

 © 2016 Encryptics®
 Encryptics® grants permission to freely reproduce in entirety without revision

Encryptics® Cryptographic Library
FIPS 140-2 Non-Proprietary Security Policy

Document Revision 0.8

06/10/2016

Prepared for:

Encryptics

5080 Spectrum Drive, #1000E Addison, TX 75001

Prepared By:

www.gossamersec.com

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 2 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

REVISION HISTORY

Revision Date Authors Summary
0.1 8/22/2013 Morris Initial draft

0.2 8/29/2013 Morris Minor updates

0.3 9/18/2013 Morris Updates

0.4 10/15/2013 Morris Updates

0.5 11/01/2013 Morris Updates

0.6 12/05/2013 Morris Updates to correct typos

0.7 02/28/2014 Morris Updated to respond to CMVP comments

0.8 06/10/2016 McCarthy Removed references to Windows XP

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 3 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

TABLE OF CONTENTS

1. Introduction ... 4

2. Encryptics® Cryptographic Library ... 5

2.1 Module Specification ... 5

2.1.1 Security Level .. 6

2.1.2 FIPS Mode of Operation ... 6

2.1.3 Approved Cryptographic Algorithms .. 7

2.1.4 Non-Approved Cryptographic Algorithms .. 8

2.2 Module Interfaces ... 8

2.3 Roles, Services and Authentication ... 8

2.4 Finite State Model ... 13

2.5 Physical Security .. 13

2.6 Operational Environment .. 13

2.7 Key Management ... 13

2.8 Electromagnetic Interference and Compatibility .. 14

2.9 Self-Tests.. 14

2.10 Guidance and Secure Operation.. 14

2.10.1 Crypto-office Guidance ... 14

2.10.2 User Guidance .. 15

2.11 Mitigation of Other Attacks ... 15

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 4 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

1. INTRODUCTION

This non-proprietary FIPS 140-2 security policy for the Encryptics Cryptographic Library details the

secure operation of the Encryptics Cryptographic Library as required in Federal Information Processing

Standards Publication 140-2 (FIPS 140-2) as published by the National Institute of Standards and

Technology(NIST) of the United State Department of Commerce. This document, the Cryptographic

Module Security Policy (CMSP), also referred to as the Security Policy, specifies the security rules under

which the Encryptics Cryptographic Library must operate.

The Encryptics Cryptographic Library underpins Encryptics’ technology offerings and provides them with

the protection afforded by industry-standard, government-approved algorithms to ensure that only

authorized users and authorized devices are allowed to access private information stored within

Encryptics .SAFE packages. Both Encryptics for Email and Encryptics Data Protection API products

leverage the Encryptics Cryptographic Library to ensure use of FIPS 140-2 validated cryptography.

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 5 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

2. ENCRYPTICS® CRYPTOGRAPHIC LIBRARY

2.1 MODULE SPECIFICATION

The Encryptics Cryptographic Library (SW Version 1.0.3.0) (hereinafter referred to as the “Library”,

“cryptographic module” or the “module”) is a software only cryptographic module composed of the

Encryptics Cryptographic Library assembly and the Microsoft Windows Enchanced Cryptographic

Provider (a supporting operating system library upon which the assembly relies) which together execute

on a general-purpose computer system running Microsoft Windows.

The physical perimeter of the general-purpose computer (GPC) comprises the module’s physical

cryptographic boundary, while the combination of the Encryptics Cryptographic Library assembly and

the Microsoft Windows Enhanced Cryptographic Provider (RSAENH)1 constitute the module’s logical

cryptographic boundary.

1 Please see section 2.6 for details regarding RSAENH’s 140-2 validation certificates

Figure 1 - Logical Diagram

Physical Cryptographic Boundary (General Purpose Computer)

Microsoft Windows Operating System and .NET Framework

Calling Applications (Encryptics or 3rd Party)

Logical Cryptographic Boundary

RSAENH Library

& other bound

 modules

Encryptics Library

Calling Application

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 6 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

2.1.1 SECURITY LEVEL

The Encryptics Cryptographic Library meets the overall requirements applicable to Level 1 security

overall of FIPS 140-2 and the below specified section security levels.

Table 1 - Module Security Level Specification

FIPS 140-2 Section Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles, Services, and Authentication 1

4 Finite State Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 3

9 Self-tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks N/A

 Overall Level 1

2.1.2 FIPS MODE OF OPERATION

The Encryptics Cryptographic Library utilizes FIPS-Approved and FIPS-Allowed services of the underlying

140-2 validated RSAENH module, and to ensure FIPS compliant operation, the operator must adhere to

the Security Policy rules of the underlying RSAENH module (to which the module is bound). Those rules

vary slightly depending upon which operating system RSAENH executes on and have been distilled into

the following table.

