© 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy Hardware Versions: BIG-IP i4000, BIG-IP i5000, BIG-IP i5820-DF, BIG-IP i7000, BIG-IP i7820-DF, BIG-IP i10800, BIG-IP i11800-DS, BIG-IP i15800, BIG-IP 4000, BIG-IP 5250v-F BIG-IP 7000, BIG- IP 7200v-F, BIG-IP 10200v-F, BIG-IP 10350v-F, VIPRION B2250, VIPRION B4450 Firmware Version: 13.1.1 EHF FIPS Security Level 2 Document Version 1.0 Document Revision: 2019-04-23 Prepared by: atsec information security corporation 9130 Jollyville Road, Suite 260 Austin, TX 78759 www.atsec.com F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 2 of 42 Table of Contents 1. Cryptographic Module Specification........................................................................................................... 5 1.1. Module Description ................................................................................................................................. 5 1.2. FIPS 140-2 Validation Level ................................................................................................................... 8 1.3. Description of modes of operation .......................................................................................................... 8 1.4. Cryptographic Module Boundary .......................................................................................................... 12 1.4.1. Hardware Block Diagram ............................................................................................................. 12 2. Cryptographic Module Ports and Interfaces............................................................................................. 13 3. Roles, Services and Authentication .......................................................................................................... 17 3.1. Roles ..................................................................................................................................................... 17 3.2. Authentication ....................................................................................................................................... 18 3.3. Services................................................................................................................................................. 19 4. Physical Security ......................................................................................................................................... 24 4.1. Tamper Label Placement...................................................................................................................... 24 5. Operational Environment............................................................................................................................ 31 5.1. Applicability ........................................................................................................................................... 31 6. Cryptographic Key Management ............................................................................................................... 32 6.1. Key Generation ..................................................................................................................................... 32 6.2. Key Establishment ................................................................................................................................ 33 6.3. Key Entry / Output................................................................................................................................. 33 6.4. Key / CSP Storage................................................................................................................................ 33 6.5. Key / CSP Zeroization........................................................................................................................... 33 6.6. Random Number Generation................................................................................................................ 33 7. Self-Tests...................................................................................................................................................... 34 7.1. Power-Up Tests .................................................................................................................................... 34 7.1.1. Integrity Tests............................................................................................................................... 34 7.1.2. Cryptographic algorithm tests ...................................................................................................... 34 7.2. On-Demand self-tests ........................................................................................................................... 35 7.3. Conditional Tests .................................................................................................................................. 35 8. Guidance....................................................................................................................................................... 37 8.1. Delivery and Operation ......................................................................................................................... 37 8.2. Crypto Officer Guidance ....................................................................................................................... 37 8.2.1. Installing Tamper Evident Labels................................................................................................. 37 8.2.2. Install Device ................................................................................................................................ 37 8.2.3. Password Strength Requirement ................................................................................................. 37 8.2.4. Additional Guidance ..................................................................................................................... 37 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 3 of 42 8.2.5. Version Configuration................................................................................................................... 38 8.3. User Guidance ...................................................................................................................................... 38 9. Mitigation of Other Attacks......................................................................................................................... 39 List of Figures Figure 1 – Hardware Block Diagram ...................................................................................................................... 12 Figure 2 – BIG-IP i4000.......................................................................................................................................... 14 Figure 3 – BIG-IP i5000/i5820-DF.......................................................................................................................... 14 Figure 4 – BIG-IP i7000/i7820-DF.......................................................................................................................... 14 Figure 5 – BIG-IP i10800 / i11800-DS ................................................................................................................... 14 Figure 6 – BIG-IP i15800........................................................................................................................................ 15 Figure 7 – BIG-IP 4000........................................................................................................................................... 15 Figure 8 – BIG-IP 5250v-F ..................................................................................................................................... 