

HP Endpoint Security Controller Cryptographic Library

Hardware Version 2.1.3

FIPS 140-3 Non-Proprietary Security Policy

Version 1.1

Last update: 2024-09-12

Prepared by:

atsec information security corporation 4516 Seton Center Parkway, Suite 250 Austin, TX 78759 www.atsec.com

1 Table of Contents

1	Ger	nera	l	3
2	Cry	ptog	graphic Module Specification	4
	2.1	Мо	de of Operation	4
	2.2	Sec	curity Functions	4
	2.3	Мо	dule Overview	6
3	Cry	ptog	graphic Module Ports and Interfaces	8
4	Rol	es, s	services, and authentication	9
5	Sof	twa	re/Firmware Security	13
	5.1	Sof	tware/Firmware Integrity Technique	. 13
6	Оре	erati	ional Environment	14
7	Phy	sica	al Security	15
8	Noi	า-inง	asive Security	16
9	Ser	siti	ve Security Parameter Management	17
	9.1	Rar	ndom Number Generation	. 19
	9.2	Key	//SSP Generation	. 19
	9.3	Key	//SSP Establishment	. 19
	9.4	Key	//SSP Entry and Output	. 20
	9.5	Key	//SSP Storage	. 20
	9.6	Key	//SSP Zeroization	. 20
1() Sel	f-tes	sts	21
	10.1	Pre	-Operational Self-Tests	. 21
	10.2	Cor	nditional Self-Tests	. 21
	10.2	2.1	Conditional Cryptographic Algorithm Self-Tests	. 21
	10.2	2.2	Conditional Pair-Wise Consistency Test	. 22
	10.2	2.3	Periodic Self-Test	. 22
	10.3	Sel	f-Test Error Handling	. 22
1:	L Life	е-сус	cle assurance	23
	11.1	Del	ivery and Operation	. 23
	11.2	Cry	pto Officer Guidance	. 23
	11.3	Ope	erator Guidance	. 23
	11.3	3.1	End of Life	. 23
	11.3	3.2	RSA Key Wrapping	. 23
1) M:+	iast	ion of other attacks	25

1 General

This document is the non-proprietary FIPS 140-3 Security Policy for Hardware version 2.1.3 of the HP Endpoint Security Controller Cryptographic Library. It has a one-to-one mapping to the [SP 800-140B] starting with section B.2.1 named "General" that maps to section 1 in this document and ending with section B.2.12 named "Mitigation of other attacks" that maps to section 12 in this document. This document also contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for a Security Level 1 module. Table 1 describes the individual security areas of FIPS 140-3, as well as the Security Levels of those individual areas:

ISO/IEC 24759 Section 6. [Number Below]	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic Module Specification	1
3	Cryptographic Module Interfaces	1
4	Roles, Services, and Authentication	1
5	Software/Firmware Security	Not Applicable
6	Operational Environment	1
7	Physical Security	1
8	Non-invasive Security	Not Applicable
9	Sensitive Security Parameter Management	1
10	Self-tests	1
11	Life-cycle Assurance	1
12	Mitigation of Other Attacks	Not Applicable

Table 1 - Security Levels

2 Cryptographic Module Specification

The HP Endpoint Security Controller Cryptographic Library cryptographic module (hereafter referred to as "the module") is a Hardware Single Chip cryptographic module. More specifically, the module is considered a sub-chip cryptographic subsystem as defined in IG 2.3.B. This module validation is a re-branding of a sub-chip cryptographic subsystem that was previously validated under Certificate #4603.

The module has been tested by atsec CST lab on the following platforms:

Model ¹	Hardware [Part Number and Version]	Firmware Version	Tested Platform
Notebook Embedded Controller (EC)	2.1.3	N/A	Nuvoton NPCX998H
Desktop Super I/O (SIO)	2.1.3	N/A	Nuvoton NPCD321H

Table 2 - Cryptographic Module Tested Configuration

2.1 Mode of Operation

The module supports approved services in a FIPS approved mode of operation. There are no allowed algorithms used in approved mode. There are no non-approved algorithms used in the approved mode with no security claimed. There are no non-approved algorithms used in a non-approved mode.

2.2 Security Functions

The Table 3 below lists all security functions of the module, including specific key strengths employed for approved services, and implemented modes of operation.

Cart	Algorithm and Standard		Description / Key / Curve / Modulus Size(s)	Use / Function	
A1347	AES [SP 800-38 A] [SP 800-38 C]	CBC ECB CCM OFB CFB128	128, 192, 256 bits	AES Encryption and AES Decryption	
	AES [SP 800-38 A]	CTR	128, 192, 256 bits		

© 2024 HP Inc. / atsec information security.

