, and then install the SPU/LPUs in these slots. Finally, cover both the SPU/LPU panel and the chassis.

The slots can hold multiple types of SPU/LPUs. The USG9520 includes twenty-four (24) tamper-evident seals, which are applied to the USG9520 as follows:

- Four (4) seals applied to the left front faceplates and the left side baffle cover (see #1 to #4 in Figure 6-4)
- Four (4) seals applied to the right front faceplates (see #5 to #8 in Figure 6-4)
- One (1) seal applied between the front top two (2) interface cards, midway top front (see #9 in Figure 6-4)
- Two (2) seals applied to the top front faceplate and the top (see #10 to #11 in Figure 6-4)
- Two (2) seals applied to the interface/card baffle on the front faceplate (see #12 and #13 in Figure 6-4)
- Five (5) seals applied to the back faceplates and the back (see #14 to #18 in Figure 6-4)

- One (1) seal applied to the left side and the back, inhibiting removal of the air filter (see #19 in Figure 6-4 and Figure 6-4)
- Four (4) seals applied to the left side and the metal baffle (see #20 to #23 in Figure 6-4)
- One (1) seal applied to the right side and back fan (see #24 in Figure 6-4)

Figure 6-4 USG9520 Tamper Seal Placement- Front

Figure 6-5 USG9520 Tamper Seal Placement- Back

Figure 6-6 USG9520 Tamper Seal Placement- Left Side

Figure 6-7 USG9520 Tamper Seal Placement- Right Side

USG9560

The USG9560 provides eight (8) SPU/LPU slots to hold LPUs or SPUs. By default, these slots are installed with filler panels. After SPUs are installed, the USG9560 can process services. After LPUs are installed, the USG9560 can access networks through interfaces on the LPUs. Please complete installation of opaque enclosures and tamper seals on the SPU/SPC/LPUs referring to USG9520/9560/9580 SPUs, SPCs and LPUs, and then install the SPU/LPUs in these slots. Finally, cover both the SPU/LPU panel and the chassis.

The slots can hold multiple types of SPU/LPUs. The USG9560 includes forty-five (45) tamper-evident seals, which are applied to the USG9560 as follows:

- Eleven (11) seals applied to the top of the front cards and to the front (see #1 to #11 in Figure 6-4)
- Eleven (11) seals applied to the bottom of the front cards and to the front (see #12 to #22 in Figure 6-4)
- Eleven (11) seals applied to the front cards covering the interface baffles and other white plastic covers (see #23 to #33 in Figure 6-4)
- Two (2) seals applied to the top left/right fans and top cover (see #34 and #35 in Figure 6-4)
- One (1) seal applied to the left fan and the right side (see #36 in Figure 6-4)
- One (1) seal applied to the right fan and the left side (see #37 in Figure 6-4)
- One (1) seal applied to the back middle left panel and right side (see #38 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back middle right panel and left side (see #39 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back left removable faceplate and right side (see #40 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back right removable faceplate and left side (see #41 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back left power supply and back middle left panel (see #42 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back right power supply and back middle right panel (see #43 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back left power supply and middle panel (see #44 in Figure 6-4 and Figure 6-4)

• One (1) seal applied to the back middle panel and the bottom cover (see #45 in Figure 6-4 and Figure 6-4)

Figure 6-8 USG9560 Tamper Seal Placement- Front Top

Figure 6-9 USG9560 Tamper Seal Placement- Front Bottom

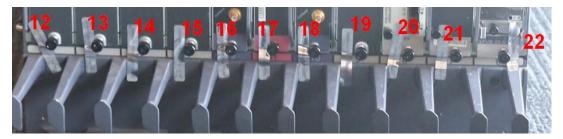


Figure 6-10 USG9560 Tamper Seal Placement- Front Middle

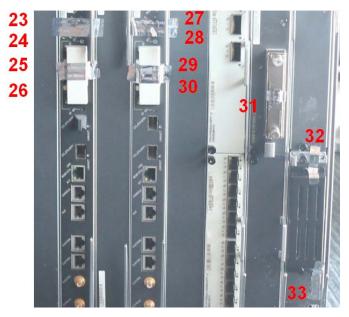


Figure 6-11 USG9560 Tamper Seal Placement- Back, Left and Right Sides

Figure 6-12 USG9560 Tamper Seal Placement- Back and Top

USG9580

The USG9580 provides sixteen (16) SPU/LPU slots to hold LPUs or SPUs. By default, these slots are installed with filler panels. After SPUs are installed, the USG9580 can process services. After LPUs are installed, the USG9580 can access networks through interfaces on the LPUs. Please complete installation of opaque enclosures and tamper seals on the SPU/SPC/LPUs referring to USG9520/9560/9580 SPUs, SPCs and LPUs, and then install the SPU/LPUs in these slots. Finally, cover both the SPU/LPU panel and the chassis.

