ISO/IEC 19790 and FIPS 140-3 Non-Proprietary Security Policy

for

DellTM BSAFETM Crypto Module for Java 7.0 Software Version: 7.0

Last Updated: November 14, 2024, Version 1.2

Table of Content

1	General	3
2	Cryptographic module specification	3
3	Cryptographic module interfaces	15
4	Roles, services, and authentication	16
5	Software/Firmware security	22
6	Operational environment	22
7	Physical security	22
8	Non-invasive security	22
9	Sensitive security parameters management	23
10	Self-tests	29
11	Life-cycle assurance	32
12	Mitigation of other attacks	38

List of Figures

FIGURE 1 MODULE'S BLOCK DIAGRAM

List of Tables

TABLE 1 SECURITY LEVELS	3
TABLE 2 TESTED OPERATIONAL ENVIRONMENT	
Table 3 Vendor Affirmed Operational Environments	7
TABLE 4 - APPROVED ALGORITHMS	
TABLE 5 - NON-APPROVED ALGORITHMS NOT ALLOWED IN THE APPROVED MODE OF OPERATION	
TABLE 6 PORTS AND INTERFACES	
TABLE 7 ROLES, SERVICE COMMANDS, INPUT, AND OUTPUT	
TABLE 8 APPROVED SERVICES	20
TABLE 9 NON-APPROVED SERVICES	21
TABLE 10 SSPs	28
TABLE 11 NON-DETERMINISTIC RANDOM NUMBER GENERATION SPECIFICATION	
TABLE 12 GENERATED KEY SIZES AND STRENGTH	29
TABLE 13 ALGORITHM REQUIREMENTS FOR APPROVED MODE OF OPERATION	37

1 General

This is Dell Australia Pty Limited non-proprietary security policy for the Dell[™] BSAFE[™] Crypto Module for Java 7.0 (hereinafter referred to as the Module or JCM) with software version 7.0. The following details how this Module meets the security requirements of FIPS 140-3, SP800-140, and ISO/IEC 19790 for a Security Level 1 software cryptographic module.

The security requirements cover areas related to the design and implementation of a cryptographic module. These areas include cryptographic module specification; cryptographic module interfaces; roles, services, and authentication; software/firmware security; operational environment; physical security; non-invasive security; sensitive security parameter management; self-tests; life-cycle assurance; and mitigation of other attacks. Table 1 below indicates the actual security levels for each area of the cryptographic Module.

ISO/IEC 24759:2017 Section 6		
1	General	1
2	Cryptographic module specification	1
3	Cryptographic module interfaces	1
4	Roles, services, and authentication	1
5	Software/Firmware security	1
6	Operational environment	1
7	Physical security ¹	N/A
8	Non-invasive security	N/A
9	Sensitive security parameter management	1
10	Self-tests	1
11	Life-cycle assurance	1
12	Mitigation of other attacks	1

Table 1 Security Levels

¹The module relies on the physical security provided by the host on which it runs.

The Module has an overall security level of 1.

2 Cryptographic module specification

The Module is a multi-chip standalone software module intended to be used as part of a software system, providing cryptographic services to that system. The module's operational environment is non-modifiable. The module is provided as a Java Archive (jar) file. It is intended to be distributed with, and used by, a Java application. The module consists of a jar file, *jcmFIPS-7.0.jar*. The name and version of the module can be accessed from the API ModuleConfig.getVersionInfo().

The FIPS 140-3 validation certificate can be located on the NIST Cryptographic Module Validation Program (CMVP) page using the module name and version reported.

#	Operating System	Hardware Platform	Processor	PAA/Acceleration
1	SUSE [®] Linux Enterprise Server 15 SP3 (64-bit) with OpenJDK 11	Dell PowerEdge™ R6525	AMD EPYC™ 7513	N/A
2	SUSE [®] Linux Enterprise Server 15 SP3 (64-bit) with OpenJDK 8	Dell PowerEdge™ R6525	AMD EPYC™ 7513	N/A
3	Windows Server [®] 2019 (64-bit) with Oracle® JRE 8	Dell PowerEdge™ R6525	AMD EPYC™ 7513	N/A
4	Windows Server® 2016 (64-bit) with Oracle [®] JRE 8	Dell PowerEdge™ T130	Intel [®] Xeon [®] CPU E3-1230	N/A

Table 2 Tested Operational Environment

In addition to the platforms listed in Table 2, Dell has also tested the module on the following platforms and claims vendor affirmation on them:

#	Operating System	Hardware Platform
1	Apple [®] MacOS [®] 10.15 (x86_64) with Oracle JDK 11 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
2	Apple MacOS 10.15 (x86_64) with Oracle JDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
3	Canonical [®] Ubuntu [®] 16.04 (x86) with OpenJDK 8 (32-bit)	Generic Hardware Platform with Intel x86 (32-bit)
4	Canonical Ubuntu 16.04 (x86) with OpenJDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
5	CentOS TM 7.9 (x86_64) with OpenJDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
6	Dell PowerProtect TM Data Domain TM OS (x86_64) with Oracle JDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
7	Dell PowerStoreOS TM 4.0 (x86_64) with OpenJDK 11 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
8	FreeBSD [®] Foundation 12 (x86_64) with OpenJDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)

9	Hewlett Packard Enterprise HP-UX 11.31 with HP JDK 8 (64-bit)	Generic Hardware Platform with
		Itanium [®] 2
10		Generic Hardware
	IBM AIX [®] 7.2 with IBM JDK 8 (64-bit)	Platform with
		PowerPC [®] (64-bit)
	Run (A R	Generic Hardware
11	Microsoft [®] Windows 10 Enterprise ($x86_{64}$) with Oracle JDK 11	Platform with Intel
	(64-bit)	x86_64 (64-bit)
	Microsoft Windows 10 Enterprise (x86_64) with Oracle JDK 8 (64-	Generic Hardware
12	bit)	Platform with Intel
		x86_64 (64-bit)
12	Microsoft Windows 10 Enterprise (x86 64) with Oracle JDK 7 (32-	Generic Hardware
13	bit)	Platform with Intel $x^{86} \in A (64 \text{ hit})$
		x86_64 (64-bit) Generic Hardware
14	Microsoft Windows Server 2019 (x86_64) with Oracle JDK 11 (64-	Platform with Intel
14	bit)	x86 64 (64-bit)
		Generic Hardware
15	Microsoft Windows Server 2016 (x86_64) with Oracle JDK 11 (64- bit)	Platform with Intel
10		x86 64 (64-bit)
	Oracle Solaris [®] 11.4 with Oracle JDK 11 (64-bit)	Generic Hardware
16		Platform with
-		SPARC [®] v9
	Oracle Solaris 11.4 with Oracle JDK 8 (64-bit)	Generic Hardware
17		Platform with
		SPARC v9
	Oracle Linux 7 64-bit on Oracle X Series Servers with Oracle JDK	Generic Hardware
18	8 (64-bit)	Platform with Intel
		x86_64 (64-bit)
	Oracle Linux 7 64-bit on Oracle X Series Servers with Oracle JDK	Generic Hardware
19	11 (64-bit)	Platform with Intel
		x86_64 (64-bit)
20	Oracle Linux 7 64-bit on Oracle E Series Servers with Oracle JDK 8	Generic Hardware
20	(64-bit)	Platform with Intel
		x86_64 (64-bit) Generic Hardware
21	Oracle Linux 7 64-bit on Oracle E Series Servers with Oracle JDK	Platform with Intel
21	11 (64-bit)	x86 64 (64-bit)
		Generic Hardware
22	Oracle Linux 7 64-bit on Oracle A Series Servers with Oracle JDK	Platform with
	8 (64-bit)	ARMv8 (64-bit)
	Oracle Linux 7 64-bit on Oracle A Series Servers with Oracle JDK 11 (64-bit)	Generic Hardware
23		Platform with
	11 (04-01)	ARMv8 (64-bit)
	Oracle Linux 8 64-bit on Oracle X Series Servers with Oracle JDK	Generic Hardware
24	8 (64-bit)	Platform with Intel
		x86_64 (64-bit)
25	Oracle Linux 8 64-bit on Oracle X Series Servers with Oracle JDK	Generic Hardware
	11 (64-bit)	Platform with Intel
		x86_64 (64-bit)

26	Oracle Linux 8 64-bit on Oracle E Series Servers with Oracle JDK 8 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
27	Oracle Linux 8 64-bit on Oracle E Series Servers with Oracle JDK 11 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
28	Oracle Linux 8 64-bit on Oracle A Series Servers with Oracle JDK 8 (64-bit)	Generic Hardware Platform with ARMv8 (64-bit)
29	Oracle Linux 8 64-bit on Oracle A Series Servers with Oracle JDK 11 (64-bit)	Generic Hardware Platform with ARMv8 (64-bit)
30	Red Hat [®] Enterprise Linux 8.6 (x86_64) with Oracle JDK 11 (64- bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
31	Red Hat Enterprise Linux 8.6 (x86_64) with Oracle JDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
32	Red Hat Enterprise Linux 7.9 (x86_64) with Oracle JDK 11 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
33	Red Hat Enterprise Linux 7.9 (x86_64) with Oracle JDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
34	SUSE Linux Enterprise Server 15 SP4 (x86_64) with OpenJDK 17 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
35	SUSE Linux Enterprise Server 15 SP4 (x86_64) with OpenJDK 11 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
36	SUSE Linux Enterprise Server 15 SP4 (x86_64) with OpenJDK 8 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
37	SUSE Linux Enterprise Server 15 SP2 (x86_64) with OpenJDK 11 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
38	SUSE Linux Enterprise Server 15 SP2 (x86_64) with OpenJDK 8 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
39	SUSE Linux Enterprise Server 12 SP5 (x86_64) with IBM JDK 8 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
40	SUSE Linux Enterprise Server 12 SP5 (x86_64) with IBM JDK 7 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
41	SUSE Linux Enterprise Server 12 SP5 (x86_64) with OpenJDK 7 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)
42	SUSE Linux Enterprise Server 12 SP5 (x86_64) with Oracle JDK 11 (64-bit)	Generic Hardware Platform with Intel x86 64 (64-bit)

43	SUSE Linux Enterprise Server 12 SP5 (x86_64) with Oracle JDK 8 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)
44	SUSE Linux Enterprise Server 12 SP5 (x86_64) with Oracle JDK 7 (64-bit)	Generic Hardware Platform with Intel x86_64 (64-bit)

The CMVP makes no statement about the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed on the validation certificate.