¹ Both the EC and SIO components are rebranded as the HP Endpoint Security Controller and are used in select HP Commercial PC products including Notebooks, Desktops, Desktop Workstations, Mobile Workstations, Retail Point of Sale Terminals, and Thin Clients.

CAVP Cert	Algorithm and Standard	Mode / Method	Description / Key / Curve / Modulus Size(s)	Use / Function
	AES [SP 800-38 D]	GCM ² [1]	128, 192, 256 bits	
	AES [SP 800-38 B]	СМАС	128, 192, 256 bits	CMAC Message Authentication Code Generation and CMAC Message Authentication Code Verification
	AES [SP 800-38 D]	GMAC	128, 192, 256 bits	GMAC Message Authentication Code Generation and GMAC Message Authentication Code Verification
	HMAC [FIPS 198-1]	HMAC-SHA2-256 HMAC-SHA2-384 HMAC-SHA2-512	256, 384, 512 bits	HMAC Message Authentication Code Generation
	RSA [FIPS 186-4]	RSA-PSS using SHA2- 256, SHA2-384 or SHA2-512 RSA-PKCS#1 v1.5 using SHA2-256, SHA2-384 or SHA2-512	2048 or 3072 modulus	RSA Signature Generation, RSA Signature Verification
	KTS-IFC [SP800-56Brev2]	KTS-OAEP-basic	2048 or 3072 modulus	RSA Key Transport (key wrapping and un-wrapping)
	ECDSA [FIPS 186-4]	B.4.2 Testing Candidates	P-256, P-384, P-521 curves	ECDSA Key Generation
		NA	P-256, P-384, P-521 curves	ECDSA Key Verification
		SHA2-256, SHA2-384, SHA2-512	P-256, P-384, P-521 curves	ECDSA Signature Generation, ECDSA Signature Verification
		N/A	P-256, P-384, P-521 curves	ECDSA Signature Generation Component
	SHS [FIPS 180-4]	SHA2-256 SHA2-384 SHA2-512	N/A	Message Digest Generation
	KAS-ECC-SSC [SP800-56Arev3]	ephemeralUnified	P-256, P-384, P-521 curves	EC Diffie-Hellman Shared Secret Computation

_

² The module's AES-GCM implementation conforms to IG C.H scenario 2. The module uses the approved Hash_DRBG to generate the IV with a length of 96-bits. The entropy source producing the DRBG seed is located inside the module's cryptographic boundary

^{© 2024} HP Inc. / atsec information security.

Cart	Algorithm and Standard		Description / Key / Curve / Modulus Size(s)	Use / Function	
	Hash_DRBG [SP800-90A]	SHA2-512	512	Random Number Generation	
Vendor Affirmed	CKG (Cryptographic Key Generation) [SP800-133rev2]	SP800-133rev2 Section 4: direct output U from approved DRBG; no XOR, no post-processing	N/A	ECDSA Key Generation	
N/A	ENT(P) [SP800-90B]	N/A	Used to seed the SP800-90A DRBG	Random Number Generation	

Table 3 - Approved Algorithms

2.3 Module Overview

Figure 1 depicts the module's block diagram with a red outline indicating the Tested Operational Environment's Physical Perimeter (TOEPP) of the NPCX998H and the NPCD321H and the blue dotted outline depicting the cryptographic boundary of the sub-chip embedded within the physical perimeter.

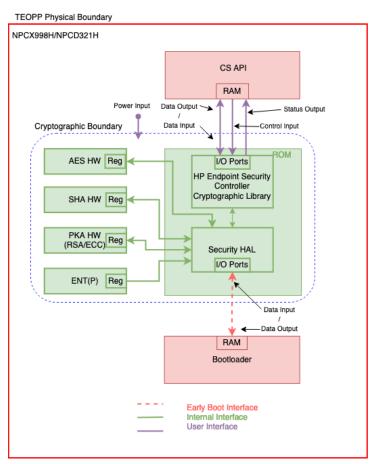


Figure 1 - [Block Diagram]

 $\ ^{\ }$ 2024 HP Inc. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Figure 2 and 3 shows a picture of the NPCX998H (e.g., EC) and the NPCD321H (e.g., SIO) in which the sub-chip module is embedded.

Figure 2: Nuvoton NPCX998HA0BX

Figure 3: Nuvoton **NPCD321H**A0DX

3 Cryptographic Module Ports and Interfaces

The underlying logical interfaces of the module are the module's C language Application Programming Interfaces (APIs). All data input and data output, status ports and control ports are directed through the interface of the module's logical component, which are the APIs while the physical interface is considered the I/O ports of the sub-chip module through which the data input and data output, status output and control input traverse.

