

ISO/IEC 19790 and FIPS 140-3 Non-Proprietary

Security Policy

for

Dell™ BSAFE™ Crypto Module for Java 7.0

Software Version: 7.0

Last Updated: November 14, 2024, Version 1.2

Table of Content

1 General ... 3

2 Cryptographic module specification ... 3

3 Cryptographic module interfaces .. 15

4 Roles, services, and authentication ... 16

5 Software/Firmware security ... 22

6 Operational environment ... 22

7 Physical security ... 22

8 Non-invasive security ... 22

9 Sensitive security parameters management ... 23

10 Self-tests .. 29

11 Life-cycle assurance .. 32

12 Mitigation of other attacks ... 38

List of Figures

FIGURE 1 MODULE’S BLOCK DIAGRAM ... 15

List of Tables

TABLE 1 SECURITY LEVELS ... 3
TABLE 2 TESTED OPERATIONAL ENVIRONMENT .. 4
TABLE 3 VENDOR AFFIRMED OPERATIONAL ENVIRONMENTS ... 7
TABLE 4 - APPROVED ALGORITHMS .. 13
TABLE 5 - NON-APPROVED ALGORITHMS NOT ALLOWED IN THE APPROVED MODE OF OPERATION .. 14
TABLE 6 PORTS AND INTERFACES .. 15
TABLE 7 ROLES, SERVICE COMMANDS, INPUT, AND OUTPUT .. 16
TABLE 8 APPROVED SERVICES .. 20
TABLE 9 NON-APPROVED SERVICES ... 21
TABLE 10 SSPS... 28
TABLE 11 NON-DETERMINISTIC RANDOM NUMBER GENERATION SPECIFICATION ... 28
TABLE 12 GENERATED KEY SIZES AND STRENGTH .. 29
TABLE 13 ALGORITHM REQUIREMENTS FOR APPROVED MODE OF OPERATION .. 37

1 General

This is Dell Australia Pty Limited non-proprietary security policy for the Dell™ BSAFE™ Crypto Module

for Java 7.0 (hereinafter referred to as the Module or JCM) with software version 7.0. The following

details how this Module meets the security requirements of FIPS 140-3, SP800-140, and ISO/IEC 19790

for a Security Level 1 software cryptographic module.

The security requirements cover areas related to the design and implementation of a cryptographic module.

These areas include cryptographic module specification; cryptographic module interfaces; roles, services,

and authentication; software/firmware security; operational environment; physical security; non-invasive

security; sensitive security parameter management; self-tests; life-cycle assurance; and mitigation of other

attacks. Table 1 below indicates the actual security levels for each area of the cryptographic Module.

ISO/IEC 24759:2017

Section 6

ISO/IEC 24759:2017 and FIPS 140-3

Section Title

Level

1 General 1

2 Cryptographic module specification 1

3 Cryptographic module interfaces 1

4 Roles, services, and authentication 1

5 Software/Firmware security 1

6 Operational environment 1

7 Physical security1 N/A

8 Non-invasive security N/A

9 Sensitive security parameter management 1

10 Self-tests 1

11 Life-cycle assurance 1

12 Mitigation of other attacks 1
Table 1 Security Levels

1The module relies on the physical security provided by the host on which it runs.

The Module has an overall security level of 1.

2 Cryptographic module specification

The Module is a multi-chip standalone software module intended to be used as part of a software system,

providing cryptographic services to that system. The module’s operational environment is non-modifiable.

The module is provided as a Java Archive (jar) file. It is intended to be distributed with, and used by, a Java

application. The module consists of a jar file, jcmFIPS-7.0.jar. The name and version of the module can be

accessed from the API ModuleConfig.getVersionInfo().

The FIPS 140-3 validation certificate can be located on the NIST Cryptographic Module Validation

Program (CMVP) page using the module name and version reported.

The Module has been tested on the following Operational Environments:

Operating System

Hardware

Platform

Processor PAA/Acceleration

1

SUSE® Linux

Enterprise

Server 15 SP3 (64-bit)

with OpenJDK 11

Dell PowerEdge™

R6525
AMD EPYC™ 7513 N/A

2

SUSE® Linux

Enterprise

Server 15 SP3 (64-bit)

with OpenJDK 8

Dell PowerEdge™

R6525
AMD EPYC™ 7513 N/A

3

Windows Server®

2019

(64-bit) with Oracle®

JRE 8

Dell PowerEdge™

R6525
AMD EPYC™ 7513 N/A

4

Windows Server®

2016 (64-bit) with

Oracle® JRE 8

Dell PowerEdge™

T130
Intel® Xeon® CPU

E3-1230
N/A

Table 2 Tested Operational Environment

In addition to the platforms listed in Table 2, Dell has also tested the module on the following platforms

and claims vendor affirmation on them:

Operating System Hardware Platform

1 Apple® MacOS® 10.15 (x86_64) with Oracle JDK 11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

2 Apple MacOS 10.15 (x86_64) with Oracle JDK 8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

3 Canonical® Ubuntu® 16.04 (x86) with OpenJDK 8 (32-bit)

Generic Hardware

Platform with Intel

x86 (32-bit)

4 Canonical Ubuntu 16.04 (x86) with OpenJDK 8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

5 CentOS™ 7.9 (x86_64) with OpenJDK 8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

6
Dell PowerProtect™ Data Domain™ OS (x86_64) with Oracle JDK

8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

7 Dell PowerStoreOS™ 4.0 (x86_64) with OpenJDK 11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

8 FreeBSD® Foundation 12 (x86_64) with OpenJDK 8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

9 Hewlett Packard Enterprise HP-UX 11.31 with HP JDK 8 (64-bit)

Generic Hardware

Platform with

Itanium® 2

10 IBM AIX® 7.2 with IBM JDK 8 (64-bit)

Generic Hardware

Platform with

PowerPC® (64-bit)

11 Microsoft® Windows 10 Enterprise (x86_64) with Oracle JDK 11

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

12
Microsoft Windows 10 Enterprise (x86_64) with Oracle JDK 8 (64-

bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

13
Microsoft Windows 10 Enterprise (x86_64) with Oracle JDK 7 (32-

bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

14
Microsoft Windows Server 2019 (x86_64) with Oracle JDK 11 (64-

bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

15
Microsoft Windows Server 2016 (x86_64) with Oracle JDK 11 (64-

bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

16 Oracle Solaris® 11.4 with Oracle JDK 11 (64-bit)

Generic Hardware

Platform with

SPARC® v9

17 Oracle Solaris 11.4 with Oracle JDK 8 (64-bit)

Generic Hardware

Platform with

SPARC v9

18
Oracle Linux 7 64-bit on Oracle X Series Servers with Oracle JDK

8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

19
Oracle Linux 7 64-bit on Oracle X Series Servers with Oracle JDK

11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

20
Oracle Linux 7 64-bit on Oracle E Series Servers with Oracle JDK 8

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

21
Oracle Linux 7 64-bit on Oracle E Series Servers with Oracle JDK

11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

22
Oracle Linux 7 64-bit on Oracle A Series Servers with Oracle JDK

8 (64-bit)

Generic Hardware

Platform with

ARMv8 (64-bit)

23
Oracle Linux 7 64-bit on Oracle A Series Servers with Oracle JDK

11 (64-bit)

Generic Hardware

Platform with

ARMv8 (64-bit)

24
Oracle Linux 8 64-bit on Oracle X Series Servers with Oracle JDK

8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

25
Oracle Linux 8 64-bit on Oracle X Series Servers with Oracle JDK

11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

26
Oracle Linux 8 64-bit on Oracle E Series Servers with Oracle JDK 8

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

27
Oracle Linux 8 64-bit on Oracle E Series Servers with Oracle JDK

11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

28
Oracle Linux 8 64-bit on Oracle A Series Servers with Oracle JDK

8 (64-bit)

Generic Hardware

Platform with

ARMv8 (64-bit)

29
Oracle Linux 8 64-bit on Oracle A Series Servers with Oracle JDK

11 (64-bit)

Generic Hardware

Platform with

ARMv8 (64-bit)

30 Red Hat® Enterprise Linux 8.6 (x86_64) with Oracle JDK 11 (64-

bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

31 Red Hat Enterprise Linux 8.6 (x86_64) with Oracle JDK 8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

32 Red Hat Enterprise Linux 7.9 (x86_64) with Oracle JDK 11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

33 Red Hat Enterprise Linux 7.9 (x86_64) with Oracle JDK 8 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

34
SUSE Linux Enterprise Server 15 SP4 (x86_64) with OpenJDK 17

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

35
SUSE Linux Enterprise Server 15 SP4 (x86_64) with OpenJDK 11

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

36
SUSE Linux Enterprise Server 15 SP4 (x86_64) with OpenJDK 8

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

37
SUSE Linux Enterprise Server 15 SP2 (x86_64) with OpenJDK 11

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

38
SUSE Linux Enterprise Server 15 SP2 (x86_64) with OpenJDK 8

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

39
SUSE Linux Enterprise Server 12 SP5 (x86_64) with IBM JDK 8

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

40
SUSE Linux Enterprise Server 12 SP5 (x86_64) with IBM JDK 7

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

41
SUSE Linux Enterprise Server 12 SP5 (x86_64) with OpenJDK 7

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

42
SUSE Linux Enterprise Server 12 SP5 (x86_64) with Oracle JDK

11 (64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

43
SUSE Linux Enterprise Server 12 SP5 (x86_64) with Oracle JDK 8

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

44
SUSE Linux Enterprise Server 12 SP5 (x86_64) with Oracle JDK 7

(64-bit)

Generic Hardware

Platform with Intel

x86_64 (64-bit)

Table 3 Vendor Affirmed Operational Environments

The CMVP makes no statement about the correct operation of the module or the security strengths of the

generated keys when ported to an operational environment which is not listed on the validation certificate.

Mode of operation

The Module supports both approved and non-approved modes of operation. It can operate in an approved

mode after initial operations are performed, and all pre-operational self-tests have been completed

successfully. The non-approved mode is entered when a non-approved algorithm or service is invoked. The

Approved mode of operation can only be transitioned into the Non-Approved mode by calling one of the

Non-Approved services. The Module does not claim implementation of a degraded mode of operation. If

any self-test fails, the cryptographic services of the module are disabled for both Approved and Non-

Approved modes of operation. Section 4 provides details on the service indicator implemented by the

Module.

Table 4 below lists all the approved or vendor-affirmed security functions of the Module, including specific

key size(s) – in bits unless otherwise noted –employed for approved services and implemented modes of

operation.

There are some algorithm modes that were tested but not implemented by the Module. Only the algorithms,

modes, and key sizes that are implemented by the Module are shown in this table. The mode of operation is

identified by the following fields in the FIPS140Context interface:

• FIPS140Context.MODE_FIPS140:
Only Approved Algorithms can be used in this mode.

• FIPS140Context.MODE_NON_FIPS140:
Both approved and non-approved algorithms can be used in this mode.

The ModuleLoader.load() API loads the Module for use in approved mode. This API returns the one

and only instance of a ModuleConfig object.

The ModuleConfig.newCryptoModule() API creates CryptoModule objects. This API supports

a FIPS140Context parameter which specifies the FIPS 140-3 mode of operation of the

CryptoModule.

Refer to the API Javadoc for more information about these APIs.

An application using Module must include the jar file, jcmFIPS-7.0.jar, in its Java classpath and call the

ModuleLoader.load() API to load the Module. This API runs the pre-operational self-tests and

cryptographic algorithm self-tests automatically and if the self-tests complete successfully, the

cryptographic services of the Module can be used.

CAVP

Cert

Algorithm and

Standard

Mode/Method Description / Key

Size(s) / Key

Strength(s)

Use/Function

A2314 AES

[FIPS 197;

CBC Key Length: 128, 192, and

256 bits
Symmetric encryption and

decryption

CAVP

Cert

Algorithm and

Standard

Mode/Method Description / Key

Size(s) / Key

Strength(s)

Use/Function

SP800-38A]

A2314 AES

[FIPS 197;

SP800-38A,

addendum]

CBC-CS1 Key Length: 128, 192, and

256 bits

Symmetric encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38A,

addendum]

CBC-CS2 Key Length: 128, 192, and

256 bits

Symmetric encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38A,

addendum]

CBC-CS3 Key Length: 128, 192, and

256 bits

Symmetric encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38C]

CCM Key Length: 128, 192, and

256 bits
Authenticated encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38A,
addendum]

CFB128 Key Length: 128, 192, and

256 bits

Symmetric encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38B]

CMAC Key Length: 128, 192, and

256 bits

Message authentication

A2314 AES

[FIPS 197;

SP800-38A]

CTR Key Length: 128, 192, and

256 bits

Symmetric encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38A]

ECB Key Length: 128, 192, and

256 bits
Symmetric encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38D]

GCM Key Length: 128, 192, and

256 bits
Authenticated encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38F]

KW, KWP Key Length: 128, 192, and

256 bits

Key establishment

methodology provides

between 128 and 256 bits of

encryption strength

Key wrapping and

unwrapping

A2314 AES

[FIPS 197;

SP800-38A]

OFB Key Length: 128, 192, and

256 bits
Symmetric encryption and

decryption

A2314 AES

[FIPS 197;

SP800-38E]

XTS Key Length: 128 and 256 bits Symmetric encryption and

decryption

A2314 CTR_DRBG

[SP800-90Arev1]
AES-128

AES-196

AES-256

Derivation Function Enabled;

Prediction Resistance: Yes, No

N/A Random bit generation

A2314 DSA

[FIPS 186-4]

DSA KeyGen:

-N: 224/256

-2048/3072 Modulus

L: 2048/3072 bits DSA keypair generation

A2314 DSA

[FIPS 186-4]

DSA PQGGen:

-P/Q Generation Methods:

Probable

-G Generation Methods:

Unverifiable

-N: 224/256

-2048/3072 Modulus with

L: 2048/3072 bits DSA PQG generation

CAVP

Cert

Algorithm and

Standard

Mode/Method Description / Key

Size(s) / Key

Strength(s)

Use/Function

SHA2-256, SHA2-384,
SHA2-512

A2314 DSA

[FIPS 186-4]

DSA PQGVer:

-P/Q Generation Methods:

Probable

-G Generation Methods:

Unverifiable

-N: 160/224/256

-1024/2048/3072 Modulus
with SHA1, SHA2-224,
SHA2-256, SHA2-384,
SHA2-512, SHA2-512/224,
SHA2-512/256

L: 1024/2048/3072 bits DSA PQG verification

A2314 DSA

[FIPS 186-4]

DSA SigGen:

-N: 224/256

-2048/3072 Modulus with

SHA2-224, SHA2-256, SHA2-

384, SHA2-512, SHA2-

512/224, SHA2-512/256

L: 2048/3072 bits DSA signature generation

A2314 DSA

[FIPS 186-4]

DSA SigVer:

-N: 160/224/256

-1024/2048/3072 Modulus with

SHA1, SHA2-224, SHA2-256,

SHA2-384, SHA2-512, SHA2-

512/224, SHA2-512/256

L: 1024/2048/3072 bits DSA signature verification

Please note that DSA 1024

bits are only used for

signature verification

A2314 ECDSA

[FIPS 186-4]

ECDSA KeyGen Curves: B-233, B-283, B-409,

B-571, K-233, K-283, K-409,

K-571, P-224, P-256, P-384,

P-521

ECDSA keypair generation

A2314 ECDSA

[FIPS 186-4]

ECDSA KeyVer Curves: B-163, B-233, B-283,

B-409, B-571, K-163, K-233,

K-283, K-409, K-571, P-192,

P-224, P-256, P-384, P-521

ECDSA keypair verification

A2314 ECDSA

[FIPS 186-4]

ECDSA SigGen Curves: B-233, B-283, B-409,

B-571, K-233, K-283, K-409,

K-571, P-224, P-256, P-384,

P-521

ECDSA signature generation

A2314 ECDSA

[FIPS 186-4]

ECDSA SigVer Curves: B-163, B-233, B-283,

B-409, B-571, K-163, K-233,

K-283, K-409, K-571, P-192,

P-224, P-256, P-384, P-521

ECDSA signature verification

A2314 HASH_DRBG

[SP800-90Arev1]
SHA-1

SHA2-224

SHA2-256

SHA2-384

SHA2-512

SHA2-512/224

SHA2-512/256

Prediction Resistance: Yes
No

N/A Random bit generation

A2314 HMAC_DRBG

[SP800-90Arev1]
HMAC-SHA-1

HMAC-SHA2-224

HMAC-SHA2-256

HMAC-SHA2-384

HMAC-SHA2-512

HMAC-SHA2-512/224

HMAC-SHA2-512/256

Prediction Resistance: Yes,
No

N/A Random bit generation

CAVP

Cert

Algorithm and

Standard

Mode/Method Description / Key

Size(s) / Key

Strength(s)

Use/Function

A2314 HMAC

[FIPS 198-1]

HMAC-SHA-1 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA2-224 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA2-256 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA2-384 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA2-512 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA2-512/224 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA2-512/256 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA3-224 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA3-256 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA3-384 Key Length: 112 bits or

greater

Message authentication

A2314 HMAC

[FIPS 198-1]

HMAC-SHA3-512 Key Length: 112 bits or

greater

Message authentication

A2314 KAS-ECC CDH

Component (CVL)

[SP800-56Arev3]

KAS-ECC CDH-Component:

Function: Full Public Key

Validation, Key Pair

Generation, Partial Public Key

Validation

Curves: B-233, B-283, B-409,

B-571, K-233, K-283, K-409,

K-571, P-224, P-256, P-384,

P-521

Key establishment

methodology provides

between 128 and 256 bits of

encryption strength

Key agreement primitive

A2314 KAS-ECC-SSC

(CVL)

[SP800-56Arev3]

KAS-ECC-SSC: Scheme:

ephemeralUnified:

KAS Role: initiator, responder

staticUnified:

KAS Role: initiator, responder

Curves: B-233, B-283, B-409,

B-571, K-233, K-283, K-409,

K-571, P-224, P-256, P-384,

P-521

Key establishment

methodology provides

between 128 and 256 bits

of encryption strength

Key agreement primitive

A2314 KAS-FFC-SSC

(CVL)

[SP800-56Arev3]

KAS-FFC-SSC:

Scheme:
dhEphem:

KAS Role: initiator, responder

dhOneFlow:

KAS Role: initiator, responder

dhStatic:

KAS Role: initiator, responder

Domain Parameter Generation

Methods: FB, FC, ffdhe2048,

ffdhe3072, ffdhe4096,

ffdhe6144, ffdhe8192,

MODP-2048, MODP-3072,

MODP-4096, MODP-6144,

MODP-8192

Key establishment

methodology provides

between 112 and 200 bits

of encryption strength

Key agreement primitive

A2314 KAS-IFC-SSC

(CVL)