15 Figure 9 – BIG-IP 7000........................................................................................................................................... 15 Figure 10 – BIG-IP 7200v-F ................................................................................................................................... 15 Figure 11 – BIG-IP 10200v-F ................................................................................................................................. 16 Figure 12 – BIG-IP 10350v-F ................................................................................................................................. 16 Figure 13 – VIPRION B2250 .................................................................................................................................. 16 Figure 14 – VIPRION B4450 .................................................................................................................................. 16 Figure 15 – BIG-IP i4000 (3 of 3 tamper labels) .................................................................................................... 25 Figure 16 – BIG-IP i5000 (3 of 3 tamper labels) .................................................................................................... 25 Figure 17 – BIG-IP i5820-DF (4 tamper labels shown).......................................................................................... 25 Figure 18 – BIG-IP i7000 (6 of 6 tamper labels shown)......................................................................................... 26 Figure 19 – BIG-IP i7820-DF (4 tamper labels shown).......................................................................................... 26 Figure 20 – BIG-IP i10800/i11800-DS (6 tamper labels shown)............................................................................ 27 Figure 21 – BIG-IP i10800/i11800-DS (tamper label 5 & 6)................................................................................... 27 Figure 22 – BIG-IP i15800 (Front tamper labels 1-3 labels shown)....................................................................... 27 Figure 23 – BIG-IP i15800 (Back tamper labels 4 and 5 labels shown) ................................................................ 27 Figure 24 – BIG-IP 4000 (3 tamper labels shown)................................................................................................. 28 Figure 25 – BIG-IP 5250v-F (4 tamper labels shown) ........................................................................................... 28 Figure 26 – BIG-IP 7000 with faceplate attached (Label 1 is located under faceplate) ........................................ 28 Figure 27 – BIG-IP 7000 with faceplate removed (1 of 4 tamper labels shown) ................................................... 28 Figure 28 – BIG-IP 7000 backside (3 of 4 tamper labels shown) .......................................................................... 29 Figure 29 – BIG-IP 7200v-F (5 tamper labels shown) ........................................................................................... 29 Figure 30 – BIG-IP 10200v-F (tamper labels 1-3).................................................................................................. 29 Figure 31 – BIG-IP 10200v-F (tamper label 4 shown) ........................................................................................... 29 Figure 32 – BIG-IP 10350v-F with faceplate attached ........................................................................................... 30 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 4 of 42 Figure 33 – BIG-IP 10350v-F with faceplate removed (1 of 4 tamper labels shown)............................................ 30 Figure 34 – BIG-IP 10350v-F backside (3 of 4 tamper labels shown) ................................................................... 30 Figure 35 – VIPRION B2250 in chassis (1 of 6 tamper labels shown) .................................................................. 30 Figure 36 – VIPRION B2250 top view (5 of 6 tamper labels shown)..................................................................... 30 Figure 37 – VIPRION B4450 in chassis ................................................................................................................. 31 Figure 38 – VIPRION B4450 front (1 of 5 tamper labels shown)........................................................................... 31 Figure 39 – VIPRION B4450 top-view (4 of 5 tamper labels shown)..................................................................... 31 List of Tables Table 1 – Tested Modules........................................................................................................................................ 7 Table 2 – Security Levels ......................................................................................................................................... 8 Table 3 – FIPS Approved and Allowed Algorithms ................................................................................................ 10 Table 3a – FIPS Non-Approved but Allowed Algorithms ....................................................................................... 10 Table 4 – Non-FIPS Approved Algorithms/Modes ................................................................................................. 11 Table 5 - Ports and Interfaces................................................................................................................................ 13 Table 6 – FIPS 140-2 Roles................................................................................................................................... 18 Table 7 – Authentication of Roles .......................................................................................................................... 18 Table 8 – Non-Authenticated Services................................................................................................................... 19 Table 9 – Management Services in FIPS mode of operation ................................................................................ 21 Table 10 – Crypto Services in FIPS mode of operation......................................................................................... 22 Table 11 – Services in non-FIPS mode of operation ............................................................................................. 23 Table 12 – Inspection of Tamper Evident Labels................................................................................................... 24 Table 12a – Number of Tamper Labels per Module .............................................................................................. 24 Table 13 – Life cycle of CSPs ................................................................................................................................ 32 Table 14 – Self-Tests ............................................................................................................................................. 35 Table 15 – Conditional Tests.................................................................................................................................. 36 Copyrights and Trademarks F5® and BIG-IP® are registered trademarks of F5 Networks. Intel® and Xeon® are registered trademarks of Intel® Corporation. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 5 of 42 Introduction This document is the non-proprietary FIPS 140-2 Security Policy of F5® Device Cryptographic Module with firmware version 13.1.1 EHF and hardware version listed in table 1. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-2 (Federal Information Processing Standards Publication 140-2) for a Security Level 2 module. 1. Cryptographic Module Specification The following section describes the cryptographic module and how it conforms to the FIPS 140-2 specification in each of the required areas. 