Physical Interface	Logical Interface ³	Data that passes over port/interface
I/O Ports	Data Input	Data inputs are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers
I/O Ports	Data Output	Data outputs are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers
I/O Ports	Control Input	Control inputs which control the operation of the module are provided through dedicated parameters.
I/O Ports	Status Output	Status output is provided in return codes and through messages. Documentation for each API lists possible return codes. A complete list of all return codes returned by the C language APIs within the module is provided in the header files and the API documentation. Messages are documented also in the API documentation.
Power Port	Power Interface	Power interface is provided internally by TEOPP in which the cryptographic module is embedded.

Table 4 - Ports and Interfaces

© 2024 HP Inc. / atsec information security.

³ The module does not implement a Control Output interface.

4 Roles, services, and authentication

The module supports two authorized roles: A Crypto Officer Role and a User Role. No support is provided for a Maintenance operator. The module does not implement a bypass mode nor concurrent operators.

When a device is delivered, the Crypto Officer is responsible for initializing the module i.e., configure the device by properly setting up key registers for storage of keys/CSPs. The Crypto Officer is implicitly assumed. The User can perform services from Table 5 and 5a only after the Crypto Officer takes possession by initializing it, thus creating data to be protected is generated. The Users of the module are software applications that implicitly assume the User Role when requesting any cryptographic services provided by the module.

FIPS 140-3 does not require authentication mechanism for level 1 modules. Therefore, the module does not implement an authentication mechanism.

The module only implements Approved security functions in an Approved mode. The Table 5 below lists services available. The module provides an approved service indicator by receiving a return code of "NCL_STATUS_OK to indicate that the service executed an approved security function.

NOTE: The module does not implement any non-Approved Algorithms in the Approved Mode of Operation (neither with nor without security claim). The module does not implement any non-approved security functions.

The abbreviations of the access rights to keys and SSPs have the following interpretation:

G = **Generate**: The module generates or derives the SSP.

R = **Read**: The SSP is read from the module (e.g., the SSP is output).

W = **Write**: The SSP is updated, imported, or written to the module.

E = **Execute**: The module uses the SSP in performing a cryptographic operation.

Z = **Zeroise**: The module zeroises the SSP.

Service	Description	Inputs	Security	Keys and/or SSPs	S	Access rights to Keys and/or SSPs	Indicator
AES Encryption	Data Encryption	AES key and plain text	AES-CBC AES-ECB AES-CCM AES-OFB AES-CFB128 AES-CTR AES-GCM	AES key	Use r	W, E	NCL STATUS OK
AES Decryption	Data Decryption	AES key and cipher text	AES-CBC AES-ECB AES-CCM AES-OFB AES-CFB128 AES-CTR AES-GCM	AES key	Use r	W, E	NCL STATUS OK

Service	Description	Inputs	Outputs	Approved Security Functions	Keys and/or SSPs	S	Access rights to Keys and/or SSPs	Indicator
CMAC Message Authenticatio n Code Generation	Message Authenticati on Code Generation	AES key and message M	МАС Т	AES-CMAC	AES key	Use r	W, E	NCL STATUS OK
CMAC Message Authenticatio n Code Verification	Message Authenticati on Code Verification	MAC and Message	"VALID" or "INVALID"	AES-CMAC	AES key	Use r	W, E	NCL STATUS OK
GMAC Message Authenticatio n Code Generation	Message Authenticati on Code Generation	AES key, AAD	authenticati on tag T	AES-GMAC	AES key	Use r	W, E	NCL STATUS OK
GMAC Message Authenticatio n Code Verification	Message Authenticati on Code Verification	AES key, AAD, IV, tag T	"PASS" or "FAIL"	AES-GMAC	AES key	Use r	W, E	NCL STATUS OK
HMAC Message Authenticatio n Code Generation	Message Authenticati on Code Generation	HMAC key and message	MAC	HMAC-SHA2- 256 HMAC- SHA2-384 HMAC-SHA2- 512	HMAC key	Use r	W, E	NCL STATUS OK
Message Digest Generation	SHS Message Digest Generation	message	digest (hash value)	SHA2-256 SHA2-384 SHA2-512	none	Use r	N/A	NCL STATUS OK
RSA Key Transport (encapsulati on)	Key Wrapping using KTS- OAEP-basic	RSA public key and key to be wrapped	encrypted key	KTS-IFC	RSA public key	Use r	W, E	NCL STATUS OK
RSA Key Transport (un- encapsulatio n)	Key Un- wrapping using KTS- OAEP-basic	RSA private key and key to be un- wrapped	plaintext key	KTS-IFC	RSA private key	Use r	W, E	NCL STATUS OK
RSA Digital Signature Generation	Digital Signature Generation	RSA private key and message	signature	RSA-PSS, RSA-PKCS#1 v1.5 Signature Generation, HMAC_DRBG	RSA private key	Use r	W, E	NCL STATUS OK
RSA Digital Signature Verification	Digital Signature Verification	RSA public key and signature		RSA-PSS, RSA-PKCS#1 v1.5 Signature Verification	RSA public key	Use r	W, E	NCL STATUS OK
ECDSA Digital Signature Generation	Digital Signature Generation	ECDSA private key and message	signature	ECDSA Digital Signature Generation, HMAC_DRBG	ECDSA private key	Use r	W, E	NCL STATUS OK

© 2024 HP Inc. / atsec information security.