Table 2 - Security Policy Rules

RSAENH (or module to which it is bound) Security Policy Rule Applies if executing on:

 Vista Win7/ 2008
The operating system runs in “single user” mode where there is only one

interactive user during a logon session.

X X

Ensure the following registry valueis NOT set

“HKLM\Software\Microsoft\Cryptography\ExpoOffload”

X X

The operator must set the following registry DWORD to 1

“HKLM\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy”

Create the following registry keys and values

“HKLM\Software\Microsoft\Cryptography\Defaults\Provider\Microsoft

Enhanced RSA and AES Cryptographc Provider” with the following values

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 7 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

RSAENH (or module to which it is bound) Security Policy Rule Applies if executing on:

 Vista Win7/ 2008
"Image Path"="rsaenh.dll"
"Type"=dword:00000018
"SigInFile"=dword:00000000

The operator must install Microsoft Hotfix KB954059 to ensure the correct

versions of RSAENH.dll and CI.dll are installed

X

RSAENH is bound to, in turn, BOOTMGR, WINLOAD.EXE, CI.DLL. X
The operator must set the following registry DWORD to 1

“HKLM\System\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled”

X X

Disable Debug mode and enable Driver Signing enforcement. X X
RSAENH is bound to BOOTMGR, WINLOAD.EXE, CI.DLL, and CNG.SYS. X

Additionally, please note that while the underlying Microsoft RSAENH library provides a great number of

algorithms, the Encryptics library utilizes only AES-256, RSA 2048-bit, HMAC-SHA-1, and SHA-256.

However, the other algorithms of the underlying Microsoft RSA library are subject to the algorithm

transition rule described SP 800-131A and FIPS 186-4.

Moreover, because the module relies upon the underlying Microsoft RSAENH library, the module

generates cryptographic keys whose strengths are modified by available entropy.

2.1.3 APPROVED CRYPTOGRAPHIC ALGORITHMS

The module uses cryptographic algorithm implementations that have received the following certificate

numbers from the Cryptographic Algorithm Validation Program.

Table 3 – FIPS-Approved Algorithm Certificates

Algorithm CAVP Certificate when operating on Microsoft Windows

 Vista Windows 7 Server 2008

AES-256 CBC 739 1168 1168

RSA 2048, PCKS#1, Sign/Verify 353 & 354 557 & 559 568 & 559

HMAC-SHA-1 407 673 687

SHA-1/256 753 1081 1081

RNG N/A N/A N/A

DRBG V/A2 23 23

2 Vendor-Affirmed

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 8 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

2.1.4 NON-APPROVED CRYPTOGRAPHIC ALGORITHMS

The module uses the following non-FIPS 140-2 approved, but allowed, algorithms.

 RSA encrypt/decrypt with a 2048-bit key (key wrapping; key establishment methodology provide

112-bits of encryption strength).

2.2 MODULE INTERFACES

The module is classified as a multiple-chip standalone module for FIPS 140-2 purposes. As such, the

module’s physical cryptographic boundary encompasses the general-purpose computer running the

Microsoft Windows operating system and interfacing with the computer peripherals (USB devices

[keyboard and mouse], video devices [monitors, screens, camera], optical drives, audio devices

[speakers, headset, and microphone], network devices [Ethernet and Wireless adapters], and power

adapter).

However, the module provides only a logical interface via an Application Programming Interface (API)

and does not interface or communication with or across any of the physical ports of the GPC. This

logical interface exposes service that operators (calling applications) may use directly.

The API interface provided by the module is mapped onto the four FIPS 140-2 logical interfaces: data

input, data output, control input, and status output. It is through this logical API that the module

logically separates them into distinct and separate interfaces. The mapping of the module’s API to the

four FIPS 140-2 interfaces is as follows.

 Data input – input arguments to all constructors and methods specifying input parameters

 Data output – modified input arguments (those passed by reference) and return values for all

constructors, methods, and properties modifying input arguments and returning values

 Control input – invocation of all methods and properties

 Status output – information returned by the IsValidState and VersionInfo methods and any

exceptions thrown by constructors, methods, and properties

2.3 ROLES, SERVICES AND AUTHENTICATION

The module supports both of the FIPS 140-2 required roles, the Crypto-officer and the User role, and

supports no additional roles. An operator implicitly selects the Crypto-officer role when loading (or

causing loading of) the library and selected the User role when soliciting services from the module

through its API. The module requires no operator authentication, and the below table enumerates the

module’s services.