Mode of operation

The Module supports both approved and non-approved modes of operation. It can operate in an approved mode after initial operations are performed, and all pre-operational self-tests have been completed successfully. The non-approved mode is entered when a non-approved algorithm or service is invoked. The Approved mode of operation can only be transitioned into the Non-Approved mode by calling one of the Non-Approved services. The Module does not claim implementation of a degraded mode of operation. If any self-test fails, the cryptographic services of the module are disabled for both Approved and Non-Approved modes of operation. Section 4 provides details on the service indicator implemented by the Module.

Table 4 below lists all the approved or vendor-affirmed security functions of the Module, including specific key size(s) – in bits unless otherwise noted –employed for approved services and implemented modes of operation.

There are some algorithm modes that were tested but not implemented by the Module. Only the algorithms, modes, and key sizes that are implemented by the Module are shown in this table. The mode of operation is identified by the following fields in the FIPS140Context interface:

- FIPS140Context.MODE_FIPS140: Only Approved Algorithms can be used in this mode.
- FIPS140Context.MODE_NON_FIPS140: Both approved and non-approved algorithms can be used in this mode.

The ModuleLoader.load() API loads the Module for use in approved mode. This API returns the one and only instance of a ModuleConfig object.

The ModuleConfig.newCryptoModule() API creates CryptoModule objects. This API supports a FIPS140Context parameter which specifies the FIPS 140-3 mode of operation of the CryptoModule.

Refer to the API Javadoc for more information about these APIs.

An application using Module must include the jar file, *jcmFIPS-7.0.jar*, in its Java classpath and call the ModuleLoader.load() API to load the Module. This API runs the pre-operational self-tests and cryptographic algorithm self-tests automatically and if the self-tests complete successfully, the cryptographic services of the Module can be used.

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use/Function
A2314	AES [FIPS 197;	CBC	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use/Function
	SP800-38A]			
A2314	AES [FIPS 197; SP800-38A, addendum]	CBC-CS1	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption
A2314	AES [FIPS 197; SP800-38A, addendum]	CBC-CS2	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption
A2314	AES [FIPS 197; SP800-38A, addendum]	CBC-CS3	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption
A2314	AES [FIPS 197; SP800-38C]	ССМ	Key Length: 128, 192, and 256 bits	Authenticated encryption and decryption
A2314	AES [FIPS 197; SP800-38A, addendum]	CFB128	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption
A2314	AES [FIPS 197; SP800-38B]	СМАС	Key Length: 128, 192, and 256 bits	Message authentication
A2314	AES [FIPS 197; SP800-38A]	CTR	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption
A2314	AES [FIPS 197; SP800-38A]	ECB	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption
A2314	AES [FIPS 197; SP800-38D]	GCM	Key Length: 128, 192, and 256 bits	Authenticated encryption and decryption
A2314	AES [FIPS 197; SP800-38F]	KW, KWP	Key Length: 128, 192, and 256 bits Key establishment methodology provides between 128 and 256 bits of encryption strength	Key wrapping and unwrapping
A2314	AES [FIPS 197; SP800-38A]	OFB	Key Length: 128, 192, and 256 bits	Symmetric encryption and decryption
A2314	AES [FIPS 197; SP800-38E]	XTS	Key Length: 128 and 256 bits	Symmetric encryption and decryption
A2314	CTR_DRBG [SP800-90Arev1]	AES-128 AES-196 AES-256 Derivation Function Enabled; Prediction Resistance: Yes, No	N/A	Random bit generation
A2314	DSA [FIPS 186-4]	DSA KeyGen: -N: 224/256 -2048/3072 Modulus	L: 2048/3072 bits	DSA keypair generation
A2314	DSA [FIPS 186-4]	DSA PQGGen: -P/Q Generation Methods: Probable -G Generation Methods: Unverifiable -N: 224/256 -2048/3072 Modulus with	L: 2048/3072 bits	DSA PQG generation

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use/Function
		SHA2-256, SHA2-384, SHA2-512		
A2314	DSA [FIPS 186-4]	DSA PQGVer: -P/Q Generation Methods: Probable -G Generation Methods: Unverifiable -N: 160/224/256 -1024/2048/3072 Modulus with SHA1, SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA2-512/224, SHA2-512/256	L: 1024/2048/3072 bits	DSA PQG verification
A2314	DSA [FIPS 186-4]	DSA SigGen: -N: 224/256 -2048/3072 Modulus with SHA2-224, SHA2-256, SHA2- 384, SHA2-512, SHA2- 512/224, SHA2-512/256	L: 2048/3072 bits	DSA signature generation
A2314	DSA [FIPS 186-4]	DSA SigVer: -N: 160/224/256 -1024/2048/3072 Modulus with SHA1, SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA2- 512/224, SHA2-512/256	L: 1024/2048/3072 bits	DSA signature verification Please note that DSA 1024 bits are only used for signature verification
A2314	ECDSA [FIPS 186-4]	ECDSA KeyGen	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521	ECDSA keypair generation
A2314	ECDSA [FIPS 186-4]	ECDSA KeyVer	Curves: B-163, B-233, B-283, B-409, B-571, K-163, K-233, K-283, K-409, K-571, P-192, P-224, P-256, P-384, P-521	ECDSA keypair verification
A2314	ECDSA [FIPS 186-4]	ECDSA SigGen	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521	ECDSA signature generation
A2314	ECDSA [FIPS 186-4]	ECDSA SigVer	Curves: B-163, B-233, B-283, B-409, B-571, K-163, K-233, K-283, K-409, K-571, P-192, P-224, P-256, P-384, P-521	ECDSA signature verification
A2314	HASH_DRBG [SP800-90Arev1]	SHA-1 SHA2-224 SHA2-256 SHA2-384 SHA2-512 SHA2-512/224 SHA2-512/256 Prediction Resistance: Yes No	N/A	Random bit generation
A2314	HMAC_DRBG [SP800-90Arev1]	HMAC-SHA-1 HMAC-SHA2-224 HMAC-SHA2-256 HMAC-SHA2-384 HMAC-SHA2-512 HMAC-SHA2-512/224 HMAC-SHA2-512/256 Prediction Resistance: Yes, No	N/A	Random bit generation

CAVP Cert	8		Description / Key Size(s) / Key Strength(s)	Use/Function
A2314	HMAC [FIPS 198-1]	HMAC-SHA-1	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA2-224	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA2-256	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA2-384	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA2-512	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA2-512/224	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA2-512/256	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA3-224	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA3-256	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA3-384	Key Length: 112 bits or greater	Message authentication
A2314	HMAC [FIPS 198-1]	HMAC-SHA3-512	Key Length: 112 bits or greater	Message authentication
A2314	KAS-ECC CDH Component (CVL) [SP800-56Arev3]	KAS-ECC CDH-Component: Function: Full Public Key Validation, Key Pair Generation, Partial Public Key Validation	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521 Key establishment methodology provides between 128 and 256 bits of encryption strength	Key agreement primitive
A2314	KAS-ECC-SSC (CVL) [SP800-56Arev3]	KAS-ECC-SSC: Scheme: ephemeralUnified: KAS Role: initiator, responder staticUnified: KAS Role: initiator, responder	Curves: B-233, B-283, B-409, B-571, K-233, K-283, K-409, K-571, P-224, P-256, P-384, P-521 Key establishment methodology provides between 128 and 256 bits of encryption strength	Key agreement primitive
A2314	KAS-FFC-SSC (CVL) [SP800-56Arev3]	KAS-FFC-SSC: Scheme: dhEphem: KAS Role: initiator, responder dhOneFlow: KAS Role: initiator, responder dhStatic: KAS Role: initiator, responder	Domain Parameter Generation Methods: FB, FC, ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192 Key establishment methodology provides between 112 and 200 bits	Key agreement primitive
A2314	KAS-IFC-SSC (CVL) [SP800-56Brev2]	KAS-IFC-SSC Scheme: KAS1: KAS Role: initiator, responder	of encryption strength Modulus: 2048, 3072, 4096, 6144, 8192	Key agreement primitive
A2314	KAS KC (CVL) [SP800-56]	Key Confirmation Directions: Bilateral, Unilateral KAS Role: Initiator, Responder	N/A	Key agreement primitive