Service	Description	Inputs	Outputs	Approved Security Functions	Keys and/or SSPs	S	Access rights to Keys and/or SSPs	Indicator
Digital Signature	Signature Generation Component	ECDSA private key and message digest		ECDSA Digital Signature Generation Component, HMAC_DRBG	ECDSA private key	Use r	W, E	NCL STATUS OK
	Signature Verification	ECDSA public key and signature	False	ECDSA Digital Signature Verification	ECDSA public key	Use r	W, E	NCL STATUS OK
	Asymmetric Key Pair Generation	Curve size	private and public key	ECDSA Key Generation, HMAC_DRBG, CKG	ECDSA Key pair	Use r	G, R	NCL STATUS OK
Hellman Shared	Shared Secret Computatio	received public key and possesse	shared secret	KAS-ECC-SSC	ECDH public key	Use r	W, E	NCL STATUS OK
Computation	n using Elliptic Curve Cryptograp	d private key			ECDH private key		E	
	hy				shared secret		G, R	
	Deterministi c Random Number Generation	Seed	random numbers	Hash_DRBG	Entrop y input string, nonce	Use r	W	NCL STATUS OK
					seed, V, and C		G	
	Outputs Module Name + Version Number	None	Module Name + Module Version Number	N/A	None	Use r	N/A	N/A
Zeroisation	zeroizes crypto function context and releases memory space	handle of crypto function context	zeroized and released memory space	N/A	All Keys / SSPs	Use r	Z	N/A
	Outputs Operational/ Error status of the module	None	Operational /Error status	N/A	None	Use r	N/A	N/A
	Executes on-demand	None	Pass/Fail status	HMAC-SHA2- 512	HMAC Key	Use r	Е	NCL STATUS OK OK'
	self-test and outputs			SHA2-256	N/A			

-

⁴ Keys and SSPs used in this service are hard-coded in the module and used exclusively for self-tests.

^{© 2024} HP Inc. / atsec information security.

Service	Description	Inputs	Outputs	Approved Security Functions		S	Access rights to Keys and/or SSPs	Indicator
	Pass/Fail status			AES-CCM	AES Key			
				AES-CBC	AES Key			
				RSA PKCS#1 v1.5 Signature Generation	RSA Private Key			
				RSA PKCS#1 v1.5 Signature Verification	RSA Public Key			
				KTS-IFC (encapsulation)	RSA Public Key			
				ECDSA Signature Generation	ECDSA Private Key			
				ECDSA Signature Verification	ECDSA Public Key			
				KAS-ECC-SSC	ECDH Key Pair, Shared Secret			
				Hash_DRBG	Seed			

Table 5 - Approved Services

5 Software/Firmware Security

5.1 Software/Firmware Integrity Technique

The module's executable code is programmed in a masked ROM which is a type of Read-Only Memory (ROM) where content is programmed by the integrated circuit manufacturer during the silicon manufacturing (rather than by the Operator of the module). The memory technology is non reconfigurable memory as defined in IG 5.A, which will not have any change or degradation of data for a minimum of 10 years after manufactured date. As such, it is considered a hardware only module with a non-modifiable operational environment. The requirements of this area are not applicable to the module.

6 Operational Environment

The HP Endpoint Security Controller Cryptographic Library operates in a non-modifiable operational environment. The module is programmed by the manufacturer during the silicon manufacturing (rather than by the user). It maintains its own memory region which can only be accessed by the module. There is no additional application present within the operating environment. The module does not spawn any cryptographic processes. The operational environments in which the module was tested are listed in Table 2.

7 Physical Security

The HP Endpoint Security Controller Cryptographic Library cryptographic module is a Hardware cryptographic module in a single chip embodiment. More specifically, the module is considered a sub-chip cryptographic subsystem.

The module consists of production-grade components that include standard passivation techniques (e.g., a conformal coating applied over the module's circuitry to protect against environmental or other physical damage). The module does not implement a maintenance role and has no maintenance access interface.

8 Non-invasive Security

Currently, the non-invasive security is not required by FIPS 140-3 (see NIST SP 800-140F). The requirements of this area are not applicable to the module.