[SP800-56Brev2]

KAS-IFC-SSC

Scheme:

KAS1:

KAS Role: initiator,
responder

Modulus: 2048, 3072, 4096,

6144, 8192

Key agreement primitive

A2314 KAS KC (CVL)

[SP800-56]
Key Confirmation Directions:

Bilateral, Unilateral

KAS Role: Initiator, Responder

N/A Key agreement primitive

CAVP

Cert

Algorithm and

Standard

Mode/Method Description / Key

Size(s) / Key

Strength(s)

Use/Function

Key Confirmation Roles:

Provider, Recipient

Key Confirmation MAC

Methods:

HMAC-SHA-1

HMAC-SHA2-224

HMAC-SHA2-256

HMAC-SHA2-384

HMAC-SHA2-512

HMAC-SHA2-512/224

HMAC-SHA2-512/256

HMAC-SHA3-224

HMAC-SHA3-256

HMAC-SHA3-384

HMAC-SHA3-512

A2314 KDA

[SP800-56Crev1]
OneStep:

SHA-1

SHA2-224

SHA2-256

SHA2-384

SHA2-512

SHA2-512/224

SHA2-512/256

SHA3-224

SHA3-256

SHA3-384

SHA3-512

N/A Key agreement primitive

A2314 KDF

[SP800-108]
KDF Mode: Feedback

MAC Mode:

HMAC-SHA-1

HMAC-SHA2-224

HMAC-SHA2-256

HMAC-SHA2-384

HMAC-SHA2-512

HMAC-SHA2-512/224

HMAC-SHA2-512/256

N/A Key derivation

A2314 PBKDF 1

[SP800-132]

 N/A Key derivation

A2314 RSA Decryption

Primitive (CVL)

[SP800-56Crev2]

decryptionPrimitive 2048 bit key size Key transport primitive

A2314 RSA

[FIPS 186-4]

RSA KeyGen:

-Mode: B.3.6

- 2048/3072/4096 Modulus

Modulus: 2048/3072/4096

bits

RSA keypair generation

A2314 RSA

[FIPS 186-4]

RSA SigGen:

-Mode: ANSI X9.31

-2048/3072/4096 Modulus with

SHA2-224/ SHA2-256/ SHA2-

384/ SHA2-512/ SHA2-512-

224/ SHA2-512-256;

-Mode: PKCS 1.5

-2048/3072/4096 Modulus with

SHA2-224/ SHA2-256/ SHA2-

384/ SHA2-512/ SHA2-512-

224/ SHA2-512-256;

-Mode: PKCSPSS

-2048/3072/4096 Modulus
with SHA2-224/ SHA2-256/
SHA2-384/ SHA2-512/
SHA2-512-224/ SHA2-512-

Modulus: 2048/3072/4096

bits

RSA signature generation

CAVP

Cert

Algorithm and

Standard

Mode/Method Description / Key

Size(s) / Key

Strength(s)

Use/Function

256;

A2314 RSA

[FIPS 186-4]

RSA SigVer:

-Mode: ANSI X9.31

-2048/3072/4096 Modulus with

SHA-1, SHA2-224/ SHA2-

256/ SHA2-384/ SHA2-512/
SHA2-512-224/ SHA2-512-

256;

-Mode: PKCS 1.5

-2048/3072/4096 Modulus with

SHA-1, SHA2-224/ SHA2-

256/ SHA2-384/ SHA2-512/
SHA2-512-224/ SHA2-512-

256;

-Mode: PKCSPSS

-2048/3072/4096 Modulus
with SHA-1, SHA2-224/
SHA2-256/ SHA2-384/
SHA2-512/ SHA2-512-224/
SHA2-512-256;

Modulus:

1024/2048/3072/4096 bits

RSA signature verification

A2314 Safe Primes Key

Generation

[SP800-56Arev3]

KeyGen for KAS-FFC-SSC Safe Prime Groups:

ffdhe2048, ffdhe3072,

ffdhe4096, ffdhe6144,

ffdhe8192, MODP-2048,

MODP-3072, MODP-4096,

MODP-6144, MODP-8192

KAS-FFC Keypair domain

parameters generation

A2314 Safe Primes Key

Verification

[SP800-56Arev3]

KeyVer for KAS-FFC-SSC Safe Prime Groups:

ffdhe2048, ffdhe3072,

ffdhe4096, ffdhe6144,

ffdhe8192, MODP-2048,

MODP-3072, MODP-4096,

MODP-6144, MODP-8192

KAS-FFC Keypair domain

parameters verification

A2314 SHS

[FIPS 180-4]
SHA-1 N/A Message digest

Note: SHA-1 is not used for

digital signature generation

A2314 SHS

[FIPS 180-4]
SHA2-224 N/A Message digest

A2314 SHS

[FIPS 180-4]
SHA2-256 N/A Message digest

A2314 SHS

[FIPS 180-4]
SHA2-384 N/A Message digest

A2314 SHS

[FIPS 180-4]
SHA2-512 N/A Message digest

A2314 SHS

[FIPS 180-4]
SHA2-512/224 N/A Message digest

A2314 SHS

[FIPS 180-4]
SHA2-512/256 N/A Message digest

A2314 SHA3

[FIPS 202]
SHA3-224 N/A Message digest

A2314 SHA3

[FIPS 202]
SHA3-256 N/A Message digest

A2314 SHA3

[FIPS 202]
SHA3-384 N/A Message digest

A2314 SHA3

[FIPS 202]
SHA3-512 N/A Message digest

A2314 SHAKE

[FIPS 202]
SHAKE-128 N/A Message digest

CAVP

Cert

Algorithm and

Standard

Mode/Method Description / Key

Size(s) / Key

Strength(s)

Use/Function

A2314 SHAKE

[FIPS 202]
SHAKE-256 N/A Message digest

A2314 TLS v1.2 KDF

RFC7627

[RFC7627] (CVL)

TLS v1.2 KDF RFC7627 N/A Key derivation

A2314 TLS v1.3 KDF

[RFC8446] (CVL)
TLS v1.3 KDF N/A Key derivation

Vendor

Affirmed
Cryptographic Key

Generation (CKG)2

[SP800-133rev2]

N/A N/A Cryptographic Key

Generation; SP800-133rev2

and IG D.H

Note: The cryptographic

module performs

Cryptographic Key

Generation (CKG) for

symmetric and asymmetric

keys as per sections 5 and 6

in SP800-133rev2 (vendor

affirmed). A seed (i.e., the

random value) used in

asymmetric key generation is

a direct output from SP800-

90Arev1 DRBG

Table 4 - Approved Algorithms

1Password-based key derivation function 2 (PBKDF2). As defined in NIST Special Publication 800-132, PBKDF2 can be used in Approved mode when used
with Approved symmetric key and message digest algorithms. For more information, see Crypto Officer Guidance

2The module supports cryptographic key generation as described in section 4 of SP800-133rev2 where V is a constant string of binary zeroes. The module also
supports symmetric key generation as described in sections 6.1 and 6.2 of SP800-133rev2.

Algorithm / Function Use / Function
AES in BPS mode for FPE Symmetric encryption / decryption

ChaCha20 Symmetric encryption / decryption

ChaCha20/Poly1305 Symmetric encryption / decryption

DES Symmetric encryption / decryption

DESX Symmetric encryption / decryption

Deterministic DSA Digital signatures

Deterministic ECDSA (FIPS 186-5) Digital signatures

ECIES Asymmetric encryption / decryption

FIPS 186-2 PRNG (Change Notice General) Random bit generation

HMAC-MD5 Message authentication

KDFTLS10 Key Derivation

(For use with TLS versions 1.0 and 1.1)

MD2 Secure hashing

MD5 Secure hashing

PBE (PKCS #12, PKCS #5, SSLCPBE) Symmetric encryption / decryption

PBHMAC (PKCS #12, PKIX) Message authentication

Poly1305 Message authentication

RC2 Symmetric encryption / decryption

RC4 Symmetric encryption / decryption

RC5 Symmetric encryption / decryption

RIPEMD160 Secure hashing

RSA-KEM-KWS Asymmetric encryption / decryption

scrypt Key Derivation

Shamir Secret Sharing Key Generation

Algorithm / Function Use / Function
TDES in CBC, CFB64, ECB, OFB modes and

CBC_CS1, CBC_CS2 or CBC_CS3 mode for

CTS

Symmetric encryption / decryption

Table 5 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

As there are no non-Approved algorithms allowed in the approved mode of operation, the tables defined in

SP800-140B for the following categories are missing from this document:

• Non-Approved Algorithms Allowed in Approved Mode of Operation

• Non-Approved Algorithms Allowed in Approved Mode of Operation with No Security Claimed

Cryptographic boundary

The Module is classified as a multi-chip standalone software cryptographic module for the purposes of

FIPS 140-3. As such, it is tested on specific operating systems and computer platforms. The

cryptographic boundary includes the module running on selected platforms running selected operating

systems. The Module is packaged as a jar file containing the Module’s entire executable code. The

Module relies on the physical security provided by the host computer in which it runs. The Module

accepts Control Input through the API calls.

Data Input and Output are provided in the variables passed with the API calls. Status Output is provided

through the returns and exceptions documented for each call. This is illustrated in Figure 1, which depicts

the Module’s cryptographic boundary and physical perimeter. The cryptographic boundary includes all of

the software components of the cryptographic libraries. The physical perimeter is the Tested Operational

Environment’s Physical Perimeter (TOEPP) on which the Module runs.

3 Cryptographic module interfaces

The Module’s physical perimeter encompasses the case of the tested platform mentioned in Table 2 Tested

Operational Environment. The Module provides its logical interfaces via API calls. The logical interfaces

provided by the Module are mapped onto the FIPS 140-3 logical interfaces (Data Input, Data Output,

Control Input, Control Output, and Status Output) as follows:

Physical

Port

Logical Interface Data that passes over port/interface

N/A Data Input Plaintext, Ciphertext, Message Digest, Signature, MAC, Secret, Key text,

Wrapped key text, Message, Secret

N/A Data Output Status, Ciphertext, Plaintext, Verify status, Validation status, Wrapped key

text, Message digest, MAC, Random bytes

N/A Control Input Configuration parameters for the API interface ModuleConfig

which sets the mode of operation

N/A Status Output Mode of operation indicator from the API
CryptoModule.isFIPS140Approved(). The

state of the module from the API
CryptoModule.getState()

N/A Control Output N/A

Table 6 Ports and Interfaces

Figure 1 Module’s Block Diagram

4 Roles, services, and authentication

The Module meets all FIPS 140-3 Security Level 1 requirements for Roles, Services; and Authentication,

implementing a Crypto Officer Role. As allowed by FIPS 140-3, the module does not support identification

or authentication for this role. The Crypto Officer Role is implicitly assumed once the Module is loaded,

and the role is cleared on Module unload. There is no maintenance role, cryptographic bypass capability, or

self-initiated cryptographic output. The module does not allow concurrent operators.

Role Service Input Output
Crypto Officer Asymmetric Encryption Plaintext Ciphertext, Status

Crypto Officer Asymmetric Decryption Ciphertext Plaintext, Status

Crypto Officer Digital Signature

Generation
Message Digest Signature, Status

Crypto Officer Digital Signature

Verification
Message Digest, Signature Verify Status, Status

Crypto Officer Key Assurance - Validation Status, Status

Crypto Officer Key Confirmation MAC Verify status

Crypto Officer Key Deletion - -

Crypto Officer Key Derivation Secret Key text, Status

Crypto Officer Key Export - Key text, Status

Crypto Officer Key Generation - Status

Crypto Officer Key Import Key text Status

Crypto Officer Key Parameter Generation - Status

Crypto Officer Key Wrap - Wrapped Key text, Status

Crypto Officer Key Unwrap Wrapped key text Status

Crypto Officer Message Digest Message Message Digest, Status

Crypto Officer MAC Generation Secret, Message MAC, Status

Crypto Officer MAC Verification Secret, Message, MAC Verify Status, Status

Crypto Officer Random Number

Generation
- Random bytes, Status

Crypto Officer Self-test - Status

Crypto Officer Symmetric Encryption Plaintext Ciphertext, Status

Crypto Officer Symmetric Decryption Ciphertext Plaintext, Status

Table 7 Roles, Service Commands, Input, and Output

The abbreviations of the access rights to keys and SSPs have the following interpretation:

G = Generate: The module generates or derives the SSP.

R = Read: The SSP is read from the module.

W = Write: The SSP is updated, imported, or written to the module.

E = Execute: The module uses the SSP in performing a cryptographic operation.

Z = Zeroize: The module zeroizes the SSP.

N/A = Not applicable: The service does not access any SSP during its operation.

Table 8 below lists all approved services that can be used in the approved mode of operation.

Service Description Approved

Security

Functions

Keys

and/or

SSPs

Roles Access

rights

to Keys

and/or

SSPs

Indicator

Asymmetric

Encryption
Perform asymmetric

encryption operation
RSA Encryption

Primitive

RSA Public

Key
CO E API call

Asymmetric

Decryption

Perform asymmetric

decryption operation

RSA Decryption

Primitive

RSA Private

Key

CO E API call

Digital

Signature

Generation

Perform digital

signature generation

DSA PQGGen

DSA SigGen

ECDSA SigGen

RSA SigGen

DSA Private

Key

ECDSA

Private Key

RSA Private

Key

CO E API call

Digital

Signature

Verification

Perform digital

signature verification

DSA PQGVer

DSA SigVer

ECDSA SigVer

RSA SigVer

DSA Public

Key

ECDSA Public

Key

RSA Public

Key

CO E API call

Key Assurance Perform key assurance

operation
N/A DSA Public

Key

DSA Private

Key

ECDSA Public

Key

ECDSA

Private Key

EC Diffie-

Hellman

Private Key

EC Diffie-

Hellman Public

Key

Diffie-Hellman

Public Key

Diffie-Hellman

Private Key

RSA Public

Key

RSA Private

Key

CO R API call

Key

Confirmation
Perform key

confirmation operation

KAS KC HMAC Key CO E API call

Key Deletion Perform key deletion

operation

N/A AES Key

DSA Public

Key

DSA Private

Key

ECDSA Public

Key

ECDSA

Private Key

CMAC Key

HMAC Key

RSA Public

Key

CO Z API call

Service Description Approved

Security

Functions

Keys

and/or

SSPs

Roles Access

rights

to Keys

and/or

SSPs

Indicator

RSA Private

Key

Key Derivation Perform key derivation

operation

KDA

OneStep

PBKDF

TLS v1.2 KDF RFC

7627

TLS v1.3 KDF

KBKDF Key

Derivation Key

KBKDF

Derived Key

OneStep KDF

Key Derivation

Key

OneStep KDF

Derived Key

PBKDF

Password

PBKDF

Derived Key

TLS Master

Secret

TLS Session

Key

TLS Session

Integrity Key

CO G, R API call

Key Export Perform key export

operation

N/A AES Key

DSA Public

Key

DSA Private

Key

ECDSA Public

Key

ECDSA

Private Key

CMAC Key

HMAC Key

RSA Public

Key

RSA Private

Key

CO R API call

Key

Generation
Perform key generation

operation

DSA KeyGen

ECDSA KeyGen

KAS-ECC-SCC

KAS-FFC-SCC

RSA KeyGen

AES Key

DSA Public

Key

DSA Private

Key

ECDSA Public

Key

ECDSA

Private Key

EC Diffie-

Hellman

Private Key

EC Diffie-

Hellman Public

Key

Peer EC Diffie-

Hellman Public

Key

EC Diffie-

Hellman

Shared Secret

CO G API call

Service Description Approved

Security

Functions

Keys

and/or

SSPs

Roles Access

rights

to Keys

and/or

SSPs

Indicator

Diffie-Hellman

Public Key

Diffie-Hellman

Private Key

Diffie-Hellman

Peer Diffie-

Hellman Public

Key

Shared Secret

RSA Public

Key

RSA Private

Key

Key Import Perform key import

operation

 AES Key

DSA Public

Key

DSA Private

Key

ECDSA Public

Key

ECDSA

Private Key

CMAC Key

HMAC Key

RSA Public

Key RSA

Private Key

CO W API call

Key Parameter

Generation
Perform key parameter

generation operation

KAS-FFC-SCC DSA Public

Key

DSA Private

Key

Diffie-Hellman

Public Key

Diffie-Hellman

Private Key

Diffie-Hellman

Shared Secret

CO G API call

Key Unwrap Perform key unwrap

operation

AES-KW

AES-KWP

AES Key CO API call

Key wrap Perform key wrap

operation

AES-KW

AES-KWP

AES Key

AES Key Wrap

Key

CO E API call

Message

Digest
Perform message digest

operation

SHA-1

SHA2-224

SHA2-256

SHA2-384

SHA2-512

SHA2-512/224

SHA2-512/256

SHA3-224

SHA3-256

SHA3-384

SHA3-512

SHAKE-128

SHAKE-256

 CO API call

 MAC

Generation
Perform MAC

generation operation

CMAC-AES

HMAC-SHA-1

CMAC Key

HMAC Key

CO R API call

Service Description Approved

Security

Functions

Keys

and/or

SSPs

Roles Access

rights

to Keys

and/or

SSPs

Indicator

HMAC-SHA2-224

HMAC-SHA2-256

HMAC-SHA2-384

HMAC-SHA2-512

HMAC-SHA2-

512/224

HMAC-SHA2-

512/256

HMAC-SHA3-224

HMAC-SHA3-256

HMAC-SHA3-384

HMAC-SHA3-512

MAC

Verification
Perform MAC

verification operation

CMAC-AES

HMAC-SHA-1

HMAC-SHA2-224

HMAC-SHA2-256

HMAC-SHA2-384

HMAC-SHA2-512

HMAC-SHA2-

512/224

HMAC-SHA2-

512/256

HMAC-SHA3-224

HMAC-SHA3-256

HMAC-SHA3-384

HMAC-SHA3-512

CMAC Key

HMAC Key

CO R API call

Random

Number

Generation

Perform random

number generation

CTR_DRBG

HASH_DRBG

HMAC_DRBG

DRBG Entropy

Input

DRBG Seed

DRBG Internal

State V value

DRBG Key

CO API call

Symmetric

Encryption
Perform symmetric

encryption operation

AES-CBC

AES-CBC-CS1

AES-CBC-CS2

AES-CBC-CS3

AES-CCM

AES-CFB

AES-CTR

AES-ECB

AES-GCM

AES-OFB

AES-XTS

AES Key

AES GCM IV

CO E API call

Symmetric

Decryption
Perform symmetric

decryption operation

AES-CBC

AES-CBC-CS1

AES-CBC-CS2

AES-CBC-CS3

AES-CCM

AES-CFB

AES-CTR

AES-ECB

AES-GCM

AES-OFB

AES-XTS

AES Key

AES GCM IV

CO E API call

Table 8 Approved Services

Service Description Algorithms Accessed Role Indicator
Asymmetric Encryption Perform asymmetric

encryption operation
ECIES

RSA-KEM-KWS
N/A API call

Asymmetric Decryption Perform asymmetric

decryption operation

ECIES

RSA-KEM-KWS

N/A API call

Digital Signature

Generation

Perform digital

signature generation

Deterministic DSA

Deterministic ECDSA

N/A API call

Digital Signature

Verification

Perform digital

signature verification

Deterministic DSA

Deterministic ECDSA

N/A API call

Key Derivation Perform key derivation

operation

KDFTLS10 (For use with

TLS versions 1.0 and 1.1)