The slots can hold multiple types of SPU/LPUs. The USG9580 includes eighty-eight (88) tamper-evident seals are applied to the USG9580 as follows:

- Eight (8) seals applied to the front cards covering the interface baffles and other white plastic covers (see #1 to #8 in Figure 6-4)
- Nine (9) seals applied to the top of the top cards on the front and the front face (see #9 to #17 in Figure 6-4)
- Nine (9) seals applied to the bottom of the upper cards on the front and the front face (see #18 to #26 in Figure 6-4)
- Two (2) seals applied to the horizontal cards on the front and the left side (see #27 and #32 in Figure 6-4)
- Four (4) seals applied to the horizontal cards on the front and the right side (see #28 to #31 in Figure 6-4)
- Nine (9) seals applied to the top of the lower cards on the front and the front face (see #33 to #41 in Figure 6-4 and Figure 6-4)

- Two (2) seals applied to the baffle cover on the lower card on the front (see #42 and #43 in Figure 6-4)
- Nine (9) seals applied to the bottom of the lower cards on the front and the front face (see #44 to #52 in Figure 6-4)
- Two (2) seals applied to the top left/right fans on the top back (see #53 and #54 in Figure 6-4)
- One (1) seal applied to the top left fan on the back and the right side (see #55 in Figure 6-4)
- One (1) seal applied to the top right fan on the back and the left side (see #56 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back left top faceplate on the back and the right side (see #57 in Figure 6-4)
- One (1) seal applied to the back right top faceplate on the back and the left side (see #58 in Figure 6-46 and Figure 6-4)
- Fourteen (14) seals applied to the back power supplies and the back side (see #59 to #72 in Figure 6-4)
- One (1) seal applied to the back and right sides (see #73 in Figure 6-4)
- One (1) seal applied to the back and left sides (see #74 in Figure 6-4 and Figure 6-4)
- One (1) seal applied to the back right bottom faceplate and the right side (see #75 in Figure 6-4)
- One (1) seal applied to the back left bottom faceplate and the left side (see #76 in Figure 6-4)
- Four (4) seals applied to the bottom right/left fans on the back and the back side (see #77 to #80 in Figure 6-4)
- One (1) seal applied to the bottom left fan on the back and the right side (see #81 in Figure 6-4)
- One (1) seal applied to the bottom right fan on the back and the left side (see #82 in Figure 6-4)
- Two (2) seals applied to the middle faceplate on the back (see #83 and #84 in Figure 6-4)
- Four (4) seals applied to the left side baffle cover and the left side (see #85 to #88 in Figure 6-46)

Figure 6-13 USG9580 Tamper Seal Placement- Upper Half of Front

Figure 6-14 USG9580 Tamper Seal Placement- Middle of the Front

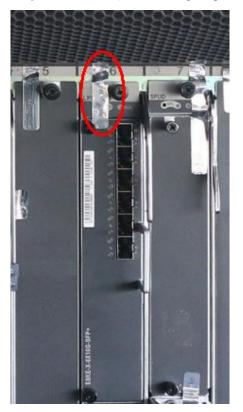
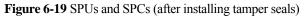
Figure 6-15 USG9580 Tamper Seal Placement- Lower Half of Front

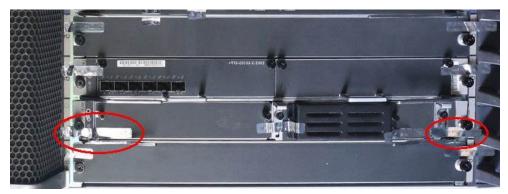
Figure 6-16 USG9580 Tamper Seal Placement- Right and Left Sides

Figure 6-17 USG9580 Tamper Seal Placement- Entire Back

USG9520/9560/9580 SPUs, SPCs and LPUs

When an LPU is installed on the USG9520/8560/9580, the FPIC, LPU mother board, and the chassis, will need to be covered as shown in Figure 6-18.


Figure 6-18 LPUs (after installing tamper seals)

When an SPU is installed on the USG9520/9560/9580, the SPC opaque enclosures will need to be installed, apply the tamper seals to the opaque enclosure and SPC panel, and then apply the tamper seals to the SPC panel, SPU mother board, and the chassis, as shown in Figure 6-19. In FIPS 140-2 Approved mode, the OFL button on the SPC/SPU is unavailable.

Figure 6-20 SPUs and SPCs (after installing tamper seals)

The module is designated as a limited operational environment under the FIPS 140-2 definitions. For details, see the statement in Section 2 Introduction.

8 Mitigation of Other Attacks Policy

The module has not been designed to mitigate attacks outside the scope of FIPS 140-2.

9 Security Rules and Guidance

The module design corresponds to the module security rules. The module implements and enforces the following security rules:

- An unauthenticated operator does not have access to any CSPs or cryptographic services.
- The module inhibits data output during power-up self-tests and error states.
- Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
- Zeroization overwrites all CSPs.
- The module does not share CSPs between the Approved mode of operation and the non-Approved mode of operation.

To switch the module from Non-FIPS mode to Approved mode, reset the module to factory defaults and reboot it. And the following security rules must be adhered to for operation in the FIPS 140-2 Approved mode:

The following security rules must be adhered to for operation in the FIPS 140-2 Approved mode:

1. Configure the module to only use SNMP v3:

```
<sysname> system-view
[sysname] snmp-agent
[sysname] snmp-agent sys-info version v3
[sysname] undo snmp-agent sys-info version v1
[sysname] undo snmp-agent sys-info version v2c
```

2. Configure SNMP v3 to use only approved primitives (AES, SHA).

```
<sysname> system-view
[sysname] snmp-agent group v3 testgroup privacy
[sysname] snmp-agent usm-user v3 testuser group testgruop
```

Warning: Adding the user to a privacy group is recommended, because the bound group has insecure properties (with authentication or no-authentication configured).

```
[sysname] snmp-agent usm-user v3 testuser authentication-mode sha
Please configure the authentication password (8-64)
Enter Password:
Confirm Password:
[sysname] snmp-agent usm-user v3 testuser privacy-mode aes256
Please configure the privacy password (8-64)
```

The snmp-agent's privacy-mode can be set to aes256, aes128 or 3des. So the administrator can change the preference of SNMP user's encryption algorithms using the upper second command.

3. Configure the SSH server to only support SSH v2.

```
<sysname> system-view
[sysname] undo ssh server compatible-ssh1x enable
[sysname] ssh server key-exchange dh_group_exchange_sha1 dh_group14_sha1
[sysname] ssh server hmac sha2_256 sha2_256_96 sha1 sha1_96
[sysname] ssh server cipher aes256_ctr aes128_ctr aes256_cbc aes128_cbc 3des_cbc
```

4. Configure the cipher suite for the customized SSL cipher-suite policy, and bind the SSL cipher-suite policy to an SSL policy to disable the SSL versions lower than v3.1.

```
<sysname> system-view
[sysname] ssl cipher-suite-list cipher1
[sysname-ssl-cipher-suite-cipher1] undo set cipher-suite
[sysname-ssl-cipher-suite-cipher1] set cipher-suite
tls12_ck_rsa_aes_256_cbc_sha256
[sysname-ssl-cipher-suite-cipher1] set cipher-suite tls1_ck_rsa_with_aes_128_sha
[sysname-ssl-cipher-suite-cipher1] set cipher-suite
tls1_ck_dhe_rsa_with_aes_128_sha
[sysname-ssl-cipher-suite-cipher1] set cipher-suite
tls1_ck_dhe_rsa_with_aes_256_sha
[sysname-ssl-cipher-suite-cipher1] set cipher-suite
tls1_ck_dhe_rsa_with_aes_256_sha
[sysname-ssl-cipher-suite-cipher1] quit
[sysname] ssl policy test
[sysname-ssl-policy-test] ssl minimum version tls1.0
[sysname-ssl-policy-test] binding cipher-suite-customization cipher1
```

 Configure the decrypted traffic detection profile for ssl decryption policy to refer. The application scenario can be **inbound**, **outbound** or **no-decrypt** based on the configurations.

```
<sysname> system-view
[sysname] profile type decryption name prof1
[sysname-profile-decryption-prof1] detect type inbound
[sysname-profile-decryption-prof1] ssl-version client-side user-defined
AES256-SHA: AES128-SHA:DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:AES256-SHA256
[sysname-profile-decryption-prof1] ssl-version server-side user-defined
AES256-SHA: AES128-SHA:DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:AES256-SAH256
[sysname-profile-decryption-prof1] ssl-version client-side tls1.0 tls1.1 tls1.2
ssl3.0
[sysname-profile-decryption-prof1] ssl-version server-side tls1.0 tls1.1 tls1.2
ssl3.0
```

6. Configure an IPsec profile and define security parameters for IPsec SA negotiation, including the security protocol (ESP), encryption and authentication algorithms. Both ends of an IPsec tunnel must be configured with the same parameters.

```
<sysname> system-view
[sysname] ipsec proposal newprop1
[sysname-ipsec-proposal-newprop1] transform esp
[sysname-ipsec-proposal-newprop1] esp authentication-algorithm sha2-256 sha2-384
sha2-512 sha1
[sysname-ipsec-proposal-newprop1] esp encryption-algorithm aes-128
aes-128-gcm-128 aes-192 aes-192-gcm-128 aes-256 aes-256-gcm-128 3des
```

Configure an IKE proposal and define security parameters for IKE peer, including the encryption algorithm, authentication method, authentication algorithm, DH group and SA lifetime.

```
<sysname> system-view
[sysname] ike proposal ike_prop
[sysname-ike-proposal-ike_prop] encryption-algorithm aes-256 aes-192 aes-128 3des
[sysname-ike-proposal-ike_prop] authentication-algorithm sha2-512 sha2-384
sha2-256 sha1
[system-ike-proposal-ike_prop]integrity-algorithm hmac-sha2-256 hmac-sha2-384
hmac-sha2-512
[sysname-ike-proposal-ike_prop] prf aes-xcbc-128 hmac-sha1 hmac-sha2-256
hmac-sha2-384 hmac-sha2-512
[sysname-ike-proposal-ike_prop] dh group14 group15 group16 group19 group20 group21
```

7. For SSL VPN configuration, the module supports the aes256-sha and aes128-sha algorithms by default. The following commands can be run to prohibit the non-FIPS algorithms.

```
<sysname> system-view
[sysname] v-gateway abc
[sysname-abc] basic
[sysname-abc-basic] ssl ciphersuit custom aes128-sha non-des-cbc3-sha non-rc4-sha
aes128-sha
```

- 8. Establish the connection between the Radius, HWtacacs, AD, LDAP, and TSM servers and the module with a secure channel (to prevent the output of passwords in plain text).
 - AD:

The AD server authentication contains the Kerberos authentication and standard LDAP authentication processes. The server verifies the administrator DN and password that the module uses to access the AD server to verity client legitimacy. Configure LDAP over SSL (LDAPS) to use SSL to enhance security in the LDAP process. The administrator password must contain at least eight (8) characters in at least three of the following types of characters: lower-case letters, upper-case letters, digits, and special characters.

```
<sysname> system-view
[sysname] ad-server template template1
[sysname-ad-template1] ad-server authentication manager cn=manager password
[ repassword ]
```

[sysname-ad-template1] ad-server authentication *ip-address* ldap-over-ssl

LDAP:

The LDAP server verifies the administrator DN and password configured on the module to verity client legitimacy. One can also configure LDAP over SSL (LDAPS) to use SSL to enhance security. The administrator password must contain at least eight (8) characters in at least three (3) of the following types of characters: lower-case letters, upper-case letters, digits, and special characters.

```
<sysname> system-view
```

```
[sysname] ldap-server template template1
```

[sysname-ldap-template1] ldap-server authentication manager cn=manager password [repassword]

[sysname-ldap-template1] ldap-server authentication *ip-address* ssl

– TSM:

The module and TSM server use a shared key to exchange authentication messages. To ensure validity of both communication parties, the module and TSM server must be configured with the same shared key. The key must contain at least eight (8)

characters in at least three (3) of the following types of characters: lower-case letters, upper-case letters, digits, and special characters.

<sysname> system-view

```
[sysname] tsm-server template test
[sysname-tsm-test] tsm-server encryption-mode aes128 shared-key shared-key
```

It's ok to change the preference of encryption-mode to 3DES by command "tsm-server encryption-mode 3des".

For Radius and HWtacacs server authentication, communation between the module and the servers may be configured for L2TP Over IPSec or SSL VPN.

- Radius

The module and RADIUS server use a shared key to exchange authentication messages. To ensure validity of both communication parties, the module and RADIUS server must be configured with the same shared key. The key must contain at least eight (8) characters in at least three (3) of the following types of characters: lower-case letters, upper-case letters, digits, and special characters.