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 9 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

Table 4 - Service Descriptions for Crypto-officer and User Roles

Service Type3 Description
Crypto-Officer services
Library Loading N/A The process of loading the assembly
User services
Aes256CryptoServiceProviderFactory
Class Services

Aes256CryptoServiceProviderFactory() C Initializes a new instance of the Class
GetProvider() M Returns a default Aes256CryptoProvider instance
GetProvider(Byte[],Byte[]) M Returns an Aes256CryptoProvider instance based upon

the key and IV supplied
Aes256CryptoProvider Class Services
Aes256CryptoProvider() C Default constructor returns AES-256 CBC
Aes256CryptoProvider(Byte[],Byte[]) C Constructor accepts supplied keys and iv
Clear M Zeroizes any existing keys
Decrypt M Decrypts supplied data using AES key
Encrypt M Encrypts supplied data using AES key
GenerateNewKey M Generates a new AES key using values specified during

instantiation.
Algorithm P Returns "AES"
BlockSize P Returns 128
CipherMode P Returns the current cipher feedback mode as an integer

(only CBC currently supported).
CryptoAlgorithmId P Returns “AES”
CryptoMode P Returns the CipherMode as a string.
IV P Returns the current IV
Key P Returns the current AES key value
KeySize P Returns the current AES key size as an int (currently only

256-bit is supported)
PaddingMode P Returns the current padding mode.
SessionCryptoMode P Returns the CipherMode as a string.
Rsa2048CryptoServiceProviderFactory
Class

Rsa2048CryptoServiceProviderFactory C Initializes a new instance of the Class
GetProvider() M Returns a default Rsa2048CryptoProvider instance
GetProvider(String) M Returns an Rsa2048CryptoProvider instance based upon

the XML Key String
GetProvider(RSACryptoServiceProvider) M Returns an Rsa2048CryptoProvider instance from the

supplied instance
Rsa2048CryptoProvider Class
Rsa2048CryptoProvider() C Default constructor generates 2048 RSA key pair.
Rsa2048CryptoProvider(String) C Constructor accepting supplied RSA 2048 key as XML

String
Rsa2048CryptoProvider
(RSACryptoServiceProvider)

C Constructor accepting an RSACryptoServiceProvide
instance.

3 (C)onstructor, (M)ethod, or (P)roperty

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 10 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

Service Type3 Description
Clear M Zeroizes the RSA key pair.
Decrypt M Decrypts using the RSA key pair
Encrypt M Encrypts using the RSA key pair
GenerateNewKeyPair M Generates a new key pair
Sign M Generates a signature of the supplied message using the

RSA private key.
Verify M Verifies the supplied signature and message using the RSA

public key
EncryptAlgorithmNum P Returns “NLKey.Types.NLKeyAlgorithm.RSA” as a 32 bit

integer.
KeyPairXml P Returns the public and private key (if available).

KeySize P Returns the RSA KeySize.
PublicKey P Return the RSA Public Key as an XML String
ShaValue P Returns the signing alg string name (always "SHA256").
SecureEnvelopeFactory Class
SecureEnvelopeFactory C Initializes a new instance of the Class
SecureEnvlope P Returns the default instance of an ISecureEnvelope
SecureEnvelope Class
SecureEnvelope C Initializes a new instance of the Class
BuildSecureEnvelope M This method builds an NLSecureEnvelope which

encapsulates a signed hash of the data passed via the first
argument. The data is signed using the asymmetric
signing provider, the signing server, the communicaitn
key and content key all of which are passed in.

BuildSelfSignable M This method builds an NLSelfSignable object.
GetSecureEnvelopeContents M This method retrieves the contents of a SecureEnvelope
SelfCheck Class
SelfCheck C Initializes a new instance of the Class
Reset M This method resets the state of the power up self-tests.
VerifyModule M This is the Module Initializer method. It is automatically

called when the assembly is loaded into memory.
IsValidState P This property returns the current power up self check

state of the module.
VersionInfo P This property returns the version of the assembly.
Sha256CryptoServiceProviderFactory
Class

Sha256CryptoServiceProviderFactory C Initializes a new instance of the Class
Hasher P Returns an instance of the Sha256Hasher class
Sha256CryptoServiceProvider Class
Sha256CryptoServiceProvider C Initializes a new instance of the Class
Digest M Returns a hash of the data passed in.

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 11 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

Table 5 - Service Inputs and Outputs

Service Data Input Data Output CSP Access4 Status
Out

Crypto-Officer services

Library Loading N/A N/A N/A N/A Pass/Fail

User services

Aes256CryptoServiceProvider
Factory Class Services

Aes256CryptoServiceProvider
Factory()

N/A Instance Ref N/A N/A Exception

GetProvider() N/A Instance Ref N/A N/A Exception

GetProvider(Byte[],Byte[]) AES Key and IV Instance Ref AES Key W Exception

Aes256CryptoProvider Class
Services

Aes256CryptoProvider() N/A Instance Ref N/A N/A Exception

Aes256CryptoProvider(Byte[],
Byte[])

AES Key and IV Instance Ref AES Key W Exception

Clear N/A N/A AES Key Z Exception

Decrypt Ciphertext Plaintext AES Key X Exception

Encrypt Plaintext Ciphertext AES Key X Exception

GenerateNewKey N/A N/A AES Key G Exception

Algorithm N/A AES Alg ID N/A N/A Exception

BlockSize N/A AES Block size N/A N/A Exception

CipherMode N/A CBC N/A N/A Exception

CryptoAlgorithmId N/A AES Alg ID N/A N/A Exception

CryptoMode N/A CBC N/A N/A Exception

IV N/A IV Value N/A N/A Exception

Key N/A Key Value AES Key R Exception

KeySize N/A 256-bit only N/A N/A Exception

PaddingMode N/A Padding mode N/A N/A Exception

SessionCryptoMode N/A CBC N/A N/A Exception

Rsa2048CryptoServiceProvide
rFactory Class

Rsa2048CryptoServiceProvide
rFactory

N/A Instance Ref N/A N/A Exception

GetProvider() N/A Instance Ref RSA Keys G Exception

GetProvider(String) RSA Keys Instance Ref RSA Keys W Exception

GetProvider(RSACryptoServic
eProvider)

RSA Keys Instance Ref RSA Keys W Exception

Rsa2048CryptoProvider Class

Rsa2048CryptoProvider() N/A Instance Ref RSA Keys G Exception

Rsa2048CryptoProvider(String
)

RSA Keys Instance Ref RSA Keys W Exception

Rsa2048CryptoProvider
(RSACryptoServiceProvider)

RSA Keys Instance Ref RSA Keys W Exception

4 (G)enerate, (R)ead, (W)rite, e(X)excute, (Z)eroize

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 12 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

Service Data Input Data Output CSP Access4 Status
Out

Clear N/A N/A RSA Keys Z Exception

Decrypt Ciphertext Plaintext RSA Keys X Exception

Encrypt Plaintext Ciphertext RSA Keys X Exception

GenerateNewKeyPair N/A N/A RSA Keys G Exception

Sign Message N/A RSA Keys X Exception

Verify Signature N/A RSA Keys X Exception

EncryptAlgorithmNum N/A Alg ID N/A N/A Exception

KeyPairXml N/A Key Value RSA Keys R Exception

KeySize N/A Key size N/A N/A Exception

PublicKey N/A Public Key N/A N/A Exception

ShaValue N/A SHA size N/A N/A Exception

SecureEnvelopeFactory Class

SecureEnvelopeFactory N/A Instance Ref N/A N/A Exception

SecureEnvlope N/A Instance Ref N/A N/A Exception

SecureEnvelope Class

SecureEnvelope N/A Instance Ref N/A N/A Exception

BuildSecureEnvelope RSA Keys and
data

Secure Envelope RSA Keys X Exception

BuildSelfSignable RSA keys and
data

Signed data RSA Keys X Exception

GetSecureEnvelopeContents RSA Keys and
Secure Envlope

Decrypted
contents

RSA & AES
Keys

X Exception

SelfCheck Class

SelfCheck N/A Instance Ref N/A N/A Exception

Reset N/A N/A N/A N/A Exception

VerifyModule N/A N/A HMAC
Integrity Key

X Exception

IsValidState N/A N/A N/A N/A Current
State

VersionInfo N/A N/A N/A N/A Module
Version

Sha256CryptoServiceProvider
Factory Class

Sha256CryptoServiceProvider
Factory

N/A Instance Ref N/A N/A Exception

Hasher N/A Instance Ref N/A N/A Exception

Sha256CryptoServiceProvider
Class

Sha256CryptoServiceProvider N/A Instance Ref N/.A N/A Exception

Digest Message Hash N/A N/A Exception

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 13 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

2.4 FINITE STATE MODEL

The module has a Finite State Model (FSM) that descrbes the module’s behavior and transitions based

upon its current state and the command received. The module’s FSM was reviewed as part of the

overall FIPS 140-2 validation.

2.5 PHYSICAL SECURITY

The physical security requirements does not apply to the module. The module is a software-only

module that executes upon a general-purpose computer

2.6 OPERATIONAL ENVIRONMENT

The module executes on a general purpose operating system running in single user mode that

segregates processes into separate process spaces. Thus, the operating system separates each process

space from all others. The below table listed the specific Microsoft Windows operating systems and

their associated FIPS 140-2 certificate number for the Microsoft Enhanced Cryptographic Provider

(RSAENH) upon which the Encryptics Cryptograhic Library relies.

Table 6 - Validated Operational Environments

Operating System and Test Platform 140-2 Cert.#

1 Microsoft Windows Vista SP1 (x64 version) with .NET Framework 3.5 running on
a Dell SC430 (single-user mode)

1002

2 Microsoft Windows 7 SP1 (x64 version) with .NET Framework 3.5 running on an
HP Compaq dc7600 (single-user mode)

1330

3 Microsoft Windows Server 2008 R2 SP1 (x64 version) with .NET Framework 4.0
running on an HP Compaq dc7600 (single-user mode)

1337

2.7 KEY MANAGEMENT

The module possesses only one key, its HMAC-SHA-1 self-integrity test key. Beyond that key, the

module does not store any other keys persistently, and it is the calling applications responsibility to

appropriately manage keys. The module can generate keys (both AES-256 symmetric keys and RSA

2048-bit asymmetric key pairs), can accept key entered by an operator, and affords an operator the

ability to zeroize keys held in RAM. The module also provides key establishment through its

SecureEnvelope Class by employing RSA key wrapping to wrap AES keys, and the module’s key

establishment methodology provide 112-bits of encryption strength. The following table describes the

module’s Security Relevant Data Items (SRDI’s) including asymmetric and symmetric keys.

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 14 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

Table 7 - Module Keys

Key Type Size Description Origin Stored Zeroized
AES Keys AES 256

bits
Symmetric keys intended to

encrypt and decrypt User data
Entered,

Established,
or Generated

RAM /
plaintext

Clear
method

RSA Keys RSA 2048
bits

Asymmetric keys used either for
PKCS#1 sign and verify operations

or for RSA key wrapping

Entered or
Generated

RAM
/plaintext

Clear
method

Self-check
Key

HMAC 86
bytes

HMAC-SHA-1 key used by the
module for it’s power up integrity

test

Compiled
into the
module

Module
image /

plaintext &
obfuscated

N/A
(see 140-2

IG 7.4)

2.8 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY

The module meets level 3 security for FIPS 140-2 EMI/EMC requirements as the Encryptics

Cryptographic Library passed validation executing upon general-purpose computers that confirm to the

EMI/EMC requirements specific by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional

Radiators, Digital Devices, Class B (i.e., for home use).

2.9 SELF-TESTS

The module automatically performs a complete set of power-up self-tests during library load to ensure

proper operation, thus an operator has no access to cryptographic functionality unless the power-up

self-tests pass and the library load succeeds. The power-up self-tests include an integrity check of the

module’s software using an HMAC-SHA-1 value calculated over the module’s file image. Should the

module fail a self-test, the module will throw an exception and unload itself from memory. Additionally,

the underlying RSAENH module performs both power-up and conditional self-tests for its cryptographic

algorithms. Finally, an operator may invoke the power-up self-tests at any time by power-cycling the

GPC and then reloading module.

2.10 GUIDANCE AND SECURE OPERATION

The Encryptics Cryptographic Library meets overall Level 1 requirements for FIPS PUB 140-2. The

sections below describe the Crypto-offier and User guideance.

2.10.1 CRYPTO-OFFICE GUIDANCE

The Crypto-officer or operator responsible for configuring the operational environment upon which the

module runs must ensure to FIPS compliant operation (as described in section 2.1.2, FIPS Mode of

Operation, of the Security Policy).

Additionally, the Crypto-officer is defined to be the operator responsible for loading the library, thus

when invoked by a calling application (either at library load or dynamically), the operating system loader

 Revision 0.8, 06/10/2016

Encryptics® Cryptographic Library Page 15 of 15 © 2016 Encryptics®
Security Policy All rights reserved.

will load the module, causing it to automatically perform its power-up self-tests. Should the module fail

its power-up self-tests, the module will output a LoadException to the Crypto-officer.

2.10.2 USER GUIDANCE

Once the operating system has been properly configured by the Crypto-officer (if needed), the

Encryptics Cryptographic Library requires no special usage to operate in a FIPS-compliant manner. The

module utilizes only FIPS-Approved or FIPS-Allowed cryptographic algorithms. The User must assume

responsibility for managing all keys, as the module does not provide any persistent key storeage.

2.11 MITIGATION OF OTHER ATTACKS

The Encryptics Cryptographic Library does not claim to mitigate any attacks beyond the FIPS 140-2 Level

1 requirements for validation.