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use/Function
		Key Confirmation Roles: Provider, Recipient Key Confirmation MAC Methods: HMAC-SHA-1 HMAC-SHA2-224 HMAC-SHA2-256 HMAC-SHA2-512 HMAC-SHA2-512 HMAC-SHA2-512/224 HMAC-SHA3-224 HMAC-SHA3-226 HMAC-SHA3-256 HMAC-SHA3-384 HMAC-SHA3-512		
A2314	KDA [SP800-56Crev1]	OneStep: SHA-1 SHA2-224 SHA2-256 SHA2-384 SHA2-512 SHA2-512/224 SHA2-512/256 SHA3-224 SHA3-256 SHA3-384 SHA3-512	N/A	Key agreement primitive
A2314	KDF [SP800-108]	KDF Mode: Feedback MAC Mode: HMAC-SHA-1 HMAC-SHA2-224 HMAC-SHA2-256 HMAC-SHA2-384 HMAC-SHA2-512 HMAC-SHA2-512/224 HMAC-SHA2-512/256	N/A	Key derivation
A2314	PBKDF ¹ [SP800-132]		N/A	Key derivation
A2314	RSA Decryption Primitive (CVL) [SP800-56Crev2]	decryptionPrimitive	2048 bit key size	Key transport primitive
A2314	RSA [FIPS 186-4]	RSA KeyGen: -Mode: B.3.6 - 2048/3072/4096 Modulus	Modulus: 2048/3072/4096 bits	RSA keypair generation
A2314	RSA [FIPS 186-4]	RSA SigGen: -Mode: ANSI X9.31 -2048/3072/4096 Modulus with SHA2-224/ SHA2-256/ SHA2- 384/ SHA2-512/ SHA2-512- 224/ SHA2-512-256; -Mode: PKCS 1.5 -2048/3072/4096 Modulus with SHA2-224/ SHA2-556/ SHA2- 384/ SHA2-512/ SHA2-512- 224/ SHA2-512-256; -Mode: PKCSPSS -2048/3072/4096 Modulus with SHA2-224/ SHA2-256/ SHA2-384/ SHA2-512/ SHA2-512-224/ SHA2-512-	Modulus: 2048/3072/4096 bits	RSA signature generation

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use/Function
		256;		
A2314	RSA [FIPS 186-4]	RSA SigVer: -Mode: ANSI X9.31 -2048/3072/4096 Modulus with SHA-1, SHA2-224/ SHA2- 256/ SHA2-384/ SHA2-512/ SHA2-512-224/ SHA2-512- 256; -Mode: PKCS 1.5 -2048/3072/4096 Modulus with SHA-1, SHA2-224/ SHA2- 256/ SHA2-384/ SHA2-512- 256; -Mode: PKCSPSS -2048/3072/4096 Modulus with SHA-1, SHA2-224/ SHA2-256/ SHA2-384/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512/ SHA2-512-224/ SHA2-512-256;	Modulus: 1024/2048/3072/4096 bits	RSA signature verification
A2314	Safe Primes Key Generation [SP800-56Arev3]	KeyGen for KAS-FFC-SSC	Safe Prime Groups: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192	KAS-FFC Keypair domain parameters generation
A2314	Safe Primes Key Verification [SP800-56Arev3]	KeyVer for KAS-FFC-SSC	Safe Prime Groups: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192, MODP-2048, MODP-3072, MODP-4096, MODP-6144, MODP-8192	KAS-FFC Keypair domain parameters verification
A2314	SHS [FIPS 180-4]	SHA-1	N/A	Message digest Note: SHA-1 is not used for digital signature generation
A2314	SHS [FIPS 180-4]	SHA2-224	N/A	Message digest
A2314	SHS [FIPS 180-4]	SHA2-256	N/A	Message digest
A2314	SHS [FIPS 180-4]	SHA2-384	N/A	Message digest
A2314	SHS [FIPS 180-4]	SHA2-512	N/A	Message digest
A2314	SHS [FIPS 180-4]	SHA2-512/224	N/A	Message digest
A2314	SHS [FIPS 180-4]	SHA2-512/256	N/A	Message digest
A2314	SHA3 [FIPS 202]	SHA3-224	N/A	Message digest
A2314	SHA3 [FIPS 202]	SHA3-256	N/A	Message digest
A2314	SHA3 [FIPS 202]	SHA3-384	N/A	Message digest
A2314	SHA3 [FIPS 202]	SHA3-512	N/A	Message digest
A2314	SHAKE [FIPS 202]	SHAKE-128	N/A	Message digest

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use/Function
A2314	SHAKE [FIPS 202]	SHAKE-256	N/A	Message digest
A2314	TLS v1.2 KDF RFC7627 [RFC7627] (CVL)	TLS v1.2 KDF RFC7627	N/A	Key derivation
A2314	TLS v1.3 KDF [RFC8446] (CVL)	TLS v1.3 KDF	N/A	Key derivation
Vendor Affirmed	Cryptographic Key Generation (CKG) ² [SP800-133rev2]	N/A	N/A	Cryptographic Key Generation; SP800-133rev2 and IG D.H Note: The cryptographic module performs Cryptographic Key Generation (CKG) for symmetric and asymmetric keys as per sections 5 and 6 in SP800-133rev2 (vendor affirmed). A seed (i.e., the random value) used in asymmetric key generation is a direct output from SP800- 90Arev1 DRBG

Table 4 - Approved Algorithms

¹Password-based key derivation function 2 (PBKDF2). As defined in NIST Special Publication 800-132, PBKDF2 can be used in Approved mode when used with Approved symmetric key and message digest algorithms. For more information, see Crypto Officer Guidance

 2 The module supports cryptographic key generation as described in section 4 of SP800-133rev2 where V is a constant string of binary zeroes. The module also supports symmetric key generation as described in sections 6.1 and 6.2 of SP800-133rev2.

Algorithm / Function	Use / Function
AES in BPS mode for FPE	Symmetric encryption / decryption
ChaCha20	Symmetric encryption / decryption
ChaCha20/Poly1305	Symmetric encryption / decryption
DES	Symmetric encryption / decryption
DESX	Symmetric encryption / decryption
Deterministic DSA	Digital signatures
Deterministic ECDSA (FIPS 186-5)	Digital signatures
ECIES	Asymmetric encryption / decryption
FIPS 186-2 PRNG (Change Notice General)	Random bit generation
HMAC-MD5	Message authentication
KDFTLS10	Key Derivation
	(For use with TLS versions 1.0 and 1.1)
MD2	Secure hashing
MD5	Secure hashing
PBE (PKCS #12, PKCS #5, SSLCPBE)	Symmetric encryption / decryption
PBHMAC (PKCS #12, PKIX)	Message authentication
Poly1305	Message authentication
RC2	Symmetric encryption / decryption
RC4	Symmetric encryption / decryption
RC5	Symmetric encryption / decryption
RIPEMD160	Secure hashing
RSA-KEM-KWS	Asymmetric encryption / decryption
scrypt	Key Derivation
Shamir Secret Sharing	Key Generation

Algorithm / Function	Use / Function
TDES in CBC, CFB64, ECB, OFB modes and CBC_CS1, CBC_CS2 or CBC_CS3 mode for CTS	Symmetric encryption / decryption

Table 5 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

As there are no non-Approved algorithms allowed in the approved mode of operation, the tables defined in SP800-140B for the following categories are missing from this document:

- Non-Approved Algorithms Allowed in Approved Mode of Operation
- Non-Approved Algorithms Allowed in Approved Mode of Operation with No Security Claimed

Cryptographic boundary

The Module is classified as a multi-chip standalone software cryptographic module for the purposes of FIPS 140-3. As such, it is tested on specific operating systems and computer platforms. The cryptographic boundary includes the module running on selected platforms running selected operating systems. The Module is packaged as a jar file containing the Module's entire executable code. The Module relies on the physical security provided by the host computer in which it runs. The Module accepts Control Input through the API calls.

Data Input and Output are provided in the variables passed with the API calls. Status Output is provided through the returns and exceptions documented for each call. This is illustrated in Figure 1, which depicts the Module's cryptographic boundary and physical perimeter. The cryptographic boundary includes all of the software components of the cryptographic libraries. The physical perimeter is the Tested Operational Environment's Physical Perimeter (TOEPP) on which the Module runs.

Physical Perimeter

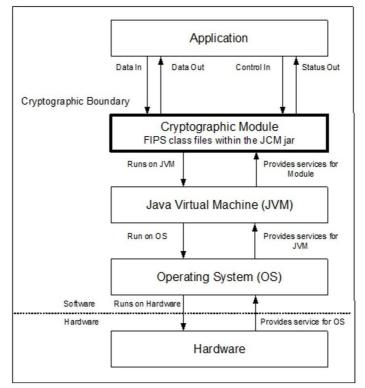


Figure 1 Module's Block Diagram

3 Cryptographic module interfaces

The Module's physical perimeter encompasses the case of the tested platform mentioned in Table 2 Tested Operational Environment. The Module provides its logical interfaces via API calls. The logical interfaces provided by the Module are mapped onto the FIPS 140-3 logical interfaces (Data Input, Data Output, Control Input, Control Output, and Status Output) as follows:

Physical Port	Logical Interface	Data that passes over port/interface
N/A	Data Input	Plaintext, Ciphertext, Message Digest, Signature, MAC, Secret, Key text, Wrapped key text, Message, Secret
N/A	Data Output	Status, Ciphertext, Plaintext, Verify status, Validation status, Wrapped key text, Message digest, MAC, Random bytes
N/A	Control Input	Configuration parameters for the API interface ModuleConfig which sets the mode of operation
N/A	Status Output	Mode of operation indicator from the API CryptoModule.isFIPS140Approved(). The state of the module from the API CryptoModule.getState()
N/A	Control Output	N/A

Table 6 Ports and Interfaces

4 Roles, services, and authentication

The Module meets all FIPS 140-3 Security Level 1 requirements for Roles, Services; and Authentication, implementing a Crypto Officer Role. As allowed by FIPS 140-3, the module does not support identification or authentication for this role. The Crypto Officer Role is implicitly assumed once the Module is loaded, and the role is cleared on Module unload. There is no maintenance role, cryptographic bypass capability, or self-initiated cryptographic output. The module does not allow concurrent operators.