<sysname> system-view [sysname] radius-server template template1 [sysname-radius-template] radius-server shared-key cipher key-string

- HWTACACS:

The module and HWTACACS server use a shared key to exchange authentication messages. To ensure validity of both communication parties, the module and HWTACACS server must be configured with the same shared key. The key must contain at least eight (8) characters in at least three (3) of the following types of characters: lower-case letters, upper-case letters, digits, and special characters.

```
<sysname> system-view
[sysname] hwatacs-server template template1
[sysname-hwtacas-template1] hwatacacs-server shared-key cipher key-string
```

9. Configure the password policy to set the password strength to high (when changing a password, an EU user has to comply with the requirement).

```
<sysname> system-view
[sysname] password-policy
[sysname-password] level high
```

10. Enable the module to support strong encryption algorithms.

```
<sysname> system-view
[sysname] web-manager security cipher-suit high-strength
```

11. Configure the Public Key Infrastructure (PKI) security rule.

Configure the digest algorithm used to sign certificate enrollment requests to SHA-384.The module always enables the following algorithms for PKI:sha1, sha-256, sha-384 and sha-512. Run the following commands to set your preference.

```
<sysname> system-view
[sysname] pki realm test
[sysname-pki-realm-test] enrollment-request signature message-digest-method
sha-384
```

To export the RSA key pair, the encryption method must be set to AES or 3DES using the following command as in the AES example:

[sysname] pki export rsa-key-pair test pem test.pem aes password password

🛄 ΝΟΤΕ

The password must contain at least eight (8) characters in at least three (3) of the following types of characters: lower-case letters, upper-case letters, digits, and special characters.

12. If the keychain service is needed and an authentication algorithm is required, run the following command to set your preference. Both sha-256 and hmac-sha-256 are permitted. By default, no algorithm is configured for a key ID.

```
<sysname> system-view
[sysname] keychain a mode absolute
[sysname-keychain-a] key-id 1
[sysname-keychain-a-keyid-1] algorithm hmac-sha-256
```

After the completion of the above security rules, the module is running in the FIPS 140-2 Approved mode. In order to keep the module running in the FIPS 140-2 Approved mode, do not change the above configuration during operation, and perform the following operation:

1. Regularly check that the following functions are disabled, and the recommended check interval is a week.

Disabled Function	Check Method
Telnet service	 Run the display telnet server status command. In the command output: If TELENT IPv4 server is ENABLE, run the undo telnet server enable command to disable the Telnet service.
	<sysname> system-view [sysname] undo telnet server enable</sysname>
	• If TELENT IPv6 server is ENABLE , run the undo telnet ipv6 server enable command to disable the Telnet6 service.
	<sysname> system-view [sysname] undo telnet ipv6 server enable</sysname>
FTP service	Run the display ftp-server command. In the command output, if FTP server is running is displayed, run the undo ftp server enable command to disable the FTP service.
	<sysname> system-view [sysname] undo ftp server enable</sysname>
Northbound management interface	1. Run the display api netconf configuration command. In the command output, if Api netconf server is enable is displayed, run the undo api netconf enable command to disable the NETCONF interface.
	<sysname> system-view [sysname] api [sysname-api] undo api netconf enable</sysname>
	2. Run the display api restconf configuration command. In the command output, if The Api http server is running is displayed, run the undo api http enable command to disable the HTTP-based RESTCONF interface. If The Api https server is running is displayed, run the undo api https enable command to disable the HTTPS-based RESTCONF interface.
	<sysname> system-view [sysname] api [sysname-api] undo api http enable</sysname>

 Table 9-1 Disabled functions and check methods

Disabled Function	Check Method
	[sysname-api] undo api https enable

- 2. If you need to manage the module based on the PKI certificate, before importing the key pair and the certificate into the memory of the module, make sure that the type of the key pair is not DSA, SM2, or RSAn (n<2048).
- If you need to set the authentication-mode for NTP service, make sure the MD5 algorithm is not used. Thus will lead you to a configuration of HMAC-SHA256 and the command is "ntp-service authentication-keyid key-id authentication-mode hmac-sha256 [cipher] password-key". In FIPS mode, MD5 shall not be used within the NTP service.
- 4. By default, no authentication mode is set for VRRP backup group on the interface, if you want to do so, the MD5 mode is not suggested in the approved mode. MD5 shall not be used within VRRP service.