1.1. Module Description The F5® Device Cryptographic Module (hereafter referred to as “the module”) is a smart evolution of Application Delivery Controller (ADC) technology. Solutions built on this platform are load balancers. They’re full proxies that give visibility into, and the power to control—inspect and encrypt or decrypt— all the traffic that passes through your network. Underlying all BIG-IP hardware and software is F5’s proprietary operating system, TMOS, which provides unified intelligence, flexibility, and programmability. With its application control plane architecture, TMOS gives you control over the acceleration, security, and availability services your applications require. TMOS establishes a virtual, unified pool of highly scalable, resilient, and reusable services that can dynamically adapt to the changing conditions in data centers and virtual and cloud infrastructures. The module has been tested on the multichip standalone devices listed in Table 1 below with the firmware version 13.1.1 EHF. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 6 of 42 Hardware Processor1 Operating System Specifications BIG-IP i4000 Intel® Xeon® D-1518 TMOS 13.1.1 EHF 1 x USB 8 x 1GbE; 4 x 10GbE network ports 1 x Console port 1 x 1GbE management port 4 x LEDs BIG-IP i5000 Intel® Xeon® E5-1630 TMOS 13.1.1 EHF 1 x USB port 8 x 1GbE; 4 x 40GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs BIG-IP i5820-DF Intel® Xeon® E5-1630 TMOS 13.1.1 EHF 1 x USB port 8 x 10GbE; 4 x 40GbE network ports 1 x Console port 1 x 1GbE management port 4 x LEDs BIG-IP i7000 Intel® Xeon® E5-1650 TMOS 13.1.1 EHF 1 x USB port 8 x 1GbE; 6 x 10GbE network ports 1 x Console port 1 x 1GbE management port 4 x LEDs BIG-IP i7820-DF Intel® Xeon® E5-1650 TMOS 13.1.1 EHF 1 x USB port 8 x 10GbE; 4 x 40GbE network ports 1 x Console port 1 x 1GbE management port 4 x LEDs BIG-IP i10800 Intel® Xeon® E5-1660 TMOS 13.1.1 EHF 1 x USB port 8 x 10GbE; 6 x 40GbE network ports 1 x Console port 1 x 1GbE management port 4 x LEDs BIG-IP i11800-DS Intel® Xeon® E5-2695 TMOS 13.1.1 EHF 1 x USB port 8 x 10GbE; 6 x 40GbE network ports 1 x Console port 1 x 1GbE management port 4 x LEDs BIG-IP i15800 Intel® Xeon® E5-2680 TMOS 13.1.1 EHF 1 x USB port 8 x 40GbE; 4 x 100GbE network ports 1 x Console port 1 x 1GbE management port 4 x LEDs BIG-IP 4000 Intel® Xeon® E3-1125C TMOS 13.1.1 EHF 1 x USB port 8 x 1GbE; 2 x 10GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs BIG-IP 5250v-F Intel® Xeon® E3-1230 TMOS 13.1.1 EHF 2 x USB port 4 x 1GbE; 8 x 10GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs 1 The modules make use of AES-NI instruction provided by the underlying processor. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 7 of 42 Hardware Processor1 Operating System Specifications BIG-IP 7000 Intel® Xeon® E3-1275 TMOS 13.1.1 EHF 1 x USB port 8 x 1GbE; 2 x 10GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs BIG-IP 7200v-F Intel® Xeon® E3-1275 TMOS 13.1.1 EHF 2 x USB port 4 x 1GbE; 8 x 10GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs BIG-IP 10200v-F Intel® Xeon® E5-1650 TMOS 13.1.1 EHF 1 x USB port 16 x 10GbE; 2 x 40GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs BIG-IP 10350v-F Intel® Xeon® E5-2658 TMOS 13.1.1 EHF 1 x USB port 16 x 10GbE; 2 x 40GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs VIPRION B2250 Intel® Xeon® E5-2658 TMOS 13.1.1 EHF 1 x USB port 4 x 40 GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs VIPRION B4450 Intel® Xeon® E5-2658A TMOS 13.1.1 EHF 1 x USB port 4 x 40 GbE; 2 x 100 GbE network ports 1 x Console port 1 x GbE management port 4 x LEDs Table 1 – Tested Modules F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 8 of 42 1.2. FIPS 140-2 Validation Level For the purpose of the FIPS 140-2 validation, the F5® Device Cryptographic Module is defined as a multi-chip standalone hardware cryptographic module validated at overall security level 2. The table below shows the security level claimed for each of the eleven sections that comprise the FIPS 140-2 standard: FIPS 140-2 Section Security Level 1 Cryptographic Module Specification 2 2 Cryptographic Module Ports and Interfaces 2 3 Roles, Services and Authentication 2 4 Finite State Model 2 5 Physical Security 2 6 Operational Environment N/A 7 Cryptographic Key Management 2 8 EMI/EMC 2 9 Self-Tests 2 10 Design Assurance 2 11 Mitigation of Other Attacks N/A Overall Level 2 Table 2 – Security Levels 1.3. Description of modes of operation The module must be installed in the FIPS validated configuration as stated in Section 8 – Guidance. In the operational mode the module supports two modes of operation: • in "FIPS mode" (the FIPS Approved mode of operation) only approved or allowed security functions with sufficient security strength can be used. • in "non-FIPS mode" (the non-Approved mode of operation) only non-approved security functions can be used. The module enters operational mode after power-up tests succeed. Once the module is operational, the mode of operation is implicitly assumed depending on the security function invoked and the security strength of the cryptographic keys. Critical Security Parameters (CSPs) used or stored in FIPS mode are not used in non-FIPS mode, and vice versa. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 9 of 42 In the FIPS Approved Mode, the cryptographic module will provide the following CAVP certified cryptographic algorithms. Algorithm Usage Keys/CSPs Certificate Number(s) AES-ECB AES-CBC AES-GCM Encryption and Decryption 128/192/256-bit AES key C2, C33, C34, C35, C36, C37, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49 AES-CBC AES-GCM 128/256-bit AES key C52, C53, C54, C55, C57, C58, C62, C63, C64, C65, C67, C68, C69, C70, C71, C75 SP800-90A CTR_DRBG Random Number Generation Entropy input string, V and Key values C2, C33, C34, C35, C36, C37, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C52, C53, C54, C55, C57, C58, C62, C63, C64, C65, C67, C68, C69, C70, C71, C75 FIPS 186-4 RSA Key Pair Generation RSA Key Generation RSA public and private key pair with 2048/3072- bit modulus size C2, C33, C34, C35, C36, C37, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49 PKCS#1 v1.5 RSA Signature Generation and Signature Verification with SHA- 256 and SHA-384 RSA Signature Generation and Verification RSA private key with 2048/3072-bit modulus C2, C33, C34, C35, C36, C37, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C52, C53, C54, C55, C57, C58, C62, C63, C64, C65, C67, C68, C69, C70, C71, C75 FIPS 186-4 ECC Key Pair Generation (Appendix B.4.2) ECDSA Key Pair Generation ECDSA/ECDH public/private key pair for P-256 and P-384 curves FIPS 186-4 ECDSA Signature Generation and Signature Verification ECDSA Signature Generation and Verification ECDSA private key (P-256, P- 384 curves) SHA-1 SHA-256 SHA-384 Message Digest N/A HMAC-SHA-1 HMAC-SHA-256 HMAC-SHA-384 Message Authentication HMAC key (>=112-bit) F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 10 of 42 SP800-56A ECC except KDF (Section 5.7.1.2 ECC CDH Primitive) Key Agreement Scheme (KAS) private Key with P-256 and P-384 curves Key Derivation SP800-135 Key Derivation in SSH Session encryption and data authentication keys C2, C33, C34, C35, C36, C37, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49 2 TLS 1.0/1.1/1.2 with SHA-256 and SHA-384 C2, C33, C34, C35, C36, C37, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C52, C53, C54, C55, C57, C58, C62, C63, C64, C65, C67, C68, C69, C70, C71, C75 Table 3 – FIPS Approved and Allowed Algorithms Algorithm Usage Keys/CSPs Certificate Number(s) EC Diffie-Hellman Key Agreement private key with P-256 and P-384 curves Non-Approved but Allowed RSA PKCS Key Wrapping RSA key pair with 2048/3072-bit modulus size Non-Approved but Allowed NDRNG N/A seed Non-Approved but Allowed Table 3a – FIPS Non-Approved but Allowed Algorithms Algorithm Usage Notes AES Symmetric Encryption and Decryption using OFB, CFB, CTR, XTS and KW modes DES RC4 Triple-DES n/a RSA Asymmetric Encryption and Decryption using modulus sizes less than 2048-bits or greater than 3072 bits RSA Asymmetric Key Generation FIPS 186-4 less than 2048-bit modulus size or greater than 3072-bits DSA using any key size 2 No parts of the TLS protocol except the KDF has been reviewed or tested by the CAVP and CMVP. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 11 of 42 ECDSA ECDH using public/private key pair for curves other than P-256 and P- 384 RSA Digital Signature Generation and Verification PKCS#1 v1.5 using key sizes other than 2048 and 3072 bits PKCS#1 v1.5 using SHA-1, SHA- 224 and SHA-512 using X9.31 standard using Probabilistic Signature Scheme (PSS) DSA using any key size and SHA variant ECDSA FIPS 186-4 using curves other than P-256 and P-384 FIPS 186-4 using curves P-256 and P-384 with SHA-1, SHA-224 and SHA-512 SHA-224 SHA-512 MD5 Message Digest N/A HMAC-SHA-224 HMAC-SHA-512 AES-CMAC Triple-DES-CMAC Message Authentication N/A Diffie-Hellman Key Agreement Scheme (KAS) N/A ECDH using curves other than P-256 and P-384 TLS KDF Key Derivation function Using SHA-1/SHA-224/SHA-512 SSH KDF SNMP KDF using any SHA variant IKEv1 and IKEv2 KDF Table 4 – Non-FIPS Approved Algorithms/Modes F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 12 of 42 1.4. Cryptographic Module Boundary The cryptographic boundary of the module is defined by the exterior surface of the appliance (red dotted line). The block diagram below shows the module, its interfaces with the operational environment and the delimitation of its logical boundary. 1.4.1. Hardware Block Diagram The block diagram below depicts the flow of status output (SO), control input (CI), data input (DI) and data output (DO). Description of the ports and interfaces can be found in Table 5 – Ports and Interfaces below. Figure 1 – Hardware Block Diagram Power Interface (PSU) SSL Accelerator Memory Interface (RAM) Central Processing Unit (CPU) Storage Interface (SSD) Display Interface (LCD, LED, USB) Network Interface (Ethernet, Fiber) - DO - SO - DI - DO - SO - CI - PI F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 13 of 42 2. Cryptographic Module Ports and Interfaces For the purpose of the FIPS 140-2 validation, the physical ports are interpreted to be the physical ports of the hardware platform on which it runs. The logical interfaces are the commands through which users of the module request services. The following table summarizes the four physical interfaces with details of the FIPS 140-2 logical interfaces they correspond to: Logical Interface Physical Interface Description Data Input Network Interface Depending on module, the network interface consists SFP, SFP+, and/or QSFP+ ports (Ethernet and/or Fiber Optic) which allow transfer speeds from 1Gbps to up to 40Gbps. Data Output Network Interface Display Interface Depending on module, the network interface consists SFP, SFP+, and/or QSFP+ ports (Ethernet and/or Fiber Optic) which allow transfer speeds from 1Gbps to up to 40Gbps. In addition, Status logs may be output to USB found in the interface. Control Input Display Interface Network Interface The control input found in the display interface includes the power button and reset button. The control input found in the network interface includes the API which control system state (e.g. reset system, power-off system). Status Output Display Interface Depending on model, the display interface can consist of a LCD display, LEDs, and/or output to STDOUT which provides system status information. Power Input Power Interface Removable PSU (x2) Table 5 - Ports and Interfaces F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 14 of 42 The images below show the various modules that were tested. Please use the images to familiarize yourself with the devices. Figure 2 – BIG-IP i4000 Figure 3 – BIG-IP i5000/i5820-DF Figure 4 – BIG-IP i7000/i7820-DF Figure 5 – BIG-IP i10800 / i11800-DS F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 15 of 42 Figure 6 – BIG-IP i15800 Figure 7 – BIG-IP 4000 Figure 8 – BIG-IP 5250v-F Figure 9 – BIG-IP 7000 Figure 10 – BIG-IP 7200v-F F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 16 of 42 Figure 11 – BIG-IP 10200v-F Figure 12 – BIG-IP 10350v-F Figure 13 – VIPRION B2250 Figure 14 – VIPRION B4450 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 17 of 42 3. Roles, Services and Authentication 3.1. Roles The module supports role-based authentication and the following roles are defined: • User role: Performs cryptographic services (in both FIPS mode and non-FIPS mode), key zeroization, module status requests, and on-demand self-tests. The FIPS140-2 role of User is mapped to multiple BIG-IP roles which are responsible for different components of the system (e.g. auditing, certificate management, user management, etc.). The user can access the module through CLI or Web Interface described below. However, the CO can restrict User Role access to the CLI interface. In that case the User will have access through web interface only. • Crypto Officer (CO) role: Crypto officer is represented by the administrator of the BIG-IP. This entity performs module installation and initialization. This role has full access to the system and has the ability to create, delete, and manage other user roles on the system. Two interfaces can be used to access the module: 1. CLI: The module offers a CLI called traffic management shell (tmsh) which can be accessed remotely using the SSHv2 secured session over the Ethernet ports. 2. Web Interface: The Web interface consists of HTTPS over TLS interface which provides a graphical interface for system management tools. The web interface can be accessed from a TLS-enabled web browser. Note: The module does not maintain authenticated sessions upon power cycling. Power-cycling the system requires the authentication credentials to be re-entered. When entering authentication data through the Web interface, any character entered will be obfuscated (i.e. character entered replaced with a dot on the entry box). When entering authentication data through the CLI, the module does not display any character entered by the operator in stdin (e.g. keyboard). FIPS 140-2 Role BIG-IP Role Purpose of Role Crypto Officer Administrator Main administrator of the of the BIG-IP system. This role has complete access to all objects on the system. Entities with this role cannot have other roles on the system. User Auditor Entity who can view all configuration data on the system, including logs and archives. Certificate Manager Entity who manages digital certificates and keys. Firewall Manager Grants a user permission to manage all firewall rules and supporting objects. Notably, the Firewall Manager role has no permission to create, update, or delete non-network firewall configurations, including Application Security or Protocol Security policies. iRule Manager Grants a user permission to create, modify, view, and delete iRules. Users with this role cannot affect the way that an iRule is deployed. Operator Grants a user permission to enable or disable nodes and pool members. When granted terminal access. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 18 of 42 FIPS 140-2 Role BIG-IP Role Purpose of Role Resource Manager Grants a user access to all objects on the system except BIG-IP user accounts. With respect to user accounts, a user with this role can view a list of all user accounts on the system but cannot view or change user account properties except for their own user account. Users with this role cannot have other user roles on the system. User Manager Entity who manages BIG-IP crypto officer accounts. Table 6 – FIPS 140-2 Roles 3.2. Authentication FIPS 140-2 Role Authentication type and data Strength of Authentication (Single-Attempt) Strength of Authentication (Multiple-Attempt) Crypto Officer Password based (CLI or Web Interface) The password must consist of minimum of 6 characters with at least one from each of the three character classes. Character classes are defined as: digits (0-9), ASCII lowercase letters (a-z), ASCII uppercase letters (A-Z) Assuming a worst-case scenario that comprises 6 (six) characters that consist of a set of 4 (four) digits, 1 (one) ASCII lowercase letter and 1 (one) ASCII uppercase letter. The probability to guess every character successfully is (1/10) ^4 * (1/26)^1 * (1/26)^1 = 1/6,760,000 which is much smaller than 1/1,000,000. The maximum number of login attempts is limited to 6 after which the account is locked. This means that at worst case an attacker has the probability of guessing the password in one minute as 6/6,760,000 which is less than the requirement of 1/100,000. User Password based (CLI and Web Interface) The password must consist of minimum of 6 characters with at least one from each of the three character classes. Character classes are defined as: digits (0-9), ASCII lowercase letters (a-z), ASCII uppercase letters (A-Z) Assuming a worst-case scenario that comprises 6 (six) characters that consist of a set of 4 (four) digits, 1 (one) ASCII lowercase letter and 1 (one) ASCII uppercase letter. The probability to guess every character successfully is (1/10) ^4 * (1/26)^1 * (1/26) ^1= 1/6,760,000 which is much smaller than 1/1,000,000. The maximum number of login attempts is limited to 6 after which the account is locked. This means that at worst case an attacker has the probability of guessing the password in one minute as 6/6,760,000 which is less than the requirement of 1/100,000. Table 7 – Authentication of Roles F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 19 of 42 3.3. Services The module provides services to users that assume one of the available roles. All services are described in detail in the user documentation. The first table lists the module’s services that can be performed without authentication. Subsequent tables list the Approved services and the non-Approved but allowed services in FIPS mode of operation, the roles that can request the service, the algorithms involved with their corresponding CAVS certificate numbers (if applicable), the CSPs involved and how they are accessed. The final set of tables show the non-FIPS Approved services that only can be executed in the non-FIPS mode. Service Access Type (R, W, Z) Usage/Notes Show Status R Displays system status information over LCD screen (e.g. network info, system operational status, etc.). Self-Tests R When the BIG-IP system has been started, the Self-Tests are performed. This includes the integrity check and Known Answer Tests. On-Demand self-tests are initiated by manually power cycling the system. Table 8 – Non-Authenticated Services Table 9 lists the Management Services available in FIPS mode of operation which are only available after authentication has succeeded. Use of any of the following services using non-approve algorithms will place the module in non-approved mode. Service Description Access Type (R, W, Z) Read/Write/Zeroize Authorization Crypto Officer User User Management Services List Users Display list of users R ✓ User Manager Resource Manager Create User Create additional users W ✓ User Manager View Users View users R ✓ User Manager Delete User Delete users from module W ✓ User Manager Unlock User Remove Lock from user who has exceeded login attempts W, R ✓ User Manager Update own password Update own password W All Roles Update others password Update password for user that is not self W ✓ User Manager F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 20 of 42 Service Description Access Type (R, W, Z) Read/Write/Zeroize Authorization Crypto Officer User Configure Password Policy Set password policy features W ✓ None Certificate Management Services Create SSL Certificate Generate a self-signed certificate W ✓ Certificate Manager Create SSL Key Generate SSL Certificate key file W ✓ Certificate Manager Check-Cert Examines certificate and display or logs expiration date of installed certificates R, W ✓ Certificate Manager List Certificates Display certificates installed R ✓ Certificate Manager Import SSL Certificate Import SSL certificate into module R ✓ Certificate Manager Delete SSL Certificate Delete a certificate from the module. Z ✓ Certificate Manager Export Certificate File Export SSL certificate into module W ✓ Certificate Manager ssh-keyswap utility service Use ssh-keyswap utility to create or delete ssh keys R, W ✓ Certificate Manager Firewall Management Services Configure firewall settings Configure firewall policy rules, and address-lists for use by firewall rules. R, W ✓ Firewall Manager Show firewall state Display the current system-wide state of firewall rules R ✓ Firewall Manager Show statistics Displays statistics of firewall rules on the BIG-IP system R ✓ Firewall Manager Audit Management Services View System Audit Logs Display various service logs R ✓ Auditor Export Analytics Logs Export system analytics logs W ✓ Auditor Enable/Disable audition Enables/Disables system auditing R ✓ Auditor F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 21 of 42 Service Description Access Type (R, W, Z) Read/Write/Zeroize Authorization Crypto Officer User System Management Services Configure Boot Options Enable Quit boot, manage boot locations R, W ✓ Resource Manager Configure SSH access options Enable/Disable SSH access, Configure IP address whitelist R, W ✓ None Configure Firewall Users Manage firewall rules R, W ✓ Firewall Manager Configure nodes and pool members Enable/Disable nodes and pool members R, W ✓ Operator Configure iRules create, modify, view, and delete iRules R, W ✓ iRule Manager Reboot System Restart cryptographic module W, Z ✓ Resource Manager Secure Erase Full system zeroization W, Z ✓ None Table 9 – Management Services in FIPS mode of operation Table 10 lists the crypto services available in FIPS mode of operation. Here the Control Plane refers to connecting to the device for management and the Data Plane refers to the connection of the device to external entities. Service Algorithms / Key Sizes Role Keys/CSPs Interface SSH Services Data Plane Control Plane Establish SSH Session Signature generation and verification: ECDSA with SHA- 256/SHA-384 and curve P-256/P-384 RSA with SHA- 256/SHA-384 and 2048/3072-bit key size User CO RSA/ECDSA Key Pair Yes Key Exchange: EC Diffie-Hellman EC Diffie-Hellman key pair, shared secret Key Derivation: SP800-135 SSH KDF Session encryption keys EC Diffie-Hellman shared secret F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 22 of 42 Service Algorithms / Key Sizes Role Keys/CSPs Interface Maintain SSH Session Data Encryption and Decryption: AES (CBC mode) User CO Session encryption keys Yes Data Integrity (MAC): HMAC with SHA-1 Session data authentication keys Close SSH Session N/A User CO Zeroize session keys and shared secret Yes TLS Services Data Plane Control Plane Establish TLS session Signature Generation and Verification: RSA or ECDSA with SHA-256/SHA-384 User CO RSA, ECDSA key pairs Yes Yes Key Exchange: ECDH with SP800- 135 TLS KDF, RSA Key wrapping (allowed) RSA, ECDH Key pair, TLS pre-master secret and master secret Yes Yes Maintaining TLS session Data Encryption: AES CBC, GCM Data Authentication: HMAC SHA-1/SHA- 256/SHA-384 User CO AES and HMAC Keys Yes Yes Closing TLS session N/A User CO Session keys, shared secret Yes Yes Table 10 – Crypto Services in FIPS mode of operation The following tables list all of the non-approved