9 Sensitive Security Parameter Management

The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the module. Modification of PSPs by unauthorized operators is prohibited.

Key/SSP Name/ Type	Strength	Security Function and Cert. Number	Generation	Import /Export	Establishment	Storage	Zeroization	Use & related keys
AES key	128, 192, 256 - bits of security strength	AES CAVP Cert. #A134 7	Not Applicable . The key is entered via API paramete r	Entry: N/A. The key may be entered into the module within the TOEPP ⁵ via API input parameters in plaintext. Output: N/A	Not Applicable for sub-chip systems that only communicat e with subsystems within the same OE, as stated in IG 2.3.B	Not Applicable . The key is ephemera I and only held in memory during execution of service.	automatic zeroization when structure is deallocate d or when the system is powered down.	Use: AES Data Encryption and Decryption Related Keys: N/A
RSA private and public key	112 to 128 bits of security strength	KTS-IFC CAVP Cert. #A134 7	Not Applicable . The key is entered via API paramete r	Entry: N/A. The key may be entered into via API input parameters in plaintext. Output: N/A	Not Applicable for sub-chip systems that only communicat e with subsystems within the same OE, as stated in IG 2.3.B	Not Applicable . The key is ephemera I and only held in memory during execution of service.	automatic zeroization when structure is deallocate d or when the system is powered down.	Use: Key Encapsulatio n and Un- encapsulatio n Related Keys: N/A
RSA private and public key pair	112 to 128 bits of security strength	RSA CAVP Cert. #A134 7	Not Applicable . The key is entered via API paramete r	Entry: N/A. The key may be entered into the module within the TOEPP via API input parameters in plaintext. Output: N/A	Not Applicable for sub-chip systems that only communicat e with subsystems within the same OE, as stated in IG 2.3.B	Not Applicable . The key is ephemera I and only held in memory during execution of service.	automatic zeroization when structure is deallocate d or when the system is powered down.	Use: Signature Generation and Verification Related Keys: N/A
ECDSA private and public key pair	112 to 256 bits of security strength	ECDSA CAVP Cert. #A134 7	The private keys can be generated using FIPS186-4 Key Generatio n method,	Entry: N/A. The key may be entered into the module within the TOEPP via API input parameters in plaintext.	Not Applicable for sub-chip systems that only communicat e with subsystems within the same OE, as	Not Applicable . The key is ephemera I and only held in memory during	automatic zeroization when structure is deallocate d or when the system is	Use : Key Generation and Verification, Signature Generation and Verification

⁵ TOEPP - Tested Operational Environment's Physical Perimeter

 $\ensuremath{\mathbb{C}}$ 2024 HP Inc. / atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

			and the random value used in the key generatio n is generated using SP800-90A DRBG	Output: The key may be output from the module within the TOEPP ⁶ via API output parameters in plaintext	stated in IG 2.3.B	execution of service.	powered down.	Related Keys: DRBG internal state
HMAC key	112 or greater bits of securit y strengt h	HMAC CAVP Cert. #A134 7	Not Applicable . The key is entered via API paramete r	Entry: N/A. The key may be entered into the module within the TOEPP via API input parameters in plaintext. Output: N/A	Not Applicable for sub-chip systems that only communicat e with subsystems within the same OE, as stated in IG 2.3.B	Not Applicable . The key is ephemera I and only held in memory during execution of service.	automatic zeroization when structure is deallocate d or when the system is powered down.	Use: Hashed Message Authenticatio n Code Generation Related Keys: N/A
ECDH key pair (including intermediat e key generation values)	112 to 256-bits of security strength	KAS- ECC- SSC CAVP Cert. #A134 7	The private keys are generated using FIPS186-4 Key Generatio n method, and the random value used in the key generatio n is generated using SP800-90A DRBG	Entry: N/A. The public key may be entered into the module within the TOEPP via API input parameters in plaintext. Output: The key may be output from the module within the TOEPP via API output parameters in plaintext	Not Applicable for sub-chip systems that only communicat e with subsystems within the same OE, as stated in IG 2.3.B	Not Applicable . The key is ephemera I and only held in memory during execution of service.	automatic zeroization when structure is deallocate d or when the system is powered down.	Use: ECDH Shared Secret Computation Related Keys: DRBG internal state, EC Diffie- Hellman Shared Secret
ECC Shared Secret			N/A	Entry: N/A Output: The key may be output from the module within the TOEPP via API output parameters in plaintext	Not Applicable for sub-chip systems that only communicat e with subsystems within the same OE, as stated in IG 2.3.B			Use: ECDH Shared Secret Computation Related Keys: ECDH key pair
Entropy Input String + Nonce	256-bits of	N/A	N/A	Entry: N/A. obtained from the ENT(P)	N/A			Use : Random Number Generation

⁶ TOEPP - Tested Operational Environment's Physical Perimeter

© 2024 HP Inc. / atsec information security.

	security strength			found within the cryptographi c boundary. Output: N/A			Related Keys: ECDSA and ECDH key pairs
DRBG internal state (i.e., Hash_DRBG V and C values), Seed	256-bits of security strength	N/A	Derived from entropy input string as defined by SP800- 90A	Entry: N/A Output: N/A	N/A		Use: Random Number Generation Related Keys: ECDSA and ECDH key pairs

Table 6 - SSPs

9.1 Random Number Generation

The module employs a Hash_DRBG using a SHA-512 PRF. Per section 10.1.1.1 of [SP800-90A], the internal state of the Hash_DRBG is the V, C, and reseed counter. The Hash_DRBG is seeded by an ENT(P) which provides 256-bits of entropy to seed and reseed the DRBG during initialization and reseeding. The estimated amount of entropy per entropy output bit is ~ 0.6 /bit. The DRBG internal state is not accessible by non-DRBG functions. All random values used by approved security functions, SSP generation, or SSP establishment method are provided by the Hash_DRBG.

Entropy Source	Minimum number of bits of entropy	Details
SP800-90B compliant ENT(P)	256	The entropy pool is filled with random bits provided by an SP800-90B compliant ENT(P) whose noise source is from Ring Oscillators in hardware TRNG.

Table 7 - Non-Deterministic Random Number Generation Specification

9.2 Key/SSP Generation

The module generates Keys and SSPs in accordance with FIPS 140-3 IG D.H. The cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per [SP800-133rev2] (vendor affirmed), compliant with [FIPS186-4] and using DRBG compliant with [SP800-90Arev1]. A seed (i.e., the random value) used in asymmetric key generation is obtained from [SP800-90Arev1] DRBG as described in Section 4 of [SP800-133rev2]. The key generation service for ECDSA, as well as the [SP 800-90Arev1] DRBG have been ACVT tested with algorithm certificates found in Table 3.

9.3 Key/SSP Establishment

The module provides the following key/SSP establishment services:

- 1. The module implements KAS-ECC-SSC EC Diffie-Hellman Shared Secret Computation compliant to [SP800-56Arev3] and IG D.F Scenario (2) path (1).
 - The shared secret computation provides between 128 and 256 bits of encryption strength.
- 2. Within the TOEPP, the module offers RSA key wrapping and unwrapping using KTS-OAEP-basic scheme. The implementation supports 2048 and 3072 modulus size, with both key

encapsulation and un-encapsulation supported. The module does not implement key confirmation. See section 11.3.2 for operator guidance details.

The SSP establishment methodology provides 112 or 128 bits of encryption strength.

9.4 Key/SSP Entry and Output

Keys/SSPs entered or output the module are electronically entered in plaintext form from the invoking User firmware running on the same device. No Keys/SSPs are entered or output from the module to outside the TOEPP. According to IG 2.3.B, *Transferring SSPs including the entropy input between a sub-chip cryptographic subsystem and an intervening functional subsystem for Security Levels 1 and 2 on the same single chip is considered as not having Sensitive Security Parameter Establishment crossing the HMI of the sub-chip module per IG 9.5.A.*

9.5 Key/SSP Storage

The module does not provide persistent storage for keys/SSPs. Keys/SSPs are stored in memory only and are received for use by the module only at the request of the User firmware.

9.6 Key/SSP Zeroization

Keys and SSPs are explicitly zeroized automatically when structure associated with the cipher is deallocated or implicitly when the device is powered down thereby rendering the data irretrievable. Interface with the module is inhibited while zeroization is being performed. For Keys and SSPs explicitly zeroized automatically the successful completion of a requested service suffices as the implicit indicator that zeroisation has completed.

10 Self-tests

Self-tests ensure that the module is not corrupted and that the cryptographic algorithms work as expected. While the module is executing the self-test, no services are not available, and input and output are inhibited. The module will boot only after successfully passing the HMAC-SHA2-512 and SHA2-256 CASTs. If an error is detected in any self-test, the module will enter the Error State.

10.1 Pre-Operational Self-Tests

The module is solely implemented in hardware (i.e., only contains executable code that is stored in non- reconfigurable masked ROM⁷). As such, the module does not perform any pre-operational software/firmware integrity test, but instead performs a Cryptographic Algorithm Self-Test on the HMAC-SHA2-512 and SHA2-256 algorithms when the module is powered on.

The module does not implement a pre-operational bypass test nor pre-operational critical functions test.