PKCS #5 KDF

PKCS #12 KDF

scrypt

N/A API call

Key Generation Perform key

generation operation

DES

DESX

RC2

RC4

RC5

Shamir Secret Sharing

TDES

N/A API call

Message Digest Perform message

digest operation

MD2

MD5

RIPEMD160

N/A API call

MAC Generation Perform MAC

generation operation

HMAC-MD5

PBHMAC (PKCS #12, PKIX)

Poly1305

N/A API call

MAC Verification Perform MAC

verification operation

HMAC-MD5

PBHMAC (PKCS #12, PKIX)

Poly1305

N/A API call

Random Number

Generation

Perform random

number generation

FIPS 186-2 PRNG (Change

Notice General)

N/A API call

Symmetric Encryption Perform symmetric

encryption operation

AES in BPS mode for FPE

ChaCha20

ChaCha20/Poly1305

DES

DESX

RC2

RC4

RC5

PBE (PKCS #12, PKCS #5,

SSLCPBE)

TDES in CBC, CFB64, ECB,

OFB modes and

CBC_CS1, CBC_CS2 or

CBC_CS3 mode for CTS

N/A API call

Symmetric Decryption Perform symmetric

decryption operation

AES in BPS mode for FPE

ChaCha20

ChaCha20/Poly1305

DES

DESX

RC2

RC4

RC5

PBE (PKCS #12, PKCS #5,

SSLCPBE)

TDES in CBC, CFB64, ECB,

OFB modes and

CBC_CS1, CBC_CS2 or

CBC_CS3 mode for CTS

N/A API call

Table 9 Non-Approved Services

The Module doesn’t support self-initiated cryptographic output capability and cryptographic Bypass

capability services.

5 Software/Firmware security

Integrity techniques

Module integrity check is implemented by first calculating a MAC over each of the files listed in

module.files, using HMAC-SHA-1 with a fixed key. Another MAC is then calculated over all file MACs in

the order that they are listed, using the same algorithm and key as for the file MACs. This two-step process

is intended to allow the jar file to be processed sequentially without having to load the entire jar file into

memory even after the order of the jar file entries has been changed. The expected integrity check MAC is

stored in the jar file manifest.

During the Integrity Test when the module is loaded, a MAC is again calculated and compared with the

pre-computed MAC value contained in the jar file manifest. If these values are equal, then the software

integrity check has passed and power-up of the Module can continue. Otherwise, the test has failed, and the

Module is disabled.

Integrity test on-demand

The integrity test is performed as part of the pre-operational self-tests. It is automatically executed at

power-on. The module provides the ModuleConfig.runSelfTests() API to allow the operator to

perform on-demand integrity testing. The operator can also power-cycle or reboot the tested platform to

initiate the software integrity test on-demand.

6 Operational environment

The Module is a software module, which is operated in a modifiable operational environment per FIPS

140-3 level 1 specifications. The module is provided for operating systems running on a general-purpose

computer platform based on an Intel CPU.

The Module has control over its own SSPs. The process and memory management functionality of the host

device’s OS prevents unauthorized access to plaintext private and secret keys, intermediate key generation

values, and other SSPs by external processes during module execution. The Module only allows access to

SSPs through its well-defined API. The operational environments provide the capability to separate

individual application processes from each other by preventing uncontrolled access to CSPs and

uncontrolled modifications of SSPs regardless of whether this data is in the process memory or stored on

persistent storage within the operational environment. Processes that are spawned by the Module are owned

by the Module and are not owned by external processes or operators.

7 Physical security

The FIPS 140-3 physical security requirements do not apply to the Module since it is a software module.

8 Non-invasive security

Currently, non-invasive security is not required by FIPS 140-3 (see NIST SP800-140F). The requirements

of this area are not applicable to the Module.

9 Sensitive security parameters management

The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the

cryptographic services implemented in the Module:

Key/SSP

Name/

Type

Streng

th

Security

Function

and Cert.

Number

Gener-

ation

Import

/Export

Establi

sh-

ment

Storage Zero-

isatio

n

Use &

relate

d keys

DRBG entropy

input

(CSP)

256 bits CTR_DRBG

HASH_DRBG

HMAC_DRBG

#A2314

Obtained from

the Entropy

Source within

TOEPP (GPS

INT

Pathways).

Import to the

module via

Module’s

API

Export: No

N/A

N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Random

Number

Generation

DRBG Seed

(CSP)

256 bits CTR_DRBG

HASH_DRBG

HMAC_DRBG

#A2314

Internally

Derived from

entropy input

string as

defined by

SP800-

90Arev1.

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Random

Number

Generation

DRBG Internal

State V value

(CSP)

256 bits CTR_DRBG

HASH_DRBG

HMAC_DRBG

#A2314

Internally

Derived from

entropy input

string as

defined by

SP800-

90Arev1.

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Random

Number

Generation

DRBG Key

(CSP)

256 bits CTR_DRBG

HASH_DRBG

HMAC_DRBG

#A2314

Internally

Derived from

entropy input

string as

defined by

SP800-

90Arev1.

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down.

Random

Number

Generation

Diffie-Hellman

Private Key

(CSP)

MODP-

2048

CKG

CTR_DRBG

HASH_DRBG

HMAC_DRBG

KAS-FFC-SSC

Safe Primes Key

Generation

#A2314

Internally

generated

conformant to

SP800-

133rev2

(CKG) using

SP800-56A

rev3 Diffie-

Hellman key

generation

method, and

the random

value used in

key generation

is generated

using SP800-

90ARev1

DRBG.

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/ SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive Diffie-

Hellman

Shared Secret

Diffie-Hellman

Public Key

(PSP)

MODP-

2048

KAS-FFC-SSC

Safe Primes Key

Generation

#A2314

Internally

derived per

the Diffie-

Hellman key

agreement

(SP800-

56Arev3).

Import: No

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/ SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive Diffie-

Hellman

Shared Secret

Peer Diffie-

Hellman Public

Key

(PSP)

MODP-

2048

N/A N/A Import: Yes

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive Diffie-

Hellman

Shared Secret

Diffie-Hellman

Shared Secret

(CSP)

MODP-

2048

KAS-FFC-SSC

#A2314

Internally

generated

using SP800-

56Arev3 DH

shared secret

computation.

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive TLS

session

related keys

EC Diffie-

Hellman

Private Key

(CSP)

P-256/P-

384/P-521

CKG

CTR_DRBG

HASH_DRBG

HMAC_DRBG

KAS-ECC-SSC

#A2314

Internally

generated

conformant to

SP800-

133rev2

(CKG) using

SP800-56A

rev3 EC

Diffie-

Hellman key

generation

method, and

the random

value used in

key generation

is generated

using SP800-

90Arev1

DRBG

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/ SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive EC

Diffie-

Hellman

Shared Secret

EC Diffie-

Hellman Public

Key

(PSP)

P-256/P-

384/P-521

KAS-ECC-SSC

#A2314

Internally

derived per

the EC Diffie-

Hellman key

agreement

(SP800-

56Arev3).

Import: No

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/ SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive EC

Diffie-

Hellman

Shared Secret

Peer EC

Diffie-Hellman

Public Key

(PSP)

P-256/P-

384/P-521

N/A N/A Import: Yes

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive EC

Diffie-

Hellman

Shared Secret

EC Diffie-

Hellman

Shared Secret

(CSP)

P-256/P-

384/P-521

KAS-ECC-SSC

#A2314

Internally

derived using

SP800-

56Arev3

ECDH shared

secret

computation.

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Used to

derive TLS

session

related keys

DSA Private

Key (CSP)

2048/3072

bits

#A2314

CKG

CTR_DRBG

HASH_DRBG

HMAC_DRBG

DSA PQGGen

DSA SigGen

DSA KeyGen

#A2314

Internally

generated

conformant to

SP800-133r2

(CKG) using

FIPS 186-4

DSA key

generation

method, and

the random

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Signature

generation

and

Verification

used in TLS

value used in

key generation

is generated

using SP800-

90Arev1

DRBG

Or externally

generated

DSA Public

Key (PSP)

1024/2048

/3072 bits

#A2314

DSA PQGVer

DSA SigVer

DSA KeyGen

#A2314

Internally

derived per

the FIPS 186-

4 DSA key

generation

method

Or externally

generated

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Signature

generation

and

Verification

used in TLS

ECDSA

Private Key

(CSP)

P-256/P-

384/P-521

CKG

CTR_DRBG

HASH_DRBG

HMAC_DRBG

ECDSA KeyGen

ECDSA KeyVer

ECDSA SigGen

#A2314

Internally

generated

conformant to

SP800-

133rev2

(CKG) using

FIPS 186-4

ECDSA key

generation

method, and

the random

value used in

key generation

is generated

using SP800-

90Arev1

DRBG.

Or externally

generated

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Signature

generation

and

verification

used in TLS

ECDSA Public

Key

(PSP)

P-256/P-

384/P-521

ECDSA KeyGen

ECDSA KeyVer

ECDSA SigVer

#A2314

Internally

derived per

the FIPS 186-

4 ECDSA key

generation

method.

Or externally

generated

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Signature

generation

and

verification

used in TLS

RSA Private

Key

(CSP)

2048/3072

/4096 bits

CKG

CTR_DRBG

HASH_DRBG

HMAC_DRBG

RSA KeyGen

RSA SigGen

#A2314

Internally

generated

conformant to

SP800-

133rev2

(CKG) using

FIPS 186-4

RSA key

generation

method, and

the random

value used in

the key

generation is

generated

using SP800-

90Arev1

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Signature

generation

and

verification

used in TLS

DRBG.

Or externally

generated

RSA Public

Key

(PSP)

1024/2048

/3072/409

6 bits

RSA KeyGen

RSA SigVer

#A2314

Internally

derived per

the FIPS 186-

4 RSA key

generation

method.

Or externally

generated

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Signature

generation

and

verification

used in TLS

TLS Master

Secret

(CSP)

48 Bytes Keying Material Internally

Derived per

the key

derivation

function

defined in

SP800-135

KDF (KDF-

TLS v1.2

RFC7627)

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when TLS

session is

terminated or

when the

tested

platform is

powered

down

Keying

material used

to derive

other TLS

keys

TLS Session

Key

(CSP)

128/256

bits

AES-CBC

AES-GCM

TLS v1.2 KDF

RFC7627

TLS v1.3 KDF

#A2314

Internally

Derived per

the key

derivation

function

defined in

SP800-135

KDF (KDF-

TLS v1.2

RFC7627).

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when TLS

session is

terminated or

when the

tested

platform is

powered

down

Used for TLS

session

confidentialit

y protection

TLS Session

Integrity Key

(CSP)

256-384

bits

TLS v1.2 KDF

RFC7627

TLS v1.3 KDF

HMAC-SHA2-

256

HMAC-SHA2-

384

#A2314

Internally

Derived per

the key

derivation

function

defined in

SP800-135

KDF (KDF-

TLS v1.2

RFC7627).

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when TLS

session is

terminated or

when the

tested

platform is

powered

down

Used for TLS

session

integrity

protection

AES Key

(CSP)

128/192/2

56 bits

AES-CBC

AES-CBC-CS1

AES-CBC-CS2

AES-CBC-CS3

AES-CCM

AES-CFB

AES-CTR

AES-ECB

AES-GCM

AES-OFB

AES-XTS

#A2314

Internally

generated per

the key

generation

function

defined in
SP800-

133rev2 using

random value

generated

using SP800-

90A DRBG

Or externally

generated

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Symmetric

encryption

and

decryption

AES GCM IV

(CSP)

N/A AES-GCM

#A2314

Internally

Derived per

the key

derivation

function

defined in:

Import: No

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

Authenticated

symmetric

encryption

and

decryption

SP800-38D

using random

value

generated

using SP800-

90A DRBG

powered

down

CMAC Key

(CSP)

128/192/2

56 bits

CMAC-AES

#A2314

Internally

Derived per

the key

derivation

function

defined in:

SP800-

133rev2 using

random value

generated

using SP800-

90A DRBG

Or externally

generated

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Message

authentication

HMAC Key

(CSP)

112-256

bits

HMAC-SHA-1

HMAC-SHA2-

224

HMAC-SHA2-

256

HMAC-SHA2-

384

HMAC-SHA2-

512

HMAC-SHA2-

512/224

HMAC-SHA2-

512/256

HMAC-SHA3-

224

HMAC-SHA3-

256

HMAC-SHA3-

384

HMAC-SHA3-

512

#A2314

Internally

Derived per

the key

derivation

function

defined in:
SP800-

133rev2 using

random value

generated

using SP800-

90A DRBG

Or externally

generated

Import: Yes

Export: Yes

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Message

authentication

KBKDF Key

Derivation Key

(CSP)

N/A KDF SP800-108

#A2314

N/A Import: Yes

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Key

derivation

KBKDF

Derived Key

(CSP)

N/A KDF SP800-108

#A2314

N/A Import: No

Export: Yes

SP800-108 N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Derived from

key

derivation

key

OneStep KDF

Key Derivation

Key

(CSP)

N/A KDA OneStep

#A2314

N/A Import: Yes

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Key

derivation

OneStep KDF

Derived Key

(CSP)

N/A KDA OneStep

#A2314

N/A Import: No

Export: Yes

SP800-56C

Rev.1

N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Derived from

key

derivation

key

PBKDF

Password

(CSP)

N/A PBKDF

#A2314

N/A Import: Yes

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Key

derivation

PBKDF

Derived Key

(CSP)

N/A PBKDF

#A2314

N/A Import: No

Export: Yes

SP800-132 N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Derived from

key

derivation

key

AES Key

Wrap Key

(CSP)

128/192/2

56 bits

AES-KW

AES-KWP

#A2314

Internally

generated per

the key

generation

function

defined in:

SP800-

133rev2 using

random value

generated

using SP800-

90A DRBG

Or externally

generated

Import: Yes

Export: No

N/A N/A: The

module does

not provide

persistent

keys/SSPs

storage.

Automatic

zeroization

when the

tested

platform is

powered

down

Key wrapping

and

unwrapping

Table 10 SSPs

RBG entropy source

Entropy

sources

Minimum number

of bits of entropy

Details

Entropy within

the TOEPP

was passively

loaded into the

Module to

seed the 800-

90Arev1

DRBG by the

Operating

System.

At least 112 bits While operating in the approved mode, the entropy and seeding material for

the SP800-90Arev1 DRBG are provided by the external calling application

(and not by the Module) which is outside the Module’s cryptographic

boundary but contained within the Module’s Tested Operational

Environment’s Physical Perimeter (TOEPP) boundary. The module

receives a LOAD command with entropy obtained from the entropy source

(Intel CPU processor with instructions RDRand) inside the TOEPP. The

minimum effective strength of the SP800-90Arev1 DRBG seed is required

to be at least 112 bits when used in an approved mode of operation,

therefore the minimum number of bits of entropy requested when the

Module makes a call to the SP800-90Arev1 DRBG is at least 112 bits.

Per the IG 9.3.A Entropy Caveats, the following caveat applies: No

assurance of the minimum strength of generated SSPs (e.g., keys)

Table 11 Non-Deterministic Random Number Generation Specification

The Module is passively receiving the entropy while exercising no control over the amount or the quality

of the obtained entropy. Therefore, it is the user's responsibility to supply the entropy to seed an RBG to

provide the required security strength, and to ensure the security strength of a DRBG is equal to or

greater than the security strength of any SSPs generated using that DRBG.

Entropy can be supplied to the Module using the following APIs:

• com.rsa.crypto.SecureRandom.setSeed()

• com.rsa.crypto.ModuleConfig.setEntropySource()

When generating SSPs, the DRBG used in key generation must be seeded with a number of bits of

entropy that is equal to or greater than the security strength of the SSP being generated. The entropy

supplied to the DRBG is referred to as the DRBG security strength which represents the minimum

amount of entropy that should be provided to the DRBG prior to generating the SSP.

The following table lists each of the keys that can be generated by the JCM, with the key sizes available,

security strengths for each key size, and the security strength required to initialize the DRBG:

Key Type Key Size Security Strength
Required DRBG

Security Strength

AES Key 128, 192, 256 128, 192, 256 128, 192, 256

RSA Key Pair 2048, 3072, 4096 112, 128, 152 112, 128, 152

DSA Key Pair 2048, 3072 112, 128 112, 128

EC Key Pair 224, 256, 384, 521 112, 128, 192, 256 112, 128, 192, 256

Table 12 Generated Key Sizes and Strength

10 Self-tests

When the Module is loaded or instantiated after being power-cycled or rebooted, the Module runs pre-

operational self-tests. The operating system is responsible for the initialization process and loading the

Module. The Module is designed with a default entry point (DEP) that ensures automatic initiation of the

self-tests when the Module is loaded. Before the Module provides any data output via the data output

interface, the Module performs the pre-operational self-tests, ensuring all pass. A software integrity test is

performed on the runtime image of the Module with an HMAC-SHA-1 algorithm. Prior to the firmware

integrity test, the Module conducts an HMAC-SHA-1 Cryptographic Algorithm Self-test (CAST). If the

CAST on the HMAC-SHA-1 is successful, the HMAC value of the runtime image is recalculated and

compared with the stored HMAC value pre-computed at compilation time. During power-up, and following

the successful pre-operational self-tests, the Module executes the Conditional CASTs for all approved

cryptographic algorithms implemented by the Module.

The self-test success or failure messages, for example, Error: Signature RSA test failure or ECDH P-256

test failure, are logged and function as the self-test status indicator.

 If any one of the self-tests fails, the Module transitions into a FIPS140State.FAILED error state and

outputs the error message via the Module’s status output interface, SecurityException. While the

Module is in the error state, all data through the data output interface and all cryptographic operations are

disabled. The only method to recover from the error state is to power cycle the device. This results in the

Module being reloaded into memory and reperforming the pre-operational software integrity test and the

Conditional CASTs. The module will only enter the operational state after successfully passing the pre-

operational software integrity test and the Conditional CASTs.

Pre-operational self-tests

Pre-operational self-tests are executed automatically when the Module is loaded into memory. They can be

re-run manually after the module has loaded, by calling the ModuleConfig.runSelfTests() API.

The pre-operational self-tests include the Software Integrity Test. The Software Integrity Test is comprised

of an HMAC-SHA-1 verification of the files listed in fips140/module.files.

The cryptographic services of the Module are disabled when the self-tests are running. When the self-tests

are running, the following stands true:

• All cryptographic operations, if called, throw a CryptoException.

• The CryptoModule.getState() status output interface, if called, returns a state of

com.rsa.crypto.FIPS140State.UNDER_SELF_TEST.

If any pre-operational self-test fails, all cryptographic services of the Module are disabled. When the self-

tests fail, the following stands true:

• All cryptographic operations, if called, throw a CryptoException.

• The CryptoModule.getState() status output interface, if called, returns a state of
com.rsa.crypto.FIPS140State.FAILED.

If the pre-operational self-tests pass, the cryptographic services of the Module are enabled, and the module

can be used. The CryptoModule.getState() status output interface returns a state of

com.rsa.crypto.FIPS140State.OPERATIONAL.

Pre-operational software integrity test

o HMAC-SHA-1 KAT

o Software Integrity Test (using HMAC-SHA-1)

Note: The Module conducts HMAC-SHA-1 KAT self-test before the integrity test is performed.

Conditional self-tests

• Cryptographic Algorithm Self-Tests (CASTs)

o AES-CBC 256 bits Encrypt KAT

o AES-CBC 256 bits Decrypt KAT

o AES-GCM 256 bits Authenticated Encrypt KAT

o AES-GCM 256 bits Authenticated Decrypt KAT

o CMAC 128 bits KAT

o CTR_DRBG Instantiate KAT

o CTR_DRBG Generate KAT

o CTR_DRBG Reseed KAT

Note: CTR_DRBG Health Tests: Generate, Reseed, Instantiate functions per Section 11.3 of

SP800-90Arev1

o DSA SigGen with SHA-256 KAT

o DSA SigVer with SHA-256 KAT

o ECDSA P-256 with SHA-256 SigGen KAT

o ECDSA P-256 with SHA-256 SigVer KAT

o HASH-DRBG with SHA-1 KAT

o HMAC-DRBG with SHA-1 KAT

o HMAC-SHA-1 KAT

o HMAC-SHA-256 KAT

o HMAC-SHA-384 KAT

o HMAC-SHA-512 KAT

o KAS-ECC-SSC Primitive Z KAT

o KAS-FFC-SSC Primitive Z KAT

o KDFTLS12 SHA-256 KAT

o OneStepKDF KAT

o PBKDF2 with SHA-1 KAT

o RSA 2048 bits modulus with SHA-256 SigGen KAT

o RSA 2048 bits modulus with SHA-256 SigVer KAT

o SHA-1 KAT

o SHA2-512 KAT

o SHA3-512 KAT

o SHAKE256 KAT

o SP800-108 KDF KAT

The Module generates RSA, ECDSA, KAS-ECC, and KAS-FFC asymmetric keys and performs all

required pair-wise consistency tests on the newly generated key pairs as detailed in the “Pair-wise

consistency tests” section below. If the Pair-wise Consistency conditional test fails, the Module throws a

SecurityException and aborts the operation. A Pair-wise Consistency test failure does not disable the

Module.

 Pair-wise consistency tests (PCTs):

o ECDSA PCT

o DSA PCT

o RSA PCT

o KAS-ECC PCT

o KAS-FFC PCT

Periodic self-tests

The Module performs on-demand self-tests initiated by the operator, by power-cycling or rebooting the

tested platform. The full suite of self-tests is then executed. The same procedure may be employed by the

operator to perform periodic self-tests. In addition, it is recommended for the Crypto Officer to perform the

periodic tests a minimum of once every 60 days to ensure all components are functioning correctly.

Error handling

If any of the above-mentioned self-tests fail, the Module reports the cause of the error and enters a

FIPS140State.FAILED error state (there is only one error state). In the Error State, no cryptographic

services are provided, and data output is prohibited. The only method to recover from the error state is to

power-cycle or reboot to reload the Module and perform the self-tests, including the pre-operational

software integrity test and the conditional CASTs. The module will only enter the operational state after

successfully passing the pre-operational software integrity test and the conditional CASTs. Note:

FIPS140State.FAILED is the only error state.

11 Life-cycle assurance

Installation, Initialization, Startup, Operation and Maintenance

The module is installed by adding jcmFIPS-7.0.jar to the application's classpath.

The module is started by starting the application that references it. The module uses JDK services to perform the

module startup when the application loads it.

When loading the module, the com.rsa.crypto.jcm.ModuleLoader.load() method extracts arguments

from the com.rsa.cryptoj.jcm.JavaModuleProperties class, which is created using the

com.rsa.cryptoj.jcm.CryptoJModulePropertiesFactory class.

The following arguments are extracted:

• The module jar file.

• The security level, specified as the constant ModuleConfig.LEVEL_1 which should have the value of 1.

An optional SelfTestEventListener argument used for logging power-up self-test events.

• An optional java.util.concurrent.ExecutorService argument used for running the
power-up self-tests.

• An optional file to be used for reading and writing the status of the algorithm power-up self-tests.

Using the specified securityLevel ensures that the module is loaded for use in an approved mode.

Loading the module runs the integrity tests that must be completed successfully before any cryptographic services

are made available by the module. This ensures that the application has made no modification to the module as part

of its development or installation. For more information about the Integrity Tests, see Software/Firmware Security.

The module starts in an approved mode and in the Crypto Officer Role by default. Otherwise, to assume a role
once the module is operational, construct a FIPS140Context object for the desired role using the

FIPS140Context.getFIPS140Context(int mode, int role) method.

• The mode argument must be the value FIPS140Context.MODE_FIPS140. To retrieve the

current mode of operation, call FIPS140Context.getMode().

• The available role value is the constant FIPS140Context.ROLE_CRYPTO_OFFICER.

No role authentication is required to operate the module in Security Level 1 mode.

This object can then be used to perform cryptographic operations using the module.

The only permitted maintenance operation is to add a signature to the jar file by re-signing with an application

certificate. Otherwise, application writers should not attempt to modify the module jar file as the module will refuse

to load or perform cryptographic operations.

Crypto Officer Guidance
For details of the administrative functions, security parameters, and logical interfaces available to the Crypto

Officer. The following table details the requirements for algorithm use in the Approved mode operation:

Algorithm Guidance

DRBG • When an approved algorithm requires a DRBG to perform an operation, an

approved DRBG algorithm must be used. For example, when initializing

an approved signature algorithm, an approved DRBG such as HMAC

DRBG must be used.

• When using an approved DRBG, the number of bytes of seed key input

must be equivalent to or greater than the security strength of the keys the

caller wishes to generate. For example, a 256-bit or higher seed key input

when generating 256-bit AES keys.

• Since the Module does not modify the output of an Approved DRBG, any

generated symmetric keys or seed values are created directly from the

output of the Approved DRBG.

GCM Mode Ciphers • When using GCM feedback mode for symmetric encryption, the

authentication tag length and authenticated data length may be specified as

input parameters, but the IV must not be specified. It must be generated

internally.

• Where the Module is powered down, a new key must be used for

AES GCM encryption/decryption.

• GCM with a partial IV supplied to the Module is approved only when

used within a TLS v 1.2 or 1.3 protocol implementation.

• The AES-GCM cipher, when used for symmetric encryption purposes

other than TLS, must use an IV in one of the two possible ways, to comply

with SP800-38D:

– Allow the Module to generate the IV deterministically by not

supplying any IV parameters during cipher initialization. The generated

96-bit (12-byte) IV consists of a 32-bit fixed field followed by a 64-bit

invocation field where:

– The fixed field bytes are derived from the Module name,

version information, and memory address of a Java class within the

Module.

– The invocation field is a 64-bit counter that is initialized, on

Module startup, to a value consisting of the 42 bits of current time, as

milliseconds since Epoch, followed by 22 bits of zero. This counter

value is incremented by one each time a new IV is requested. By

using the current time to prefix the counter start value, in the event of

Module restart, the counter will be ahead of any previous Module

states, ensuring that IV values cannot be reused. The Module user

must ensure the system time is valid to prevent repetition of IVs.

– Generate at least 12 bytes of IV using an Approved DRBG, and input

the IV to the cipher at initialization time using the RAW_IV parameter.

• The AES-GCM cipher used for the TLS protocol as the cipher

implementation complies with SP800-52 and is compatible with RFC 5288

with the following conditions:

– The IV is configured as follows:

– The four-byte salt derived from the TLS handshake process is

input using the parameter PARTIAL_IV during cipher initialization.

This is used as the first four bytes of IV. This 32-bit part of the IV is

also referred to as the nonce value in FIPS 140-3 IG C.H and is

positioned in the name field of the IV as required in FIPS 140-3 IG

C.H, TLS/DTLS 1.2 protocol IV generation.

– The remaining eight bytes of IV, referred to as

nonce_explicit in RFC 5288, are generated deterministically by

the module using the 64-bit counter used for the invocation field

described above.

– When the 64-bit counter exhausts the maximum number of

possible values for a given session key, the Module will throw a

SecurityException.

– Whichever party, the client or the server, that encounters this

condition must trigger a handshake to establish a new encryption key.

– The TLS session is aborted if the keys for the client and server

negotiated in the handshake process, client_write_key and

server_write_key, are identical.

HMAC • The key length for an HMAC generation or verification must be

between 112 and 4096 bits, inclusive.

• For HMAC verification, a key length greater than or equal to 80 and

less than 112 is allowed for legacy-use.

HMAC-Based Extract-and-

Expand Key Derivation

Function

• An approved HMAC must be used for extract and expand operations.

• A particular key-derivation key must only be used for a single key-

expansion step. For more information, see SP800-56C Rev. 1.

• The derived key must be used only as a secret key.

• The derived key shall not be used as a key stream for a stream cipher.

• When selecting an HMAC hash, the output block size must be equal

to or greater than the desired security strength of the derived key.

• The pseudo-random key input to the expansion and the keying

material output from the expansion must have lengths that are equal to or

greater than the desired security strength of the derived key.

One-Step Key Derivation

Function

• An approved hash function must be used to derive key materials.

• When selecting a hash algorithm, the output block size must be equal

to or greater than the desired security strength of the derived key.

• The derived key must be used only as a secret key.

• The derived key shall not be used as a key stream for a stream cipher.

• The secret data input into this KDF must have a length equal to or

greater than the desired security strength of the derived key.

TLS PRF Key Derivation

Function

• TLS v1.2 PRF KDF is allowed only when the following conditions

are satisfied:

– The KDF is performed in the context of the TLS protocol.

– HMAC is as specified in FIPS 198-1.

– P_HASH uses either SHA-256, SHA-384, or SHA-512. For more

information, see SP800-135 Rev. 1.

• The TLS protocols have not been tested by the CAVP and CMVP.

Parameter Generation • When using an Approved DRBG to generate DH or DSA parameters, the

requested DRBG must have a security strength at least as great as the

security strength of the parameters being generated. That means that an

Approved DRBG with an appropriate strength must be used. For more

information on requesting the DRBG security strength, see the relevant

API Javadoc.

Key Agreement Obtain domain parameters and assurance of the domain parameter

validity:

• For schemes using FFC, use one of the FFC safe-prime groups as

defined in SP800-56A rev. 3 Appendix D.

• For schemes using ECC, use one of the approved curves as defined in

SP800-56A rev. 3 Appendix D.

Obtain a key pair from domain parameters:

• For all schemes:

– Both parties must use validated parameters to generate a key pair.

– The Module generates the key establishment key pair according to the

required standards.

– Choose a FIPS Approved DRBG like HMAC DRBG to generate the

key pair.

– Both parties validate the key pair:

The Module provides the following APIs to explicitly validate the

public and private keys according to SP800-56A Rev.3:
com.rsa.crypto.PublicKey.isValid(SecureRandom

random) com.rsa.crypto.PrivateKey.isValid().

The module provides the APIs to explicitly validate the key pair

according to the

pairwise consistency requirements in SP800-56A Rev. 3:
com.rsa.crypto.KeyPair.validate(SecureRandom

random)

com.rsa.crypto.KeyPair.validate(AlgorithmParams

params, SecureRandom random)

If the key pair is generated with an approved method, then validation

is assumed.

• For schemes that use static key pairs, a public identifier must be:

– Authoritatively associated with the key pair.

– Associated with the public key to allow any peer to recognize the key

pair.

• For schemes that use ephemeral keys, the key pair must be:

– Used only for a single agreement transaction.

– Destroyed after use.

• For schemes that generate an FFC key pair from selected parameters,

the key pair must not be used to generate a digital signature.

Receive the peer's public key:

• For all schemes, the receiving party must validate the peer's public

key.

• For schemes that use static keys, the receiving party must have

assurance of:

– The peer's ownership of the private key.

– The identifier is bound to the public key.

Generate the Shared Secret:

• For all schemes, the shared secret must be:

– Used only as input to an approved KDF.

– Treated as a CSP and destroyed after use.

• If the shared secret generation fails then the party must destroy all

intermediate values.

Generate and Confirm Secret Key Material:

• For all schemes:

– Approved key-derivation method(s), including the format of

FixedInfo as specified in SP800-56A Rev. 3.

– When the shared secret is used as input to the KDF the outputs must

be used as secret keys.

– All key material must be generated before any of the keys are used.

– If key generation fails then the party must destroy all calculated

values.

– The shared secret, and any key material, is destroyed.

• For schemes that use key confirmation:

– Both parties must use a common, approved MAC to generate

confirmation values.

– The MAC key will be generated as one of the key material elements.

– The input values for MAC tag generation must be formatted as per

SP800-56A Rev. 3.

– The MAC key and tag lengths must satisfy the requirements of

SP800-56A Rev. 3.

– The MAC key must be destroyed after use.

– If confirmation fails then destroy all calculated values.

All key material is destroyed before it is used for any other purpose.

– Approved key confirmation technique(s) as specified in SP800-56A

Rev. 3.

Key Generation • When using an approved DRBG to generate keys, the security

strength of the DRBG must be at least as great as the security strength of

the key being generated. For details about the comparable security

strengths of symmetric block ciphers and asymmetric key algorithms refer

to Table 2 of NIST SP800-57 Part 1 Rev. 5.

• When generating key pairs using the KeyPairGenerator object,

the generate(boolean pairwiseConsistency) method must

not be invoked with an argument of false. Use of the no-argument

generate() method is recommended.

Digital Signatures • Keys used for digital signature generation and verification shall not

be used for any other purpose. The module generates keys with a particular

purpose that is either signing or encryption. The same purpose must

always be used for a given key when exported and loaded into the module

again.

• The length of an RSA key pair for digital signature generation must

be greater than or equal to 2048 bits. For digital signature verification, the

length must be greater than or equal to 2048 bits. However, 1024 bits is

allowed for legacy-use only. RSA keys shall have a public exponent of an

odd number, equal to or greater than 65537.

• The SHA-1 digest is disallowed for the generation of digital

signatures.

• For RSASSA-PSS: If nLen is 1024 bits, and the output length of the

approved hash function output block is 512 bits, then the length of the salt

(sLen) shall be 0<=sLen<=hLen – 2.

Otherwise, the length of the salt shall be 0 <=sLen<=hLen, where

hLen is the length of the hash function output block (in bytes or octets).

Password-based Key

Derivation

• Keys generated using PBKDF2 shall only be used in data storage

applications.

• Minimum Password Length:

The minimum length (L) of a password generated using a

cryptographically secure random password generator to provide a search

space of S entries depends on the size (N) of the character set:

L= ⸢log2S/log2
N⸣

The following provides examples for a password used by PBKDF2 where

S = 4.32 x 1020:

Character Set N L

Case sensitive (a-z, A-Z) 52 13

Case sensitive alpha numeric 62 12

All ASCII printable

characters except space 94 11

• A password of the strength S can be guessed at random with the

probability of 1 in 2S.

• The minimum length of the randomly-generated portion of the salt is

16 bytes.

• The iteration count is as large as possible, with a minimum of 10,000

iterations recommended.

• The maximum key length is(232 - 1)*b, where b is the digest size

of the message digest function in bytes.

• Derived keys can be used as specified in NIST SP800-132, Section

5.4, options 1 and 2.

XTS Mode Ciphers • AES in XTS mode is approved only for hardware storage

applications.

• The two keys used for XTS must be checked to ensure they are

different. This check is performed automatically by the module.

Table 13 Algorithm Requirements for Approved Mode of Operation

12 Mitigation of other attacks

RSA, EC, and DSA key operations implement blinding by default, a reversible way of modifying the

input data, to make the operation immune to timing attacks. Blinding has no effect on the algorithm other

than to mitigate attacks on the algorithm. For more information, see Timing Attacks on Implementations

of Diffie-Hellman, RSA, DSS, and Other Systems.

RSA, EC, and DSA blinding is implemented through blinding modes, for which the following options are

available:

• Blinding mode off.

• Blinding mode with no update, where the blinding value is squared for each

operation.

This mitigation is enabled by default. For optimum security, it should not be disabled. RSA signing

operations implement a verification step after private key operations. This verification step is in place to

prevent potential faults in optimized Chinese Remainder Theorem (CRT) implementations. It has no

effect on the signature algorithm. For more information, see Modulus Fault Attacks Against RSA-CRT

Signatures and

On the Importance of Eliminating Errors in Cryptographic Computations.

This mitigation is enabled by default. For optimum security, it should not be disabled.

RSA PKCS #1 v1.5 encryption padding operations are implemented in constant time in order to make the

operation immune to timing attacks. For more information, see Chosen Ciphertext Attacks Against

Protocols Based on the RSA Encryption Standard PKCS #1.

Time invariant comparisons are also used for HMAC and RSA verify operations. For this mitigation,

constant time padding is built-in and cannot be disabled.

https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-other-systems/
https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-other-systems/
https://eprint.iacr.org/2011/388
https://eprint.iacr.org/2011/388
https://link.springer.com/content/pdf/10.1007/s001450010016.pdf
http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf
http://archiv.infsec.ethz.ch/education/fs08/secsem/bleichenbacher98.pdf