services available in the non-FIPS-Approved mode of operation. Service Role Usage/Notes TLS Services Establishing TLS session User CO Signature generation and verification using DSA or RSA/ECDSA with SHA-1/SHA-224/SHA-512 RSA with keys less than 2048 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 23 of 42 Service Role Usage/Notes Key Exchange using: Diffie-Hellman RSA Key wrapping with keys less than 2048 Maintain TLS session Data encryption using Triple-DES Data authentication using HMAC SHA-224/SHA-512 SSH Services Establish SSH session User CO Signature generation and verification using: DSA, Ed25519 RSA/ECDSA with SHA-1/SHA-224/SHA-512 RSA with key size less than 2048-bit Key exchange using Diffie-Hellman, Ed25519 Maintain SSH session Data encryption using Triple-DES Data authentication using HMAC SHA-1/SHA-224/SHA- 512 Other Services IPsec User CO The configuration and usage of IPsec is not approved iControl REST access Access to the system through REST using non-approved crypto from BouncyCastle Configuration using SNMP Management of the module via SNMP is not approved. Table 11 – Services in non-FIPS mode of operation F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 24 of 42 4. Physical Security All of the modules listed in Table 1: Tested Modules are enclosed in a hard-metallic case that provides obscurity from visual inspection of internal components. Each module is fitted with tamper evident labels to provide physical evidence of attempts to gain access inside the case. The tamper evident labels shall be installed for the module to operate in approved mode of operation. The Crypto Officer is responsible for inspecting the quality of the tamper labels on a regular basis to confirm the modules have not been tampered with. In the event that the tamper evident labels require replacement, a kit providing 25 tamper labels is available for purchase (P/N: F5-ADD-BIG-FIPS140). The Crypto Officer shall be responsible for the storage of any label kits. Physical Security Mechanism Recommended Inspection Frequency Guidance Tamper Evident Labels Once per month Check the quality of the tamper evident labels for any sign of removal, replacement, tearing, etc. If any label is found to be damaged or missing, contact the system administrator immediately. Table 12 – Inspection of Tamper Evident Labels 4.1. Tamper Label Placement The details below show the location of all tamper evident labels for each module. Label application instructions are provided in the F5 Platforms: FIPS Kit Installation guide delivered with each module. Module # of Tamper Labels Module # of Tamper Labels BIG-IP i4000 3 BIG-IP 4000 3 BIG-IP i5000 3 BIG-IP 5250v-F 4 BIG-IP i5820-DF 4 BIG-IP 7000 4 BIG-IP i7000 6 BIG-IP 7200v-F 5 BIG-IP i7820-DF 4 BIG-IP 10200v-F 4 BIG-IP i10800 6 BIG-IP 10350v-F 4 BIG-IP i11800-DS 6 VIPRION B2250 6 BIG-IP i15800 5 VIPRION B4450 5 Table 12a – Number of Tamper Labels per Module F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 25 of 42 Figure 15 – BIG-IP i4000 (3 of 3 tamper labels) Figure 16 – BIG-IP i5000 (3 of 3 tamper labels) Figure 17 – BIG-IP i5820-DF (4 tamper labels shown) Label 1 Label 2 Label 3 Label 1 Label 2 Label 3 Front Front F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 26 of 42 Figure 18 – BIG-IP i7000 (6 of 6 tamper labels shown) Figure 19 – BIG-IP i7820-DF (4 tamper labels shown) Label 1 Label 2 Label 3 Label 4 Label 5 Label 6 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 27 of 42 Figure 20 – BIG-IP i10800/i11800-DS (6 tamper labels shown) Figure 21 – BIG-IP i10800/i11800-DS (tamper label 5 & 6) Figure 22 – BIG-IP i15800 (Front tamper labels 1-3 labels shown) Figure 23 – BIG-IP i15800 (Back tamper labels 4 and 5 labels shown) F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 28 of 42 Figure 24 – BIG-IP 4000 (3 tamper labels shown) Figure 25 – BIG-IP 5250v-F (4 tamper labels shown) Figure 26 – BIG-IP 7000 with faceplate attached (Label 1 is located under faceplate) Figure 27 – BIG-IP 7000 with faceplate removed (1 of 4 tamper labels shown) Label 2 & 3 Label 1 Label 4 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 29 of 42 Figure 28 – BIG-IP 7000 backside (3 of 4 tamper labels shown) Figure 29 – BIG-IP 7200v-F (5 tamper labels shown) Figure 30 – BIG-IP 10200v-F (tamper labels 1-3) Figure 31 – BIG-IP 10200v-F (tamper label 4 shown) Label 2 Label 3 Label 4 Front F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 30 of 42 Figure 32 – BIG-IP 10350v-F with faceplate attached Figure 33 – BIG-IP 10350v-F with faceplate removed (1 of 4 tamper labels shown) Figure 34 – BIG-IP 10350v-F backside (3 of 4 tamper labels shown) Figure 35 – VIPRION B2250 in chassis (1 of 6 tamper labels shown) Figure 36 – VIPRION B2250 top view (5 of 6 tamper labels shown) Label 1 Label 2 Label 6 Label 4 Label 5 Label 3 Front Label 3 Label 2 Label 4 Front Label 1 is located under faceplate F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 31 of 42 Figure 37 – VIPRION B4450 in chassis Figure 38 – VIPRION B4450 front (1 of 5 tamper labels shown) Figure 39 – VIPRION B4450 top-view (4 of 5 tamper labels shown) 5. Operational Environment 5.1. Applicability The module operates in a non-modifiable operational environment per FIPS 140-2 level 2 specifications and as such the operational environment requirements do not apply. Label 2 Label 3 Label 4 Label 5 Label 1 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 32 of 42 6. Cryptographic Key Management The following table summarizes the CSPs that are used by the cryptographic services implemented in the module: Name Generation Storage Zeroization DRBG entropy input string Obtained from NDRNG. RAM Zeroized by device reboot DRBG V and Key values Derived from entropy string as defined by [SP800-90A] RAM TLS RSA private key Generated using FIPS 186-4 Key generation method and the random value used in the key generation is generated using SP800-90A DRBG. Disk Zeroized when key file is deleted or by secure erase option at boot. TLS ECDSA private key TLS EC Diffie-Hellman private Key RAM Zeroized by closing TLS session or by or rebooting the device. TLS Pre-Master Secret and Master Secret Established during the TLS handshake RAM Zeroized by closing TLS session or by or rebooting the device. Derived TLS session key (AES, HMAC) Derived from the master secret via SP800-135 TLS KDF SSH Shared Secret Established during the SSH handshake RAM Zeroized by closing SSH session or terminating the SSH application or rebooting the device. Derived SSH session key (AES, HMAC) Derived from the shared secret via SP800-135 SSH KDF RAM SSH EC Diffie-Hellman private Key Generated using FIPS 186-4 Key generation method and the random value used in the key generation is generated using SP800-90A DRBG. RAM SSH RSA private Key Disk Zeroized using ssh-keyswap utility or by secure erase option at boot. SSH ECDSA private Key User Password Entered by the user Disk Zeroized by secure erase option at boot or overwritten when password is changed Table 13 – Life cycle of CSPs The following sections describe how CSPs, in particular cryptographic keys, are managed during its life cycle. 6.1. Key Generation The HMAC and AES keys are generated as part of the TLS/SSH protocol when deriving session keys. For generation of RSA and EC keys, the module implements asymmetric key generation services compliant with [FIPS186-4], and using DRBG compliant with [SP800-90A]. A seed (i.e. the random value) used in asymmetric key generation is obtained from [SP800-90A] DRBG. The module does not implement symmetric key generation as an explicit service. The symmetric keys used are derived from shared secret by applying SP 800-135 as part of the TLS/SSH protocol. This scenario maps to the section 7.3 of the SP 800-133 symmetric keys generated using Key agreement scheme. In accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per SP800-133 (vendor affirmed). F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 33 of 42 6.2. Key Establishment The module provides RSA Key wrapping scheme which is used as part of TLS protocol and EC Diffie- Hellman key agreement scheme which is used as part of the TLS and SSH Protocol with the key derivation implemented by SP 800-135 TLS and SSH KDF. The module also includes a SP 800-38F key wrapping in the context of TLS and SSH protocol where a key may be within a packet or message that is encrypted and authenticated using approved authenticated encryption mode i.e. AES GCM or a combination method which includes approved symmetric encryption algorithm i.e. AES together with approved authentication method i.e. HMAC-SHA. These schemes provide the following security strength in FIPS mode: • RSA key wrapping provides 112 or 128-bits of encryption strength • EC Diffie-Hellman key agreement provides 128 or 192-bits of encryption strength • SP 800-38F key wrapping using approved authenticated encryption mode i.e. AES GCM provides between 128 and 256 bits of encryption strength • SP 800-38F key wrapping using a combination of approved AES encryption and HMAC authentication method provides between 128 and 256 bits of encryption strength 6.3. Key Entry / Output The module does not support manual key entry or intermediate key generation key output. During the TLS/SSH handshake, the keys that are entered or output to the module over the network, includes RSA/ECDSA public keys and the TLS pre-master secret encrypted with RSA key only when using the RSA key exchange with TLS. For TLS with ECDH key exchange, the TLS pre-master secret is established during key agreement and is not output from the module. Once the TLS/SSH session is established, any key or data transfer performed thereafter is protected by AES encryption. 6.4. Key / CSP Storage As shown in the above table most of the keys are stored in the non-volatile memory in plaintext form and are destroyed when released by the appropriate zeroization calls or the system is rebooted. The keys stored in plaintext in non-volatile memory are static and will remain on the system across power cycle and are only accessible to the authenticated administrator. 6.5. Key / CSP Zeroization The zeroization methods listed in the above Table, overwrites the memory occupied by keys with “zeros”. Additionally, the user can enforce it by performing procedural zeroization. For keys present in volatile memory, calling reboot command will clear the RAM memory. For keys present in non-volatile memory, using secure erase option (can only be triggered by the administrator during reboot of the device) will perform single pass zero write erasing the disk contents. 6.6. Random Number Generation The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90A] for the generation of random value used in asymmetric keys, and for providing an RNG service to calling applications. The Approved DRBG provided by the module is the CTR_DRBG with AES-256. The DRBG is initialized during module initialization. The module uses a Non-Deterministic Random Number Generator (NDRNG) to seed the DRBG. A Continuous Random Number Generation Test (CRNGT) is performed on the output of the NDRNG prior to seeding the DRBG and also on the DRBG output. The NDRNG provides at least 256- bits of entropy to the DRBG during initialization (seed) and reseeding (reseed). The NDRNG is within its physical boundary. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 34 of 42 7. Self-Tests 7.1. Power-Up Tests The module performs power-up tests automatically during initialization when the device is booted without requiring any operator intervention; power-up tests ensure that the module’s firmware is not corrupted and that the cryptographic algorithms work as expected. During the execution of power-up tests, services are not available and input and output are inhibited. Upon successful completion of the power-up tests, the module is initialized and enters operational mode where it is accessible for use. If the module fails any of the power-up tests, it enters into the ‘Halt Error’ state and halts the system. In this state, the module will prohibit any data outputs and cryptographic operations and will not be available for use. The module will be marked unusable and the administrator will need to reinstall the module to continue. 7.1.1. Integrity Tests The integrity of the module is verified by comparing the MD5 checksum value of the installed binaries calculated at run time with the stored value computed at build time. If the values do not match the system enters halt error state and the device will not be accessible. In order to recover from this state, the module needs to be reinstalled. 7.1.2. Cryptographic algorithm tests The module performs self-tests on all FIPS-Approved cryptographic algorithms supported in the approved mode of operation and is done on the Data plane as well as Control Plane side, using the Known Answer Test (KAT) and Pair-wise Consistency Test (PCT) as listed in the following table: Algorithm Test Control Plane Self-tests CTR_DRBG • KAT using AES 256-bit with and without derivation function AES • KAT of AES encryption with ECB mode and 128-bit key • KAT of AES decryption with ECB mode and 128-bit key RSA • KAT of RSA PKCS#1 v1.5 signature generation with 2048 bit key and SHA-256 • KAT of RSA PKCS#1 v1.5 signature verification with 2048 bit key and SHA-256 ECDSA • PCT of ECDSA signature generation and verification with P-256 curve EC Diffie-Hellman • primitive “Z” computation KAT with P-256 curve SHA-1, SHA-256, SHA-384 • KAT of SHA-1 • KAT of SHA-256 • KAT of SHA-384 is covered by KAT for HMAC-SHA-384 F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 35 of 42 Algorithm Test HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384 • KAT of HMAC-SHA-1 • KAT of HMAC-SHA-256 • KAT of HMAC-SHA-384 Data Plane Self-Tests AES • KAT of AES encryption with CBC mode and 128-bit key • KAT of AES decryption with CBC mode and 128-bit key RSA • KAT of RSA PKCS#1 v1.5 signature generation with 2048 bit key and SHA-256 • KAT of RSA PKCS#1 v1.5 signature verification with 2048 bit key and SHA-256 ECDSA • PCT of ECDSA signature generation and verification with P-256 curve EC Diffie-Hellman • primitive “Z” computation KAT with P-256 curve CTR_DRBG • Covered by Data Plane Self-Tests. (Control Plane makes use of the same DRBG implementation provided by Data Plane) HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384 • KAT of HMAC-SHA-1 • KAT of HMAC-SHA-256 • KAT of HMAC-SHA-384 SHA-1, SHA-256, SHA-384 • Covered by respective HMAC KATs Table 14 – Self-Tests 7.2. On-Demand self-tests The module does not explicitly provide the Self-Test service to perform on demand self-tests. On demand self-tests can be invoked by powering-off and powering-on the system in order to initiate the same cryptographic algorithm tests executed during power-up. During the execution of the on-demand self-tests, crypto services are not available and no data output or input is possible. 7.3. Conditional Tests The module performs conditional tests on the cryptographic algorithms shown in the following table. If the module fails any of these tests, the device reboots and enters into the Halt Error state prohibiting any data output or cryptographic operations and the module will be inoperable. The module must be re-installed in order to clear the error condition. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 36 of 42 Algorithm Test DRBG • Continuous random number generator test (CRNGT) on the output of the DRBG NDRNG • Continuous random number generator test (CRNGT) on the output of the NDRNG prior to seeding the CTR_DRBG RSA key generation • Pair-wise Consistency Test (PCT) using SHA-256 ECDSA key generation • Pair-wise Consistency Test (PCT) using SHA-256 Table 15 – Conditional Tests F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 37 of 42 8. Guidance 8.1. Delivery and Operation The module is distributed as a part of a BIG-IP product which includes the hardware and an installed copy of 13.1.1 EHF For FIPS compliance, the following steps defined in section 8.2 should be completed by the Crypto Officer prior to access to the device is allowed. 8.2. Crypto Officer Guidance 8.2.1. Installing Tamper Evident Labels Before the device is installed in the production environment, tamper-evident labels must be installed in the location identified for each module in section 4.1. The following steps should be taken when installing or replacing the tamper evident labels on the module. The instructions are also included in F5 Platforms: FIPS Kit Installation provided with each module. • Use the provided alcohol wipes to clean the chassis cover and components of dirt, grease, or oil before you apply the tamper evidence seals. • After applying the seal, run your finger over the seal multiple times using extra high pressure. • The seals completely cure within 24 hours. It is the responsibility of the Crypto Officer to inspect the tamper evident labels for damage or any missing labels as specified in Section 4. 8.2.2. Install Device • Follow the instructions in the "BIG-IP System: Initial Configuration" guide for the initial setup and configuration of the device. • Add the FIPS license when prompted during the GUI setup wizard. 8.2.3. Password Strength Requirement The Crypto officer must modify the BIG-IP password policy to meet or exceed the requirements defined in Table 8 – Authentication of Roles. Instructions for this can be found in the “BIG-IP System: User Account Administration” guide. After assuming the role for the first time, the Crypto Officer shall replace the default password with one matching the password policy. For SSH authentication the Crypto officer must configure the SSH to allow only password-based authentication. 8.2.4. Additional Guidance The Crypto Officer should verify that the following specific configuration rules are followed in order to operate the module in the FIPS validated configuration: • All command shells other than tmsh are not allowed. For example, bash and other user- serviceable shells are excluded. • Management of the module via the appliance's LCD display is not allowed. • Usage of f5-rest-node and iAppLX and provisioning of iRulesLX is not allowed. • Only the provisioning of AFM and LTM is included. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 38 of 42 • Remote access to the Lights Out / Always On Management capabilities of the system are not allowed. • Serial port console should be disabled after the initial power on and communications setup of the hardware. • On the i11800-DS device, the Cavium Nitrox-V must be disabled using lspci | grep -i encryption | awk ‘{print “device exclude “ $1;}’ > tmm_init.tcl command since full support is not available: 8.2.5. Version Configuration Once the device is installed, licensed and configured, the Crypto Officer should confirm that the system is installed and licensed correctly. 8.2.5.1. Version Confirmation The Crypto Officer should run the command "tmsh show sys version", then verify the version shown with the approved version from Table 1 - Tested Modules. Any firmware loaded into the module other than version 13.1.1 EHF is out of the scope of this validation and will mean that the module is not operating as a FIPS validated module. 8.2.5.2. License Confirmation The FIPS validated module activation requires installation of the license referred as ‘FIPS license’. The Crypto Officer should run the command "tmsh show sys license", then verify that the list of license flags includes the "FIPS 140-2 Compliant Mode”. 8.3. User Guidance • The module supports two modes of operation. Table 10 – Crypto Services in FIPS mode of operation list the FIPS approved services and Table 11 – Services in non-FIPS mode of operation lists the non-FIPS approved services. Using the services in Table 4 – Non-FIPS Approved Algorithms/Modes means that the module operates in non-FIPS Approved mode for the particular session of a particular service, where the non-FIPS approved algorithm or mode was selected. • AES-GCM IV is constructed in accordance with SP800-38D in compliance with IG A.5 scenario 1. In case the module’s power is lost and then restored, the key used for the AES GCM encryption or decryption shall be re-distributed. The AES GCM IV generation is in follows [RFC5288] and shall only be used for the TLS protocol version 1.2 to be compliant with [FIPS140-2_IG] IG A.5; thus, the module is compliant with [SP800-52]. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 39 of 42 9. Mitigation of Other Attacks The module does not implement security mechanisms to mitigate other attacks. F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 40 of 42 Appendix A. Glossary and Abbreviations AES Advanced Encryption Standard CBC Cipher Block Chaining CFB Cipher Feedback CSP Critical Security Parameter CTR Counter Mode CVL Component Validation List DES Data Encryption Standard DSA Digital Signature Algorithm DRBG Deterministic Random Bit Generator ECB Electronic Code Book ECC Elliptic Curve Cryptography FIPS Federal Information Processing Standards Publication GCM Galois Counter Mode HMAC Hash Message Authentication Code KAS Key Agreement Scheme KAT Known Answer Test MAC Message Authentication Code NIST National Institute of Science and Technology NDRNG Non-Deterministic Random Number Generator OFB Output Feedback RNG Random Number Generator RSA Rivest, Shamir, Adleman SHA Secure Hash Algorithm XTS XEX-based Tweaked-codebook mode with cipher text stealing F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 41 of 42 Appendix B. References FIPS140-2 FIPS PUB 140-2 - Security Requirements For Cryptographic Modules May 2001 http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf FIPS140-2_IG Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program February 2019 http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/FIPS1402IG.pdf FIPS180-4 Secure Hash Standard (SHS) March 2012 http://csrc.nist.gov/publications/fips/fips180-4/fips 180-4.pdf FIPS186-4 Digital Signature Standard (DSS) July 2013 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf FIPS197 Advanced Encryption Standard November 2001 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf FIPS198-1 The Keyed Hash Message Authentication Code (HMAC) July 2008 http://csrc.nist.gov/publications/fips/fips198 1/FIPS-198 1_final.pdf PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1 February 2003 http://www.ietf.org/rfc/rfc3447.txt SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of Operation Methods and Techniques December 2001 http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf SP800-38D NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC November 2007 http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf SP800-56A NIST Special Publication 800-56A - Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Revised) March 2007 http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf SP800-90A NIST Special Publication 800-90A - Recommendation for Random Number Generation Using Deterministic Random Bit Generators January 2012 http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf F5® Device Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy © 2019 F5 Networks / atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice. 42 of 42 SP800-131A NIST Special Publication 800-131A - Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths November 2015 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf