FIPS 140 - 3 Non-Proprietary Security Policy for:

Toshiba Secure TCG Opal SSC Self-Encrypting Drive Series

MG09ACP18TA and MG09ACP16TA

Prepared by:

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

Rev 2.3.1

TOSI	HIBA SECURE TCG OPAL SSC SELF-ENCRYPTING DRIVE SERIES	. 1
1.	GENERAL	. 3
1.1	ACRONYMS	.3
2.	CRYPTOGRAPHIC MODULE SPECIFICATION	. 4
2.1	PRODUCT VERSION	.4
2.2	ALL SECURITY FUNCTIONS	.4
3.	CRYPTOGRAPHIC MODULE INTERFACES	6
4.	ROLES, SERVICES, AND AUTHENTICATION	6
4.1	Roles	.7
4.2	Services	.8
5.	SOFTWARE/FIRMWARE SECURITY	L3
6.	OPERATIONAL ENVIRONMENT	L3
7.	PHYSICAL SECURITY	l3
8.	NON-INVASIVE SECURITY	l3
9.	SENSITIVE SECURITY PARAMETERS MANAGEMENT	L 4
10.	SELF-TESTS	L 6
11.	LIFE-CYCLE ASSURANCE	L 7
12.	MITIGATION OF OTHER ATTACKS	18

1. General

The Toshiba Secure TCG Opal SSC Self-Encrypting Drive Series (MG09ACP18TA and MG09ACP16TA) is used for hard disk drive data security. The security levels for this Cryptographic Module (CM) are as follows:

ISO/IEC 24759 Section 6.	FIPS 140-3 Section Title	Security
[Number Below]		Level
1	General	1
2	Cryptographic module specification	1
3	Cryptographic module interfaces	1
4	Roles, services, and authentication	1
5	Software/Firmware security	2
6	Operational environment	1
7	Physical security	1
8	Non-invasive security	N/A
9	Sensitive security parameter management	1
10	Self-tests	1
11	Life-cycle assurance	1
12	Mitigation of other attacks	N/A
	Overall Level	1

Table 1: Security Levels

This document is non-proprietary and may be reproduced in its original entirety.

1.1 Acronyms

TOEPP

AES	Advanced Encryption Standard
CM	Cryptographic Module
CSP	Critical Security Parameter
DRBG	Deterministic Random Bit Generator
EBG	Entropy Bit Generator
FW	Firmware
HMAC	Keyed-Hashing for Message Authentication code
KAT	Known Answer Test
LBA	Logical Block Address
PCA	Printed Circuit Assembly
POST	Power on Self-Test (pre-operational self-tests and conditional algorithm self-tests)
SoC	System on Chip
SSC	Security Subsystem Class
SED	Self-Encrypting Drive
SHA	Secure Hash Algorithm
SID	Security ID
TCG SWG	Trusted Computing Group Storage Work Group

Tested Operational Environment's Physical Perimeter

2. Cryptographic Module Specification

This CM provides various cryptographic services using approved algorithms. Services include hardware-based data encryption, cryptographic erase, independently protected user data LBA ranges, and FW Download. The CM always encrypts the user data, protects CSPs from unauthorized access, and provides secure sanitization methods by supporting TCG Opal SSC features. The operational rules described in this document adheres to TCG Opal.

This CM is a multiple-chip-embedded hardware cryptographic module. The cryptographic boundary of the CM is the entire HDD. The physical interface for power-supply and for communication is one SATA connector. The CM is connected with host system by this SATA connector. The logical interface is the SATA, TCG SWG and Opal SSC.

The CM has the non-volatile storage area for not only user data but also the keys, CSPs, and FW. The latter storage area is called the "system area", which is not logically accessible / addressable by the host application.

The CM has one approved mode of operation and CM is always in approved mode of operation. The CM provides only approved services defined in 4.2. Non-approved security functions are not implemented.

2.1 Product Version

The Toshiba Secure TCG Opal SSC SED has been validated in the following versions:

Model	Hardware [Pa Version]	rt Number	and	Firmware Version	Distinguishing Features
MG09ACP18TA	A0			PD82	SATA interface, 18TB
MG09ACP16TA	A0			PD82	SATA interface, 16TB

The tested platform is Toshiba Cryptographic Hardware 88i1215-B1. The CM does not employ any operating system.

Table 2: Cryptographic Module Tested Configuration

2.2 All Security Functions

The CM does not implement any non-approved algorithms allowed in the approved mode of operation. It does not implement any non-approved algorithms allowed in the approved mode of operation with no security claimed. It does not implement any non-approved algorithms not allowed in the approved mode of operation.

CAVP	Algorithm and	Mode/Method	Description / Key Size(s) /	Use/Function
Certs	Standard		Key Strength	
A1637	RSA, FIPS PUB	RSASSA-	Modulus: 3072bits,	Digital signature verification
	186-4	PKCS#1-v1_5	Key Strength: 128bits	
A1637	SHS, FIPS PUB	SHA2-256	-	Message digest for RSA
	180-4	(BYTE-only)		

CAVP	Algorithm and	Mode/Method	Description / Key Size(s) /	Use/Function
Certs	Standard		Key Strength	
A1638	AES, FIPS PUB	CBC	Key Size: 256bits,	Data encryption / decryption
	197-upd1,		Key Strength: 256bits	
	SP800-38A			
A1638	AES, FIPS PUB	ECB	Key Size: 256bits,	Data encryption / decryption
	197-upd1		Key Strength: 256bits	(used as a prerequisite for XTS mode)
A1638	AES, FIPS PUB	XTS	Key Size (Key_1):256bits,	Data encryption / decryption
	197-upd1,		Key Size (Key_2):256bits,	
	SP800-38E		Key Strength: 256bits	
A1638	HMAC, FIPS	SHA2-256	Key Size: 256bits,	Message authentication for
	PUB 198-1		Key Strength: 256bits,	data integrity verification of
			KS < BS	system area
A1638	SHS, FIPS PUB	SHA2-256	-	Message digest for HMAC
	180-4	(BYTE-only)		
A1645	Hash-DRBG,	SHA2-256	Prediction Resistance :	Deterministic random bit
	SP800-90A rev1		False	generation
A1645	SHS, FIPS PUB	SHA2-256	-	Message digest for DRBG
	180-4	(BYTE-only)		
ENT (P)	SP800-90B	-	-	Seed generation for Hash-
				DRBG
Vendor	CKG, SP800-	-	An output of the hash-	Key generation
Affirmed	133rev2		DRBG is directly used.	
			(Section 4 of SP800-	
			133rev2)	

There are algorithms, modes, and keys that have been CAVP tested but not used by the module. Only the algorithms, modes/methods, and key lengths/curves/moduli shown in this table are used by the module.

Table 3: Approved Algorithms

Figure 4 shows the CM's block diagram. In this diagram, the cryptographic boundary of the CM,

defined by the enclosure of the MG09ACP18TA and the MG09ACP16TA, is indicated by a dashed line. It includes the SATA connector, the SoC, the buffer DRAM, the flash ROM and the magnetic storage medium.

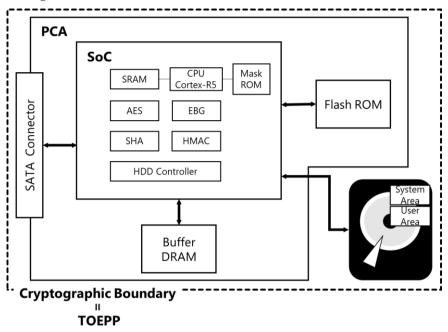


Figure 4: Block Diagram

3. Cryptographic Module Interfaces

The CM does not implement any control output interface.

Physical port	Logical interface	Data that passes over port / interface
SATA connector	Data input interface	User data, FW data
SATA connector	Data output interface	User data
SATA connector	Control input interface	SATA control input data (ex. command frame,
		data frame)
N/A	Control output interface	N/A
SATA connector	Status output interface	SATA status output data (ex. response frame,
		data frame)
SATA connector	Power interface	N/A

All data, status, control, and power interfaces above use a single SATA connector that contains multiple pins for power supply, data transmission, and signal exchange.

Table 4: Ports and Interfaces

4. Roles, Services, and Authentication

This section describes roles and services the CM supports. The CM supports 16 Crypto Officer roles listed in Table 5. The roles listed in Table 5 are all Crypto Officer roles.

The CM does not implement any Non-Approved Services.

4.1 Roles

Role ¹	Service	Input	Output	
LockingSP.Ad min1 LockingSP.Ad min4	Enable / Disable LockingSP Admin/User Range Lock/Unlock Set range position and size TCG Reactivate TCG Cryptographic Erase (Erase) TCG Cryptographic Erase (GenKey) Zeroization (without RKey)	Trusted Send command	Command response	
Master	Cryptographic erase Range Lock/Unlock Firmware Download ²	ATA Security Erase command ATA Security Unlock command ATA Security Unlock command and Download Microcode command with FW	Command response	
	Enable ATA Role Exit ATA Mode	ATA Security Set Password command ATA Security Disable Password command		
User	Cryptographic erase Range Lock/Unlock Firmware Download	ATA Security Erase command ATA Security Unlock command ATA Security Unlock command and Download Microcode with FW	Command response	
	Enable ATA Role Exit ATA Mode	ATA Security Set Password command ATA Security Disable Password command		
LockingSP.Us er1 LockingSP.Us er9	Range Lock/Unlock Set range position and size TCG Cryptographic Erase (Erase) TCG Cryptographic Erase (GenKey) ³	Trusted Send command	Command response	
AdminSP.SID	TCG activate Firmware Download	Trusted Send command Trusted Send command and Download Microcode command with FW	Command response	

¹ TCG Authority (LockingSP.Admin1-4, AdminSP.Admin1, LockingSP.User1-9 or AdminSP.SID) can be assumed by using TCG Start Session method, while ATA Security role (Master or User) can be assumed by using ATA Security command.

² When the Master password capability is set to "High" by User.

 $^{^3}$ Available only when the CM uses TCG Single User Mode functionality. The CM is always in 140-3 approved mode of operation regardless of this functionality.

Role ¹	Service	Input	Output
None	Reset (run POSTs)	Power on reset command	Command response
	Data read / write	Read/Write commands with User data	Command response, User data
	Random number generation	Trusted Send command	Command response, Random number
	Show status	Read Status Register command	Command response, Status
	Zeroization (with RKey) (using PSID)	Trusted Send command	Command response
	Cryptographic Sanitization	Sanitize command	
	Show versioning information	Identify Device command	Command response, Versioning information
	Non-security relevant HDD service	ATA command	Command response

Table 5: Roles, Service Commands, Input and Output

4.2 Services

The CM supports two security modes: ATA security mode and TCG Opal security mode. A set of available services is different depending on the mode.

The CM also supports the TCG Single User Mode functionality defined in the Single User Mode feature set of TCG Opal. A single role (LockingSP.Userx) is assigned to manage the associated range (range X) during the TCG single user mode. The LockingSP.Reactivate or LockingSP.Activate method enables this mode. Authorized roles of some services differ when the CM is in single user mode. About such services, the Role(s) column in Table 6 is divided into two rows. The upper row shows authorized roles in non-single user mode (normal mode), while the lower row shows authorized roles against range X in single user mode.

The CM provides the following services to operators per Section 7.4.3.1 of ISO/IEC 19790_2012_2015:

- Show module's versioning information: Show versioning information service
- Show status: Show Status service
- Perform self-test: Reset (run POSTs) service
- Perform zeroization: Zeroization (with RKey) service, Zeroization (without RKey) services

• Perform approved security functions: Services indicated with Approved Security Functions in Table 6

The modes of access to SSPs shown in Table 6 are defined as:

G = Generate: The module generates or derives the SSP.

R = Read: The SSP is read from the module (e.g. the SSP is output).

W = Write: The SSP is updated, imported, or written to the module.

E = Execute: The module uses the SSP in performing a cryptographic operation.

Z = Zeroise: The module zeroises the SSP.

Service	Description	Approved Security Functions	Keys and/or SSPs	Role(s)	Access rights to Keys and/or SSPs	Indicator
Cryptographic Erase	Erase user data (in cryptographic means) by changing the data encryption key, disable Master/User roles and transition to non-ATA security mode. Method: ATA SECURITY ERASE PREPARE command and ATA SECURITY ERASE UNIT command in ATA security mode	Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P) CKG	MEK(s) RKey	Master User	G, Z E	Command
Data read/write (decrypt/encry pt)	Encryption / decryption of unlocked user data to/from range Method: ATA READ, WRITE commands in ATA security mode or TCG Opal security mode	AES256-XTS	MEK(s)	None	Е	Command response
Enable /Disable LockingSP Admin/User	Enable/Disable LockingSP Admin/User (except for- Single-User-Data-Range User) Authority Method: TRUSTED SEND command (TCG Set Method) in TCG Opal security mode	HMAC SHA2- 256(A1638)	N/A	LockingSP.A dminx	N/A	Command response
Random Number generation	Provide a random number generated by the CM Method: TRUSTED SEND command (TCG Random) in TCG Opal security mode	Hash_DRBG SHA2- 256(A1645)	DRBG C Vector DRBG V Vector	None ⁴	E E	Command response

⁴ Except for User, Master

Service	Description	Approved Security Functions	Keys and/or SSPs	Role(s)	Access rights to Keys and/or SSPs	Indicator
Range Lock/Unlock	Block or allow read (decrypt) / write (encrypt) of user data in a range. Locking also requires read/write locking to be enabled Method: -TRUSTED SEND command (TCG Set Method) in TCG Opal security mode -ATA SECURITY UNLOCK command in ATA security mode	HMAC SHA2- 256(A1638)	RKey MEK(s)	LockingSP.A dminx/Loc kingSP.Use rx (LockingSP is active) or User/Master 5 (ATA Security is enable) LocknigSP. Userx	E E	Command response
Set range position and size	Set the location and size of the LBA range Method: TRUSTED SEND command (TCG Set Method) in TCG Opal security mode	Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P) CKG	MEK(s) RKey	LockingSP.A dminx LockingSP.A dminx or LockingSP. Userx	G E	Command response
Reset (run POSTs)	Perform self-tests and delete CSPs in SRAM Method: Power on reset command	RSASSA- PKCS#1-v1_5 SHA2- 256(A1637)	DRBG C Vector DRBG V Vector Seed RKey	None	G, Z G, Z G, E, Z E	Command response
TCG reactivate	Switch from/to TCG Opal single user mode Method: -TRUSTED SEND command (TCG Reactivate) in TCG Opal security mode	HMAC SHA2- 256(A1638)	N/A	LockingSP.A dminx	N/A	Command response
Show Status	Report status of the CM Method: -Read STATUS REGISTER command (50/51h)	N/A	N/A	None	N/A	Command response
TCG Activate	Activate LockingSP and transition to TCG Opal security mode Method: TRUSTED SEND command (AdminSP.activate) before transitioning to TCG Opal security mode	Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P)	MEK(s) (except for Global Range) RKey	AdminSP.SI D	G E	Command response

 $^{^{5}\,}$ When the Master password capability is set to "High" by User.

103111						
Service	Description	Approved Security Functions	Keys and/or SSPs	Role(s)	Access rights to Keys and/or SSPs	Indicator
TCG Cryptographic Erase (Erase)	Erase user data (in cryptographic means) in an LBA range by changing the data encryption key. This method is available only in single user mode. Method: TRUSTED SEND command (TCG Erase) in	Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P)	MEK(s) RKey	N/A LocknigSP. Userx LockingSP.A	G, Z E	Command response
TCG Cryptographic Erase (GenKey)	TCG Opal security mode Erase user data (in cryptographic means) in an LBA range by changing the data encryption key. Method: TRUSTED SEND command (TCG GenKey) in TCG Opal security mode	CKG Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P) CKG	MEK(s) RKey	dminx LockingSP.A dminx LockingSP. Userx	G, Z E	Command response
Zeroization (with RKey)	Initialize the CM by zeroizing a root key (RKey), MEKs, and range configuration, and transition to non-TCG Opal security mode. Method: TRUSTED SEND command (- AdminSPObj.Revert ⁶) in TCG Opal security mode	Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P) CKG	MEK(s) RKey	None (using PSID ⁷)	G, Z G, E, Z	Command response
Zeroization (without Rkey)	Initialize the CM by zeroizing MEKs, and range configuration, and transition to non-TCG Opal security mode. Method: TRUSTED SEND command (- LockingSP.RevertSP ⁶ - LockingSPObj.Revert ⁶) in TCG Opal security mode	Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P)	MEK(s) RKey	LockingSP.A dminx	G, Z E	Command response

 $^{^{6}\} Admin SPObj. Revert, Locking SP. Revert SP, Locking SPObj. Revert\ are\ methods\ of\ TCG\ Opal\ SSC.$

⁷ PSID (Printed SID) is public drive-unique value which is used for the TCG Revert AdminSP method. PSID is printed on the HDD's product label.

Service	Description	Approved Security Functions	Keys and/or SSPs	Role(s)	Access rights to Keys and/or SSPs	Indicator
Firmware Download	Enable / Disable firmware download and load a part of a firmware image. If the firmware load test passes, the CM will run with the new code. Method: -TRUSTED SEND command (TCG Set Method), DOWNLOAD MICROCODE command in TCG Opal security mode -ATA SECURITY UNLOCK command, DOWNLOAD MICROCODE command in ATA security mode	RSASSA- PKCS#1-v1_5 SHA2- 256(A1637) HMAC SHA2- 256(A1638)	PubKey	AdminSP.SI D User Master ⁸	E	Command
Cryptographic Sanitization	Erase user data by changing the data encryption key. This service is available only when all ranges are unlocked. Method: SANITIZE CRYPTO SCRAMBLE EXT command in ATA security mode or TCG Opal security mode	Hash_DRBG SHA2- 256(A1645) AES256-CBC HMAC SHA2- 256(A1638) ENT (P)	MEK(s) RKey	None	G, Z E	Command response
Show versioning information	Output the model name, HW version and FW version of the CM. Method: IDENTIFY DEVICE command with Word 23-26 (FW version), Word 135 (HW version)	N/A	N/A	None	N/A	Command response
Non-security relevant HDD service	Provide a HDD general service Method: ATA commands	N/A	N/A	None	N/A	Command response
Enable ATA role	Enable User/Master role and transition to ATA security mode. Method: ATA SECURITY SET PASSWORD command before transitioning to ATA security mode	HMAC SHA2- 256(A1638)	N/A	User Master ⁹	N/A	Command response

When the Master password capability is set to "High" by User.
 Each role is enabled by itself.

Service	Description	Approved Security Functions	Keys and/or SSPs	Role(s)	Access rights to Keys and/or SSPs	Indicator
Exit ATA mode	Disable User role and transition to non-ATA security mode. Method: ATA SECURITY DISABLE PASSWORD command in ATA security mode	HMAC SHA2- 256(A1638)	N/A	User Master ¹⁰	N/A	Command response

Table 6: Approved Services

Software/Firmware Security

FW integrity check is performed at power on. Signature verification using RSASSA-PKCS#1-v1_5 of the FW codes (in the flash ROM and in the disk media) and EDC verification of the FW code in the Mask ROM are done. The operator can initiate the on-demand FW integrity check by power cycling. All firmware components are in executable form, which cannot be dynamically modified.

6. Operational Environment

The CM is a hardware module and operates in a non-modifiable operational environment, that is its firmware cannot be modified and no code can be added or deleted. SSPs are controlled by the CM itself, and uncontrolled access to CSPs and uncontrolled modifications of SSPs are prevented.

Although firmware can be updated by "Firmware Download" service, whole FW codes (in the flash ROM and in the disk media) are replaced by this service, and the module becomes another module which requires new 140-3 certification.

7. Physical Security

The CM has the following physical security:

- Production-grade components with standard passivation
- Exterior of the drive is opaque

The operator is required to periodically inspect the enclosure condition of the CM.

8. Non-Invasive Security

The CM does not employ non-invasive mitigation techniques referenced in NIST SP800-140F.

9. Sensitive Security Parameters Management

The CM uses SSPs in the following tables:

Key/SSP/Name/ Type	Strength	Security function and cert. number	Generation	Import/ export	Establishment	Storage	Zeroization	Use & related keys
MEKs/ CSP/ Symmetric	256	AES- XTS(A1638)	By Hash- DRBG (A1645) CKG, SP800- 133rev2 Compliant with IG C.I (Key_1 ≠ Key_2)	No	After "Cryptographic Erase", "Zeroizati on (with RKey / without RKey)", "TCG Cryptographic Erase (Erase / GenKey)", "Cryptographic Sanitization", "TCG Activate", and "Set range position and size" services. In the factory By "Range Lock/Unlock" service. By "Reset" service (when the associated range is	Encrypte d by RKey / in System area /Static Plain/ in SRAM (SoC	"TCG Cryptograph ic Erase (Erase / GenKey)", and "Cryptograp hic Sanitization"	User data encryption and decryption (only for storage purpose) Encrypted and decrypted by RKey
Rkey/ CSP/ Symmetric	256	AES- CBC(A1638)	By Hash- DRBG (A1645) CKG, SP800- 133rev2	No	unlocked) After "Zeroization (with Rkey)" service. In the factory By "Cryptographic Erase", "Zeroization (with RKey / without RKey)", "TCG Cryptographic Erase (Erase / GenKey)", "Cryptographic Sanitization", "TCG Activate", "Set range position and	Plain/ in SRAM	By "Zeroization (with RKey)" service (explicitly)	Encryption and decryption of MEKs

Key/SSP/Name/		Security function and	Generation	Import/	Establishment	Storage	Zeroization	Use & related keys
Type		cert. number		export				
					size", and "Range Lock/Unlock" services.			
					By "Reset" service (when the range is unlocked)			
Seed/ CSP/ DRBG seed ¹¹	N/A ¹²	Hash- DRBG(A1645), Entropy source	By Entropy source	No	At instantiation (SP800-90Arev1)		By power-off (implicitly)	Instantiation of Hash_DRBG
DRBG C Vector/ CSP/ internal state	N/A ¹²	Hash- DRBG(A1645)	By DRBG	No	At instantiation (SP800-90Arev1)			Random number generation
DRBG V Vector/ CSP/ internal state	N/A ¹²	Hash- DRBG(A1645)	By DRBG	No	At instantiation (SP800-90Arev1)			Random number generation
PubKey/ PSP/ Public		RSASSA- PKCS#1- v1_5(A1637)	Manufacturi ng	No	In the factory	Plain / Embedde d in FW in system area /Static	"Firmware Download" service	Signature verification
	128	71_04110017			By "Ermyroro	Plain/ in SRAM	By power-off (implicitly)	

Table 8: SSPs

Note that there is no security-relevant audit feature and audit data.

Entropy sources	Minimum number of bits of	Details
	entropy	
Entropy source	0.6 / 1	Physical noise source used to seed the approved Hash-DRBG. The overall amount of generated entropy is 48 bytes. This entropy source meets NIST SP800-90B requirements.

Table 9: Non-Deterministic Random Number Generation Specification

If the source may deteriorate to the point when the generation of the sufficient amount of entropy can no longer be guaranteed, health test detects the source deterioration, enter an error state, and

¹¹ Entropy input string and nonce.

 $^{^{\}rm 12}\,$ The security strength of Hash_DRBG is 256 bits.

halts the CM. When the CM continuously enters in error state in spite of several trials of reboot, the CM shall be sent back to factory to recover from error state.

10. Self-Tests

The CM runs self-tests in the following table.

Function	Self-test type	Description	Operator initiation	Failure behavior
Firmware integrity check	Pre-operational software/firmware integrity test	EDC (32bits) verification of the firmware in the Mask ROM Signature verification	Power-cycle	Boot error state The CM is not accessible via SATA interface Boot error state
		of the firmware in the flash ROM by RSASSA-PKCS#1- v1_5 with a 3072-bit Modulus using "PubKey2"		The CM is not accessible via SATA interface
		Signature verification of the firmware in the disk media by RSASSA-PKCS#1-v1_5 with a 3072-bit Modulus using "PubKey2"		Boot error state The CM is not accessible via SATA interface
AES CBC	Conditional cryptographic algorithm test	Encrypt KAT with a 256-bit key Decrypt KAT with a 256-bit key	Power-cycle	Boot error state The CM is not accessible via SATA interface
AES XTS	Conditional cryptographic algorithm test	Encrypt KAT with a 256-bit key Decrypt KAT with a 256-bit key	Power-cycle	
SHA2- 256(A1637)	Conditional cryptographic algorithm test	Digest KAT	Power-cycle	
SHA2- 256(A1638)	Conditional cryptographic algorithm test	Digest KAT	Power-cycle	
SHA2- 256(A1645)	Conditional cryptographic algorithm test	Digest KAT	Power-cycle	
Hash DRBG	Conditional cryptographic algorithm test	DRBG KAT	Power-cycle	
HMAC	Conditional cryptographic algorithm test	Digest KAT	Power-cycle	
RSASSA- PKCS#1-v1_5	Conditional cryptographic algorithm test	Signature verification KAT with a 3072-bit Modulus	Power-cycle	

Entropy source	Conditional cryptographic algorithm test	SP800-90B Start-up health test (repetition count test, adaptive proportion test)	Power-cycle	Boot error state The CM is not accessible via SATA interface
		SP800-90B Continuous health test (repetition count test, adaptive proportion test)	Power-cycle	Error state (conditional test) Status Field: 0x53, Error Field: 0x04
Firmware load test	Conditional software/firmware load test	Signature verification of firmware image by RSASSA-PKCS#1- v1_5 with a 3072-bit Modulus	N/A	Error state (FW Load Test) Status Field: 0x53, Error Field: 0x04 The CM discards the new firmware image, then enters the Idle state

The public verification key "PubKey2" used in firmware integrity check resides within the MaskROM code and is not a SSP.

SHA2-256(A1637) is embedded in RSASSA-PKCS#1-v1_5, while SHA2-256(A1638) is used in HMAC, and SHA2-256(A1645) is employed in Hash DRBG.

Table 10: Self-Tests

If the CM fails the self-test, it enters one of three error states: Error State (Conditional Test), Error State (FW Load Test), or Boot Error State. If the SP800-90B continuous health test fails, it enters Error State (Conditional Test); if the firmware load test fails, it goes to Error State (FW Load Test); and for other self-tests, it transitions to Boot Error State. The status indicator for each error state is specified in Table 10 (e.g., The "Random Number Generation" service resulting in "Status Field: 0x53, Error Field: 0x04" indicates that the CM is currently in Error State (Conditional Test)).

When in the error state, the CM does not perform any cryptographic operations or output data. A power cycle is required to clear the error state. When the CM continuously enters the error state despite several reboot attempts, the CM should be returned to the factory for recovery from the error state.

The CM does not support any degraded operation.

11. Life-Cycle Assurance

The following are the secure initialization procedure for the CM.

The CM is always in approved mode of operation in a deployed environment. In addition to this, the following procedure of initial settings will allow further secure operation during power cycling.

Initialization in TCG Opal security mode:

Please refer to TCG Opal specification (TCG Storage Security Subsystem Class: Opal Version 2.01 Revision 1.00) for the details.

(1) Activate LockingSP by "TCG Activate" service.

- (2) Set LockOnReset in Download port to "Power Cycle". 13
- (3) Set ReadLockEnabled and WriteLockEnabled to 1(true) and LockOnReset to "Power Cycle". 14
- (4) Do a power-on reset.

Initialization in ATA security mode:

- (1) Enable ATA role (Master) with "Enable ATA role" service.
- (2) Enable ATA role (User) with "Enable ATA role" service and set Master Password Capability to "Maximum".
- (3) Disable Software Settings Preservation (SSP) feature set. 13,14
- (4) Do a power-on reset.

The longest service life of the CM under suitable conditions and treatment is 5 years. By the end of this period the operator is required to follow the CM's end of life procedures below.

- (1) Initialize internal sensitive data in the host system.
- (2) Initialize parameters and user information in the CM by "Zeroization (with RKey)" service.

For additional details, refer to the guidance documents provided with the CM:

- 3.5 type SATA Hard Disk Drives Product Specification
- 3.5 type SATA Hard Disk Drives Interface Specification
- 3.5 type Hard Disk Drives SED Specification
- Toshiba SED HDD FIPS140-2/3 Use case Rev.6.0

12. Mitigation of Other Attacks

The CM does not mitigate other attacks beyond the scope of 140-3 requirements.

¹³ This procedure configures the CM to disable Firmware Download feature after power-cycling.

¹⁴ This procedure configures the CM to lock all range(s) after power-cycling.