Role	Service	Input	Output
Crypto Officer	Asymmetric Encryption	Plaintext	Ciphertext, Status
Crypto Officer	Asymmetric Decryption	Ciphertext	Plaintext, Status
Crypto Officer	Digital Signature Generation	Message Digest	Signature, Status
Crypto Officer	Digital Signature Verification	Message Digest, Signature	Verify Status, Status
Crypto Officer	Key Assurance	-	Validation Status, Status
Crypto Officer	Key Confirmation	MAC	Verify status
Crypto Officer	Key Deletion	-	-
Crypto Officer	Key Derivation	Secret	Key text, Status
Crypto Officer	Key Export	-	Key text, Status
Crypto Officer	Key Generation	-	Status
Crypto Officer	Key Import	Key text	Status
Crypto Officer	Key Parameter Generation	-	Status
Crypto Officer	Key Wrap	-	Wrapped Key text, Status
Crypto Officer	Key Unwrap	Wrapped key text	Status
Crypto Officer	Message Digest	Message	Message Digest, Status
Crypto Officer	MAC Generation	Secret, Message	MAC, Status
Crypto Officer	MAC Verification	Secret, Message, MAC	Verify Status, Status
Crypto Officer	Random Number Generation	-	Random bytes, Status
Crypto Officer	Self-test	-	Status
Crypto Officer	Symmetric Encryption	Plaintext	Ciphertext, Status
Crypto Officer	Symmetric Decryption	Ciphertext	Plaintext, Status

Table 7 Roles, Service Commands, Input, and Output

The abbreviations of the access rights to keys and SSPs have the following interpretation:

- **G** = **Generate**: The module generates or derives the SSP.
- **R** = **Read**: The SSP is read from the module.
- **W** = **Write**: The SSP is updated, imported, or written to the module.
- **E** = **Execute**: The module uses the SSP in performing a cryptographic operation.
- **Z** = **Zeroize**: The module zeroizes the SSP.
- N/A = Not applicable: The service does not access any SSP during its operation.

Table 8 below lists all approved services that can be used in the approved mode of operation.

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
Asymmetric Encryption	Perform asymmetric encryption operation	RSA Encryption Primitive	RSA Public Key	СО	Е	API call
Asymmetric Decryption	Perform asymmetric decryption operation	RSA Decryption Primitive	RSA Private Key	СО	Е	API call
Digital Signature Generation	Perform digital signature generation	DSA PQGGen DSA SigGen ECDSA SigGen RSA SigGen	DSA Private Key ECDSA Private Key RSA Private Key	СО	Е	API call
Digital Signature Verification	Perform digital signature verification	DSA PQGVer DSA SigVer ECDSA SigVer RSA SigVer	DSA Public Key ECDSA Public Key RSA Public Key	СО	E	API call
Key Assurance	Perform key assurance operation	N/A	DSA Public Key DSA Private Key ECDSA Public Key ECDSA Private Key EC Diffie- Hellman Private Key EC Diffie- Hellman Public Key Diffie-Hellman Public Key Diffie-Hellman Private Key RSA Public Key RSA Private Key	СО	R	API call
Key Confirmation	Perform key confirmation operation Perform key deletion	KAS KC	HMAC Key	СО	E	API call
Key Deletion	Perform key deletion operation	N/A	AES Key DSA Public Key DSA Private Key ECDSA Public Key ECDSA Private Key CMAC Key HMAC Key RSA Public Key	СО	Z	API call

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
			RSA Private			
Key Derivation	Perform key derivation	KDA	Key KBKDF Key	СО	G, R	API call
Key Derivation	operation	NDA OneStep PBKDF TLS v1.2 KDF RFC 7627 TLS v1.3 KDF	Derivation Key KBKDF Derived Key OneStep KDF Key Derivation Key OneStep KDF Derived Key PBKDF Password PBKDF Derived Key TLS Master Secret TLS Session Key TLS Session		U, K	
Key Export	Perform key export operation	N/A	Integrity Key AES Key DSA Public Key DSA Private Key ECDSA Public Key ECDSA Private Key CMAC Key HMAC Key RSA Public Key RSA Private Key	СО	R	API call
Key Generation	Perform key generation operation	DSA KeyGen ECDSA KeyGen KAS-ECC-SCC KAS-FFC-SCC RSA KeyGen	AES Key DSA Public Key DSA Private Key ECDSA Public Key ECDSA Private Key EC Diffie- Hellman Private Key EC Diffie- Hellman Public Key Peer EC Diffie- Hellman Public Key EC Diffie- Hellman Shared Secret	СО	G	API call

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
			Diffie-Hellman Public Key Diffie-Hellman Private Key Diffie-Hellman Peer Diffie- Hellman Public Key Shared Secret RSA Public Key RSA Private Key			
Key Import	Perform key import operation		AES Key DSA Public Key DSA Private Key ECDSA Public Key ECDSA Private Key CMAC Key HMAC Key RSA Public Key RSA Private Key	СО	W	API call
Key Parameter Generation	Perform key parameter generation operation	KAS-FFC-SCC	DSA Public Key DSA Private Key Diffie-Hellman Public Key Diffie-Hellman Private Key Diffie-Hellman Shared Secret	СО	G	API call
Key Unwrap	Perform key unwrap operation Perform key wrap	AES-KW AES-KWP AES-KW	AES Key AES Key	CO CO	Е	API call API call
Key wrap	operation	AES-KWP	AES Key AES Key Wrap Key		Ľ	
Message Digest	Perform message digest operation	SHA-1 SHA2-224 SHA2-256 SHA2-384 SHA2-512 SHA2-512/224 SHA2-512/226 SHA3-224 SHA3-256 SHA3-384 SHA3-512 SHAKE-128 SHAKE-256		СО		API call
MAC Generation	Perform MAC generation	CMAC-AES HMAC-SHA-1	CMAC Key HMAC Key	СО	R	API call

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
		HMAC-SHA2-224 HMAC-SHA2-256 HMAC-SHA2-384 HMAC-SHA2-512 HMAC-SHA2- 512/224 HMAC-SHA2- 512/256 HMAC-SHA3-224 HMAC-SHA3-226 HMAC-SHA3-384 HMAC-SHA3-512				
MAC Verification	Perform MAC verification operation	CMAC-AES HMAC-SHA-1 HMAC-SHA2-224 HMAC-SHA2-256 HMAC-SHA2-384 HMAC-SHA2-512 HMAC-SHA2- 512/224 HMAC-SHA2- 512/256 HMAC-SHA3-224 HMAC-SHA3-256 HMAC-SHA3-384 HMAC-SHA3-512	CMAC Key HMAC Key	СО	R	API call
Random Number Generation	Perform random number generation	CTR_DRBG HASH_DRBG HMAC_DRBG	DRBG Entropy Input DRBG Seed DRBG Internal State V value DRBG Key	СО		API call
Symmetric Encryption	Perform symmetric encryption operation	AES-CBC AES-CBC-CS1 AES-CBC-CS2 AES-CBC-CS3 AES-CCM AES-CFB AES-CTR AES-ECB AES-GCM AES-OFB AES-XTS	AES Key AES GCM IV	СО	E	API call
Symmetric Decryption	Perform symmetric decryption operation	AES-CBC AES-CBC-CS1 AES-CBC-CS2 AES-CBC-CS3 AES-CCM AES-CFB AES-CFR AES-CTR AES-ECB AES-GCM AES-OFB AES-XTS	AES Key AES GCM IV	СО	Ε	API call

Table 8 Approved Services

Service	Description	Algorithms Accessed	Role	Indicator
Asymmetric Encryption	Perform asymmetric	ECIES	N/A	API call
5 51	encryption operation	RSA-KEM-KWS		
Asymmetric Decryption	Perform asymmetric	ECIES	N/A	API call
	decryption operation	RSA-KEM-KWS		
Digital Signature	Perform digital	Deterministic DSA	N/A	API call
Generation	signature generation	Deterministic ECDSA		
Digital Signature	Perform digital	Deterministic DSA	N/A	API call
Verification	signature verification	Deterministic ECDSA		
Key Derivation	Perform key derivation	KDFTLS10 (For use with	N/A	API call
	operation	TLS versions 1.0 and 1.1)		
		PKCS #5 KDF		
		PKCS #12 KDF		
		scrypt		
Key Generation	Perform key	DES	N/A	API call
	generation operation	DESX		
		RC2		
		RC4		
		RC5		
		Shamir Secret Sharing		
		TDES		
Message Digest	Perform message	MD2	N/A	API call
	digest operation	MD5		
		RIPEMD160		
MAC Generation	Perform MAC	HMAC-MD5	N/A	API call
	generation operation	PBHMAC (PKCS #12, PKIX)		
		Poly1305		
MAC Verification	Perform MAC	HMAC-MD5	N/A	API call
	verification operation	PBHMAC (PKCS #12, PKIX)		
		Poly1305		
Random Number	Perform random	FIPS 186-2 PRNG (Change	N/A	API call
Generation	number generation	Notice General)		
Symmetric Encryption	Perform symmetric	AES in BPS mode for FPE	N/A	API call
	encryption operation	ChaCha20		
		ChaCha20/Poly1305		
		DES		
		DESX		
		RC2		
		RC4		
		RC5		
		PBE (PKCS #12, PKCS #5,		
		SSLCPBE)		
		TDES in CBC, CFB64, ECB,		
		OFB modes and		
		CBC_CS1, CBC_CS2 or		
		CBC_CS3 mode for CTS		
Symmetric Decryption	Perform symmetric	AES in BPS mode for FPE	N/A	API call
	decryption operation	ChaCha20		
		ChaCha20/Poly1305		
		DES		
		DESX		
		RC2		
		RC4		
		RC5		
		PBE (PKCS #12, PKCS #5,		
		SSLCPBE)		
		TDES in CBC, CFB64, ECB,		
		OFB modes and		
		CBC CS1, CBC CS2 or	1	
		CBC CS3 mode for CTS		

Table 9 Non-Approved Services

The Module doesn't support self-initiated cryptographic output capability and cryptographic Bypass capability services.

5 Software/Firmware security

Integrity techniques

Module integrity check is implemented by first calculating a MAC over each of the files listed in *module.files*, using HMAC-SHA-1 with a fixed key. Another MAC is then calculated over all file MACs in the order that they are listed, using the same algorithm and key as for the file MACs. This two-step process is intended to allow the jar file to be processed sequentially without having to load the entire jar file into memory even after the order of the jar file entries has been changed. The expected integrity check MAC is stored in the jar file manifest.

During the Integrity Test when the module is loaded, a MAC is again calculated and compared with the pre-computed MAC value contained in the jar file manifest. If these values are equal, then the software integrity check has passed and power-up of the Module can continue. Otherwise, the test has failed, and the Module is disabled.

Integrity test on-demand

The integrity test is performed as part of the pre-operational self-tests. It is automatically executed at power-on. The module provides the ModuleConfig.runSelfTests() API to allow the operator to perform on-demand integrity testing. The operator can also power-cycle or reboot the tested platform to initiate the software integrity test on-demand.

6 Operational environment

The Module is a software module, which is operated in a modifiable operational environment per FIPS 140-3 level 1 specifications. The module is provided for operating systems running on a general-purpose computer platform based on an Intel CPU.

The Module has control over its own SSPs. The process and memory management functionality of the host device's OS prevents unauthorized access to plaintext private and secret keys, intermediate key generation values, and other SSPs by external processes during module execution. The Module only allows access to SSPs through its well-defined API. The operational environments provide the capability to separate individual application processes from each other by preventing uncontrolled access to CSPs and uncontrolled modifications of SSPs regardless of whether this data is in the process memory or stored on persistent storage within the operational environment. Processes that are spawned by the Module are owned by the Module and are not owned by external processes or operators.

7 Physical security

The FIPS 140-3 physical security requirements do not apply to the Module since it is a software module.

8 Non-invasive security

Currently, non-invasive security is not required by FIPS 140-3 (see NIST SP800-140F). The requirements of this area are not applicable to the Module.

9 Sensitive security parameters management

The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the Module:

Key/SSP Name/ Type	Streng th	Security Function and Cert. Number	Gener- ation	Import /Export	Establi sh- ment	Storage	Zero- isatio n	Use & relate d keys
DRBG entropy input (CSP)		CTR_DRBG HASH_DRBG HMAC_DRBG #A2314	Source within TOEPP (GPS	module via Module's API Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Random Number Generation
DRBG Seed (CSP)		CTR_DRBG HASH_DRBG HMAC_DRBG #A2314	Internally Derived from entropy input string as defined by SP800- 90Arev1.	-		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Random Number Generation
DRBG Internal State V value (CSP)		CTR_DRBG HASH_DRBG HMAC_DRBG #A2314		-		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Random Number Generation
DRBG Key (CSP)	256 bits	CTR_DRBG HASH_DRBG HMAC_DRBG #A2314	Internally Derived from entropy input string as defined by SP800- 90Arev1.	Import: No Export: No		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down.	Random Number Generation
(CSP)	2048	CKG CTR_DRBG HASH_DRBG HMAC_DRBG KAS-FFC-SSC Safe Primes Key Generation #A2314	Internally generated conformant to SP800- 133rev2 (CKG) using SP800-56A rev3 Diffie- Hellman key generation method, and the random value used in key generation is generated using SP800- 90ARev1 DRBG.	Export: No		N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive Diffie- Hellman Shared Secret
Diffie-Hellman Public Key (PSP)	2048	KAS-FFC-SSC Safe Primes Key Generation #A2314	derived per	Import: No Export: Yes	N/A	N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive Diffie- Hellman Shared Secret

Peer Diffie- Hellman Public Key (PSP)	MODP- 2048	N/A	N/A	Import: Yes Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive Diffie- Hellman Shared Secret
Diffie-Hellman Shared Secret (CSP)	MODP- 2048	KAS-FFC-SSC #A2314	Internally generated using SP800- 56Arev3 DH shared secret computation.	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive TLS session related keys
EC Diffie- Hellman Private Key (CSP)	P-256/P- 384/P-521	CKG CTR_DRBG HASH_DRBG HMAC_DRBG KAS-ECC-SSC #A2314	Internally generated conformant to SP800- 133rev2 (CKG) using SP800-56A rev3 EC Diffie- Hellman key generation method, and the random value used in key generation is generated using SP800- 90Arev1 DRBG	Export: No	N/A	N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive EC Diffie- Hellman Shared Secret
EC Diffie- Hellman Public Key (PSP)	P-256/P- 384/P-521	KAS-ECC-SSC #A2314		1	N/A	N/A: The module does not provide persistent keys/ SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive EC Diffie- Hellman Shared Secret
Peer EC Diffie-Hellman Public Key (PSP)	P-256/P- 384/P-521	N/A	N/A	Import: Yes Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive EC Diffie- Hellman Shared Secret
EC Diffie- Hellman Shared Secret (CSP)	384/P-521	KAS-ECC-SSC #A2314	derived using SP800- 56Arev3 ECDH shared secret computation.	Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Used to derive TLS session related keys
DSA Private Key (CSP)	2048/3072 bits #A2314	CKG CTR_DRBG HASH_DRBG HMAC_DRBG DSA PQGGen DSA SigGen DSA KeyGen #A2314		1	N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and Verification used in TLS

DSA Public Key (PSP)	/3072 bits	DSA PQGVer DSA SigVer DSA KeyGen #A2314	value used in key generation is generated using SP800- 90Arev1 DRBG Or externally generated Internally derived per the FIPS 186- 4 DSA key generation method	Import: Yes	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and Verification used in TLS
ECDSA Private Key (CSP)	384/P-521	CKG CTR_DRBG HASH_DRBG HMAC_DRBG ECDSA KeyGen ECDSA KeyVer ECDSA SigGen #A2314	generated conformant to SP800- 133rev2 (CKG) using FIPS 186-4 ECDSA key generation method, and the random value used in key generation is generated using SP800- 90Arev1 DRBG. Or externally	Export: Yes	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and verification used in TLS
ECDSA Public Key (PSP)	384/P-521	ECDSA KeyGen ECDSA KeyVer ECDSA SigVer #A2314	generated Internally derived per the FIPS 186- 4 ECDSA key generation method. Or externally generated		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and verification used in TLS
RSA Private Key (CSP)		CKG CTR_DRBG HASH_DRBG HMAC_DRBG RSA KeyGen RSA SigGen #A2314		1	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Signature generation and verification used in TLS

			DRBG.					
			Or externally					
			generated					
RSA Public Key	/3072/409	RSA KeyGen RSA SigVer	Internally derived per	Import: Yes	N/A	N/A: The module does	Automatic zeroization	Signature generation
(PSP)	6 bits	#A2314	the FIPS 186- 4 RSA key	Export: Yes		not provide persistent	when the tested	and verification
			generation method.			keys/SSPs storage.	platform is powered down	used in TLS
			Or externally generated					
TLS Master	48 Bytes	Keying Material	Internally	Import: No	N/A	N/A: The	Automatic	Keying
Secret			Derived per	-		module does	zeroization	material used
(CSP)				Export: No		not provide	when TLS	to derive
			derivation			persistent	session is	other TLS
			function defined in			keys/SSPs	terminated or when the	keys
			SP800-135			storage.	tested	
			KDF (KDF-				platform is	
			TLS v1.2				powered	
			RFC7627)				down	
TLS Session	128/256	AES-CBC	Internally	Import: No	N/A	N/A: The	Automatic	Used for TLS
Key	bits	AES-GCM	Derived per	1		module does	zeroization	session
(CSP)		TLS v1.2 KDF		Export: No		not provide	when TLS	confidentialit
. ,		RFC7627	derivation	-		persistent	session is	y protection
		TLS v1.3 KDF	function			keys/SSPs	terminated or	
			defined in			storage.	when the	
		#A2314	SP800-135				tested	
			KDF (KDF-				platform is	
			TLS v1.2				powered	
TLS Session	256-384	TLS v1.2 KDF	RFC7627).	L	N/A	N/A: The	down Automatic	Used for TLS
		RFC7627	Internally Derived per	Import: No	IN/A	module does	zeroization	session
(CSP)	UIIS	TLS v1.3 KDF		Export: No		not provide	when TLS	integrity
(051)		HMAC-SHA2-	derivation	Export. 10		persistent	session is	protection
		256	function			keys/SSPs	terminated or	pro te e the th
		HMAC-SHA2-	defined in			storage.	when the	
		384	SP800-135			C	tested	
			KDF (KDF-				platform is	
		#A2314	TLS v1.2				powered	
			RFC7627).				down	
AES Key		AES-CBC	Internally	Import: Yes	N/A	N/A: The	Automatic	Symmetric
(CSP)	56 bits	AES-CBC-CS1	generated per			module does	zeroization	encryption
		AES-CBC-CS2		Export: Yes		not provide	when the	and
		AES-CBC-CS3 AES-CCM	generation function			persistent	tested platform is	decryption
		AES-CCM AES-CFB	defined in			keys/SSPs storage.	platform is	
		AES-CFB AES-CTR	SP800-			siorage.	down	
		AES-ECB	133rev2 using					
		AES-GCM	random value					
		AES-OFB	generated					
		AES-XTS	using SP800-					
			90A DRBG					
		#A2314	1					
			Or externally					
			generated					
AES GCM IV	N/A	AES-GCM	Internally	Import: No	N/A	N/A: The	Automatic	Authenticated
(CSP)			Derived per			module does	zeroization	symmetric
		#A2314		Export: No		not provide	when the	encryption
			derivation			persistent	tested	and
			function defined in:			keys/SSPs storage	platform is	decryption
L	L		ucinicu ill:	1	1	storage.	1	

			SP800-38D				powered	
			using random value generated using SP800- 90A DRBG				down	
CMAC Key (CSP)	56 bits	CMAC-AES #A2314	Derived per	Import: Export:		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Message authentication
HMAC Key (CSP)	bits	HMAC-SHA-1 HMAC-SHA2- 224 HMAC-SHA2- 256 HMAC-SHA2- 384 HMAC-SHA2- 512 HMAC-SHA2- 512/224 HMAC-SHA3- 224 HMAC-SHA3- 224 HMAC-SHA3- 256 HMAC-SHA3- 384 HMAC-SHA3- 512 #A2314	Internally Derived per	Import: Export:		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Message authentication
KBKDF Key Derivation Key (CSP)	N/A			Import: Export:		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Key derivation
Derived Key (CSP)		KDF SP800-108 #A2314		Import: Export:	Yes	module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Derived from key derivation key
OneStep KDF Key Derivation Key (CSP)		KDA OneStep #A2314		Import: Export:		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Key derivation

OneStep KDF Derived Key (CSP)	N/A	KDA OneStep #A2314	N/A	Import: Export:		SP800-56C Rev.1	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Derived from key derivation key
PBKDF Password (CSP)	N/A	PBKDF #A2314	N/A	Import: Export:	No		N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Key derivation
PBKDF Derived Key (CSP)	N/A	PBKDF #A2314	N/A	Import: Export:		SP800-132	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Derived from key derivation key
AES Key Wrap Key (CSP)	128/192/2 56 bits	AES-KW AES-KWP #A2314	Internally generated per the key generation function defined in: SP800- 133rev2 using random value generated using SP800- 90A DRBG Or externally generated	Import: Export:		N/A	N/A: The module does not provide persistent keys/SSPs storage.	Automatic zeroization when the tested platform is powered down	Key wrapping and unwrapping

Table 10 SSPs

RBG entropy source

Entropy	Minimum number	Details
sources	of bits of entropy	
Entropy within	At least 112 bits	While operating in the approved mode, the entropy and seeding material for
the TOEPP		the SP800-90Arev1 DRBG are provided by the external calling application
was passively		(and not by the Module) which is outside the Module's cryptographic
loaded into the		boundary but contained within the Module's Tested Operational
Module to		Environment's Physical Perimeter (TOEPP) boundary. The module
seed the 800-		receives a LOAD command with entropy obtained from the entropy source
90Arev1		(Intel CPU processor with instructions RDRand) inside the TOEPP. The
DRBG by the		minimum effective strength of the SP800-90Arev1 DRBG seed is required
Operating		to be at least 112 bits when used in an approved mode of operation,
System.		therefore the minimum number of bits of entropy requested when the
		Module makes a call to the SP800-90Arev1 DRBG is at least 112 bits.
		Per the IG 9.3.A Entropy Caveats, the following caveat applies: No
		assurance of the minimum strength of generated SSPs (e.g., keys)

 Table 11 Non-Deterministic Random Number Generation Specification

The Module is passively receiving the entropy while exercising no control over the amount or the quality of the obtained entropy. Therefore, it is the user's responsibility to supply the entropy to seed an RBG to

provide the required security strength, and to ensure the security strength of a DRBG is equal to or greater than the security strength of any SSPs generated using that DRBG.

Entropy can be supplied to the Module using the following APIs:

- com.rsa.crypto.SecureRandom.setSeed()
- com.rsa.crypto.ModuleConfig.setEntropySource()

When generating SSPs, the DRBG used in key generation must be seeded with a number of bits of entropy that is equal to or greater than the security strength of the SSP being generated. The entropy supplied to the DRBG is referred to as the DRBG security strength which represents the minimum amount of entropy that should be provided to the DRBG prior to generating the SSP.

The following table lists each of the keys that can be generated by the JCM, with the key sizes available, security strengths for each key size, and the security strength required to initialize the DRBG:

Кеу Туре	Key Size	Security Strength	Required DRBG Security Strength
AES Key	128, 192, 256	128, 192, 256	128, 192, 256
RSA Key Pair	2048, 3072, 4096	112, 128, 152	112, 128, 152
DSA Key Pair	2048, 3072	112, 128	112, 128
EC Key Pair	224, 256, 384, 521	112, 128, 192, 256	112, 128, 192, 256

Table 12 Generated Key Sizes and Strength

10 Self-tests

When the Module is loaded or instantiated after being power-cycled or rebooted, the Module runs preoperational self-tests. The operating system is responsible for the initialization process and loading the Module. The Module is designed with a default entry point (DEP) that ensures automatic initiation of the self-tests when the Module is loaded. Before the Module provides any data output via the data output interface, the Module performs the pre-operational self-tests, ensuring all pass. A software integrity test is performed on the runtime image of the Module with an HMAC-SHA-1 algorithm. Prior to the firmware integrity test, the Module conducts an HMAC-SHA-1 Cryptographic Algorithm Self-test (CAST). If the CAST on the HMAC-SHA-1 is successful, the HMAC value of the runtime image is recalculated and compared with the stored HMAC value pre-computed at compilation time. During power-up, and following the successful pre-operational self-tests, the Module executes the Conditional CASTs for all approved cryptographic algorithms implemented by the Module.

The self-test success or failure messages, for example, *Error: Signature RSA test failure* or *ECDH P-256 test failure*, are logged and function as the self-test status indicator.

If any one of the self-tests fails, the Module transitions into a FIPS140State.FAILED error state and outputs the error message via the Module's status output interface, SecurityException. While the Module is in the error state, all data through the data output interface and all cryptographic operations are disabled. The only method to recover from the error state is to power cycle the device. This results in the Module being reloaded into memory and reperforming the pre-operational software integrity test and the

Conditional CASTs. The module will only enter the operational state after successfully passing the preoperational software integrity test and the Conditional CASTs.

Pre-operational self-tests

Pre-operational self-tests are executed automatically when the Module is loaded into memory. They can be re-run manually after the module has loaded, by calling the ModuleConfig.runSelfTests() API.

The pre-operational self-tests include the Software Integrity Test. The Software Integrity Test is comprised of an HMAC-SHA-1 verification of the files listed in *fips140/module.files*.

The cryptographic services of the Module are disabled when the self-tests are running. When the self-tests are running, the following stands true:

• All cryptographic operations, if called, throw a CryptoException.

• The CryptoModule.getState() status output interface, if called, returns a state of com.rsa.crypto.FIPS140State.UNDER_SELF_TEST.

If any pre-operational self-test fails, all cryptographic services of the Module are disabled. When the self-tests fail, the following stands true:

• All cryptographic operations, if called, throw a CryptoException.

• The CryptoModule.getState() status output interface, if called, returns a state of com.rsa.crypto.FIPS140State.FAILED.

If the pre-operational self-tests pass, the cryptographic services of the Module are enabled, and the module can be used. The CryptoModule.getState() status output interface returns a state of com.rsa.crypto.FIPS140State.OPERATIONAL.

Pre-operational software integrity test

- HMAC-SHA-1 KAT
- Software Integrity Test (using HMAC-SHA-1)

Note: The Module conducts HMAC-SHA-1 KAT self-test before the integrity test is performed.

Conditional self-tests

- Cryptographic Algorithm Self-Tests (CASTs)
 - AES-CBC 256 bits Encrypt KAT
 - AES-CBC 256 bits Decrypt KAT
 - AES-GCM 256 bits Authenticated Encrypt KAT
 - AES-GCM 256 bits Authenticated Decrypt KAT
 - o CMAC 128 bits KAT
 - CTR_DRBG Instantiate KAT
 - CTR_DRBG Generate KAT
 - CTR_DRBG Reseed KAT Note: CTR_DRBG Health Tests: Generate, Reseed, Instantiate functions per Section 11.3 of SP800-90Arev1
 - o DSA SigGen with SHA-256 KAT
 - DSA SigVer with SHA-256 KAT
 - o ECDSA P-256 with SHA-256 SigGen KAT
 - ECDSA P-256 with SHA-256 SigVer KAT
 - HASH-DRBG with SHA-1 KAT
 - HMAC-DRBG with SHA-1 KAT

- HMAC-SHA-1 KAT
- HMAC-SHA-256 KAT
- HMAC-SHA-384 KAT
- HMAC-SHA-512 KAT
- o KAS-ECC-SSC Primitive Z KAT
- KAS-FFC-SSC Primitive Z KAT
- KDFTLS12 SHA-256 KAT
- OneStepKDF KAT
- o PBKDF2 with SHA-1 KAT
- o RSA 2048 bits modulus with SHA-256 SigGen KAT
- RSA 2048 bits modulus with SHA-256 SigVer KAT
- o SHA-1 KAT
- o SHA2-512 KAT
- o SHA3-512 KAT
- o SHAKE256 KAT
- SP800-108 KDF KAT

The Module generates RSA, ECDSA, KAS-ECC, and KAS-FFC asymmetric keys and performs all required pair-wise consistency tests on the newly generated key pairs as detailed in the "Pair-wise consistency tests" section below. If the Pair-wise Consistency conditional test fails, the Module throws a SecurityException and aborts the operation. A Pair-wise Consistency test failure does not disable the Module.

Pair-wise consistency tests (PCTs):

- ECDSA PCT
- o DSA PCT
- RSA PCT
- KAS-ECC PCT
- KAS-FFC PCT

Periodic self-tests

The Module performs on-demand self-tests initiated by the operator, by power-cycling or rebooting the tested platform. The full suite of self-tests is then executed. The same procedure may be employed by the operator to perform periodic self-tests. In addition, it is recommended for the Crypto Officer to perform the periodic tests a minimum of once every 60 days to ensure all components are functioning correctly.

Error handling

If any of the above-mentioned self-tests fail, the Module reports the cause of the error and enters a FIPS140State.FAILED error state (there is only one error state). In the Error State, no cryptographic services are provided, and data output is prohibited. The only method to recover from the error state is to power-cycle or reboot to reload the Module and perform the self-tests, including the pre-operational software integrity test and the conditional CASTs. The module will only enter the operational state after successfully passing the pre-operational software integrity test and the conditional CASTs. Note: FIPS140State.FAILED is the only error state.

11 Life-cycle assurance

Installation, Initialization, Startup, Operation and Maintenance

The module is installed by adding *jcmFIPS-7.0.jar* to the application's classpath.

The module is started by starting the application that references it. The module uses JDK services to perform the module startup when the application loads it.

When loading the module, the com.rsa.crypto.jcm.ModuleLoader.load() method extracts arguments from the com.rsa.cryptoj.jcm.JavaModuleProperties class, which is created using the com.rsa.cryptoj.jcm.CryptoJModulePropertiesFactory class.

The following arguments are extracted:

- The module jar file.
- The security level, specified as the constant ModuleConfig.LEVEL_1 which should have the value of 1. An optional SelfTestEventListener argument used for logging power-up self-test events.
- An optional java.util.concurrent.ExecutorService argument used for running the power-up self-tests.
- An optional file to be used for reading and writing the status of the algorithm power-up self-tests.

Using the specified securityLevelensures that the module is loaded for use in an approved mode.

Loading the module runs the integrity tests that must be completed successfully before any cryptographic services are made available by the module. This ensures that the application has made no modification to the module as part of its development or installation. For more information about the Integrity Tests, see Software/Firmware Security.

The module starts in an approved mode and in the Crypto Officer Role by default. Otherwise, to assume a role once the module is operational, construct a FIPS140Context object for the desired role using the FIPS140Context.getFIPS140Context(int mode, int role) method.

- The mode argument must be the value FIPS140Context.MODE_FIPS140. To retrieve the current mode of operation, call FIPS140Context.getMode().
- The available role value is the constant FIPS140Context.ROLE CRYPTO OFFICER.

No role authentication is required to operate the module in Security Level 1 mode.

This object can then be used to perform cryptographic operations using the module.

The only permitted maintenance operation is to add a signature to the jar file by re-signing with an application certificate. Otherwise, application writers should not attempt to modify the module jar file as the module will refuse to load or perform cryptographic operations.

Crypto Officer Guidance

For details of the administrative functions, security parameters, and logical interfaces available to the Crypto Officer. The following table details the requirements for algorithm use in the Approved mode operation:

Algorithm	Guidance
DRBG	• When an approved algorithm requires a DRBG to perform an operation, an approved DRBG algorithm must be used. For example, when initializing an approved signature algorithm, an approved DRBG such as HMAC DRBG must be used.

 When using an approved DRBG, the number of bytes of seed key input must be equivalent to or greater than the security strength of the keys the caller wishes to generate. For example, a 256-bit or higher seed key input when generating 256-bit AFS keys. Since the Module does not modify the output of an Approved DRBG, any generated symmetric keys or seed values are created directly from the output of the Approved DRBG. GCM Mode Ciphers When using GCM feedback mode for symmetric encryption, the authentication tug length and authenticated data length may be specified as input parameters, but the IV must not be specified. It must be generated internally. Where the Module is powered down, a new key must be used for AFS GCM encryption/decryption. GCM with a partial IV supplied to the Module is approved only when used within a TLS or L3 protocol implementation. The AES-GCM cipher, when used for symmetric encryption purposes other than TLS, must use an IV in one of the two possible ways, to comply with SP800-38D? Allow the Module to generate the IV deterministically by not supplying any IV parameters during cipher initialization. The generated 96-bit (12-byte) IV consists of a 32-bit fixed field followed by a 64-bit invocation field where: The fixed field bytes are derived from the Module name, version information, and memory address of a Java class within the Module. The fixed field bytes are derived from the Module name, version information, and memory address of a Java class within the Module is intermented by one each time a new TV is requested. By using the current time to prefix the counter start value, in the cvent of Module starture, to a value consisting of the 42 bits of current time, as milliseconds since Epoch, followed by 22 bits of zero. This counter value is incremented by one each time as C. The Module user must ensure the system time is valid to prevent		
 GCM Mode Ciphers When using GCM feedback mode for symmetric encryption, the authentication tag length and authenticated data length may be specified as input parameters, but the IV must not be specified. It must be generated internally. Where the Module is powered down, a new key must be used for AES GCM encryption/decryption. GCM with a partial IV supplied to the Module is approved only when used within a TLS v 1.2 or 1.3 protocol implementation. The AES-GCM cipher, when used for symmetric encryption purposes other than TLS, must use an IV in one of the two possible ways, to comply with \$P800-38D: Allow the Module to generate the IV deterministically by not supplying any IV parameters during cipher initialization. The generated 96-bit (12-byte) IV consists of a 32-bit fixed field followed by a 64-bit invocation field where: The fixed field bytes are derived from the Module name, version information, and memory address of a Java class within the Module. The invocation field is a 64-bit counter that is initialized, on Module startup, to a value consisting of the 42 bits of current time, as milliseconds since Epoch, followed by 22 bits of zero. This counter value is infermented by one cach time a new IV is requested. By using the current time to prefix the counter start value, in the event of Module restart, the counter will be ahead of any provisod Module states, ensuring that IV values cannot be reused. The Module user must ensure the system time is valid to prevent repetition of IVs. Generate at least 12 bytes of IV using an Approved DRBG, and input the IV to to the cipher at initialization time using the RAM_IV parameter. The AES-GCM eipher used for the TLS handshake process is input using the parameter PARTIAL_IV during cipher initialization. This is used as the first four bytes of IV. This 32-bit part of the IV is also referred to as the no		caller wishes to generate. For example, a 256-bit or higher seed key input when generating 256-bit AES keys.Since the Module does not modify the output of an Approved DRBG, any generated symmetric keys or seed values are created directly from the
 authentication tag length and authenticated data length may be specified as input parameters, but the IV must not be specified. It must be generated internally. Where the Module is powered down, a new key must be used for AES GCM encryption/decryption. GCM with a partial IV supplied to the Module is approved only when used within a TLS v 1.2 or 1.3 protocol implementation. The AES-GCM cipher, when used for symmetric encryption purposes other than TLS, must use an IV in one of the two possible ways, to comply with SP800-38D: Allow the Module to generate the IV deterministically by not supplying any IV parameters during cipher initialization. The generated 96-bit (12-byte) IV consists of a 32-bit fixed field followed by a 64-bit invocation field where: The fixed field bytes are derived from the Module name, version information, and memory address of a Java class within the Module. The invocation field is a 64-bit counter that is initialized, on Module startup, to a value consisting of the 42 bits of zero. This counter value is incremented by one each time a new IV is requested. By using the current time to prefix the counter will be ached of any previous Module states, ensuring that IV values cannot be reused. The Module user must ensure the system time is valid to prevent repetition of IVs. Generate at least 12 bytes of IV using an Approved DRBG, and input the IV to the cipher at initialization time using the RaM_IV parameter. The AES-GCM cipher used for the TLS protocol as the cipher implementation complex with SP80-52 and is compatible with RFC 5288 with the following conditions: The IV is configured as follows: The IV is configured as follows: The IV is configured as defined for the Va sequeration. The IV is configured as defined for the Va sequeration. The IV is configured as defined for the vast capatible with RFC 5288 with the following conditions: 	GCM Mode Ciphers	
the module using the 64-bit counter used for the invocation field described above.	GCM Mode Ciphers	 output of the Approved DRBG. When using GCM feedback mode for symmetric encryption, the authentication tag length and authenticated data length may be specified as input parameters, but the IV must not be specified. It must be generated internally. Where the Module is powered down, a new key must be used for AES GCM encryption/decryption. GCM with a partial IV supplied to the Module is approved only when used within a TLS v 1.2 or 1.3 protocol implementation. The AES-GCM cipher, when used for symmetric encryption purposes other than TLS, must use an IV in one of the two possible ways, to comply with SP800-38D: Allow the Module to generate the IV deterministically by not supplying any IV parameters during cipher initialization. The generated 96-bit (12-byte) IV consists of a 32-bit fixed field followed by a 64-bit invocation field where:
		the module using the 64-bit counter used for the invocation field described above.

	 possible values for a given session key, the Module will throw a SecurityException. Whichever party, the client or the server, that encounters this condition must trigger a handshake to establish a new encryption key. The TLS session is aborted if the keys for the client and server negotiated in the handshake process, client_write_key and server write key, are identical.
НМАС	 The key length for an HMAC generation or verification must be between 112 and 4096 bits, inclusive. For HMAC verification, a key length greater than or equal to 80 and
	less than 112 is allowed for legacy-use.
HMAC-Based Extract-and- Expand Key Derivation Function	 An approved HMAC must be used for extract and expand operations. A particular key-derivation key must only be used for a single key- expansion step. For more information, see SP800-56C Rev. 1. The derived key must be used only as a secret key. The derived key shall not be used as a key stream for a stream cipher. When selecting an HMAC hash, the output block size must be equal to or greater than the desired security strength of the derived key. The pseudo-random key input to the expansion and the keying material extract from the expansion must have largeths that are equal to or
	material output from the expansion must have lengths that are equal to or greater than the desired security strength of the derived key
One-Step Key Derivation Function	 greater than the desired security strength of the derived key. An approved hash function must be used to derive key materials. When selecting a hash algorithm, the output block size must be equal to or greater than the desired security strength of the derived key. The derived key must be used only as a secret key. The derived key shall not be used as a key stream for a stream cipher. The secret data input into this KDF must have a length equal to or greater than the desired security strength of the derived key.
TLS PRF Key Derivation Function	 TLS v1.2 PRF KDF is allowed only when the following conditions are satisfied: The KDF is performed in the context of the TLS protocol. HMAC is as specified in FIPS 198-1. P_HASH uses either SHA-256, SHA-384, or SHA-512. For more information, see SP800-135 Rev. 1. The TLS protocols have not been tested by the CAVP and CMVP.
Parameter Generation	• When using an Approved DRBG to generate DH or DSA parameters, the requested DRBG must have a security strength at least as great as the security strength of the parameters being generated. That means that an Approved DRBG with an appropriate strength must be used. For more information on requesting the DRBG security strength, see the relevant API Javadoc.
Key Agreement	 Obtain domain parameters and assurance of the domain parameter validity: For schemes using FFC, use one of the FFC safe-prime groups as defined in SP800-56A rev. 3 Appendix D. For schemes using ECC, use one of the approved curves as defined in SP800-56A rev. 3 Appendix D. Obtain a key pair from domain parameters: For all schemes:

_	Both parties must use validated parameters to generate a key pair.
_	The Module generates the key establishment key pair according to the
req	uired standards.
-	Choose a FIPS Approved DRBG like HMAC DRBG to generate the
key	y pair.
—	Both parties validate the key pair:
	The Module provides the following APIs to explicitly validate the public and private keys according to SP800-56A Rev.3:
	com.rsa.crypto.PublicKey.isValid(SecureRandom
	<pre>random) com.rsa.crypto.PrivateKey.isValid().</pre>
	The module provides the APIs to explicitly validate the key pair according to the
	pairwise consistency requirements in SP800-56A Rev. 3:
	com.rsa.crypto.KeyPair.validate(SecureRandom random)
	com.rsa.crypto.KeyPair.validate(AlgorithmParams
	params, SecureRandom random)
	If the key pair is generated with an approved method, then validation is assumed.
•	
_	Authoritatively associated with the key pair.
_	Associated with the public key to allow any peer to recognize the key
pai	
•	For schemes that use ephemeral keys, the key pair must be:
_	Used only for a single agreement transaction.
_	Destroyed after use.
•	For schemes that generate an FFC key pair from selected parameters,
the	key pair must not be used to generate a digital signature.
Ree	ceive the peer's public key:
•	For all schemes, the receiving party must validate the peer's public
key	Τ.
• assi	For schemes that use static keys, the receiving party must have urance of:
_	The peer's ownership of the private key.
_	The identifier is bound to the public key.
Ge	nerate the Shared Secret:
•	For all schemes, the shared secret must be:
_	Used only as input to an approved KDF.
_	Treated as a CSP and destroyed after use.
•	If the shared secret generation fails then the party must destroy all
inte	ermediate values.
Ge	nerate and Confirm Secret Key Material:
•	For all schemes:
_	Approved key-derivation method(s), including the format of
Fi	xedInfo as specified in SP800-56A Rev. 3.
_	When the shared secret is used as input to the KDF the outputs must
beı	used as secret keys.

	- All key material must be generated before any of the keys are used.
	– If key generation fails then the party must destroy all calculated
	values.
	- The shared secret, and any key material, is destroyed.
	• For schemes that use key confirmation:
	– Both parties must use a common, approved MAC to generate
	confirmation values.
	- The MAC key will be generated as one of the key material elements.
	 The input values for MAC tag generation must be formatted as per SP800-56A Rev. 3.
	 The MAC key and tag lengths must satisfy the requirements of SP800-56A Rev. 3.
	 The MAC key must be destroyed after use.
	– If confirmation fails then destroy all calculated values.
	All key material is destroyed before it is used for any other purpose.
	 Approved key confirmation technique(s) as specified in SP800-56A
	Rev. 3.
Key Generation	• When using an approved DRBG to generate keys, the security
	strength of the DRBG must be at least as great as the security strength of
	the key being generated. For details about the comparable security
	strengths of symmetric block ciphers and asymmetric key algorithms refer
	to Table 2 of NIST SP800-57 Part 1 Rev. 5.
	• When generating key pairs using the KeyPairGenerator object,
	the generate (boolean pairwiseConsistency) method must
	not be invoked with an argument of false. Use of the no-argument
	generate() method is recommended.
Digital Signatures	Keys used for digital signature generation and verification shall not
	be used for any other purpose. The module generates keys with a particular
	purpose that is either signing or encryption. The same purpose must
	always be used for a given key when exported and loaded into the module
	again.
	• The length of an RSA key pair for digital signature generation must
	be greater than or equal to 2048 bits. For digital signature verification, the
	length must be greater than or equal to 2048 bits. However, 1024 bits is
	allowed for legacy-use only. RSA keys shall have a public exponent of an
	odd number, equal to or greater than 65537.
	 The SHA-1 digest is disallowed for the generation of digital
	signatures.
	• For RSASSA-PSS: If nLen is 1024 bits, and the output length of the
	approved hash function output block is 512 bits, then the length of the salt
	(sLen) shall be 0<=sLen<=hLen - 2.
	Otherwise, the length of the salt shall be $0 \leq sLen \leq hLen$, where
	hLen is the length of the hash function output block (in bytes or octets).
Password-based Key	 Keys generated using PBKDF2 shall only be used in data storage
Derivation	applications.
	Minimum Password Length:
	The minimum length (L) of a password generated using a
	cryptographically secure random password generator to provide a search
	space of S entries depends on the size (N) of the character set:
	$L = \lceil \log_2 S / \log_2^{N_1}$

	The following movides exemples for a reserverd used by DDVDE2 where			
	The following provides examples for a password used by PBKDF2 where			
	$S = 4.32 \times 10^{20}$:			
	Character Set N L			
	Case sensitive (a-z, A-Z) 52 13			
	Case sensitive alpha numeric 62 12			
	All ASCII printable			
	characters except space 94 11			
	• A password of the strength S can be guessed at random with the			
	probability of 1 in 2^{s} .			
	• The minimum length of the randomly-generated portion of the salt is			
	16 bytes.			
	• The iteration count is as large as possible, with a minimum of 10,000			
	iterations recommended.			
	• The maximum key length is $(2^{32} - 1) * b$, where b is the digest size			
	of the message digest function in bytes.			
	• Derived keys can be used as specified in NIST SP800-132, Section			
	5.4, options 1 and 2.			
XTS Mode Ciphers	AES in XTS mode is approved only for hardware storage			
	applications.			
	• The two keys used for XTS must be checked to ensure they are			
	different. This check is performed automatically by the module.			

Table 13 Algorithm Requirements for Approved Mode of Operation

12 Mitigation of other attacks

RSA, EC, and DSA key operations implement blinding by default, a reversible way of modifying the input data, to make the operation immune to timing attacks. Blinding has no effect on the algorithm other than to mitigate attacks on the algorithm. For more information, see <u>Timing Attacks on Implementations</u> of Diffie-Hellman, RSA, DSS, and Other Systems.

RSA, EC, and DSA blinding is implemented through blinding modes, for which the following options are available:

- Blinding mode off.
- Blinding mode with no update, where the blinding value is squared for each operation.

This mitigation is enabled by default. For optimum security, it should not be disabled. RSA signing operations implement a verification step after private key operations. This verification step is in place to prevent potential faults in optimized Chinese Remainder Theorem (CRT) implementations. It has no effect on the signature algorithm. For more information, see <u>Modulus Fault Attacks Against RSA-CRT</u> <u>Signatures</u> and

On the Importance of Eliminating Errors in Cryptographic Computations.

This mitigation is enabled by default. For optimum security, it should not be disabled.

RSA PKCS #1 v1.5 encryption padding operations are implemented in constant time in order to make the operation immune to timing attacks. For more information, see <u>Chosen Ciphertext Attacks Against</u> <u>Protocols Based on the RSA Encryption Standard PKCS #1</u>.

Time invariant comparisons are also used for HMAC and RSA verify operations. For this mitigation, constant time padding is built-in and cannot be disabled.