10.2 Conditional Self-Tests

The module performs a conditional self-test when the conditions specified for the following tests occur:

Conditional Cryptographic Algorithm Self-Test

Conditional Pair-Wise Consistency Test

The module does not implement a Software/Firmware Load Test, Manual Entry Test, Conditional Bypass Test nor Conditional Critical Functions Test.

10.2.1 Conditional Cryptographic Algorithm Self-Tests

The module conducts conditional cryptographic algorithm self-test prior to the first operational use of each cryptographic algorithm. The table below describe the conditional tests supported by the module.

Algorithm	Test
НМАС	HMAC-SHA2-512 MAC Generation KAT
SHA	SHA2-256 Message Digest KAT
AES	 AES-CCM Encryption KAT using 128-bit key AES-CBC Decryption KAT using 128-bit key
KTS-IFC	 KTS-OAEP-basic Encryption KAT with 2048 -bit key and SHA2-256 KTS-OAEP-basic Decryption KAT with 2048 -bit key and SHA2-256
RSA	 PKCS#1 v1.5 Signature Generation KAT with 2048 -bit key and SHA2-256 PKCS#1 v1.5 Signature Verification KAT with 2048 -bit key and SHA2-256
ECDSA	 ECDSA Signature Generation KAT with P-256 curve and SHA2-256 ECDSA Signature Verification KAT with P-256 curve and SHA2-256

⁷ A masked ROM is a type of Read-Only Memory (ROM) where content is programmed by the integrated circuit manufacturer during the silicon manufacturing.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

^{© 2024} HP Inc. / atsec information security.

Algorithm	Test		
KAS-ECC-SSC	ECDH shared secret computation KAT with P-256 curve		
Hash_DRBG	Hash_DRBG random number generation KAT using predefined seed.		
ENT	RCT (Repetition Count Test)APT (Adaptive Proportion Test)		

Table 8 - Conditional Cryptographic Algorithm Self-Tests

10.2.2 Conditional Pair-Wise Consistency Test

The module performs a pair-wise consistency test on when a new ECDSA key pair is generated. The pair-wise consistency test is performed by calculating a digital signature and then verifying it. If the signature cannot be verified, the pair-wise consistency test shall fail.

10.2.3 Periodic Self-Test

During runtime, operators can initiate the conditional self-tests on demand by calling *NCL_MISC_SelfTest* and passing the algorithm as an argument.

The module's entropy source is powered on only momentarily to seed the module's SP800-90B DRBG. The module performs ENT health tests defined in Section 4 of SP800-90A on the generated output prior to seeding the SP800-90B DRBG. After completing its execution, the entropy source powers down.

10.3 Self-Test Error Handling

For any of the conditional self-tests, the module enters an error state upon failing the self-test. A failure in the conditional CAST or conditional PCT results in "NCL_STATUS_FAIL". Likewise, a failure of the ENT health tests will result in an "ENTROPY_SRC_ERROR" status returned to the user. When in the error state, no cryptographic services are provided, control and data output is prohibited. The only method to clear this error state is to power cycle the device and then successfully pass the conditional self-tests.

Cause of Error	Status Indicator
failure in conditional self-test (conditional CAST or conditional PCT)	NCL_STATUS_FAIL
failure of the ENT health test	ENTROPY_SRC_ERROR

Table 9 - Error States

11 Life-cycle assurance

11.1 Delivery and Operation

As explained in Section 10.1.1, the module is placed in a masked ROM by manufacturer during the silicon manufacturing. The module is delivered as part of the Nuvoton NPCX998H and Nuvoton NPCD321H platforms (listed in Table 2). During manufacturing – each chip is tested to make sure the masked ROM was manufactured correctly; this is done using CRC32 algorithm on the entire masked ROM code on each device before it is shipped out.

During execution – As part of the device boot process, the code is verified by a dedicated hardware inside the chip that checks every byte of code compared to a known parity bit. If any byte fails, the parity test then an internal error is generated; the error is handled by the application (User) firmware.

11.2 Crypto Officer Guidance

The module is configured to be operational by default. If the device starts up successfully and has successfully passed the HMAC-SHA2-512 and SHA2-256 CAST, it is operating correctly and can begin servicing User requests.

11.3 Operator Guidance

11.3.1 End of Life

Once the module reaches its end-of-life stage (End of Life (EOL) date for the HP Endpoint Security Controller Cryptographic Library is 10 years from manufacturing date) or sanitation is initiated by the module's Operator, it is the Operator's responsibility to clear all existing SSPs from the module. This can be achieved by either performing a full device reset, or by explicitly invoking the following sequence of APIs to clear the data from all modules:

- NCL SHA Clear For each of existing SHA and HMAC contexts
- NCL DRBG Clear For each of existing DRBG contexts
- NCL AES Clear For each of existing AES contexts
- NCL RSA Clear For each of existing RSA contexts
- NCL ECC Clear For each of existing ECDSA and ECDH contexts

11.3.2 RSA Key Wrapping

To comply with SP800-56Brev2 assurances found in its Section 6 (specifically SP800-56Brev2 Section 6.4 Required Assurances) The entity using the IUT must obtain required assurances listed in section 6.4 of SP 800-56BRev2 by performing the following steps:

- 1. The entity requesting the RSA key unwrapping (un-encapsulation) service from the module, shall only use an RSA private key that was generated by an active FIPS validated module that implements FIPS 186-4 compliant RSA key generation service and performs the key pair validity and the pairwise consistency as stated in section 6.4.1.1 of the SP 800-56BRev2. Additionally, the entity shall renew these assurances over time by using any method described in section 6.4.1.5 of the SP 800-56BRev2.
- 2. For use of an RSA key wrapping (encapsulation) service in the context of key transport per IG D.G, the entity using the module, shall verify the validity of the peer's public key using any method specified in section 6.4.2.1 of the SP 800-56BRev2.

 $\ ^{\odot}$ 2024 HP Inc. / atsec information security.

3. The entity using the module, shall confirm the peer's possession of private key by using any method specified in section 6.4.2.3 of the SP 800-56BRev2.

12 Mitigation of other attacks

The module does not implement security mechanisms to mitigate other attacks.

Appendix A. Glossary and Abbreviations

AES Advanced Encryption Standard

ACVP Algorithm Certification Validation Program

CBC Cipher Block Chaining

CAST Cryptographic Algorithm Self-Test

CCM Counter with Cipher Block Chaining-Message Authentication Code

CFB Cipher Feedback

CMAC Cipher-based Message Authentication Code
CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter

CTR Counter Mode

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ENT Entropy Source EOL End Of Life

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

HMAC Hash Message Authentication Code

KAS Key Agreement Scheme

KAT Known Answer Test

KW AES Key Wrap

KWP AES Key Wrap with Padding **MAC** Message Authentication Code

NIST National Institute of Science and Technology

OFB Output Feedback

PSS Probabilistic Signature Scheme

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SSC Shared Secret Computation

TOEPP Tested Operational Environment's Physical Perimeter

XTS XEX-based Tweaked-codebook mode with cipher text Stealing

Appendix B. References

FIPS 140-3 FIPS PUB 140-3 - Security Requirements For Cryptographic Modules

March 2019

https://doi.org/10.6028/NIST.FIPS.140-3

FIPS140-3_IG Implementation Guidance for FIPS PUB 140-3 and the Cryptographic

Module Validation Program

May 2021

https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips 140-3/FIPS 140-3 IG.pdf

FIPS180-4 Secure Hash Standard (SHS)

March 2012

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)

Iulv 2013

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard

November 2001

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)

July 2008

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1 final.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography

Specifications Version 2.1

February 2003

http://www.ietf.org/rfc/rfc3447.txt

RFC3394 Advanced Encryption Standard (AES) Key Wrap Algorithm

September 2002

http://www.ietf.org/rfc/rfc3394.txt

RFC5649 Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm

September 2009

http://www.ietf.org/rfc/rfc5649.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher

Modes of Operation Methods and Techniques

December 2001

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block Cipher

Modes of Operation: The CMAC Mode for Authentication

May 2005

http://csrc.nist.gov/publications/nistpubs/800-38B/SP 800-38B.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block Cipher

Modes of Operation: the CCM Mode for Authentication and

Confidentiality

May 2004

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block Cipher

Modes of Operation: Galois/Counter Mode (GCM) and GMAC

November 2007

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

SP800-38F NIST Special Publication 800-38F - Recommendation for Block Cipher

Modes of Operation: Methods for Key Wrapping

December 2012

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP800- NIST Special Publication 800-56A Revision 3 - Recommendation for Pair

56Arev3 Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography April 2018

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf

SP800- Recommendation for Pair-Wise Key Establishment Schemes Using

56Brev2 Integer Factorization Cryptography

March 2019

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf

SP800-90A NIST Special Publication 800-90A - Revision 1 - Recommendation for

Random Number Generation Using Deterministic Random Bit

Generators

June 2015

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

SP800-90B NIST Special Publication 800-90B - Recommendation for the Entropy

Sources Used for Random Bit Generation

January 2018

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf

SP800- NIST Special Publication 800-133 - Recommendation for Cryptographic

133rev2 Key Generation

December 2012

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf

SP800-140B NIST Special Publication 800-140B - CMVP Security Policy

Requirements

March 2020

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf