Infoblox Trinzic HW Appliances FIPS 140-2 Non-Proprietary Security Policy Security Level 2 Validation Version 1.1 April 2023 Prepared by: Accredited Testing & Evaluation Labs 6841 Benjamin Franklin Drive Columbia, MD 21046 # **Table of Contents, Table of Figures, List of Tables** | - | | | е | _ 1 | • | | _ | | 4 - | | 4 - | |---|---|---|---|--------------|-----|---|---|---|-----|---|-----| | | | n | | \mathbf{c} | г (| | n | n | ГΩ | n | TC | | | a | v | | u | | • | u | | LG | | LO | | Table | of Conf | tents, Table of Figures, List of Tables | 1 | |-------|--------------------------------|--|----| | Tab | le of C | ontents | 1 | | Tab | le of Fi | gures | 2 | | Tab | le of Ta | ables | 3 | | 1. C | vervie | w | 4 | | 2. Ir | ntroduc | tion | 5 | | 2.1. | Info | oblox Trinzic 805 Series Appliances | 5 | | 2.2. | Info | oblox Trinzic 1405 Series Appliances | 6 | | 2.3. | Info | oblox 2205 Series DDI Appliances | 8 | | 2.4. | Info | oblox 4005 Series DDI Appliances | 9 | | 3. C | ryptog | raphic Module Specification | 11 | | 3.1. | Sed | curity Level Summary | 11 | | 3.2. | Cry | ptographic Boundary | 11 | | 3.3. | Blo | ck Diagram | 12 | | 3.4. | Sed | cure Initialization | 12 | | 3.5. | App | proved Algorithms | 13 | | 3.6. | Allo | owed Algorithms | 14 | | 3.7. | Allo | owed Algorithms With No Security Claimed | 14 | | 3.8. | Noi | n-Approved Algorithms Table | 15 | | 4. C | ryptog | raphic Module Ports and Interfaces | 16 | | 4.1. | Log | gical and Physical Interfaces | 16 | | 5. R | toles, S | Services, and Authentication | 19 | | 5.1. | Rol | les | 19 | | 5.2. | Ser | rvices | 19 | | 5 | .2.1. | Crypto-Officer Services | 19 | | 5 | .2.2. | User Services | 25 | | 5 | .2.3. | Unauthenticated Services | 29 | | 5 | .2.4. | Non-Approved Services | 30 | | 5.3. | Aut | hentication | 31 | | 6. P | hysical | Security | 33 | | 6.1. | Tar | mper Evident Label Placement | 33 | | 7. C | peratio | onal Environment | 36 | | 8. C | . Cryptographic Key Management | | | | 9. Sel | f-Tests | 43 | |----------|---|----| | 9.1. | Power-on Self-Tests | 43 | | 9.2. | Conditional Self-Tests | 43 | | 9.3. | Critical Functions Tests | 43 | | A. App | pendices | 44 | | | | | | | | | | Table | of Figures | | | Table of | Contents, Table of Figures, List of Tables | 1 | | Table | of Contents | 1 | | Table | of Figures | 2 | | Table | of Tables | 3 | | 1. Ove | erview | 4 | | 2. Intr | oduction | 5 | | 2.1. | Infoblox Trinzic 805 Series Appliances | 5 | | 2.2. | Infoblox Trinzic 1405 Series Appliances | 6 | | 2.3. | Infoblox 2205 Series DDI Appliances | 8 | | 2.4. | Infoblox 4005 Series DDI Appliances | 9 | | 3. Cry | ptographic Module Specification | 11 | | 3.1. | Security Level Summary | 11 | | 3.2. | Cryptographic Boundary | 11 | | 3.3. | Block Diagram | 12 | | 3.4. | Secure Initialization | 12 | | 3.5. | Approved Algorithms | 13 | | 3.6. | Allowed Algorithms | 14 | | 3.7. | Allowed Algorithms With No Security Claimed | 14 | | 3.8. | Non-Approved Algorithms Table | 15 | | 4. Cry | ptographic Module Ports and Interfaces | 16 | | 4.1. | Logical and Physical Interfaces | 16 | | 5. Rol | les, Services, and Authentication | 19 | | 5.1. | Roles | 19 | | 5.2. | Services | 19 | | 5.2 | .1. Crypto-Officer Services | 19 | | 5.2 | .2. User Services | 25 | | 5.2 | 3 Unauthenticated Services | 29 | | | 5.2 | .4. Non-Approved Services | 30 | |----|--------|--|----| | | 5.3. | Authentication | 31 | | 6. | Phy | sical Security | 33 | | (| 5.1. | Tamper Evident Label Placement | 33 | | 7. | Ор | erational Environment | 36 | | 8. | Cry | ptographic Key Management | 37 | | 9. | Sel | f-Tests | 43 | | , | 9.1. | Power-on Self-Tests | 43 | | 9 | 9.2. | Conditional Self-Tests | 43 | | 9 | 9.3. | Critical Functions Tests | 43 | | A. | Apı | pendices | 44 | | | | | | | | | | | | Та | ble | of Tables | | | Та | ole 1 | Hardware Versions | 5 | | Ta | ole 2 | Security Level Summary | 11 | | Ta | ole 3 | Approved Algorithms | 14 | | Ta | ole 4 | Allowed Algorithms | 14 | | Ta | ole 4 | Allowed Algorithms | 15 | | Ta | ole 5 | Non-Approved Algorithms | 15 | | Ta | ole 6 | Logical and Physical Interfaces | 18 | | Ta | ole 7 | Crypto-Officer Services | 25 | | Ta | ole 8 | User Services | 29 | | Ta | ole 9 | Unauthenticated Services | 30 | | Ta | ole 10 | Non-approved Services | 30 | | Ta | ole 11 | Tamper Evident Labels | 33 | | Ta | ole 12 | 2 Infoblox Trinzic 805 series Tamper Evident Label Placement | 34 | | Ta | ole 13 | 3 Infoblox Trinzic 1405 Series Tamper Evident Label Placement | 34 | | Ta | ole 14 | Infoblox Trinzic 2205 and 4005 series Tamper Evident Label Placement | 35 | | Ta | ole 15 | 5 Cryptographic Keys and CSPs | 42 | | | | | | #### 1. Overview This document is a non-proprietary FIPS 140-2 Security Policy for Infoblox's Trinzic Appliances running the Network Identity Operating System (NIOS). This policy describes how these Infoblox Trinzic HW Appliances (hereafter referred to as the "module") meet the requirements of FIPS 140-2. This document also describes how to configure the module into the FIPS 140-2 Approved mode. This document was prepared as part of a FIPS 140-2 overall Security Level 2 validation for a multi-chip standalone hardware module. The Federal Information Processing Standards Publication 140-2 - Security Requirements for Cryptographic Modules (FIPS 140-2) details the United States Federal Government requirements for cryptographic modules. Detailed information about the FIPS 140-2 standard and validation program is available on the NIST (National Institute of Standards and Technology) website at https://csrc.nist.gov/projects/cryptographic-module-validation-program. #### 2. Introduction Infoblox Trinzic HW appliances are available in a variety of options to match an organization's specific requirements. They integrate with a broad array of automation and orchestration platforms and are simple to deploy through flexible licensing. Appliances within a given series share the same hardware model, and are differentiated by licensing features. The following models were tested as part of this validation with the NIOS version 8.5.2 with Hotfix-NIOS_8.5.2_409296_J81082-506fbabaabd86fbe9c99de0b49c9a7f8-Mon-Oct-25-08-19-32-2021 firmware. | Trinzic Hardware
Model | Trinzic Appliance | CAVP Operational
Environment | |---------------------------|-------------------|---------------------------------| | 805 | TE-815 | Intel Core i3 | | | TE-825 | (Skylake) with AES- | | | TR-805 | NI | | | ND-805 | | | 1405 | TE-1415 | Intel Xeon E3 | | | TE-1425 | (Skylake) with AES- | | | TR-1405 | NI | | | ND-1405 | | | 2205 | TE-2215 | Intel Xeon E5 | | | TE-2225 | (Broadwell) with | | | TR-2205 | AES-NI | | | ND-2205 | | | 4005 | TE-4015 | Intel Xeon E5 | | | TE-4025 | (Broadwell) with | | | TR-4005 | AES-NI | | | ND-4005 | | Table 1 Hardware Versions # 2.1. Infoblox Trinzic 805 Series Appliances Figure 1 Trinzic 805 Series Appliance The Infoblox 805 Series are 1-U platforms that can be installed in a standard equipment rack. The Trinzic TE-815 and TE-825 network services appliances provide core network services, including DNS (Domain Name System), DHCP (Dynamic Host Configuration Protocol), IPAM (IP Address Management), and NTP (Network Time Protocol). You can configure and manage the Trinzic 805 series appliances through the Infoblox Grid Manager. The TE-815 and TE-825 appliances are recommended to operate as Grid members, and can operate with a second appliance of the same model in high availability (HA) mode. Key features of the appliances include the following: Support for Grid management and all administrative features for Infoblox IPAM, DNS, DDNS, and DHCP - High availability support - LOM (Lights Out Management) support The Network Insight ND-805 is a high performance network appliance that provides an expanded device discovery and network discovery feature set, using SNMP and other protocols to discover, query, and catalogue network devices such as enterprise Ethernet switches, routers, firewalls and other security devices, VoIP softswitches, load balancers, and end host devices. You can configure and manage the ND-805 through the Grid Manager. For more information about Discovery features and licensing, refer to the Infoblox NIOS Administrator Guide. Key features of the ND-805 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to support Device Discovery features, and one interface (MGMT) designated for device management (the HA port is inactive and reserved for future use) - Management through the Infoblox Grid - LOM (Lights Out Management) support The Trinzic Reporting TR-805 is a reporting appliance that collects data from Infoblox Grid members, stores the data in the reporting database, and generates reports that provide statistical information about IPAM, DNS, DHCP, and system activities and performance. You can configure and manage the TR-805 and view reports through the Grid Manager. For more information about Reporting features and licensing, refer to the Infoblox NIOS Administrator Guide. Key features of the TR-805 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to collect data for event reporting, and one interface (MGMT) designated for device management (the HA port is inactive and reserved for future use) - Management through the Infoblox Grid - LOM (Lights Out Management) support ## 2.2. Infoblox Trinzic 1405 Series Appliances Figure 2 Trinzic 1405 Series Appliance The Infoblox 1405 Series platforms are 1-U appliances that you can efficiently mount in a standard equipment rack. The Trinzic TE-1415 and TE-1425 are high performance network appliances that provide core network services,
including DNS (Domain Name System), DHCP (Dynamic Host Configuration Protocol), IPAM (IP Address Management), and NTP (Network Time Protocol). A TE-1415 and TE-1425 appliance can be set up as a Grid member or a Grid Master. The appliance can operate with a second appliance of the same model in high availability (HA) mode. You configure and manage these appliances through the Infoblox Grid Manager. Key features of the appliances are as follows: - Support for Grid management and all administrative features for Infoblox IPAM, DNS, DDNS, DHCP, DNS Firewall, Advanced DNS Protection, and Threat Insight. - High availability support. - LOM (Lights Out Management) support. - Replaceable hard disk drives. - Hot-swappable AC power supplies. - Additional AC power supply for a redundant 1+1 configuration. - Optional DC power supplies. - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. The Network Insight ND-1405 is a high performance network appliance that provides powerful device discovery and network discovery features, using SNMP and other protocols to discover, query, manage and catalogue network devices such as enterprise Ethernet switches, routers, firewalls and other security devices, VoIP softswitches, load balancers, and end host devices. You configure and manage ND-1405 appliances through the Grid Manager. For more information about the discovery features and licensing, refer to the Infoblox NIOS Administrator Guide. Key features of the Network Insight ND-1405 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to support Device Discovery features, and one interface (MGMT) for device management. (The HA port is reserved for future use.) - Management through the Infoblox Grid. - LOM (Lights Out Management) support. - Replaceable hard disk drives. - Hot-swappable AC power supplies. - Additional AC power supply for a redundant 1+1 configuration. - Optional DC power supplies. - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. The Trinzic Reporting TR-1405 is a high performance network appliance that collects data from Infoblox Grid members, stores the data in the reporting database, and generates reports that provide statistical information about IPAM, DNS, DHCP, and system activities and performance. You configure and manage the TR-1405 and view reports through the Grid Manager. For more information about Reporting features and licensing, refer to the Infoblox NIOS Administrator Guide. Key features of the TR-1405 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to support reporting features across the network, and one interface (MGMT) for device management. (The HA port is reserved for future use.) - Management through the Infoblox Grid. - LOM (Lights Out Management) support. - Replaceable hard disk drives. - RAID 1 redundant hard disk array. - Hot-swappable AC or DC power supplies in a redundant 1+1 configuration. - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. #### 2.3. Infoblox 2205 Series DDI Appliances Figure 3 Trinzic 2205 Series Appliance The Infoblox 2205 series are 2-U appliances that you can efficiently mount in a standard equipment rack. Trinzic TE-2215 and TE-2225 are high performance network appliances that provide core network services, including DNS (Domain Name System), DHCP (Dynamic Host Configuration Protocol), IPAM (IP Address Management), and NTP (Network Time Protocol). A TE-2215 and TE-2225 appliance can be set up as a Grid member or a Grid Master. The appliance can operate with a second appliance of the same model in high availability (HA) mode. You configure and manage the Trinzic appliances through the Infoblox Grid Manager. Key features of the appliances are as follows: - Support for Grid management and all administrative features for Infoblox IPAM, DNS, DDNS, and DHCP. - High availability support. - LOM (Lights Out Management) support. - Field replaceable hard disk drives and fan modules. - Hot-swappable AC or DC power supplies with support for a redundant 1+1 configuration. - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. The Network Insight ND-2205 is a high performance network appliance that provides device discovery and network discovery features, using SNMP and other protocols to discover, query, manage and catalogue network devices such as enterprise Ethernet switches, routers, firewalls and other security devices, VoIP softswitches, load balancers, end host devices and more. You configure the ND-2205 appliance through Infoblox Grid Manager. For more information about the Discovery features, refer to the Infoblox NIOS Administrator Guide. Key features of the Network Insight ND-2205 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to support Device Discovery features, and one interface (MGMT) for device management. (The HA port is inactive and reserved for future use.) - Management through the Infoblox Grid. - LOM (Lights Out Management) support. - Replaceable hard disk drives and fan modules. - Hot-swappable AC or DC power supplies in a redundant 1+1 configuration. - Alternative system configurations for the support of copper or fiber SFP 1GbE and SFP+ 10GbE interfaces, with support for mixed copper/fiber configurations. The Trinzic Reporting TR-2205 is a high performance network appliance that collects data from Infoblox Grid members, stores the data in the reporting database, and generates reports that provide statistical information about IPAM, DNS, DHCP, and system activities and performance. You configure and manage the TR-2205 and view its reports through the Infoblox Grid Manager. For more information about Reporting features and licensing, refer to the Infoblox NIOS Administrator Guide. Key features of the Trinzic Reporting TR-2205 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to support event reporting features across the network, and one interface (MGMT) designated for device management. (The HA port is inactive and reserved for future use.) - Management through the Infoblox Grid. - LOM (Lights Out Management) support. - Replaceable hard disk drives and fan modules. - Hot-swappable AC or DC power supplies in a redundant 1+1 configuration. - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. ### 2.4. Infoblox 4005 Series DDI Appliances Figure 4 Trinzic 4005 Series Appliance The Infoblox 4005 Series are 2-U appliances that you can efficiently mount in a standard equipment rack. The Trinzic TE-4015 and TE-4025 are high performance network appliances that provide core network services, including DNS (Domain Name System), DHCP (Dynamic Host Configuration Protocol), IPAM (IP Address Management), and NTP (Network Time Protocol). A TE-4015 and TE-4025 appliance can be set up as a Grid member or a Grid Master. The appliance can operate with a second appliance of the same model in high availability (HA) mode. You configure and manage the Trinzic appliances through the Infoblox Grid Manager. Key features of the IB-4015 and IB-4025 include the following: - Support for Grid management and all administrative features for Infoblox IPAM, DNS, DDNS, and DHCP. - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. - High availability support. - LOM (Lights Out Management) support. - Field replaceable hard disk drives and fan modules. - Hot-swappable AC supplies. - Optional DC power supplies. The Network Insight ND-4005 is a high performance network appliance that supports device discovery and network discovery features, using SNMP and other protocols to discover, query, manage and catalogue network devices such as enterprise Ethernet switches, routers, firewalls and other security devices, VoIP softswitches, load balancers, end host devices and more. You configure the ND-4005 appliance through Infoblox Grid Manager. For more information about the Discovery features, refer to the Infoblox NIOS Administrator Guide. Key features of the Network Insight ND-4005 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to support Device Discovery features, and one interface (MGMT) for device management. (The HA port is inactive and reserved for future use.) - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. - Management through the Infoblox Grid. - LOM (Lights Out Management) support. - Replaceable hard disk drives and fan modules. - Hot-swappable AC or DC power supplies in a redundant 1+1 configuration. The Infoblox Reporting TR-4005 is a high performance network appliance that collects data from Infoblox Grid members, stores the data in the reporting database, and generates reports that provide statistical information about IPAM, DNS, DHCP, and system activities and performance. You configure and manage the TR-4005 and view its reports through the Infoblox Grid Manager. For more information about Reporting features and licensing, refer to the Infoblox NIOS Administrator Guide. Key features of the Trinzic Reporting TR-4005 appliance include the following: - Three (3) active 1GbE Ethernet interfaces: two (2) active interfaces to support event reporting features across the network, and one interface (MGMT) designated for device management. (The HA port is inactive and reserved for future use.) - Optional 10GbE or 1GBE SFP+/SFP system configurations for fiber or copper support. - Management through the Infoblox Grid. - LOM (Lights Out Management) support. - Replaceable hard disk drives and fan modules. - Hot-swappable AC or DC power supplies in a redundant 1+1 configuration. # 3. Cryptographic Module Specification # 3.1. Security Level Summary The security level claimed for each section of the FIPS 140-2
standard is as follows: | Section | Title | Level | |---------|-------------------------------------|----------------| | 1 | Cryptographic Module Specification | 2 | | 2 | Module Ports and Interfaces | 2 | | 3 | Roles, Services, and Authentication | 2 | | 4 | Finite State Model | 2 | | 5 | Physical Security | 2 | | 6 | Operational Environment | Not Applicable | | 7 | Cryptographic Key Management | 2 | | 8 | EMI/EMC | 2 | | 9 | Self-Tests | 2 | | 10 | Design Assurance | 2 | | 11 | Mitigation of Other Attacks | Not Applicable | | Overall | | 2 | Table 2 Security Level Summary ## 3.2. Cryptographic Boundary The cryptographic boundary for the module is the edge (front, back, left, right, top, and bottom surfaces) of the physical enclosure. #### 3.3. Block Diagram Figure 5 Block Diagram #### 3.4. Secure Initialization The following steps should be followed to initialize the module into the FIPS Approved mode of operation: - The module must be running NIOS version 8.5.2 with Hotfix-NIOS_8.5.2_409296_J81082-506fbabaabd86fbe9c99de0b49c9a7f8-Mon-Oct-25-08-19-32-2021.bin2. - Tamper evident labels must be applied according to <u>Section 6.1</u> of this document. - FIPS mode must be enabled in the NIOS CLI via command 'set fips mode'. - The password policy must be set such that the Minimum Password Length is at least 6 characters. This can be accomplished via the procedures outlined in the Infoblox NIOS Administrator Guide, section "Managing Passwords" - The BloxTools feature must not be enabled when operating in the FIPS Approved mode. - The Support Access feature must not be enabled when operating in the FIPS Approved mode. - RADIUS Authentication must not be used in the FIPS Approved mode. - TACACS+ Authentication must not be used in the FIPS Approved mode. - Cisco ISE Integration must not be used in the FIPS Approved mode. - Microsoft Server Integration must not be used in the FIPS Approved mode. - SNMPv1/v2 must not be used in the FIPS Approved mode. - The module must not be connected to a NIOS grid in the FIPS Approved mode. - The HTTPS protocol must be used for the vDiscovery service. - Keys/CSPs generated in FIPS mode cannot be used in non-FIPS mode and vice-versa. Failure to follow the above procedures will result in the module operating in a non-approved mode. # 3.5. Approved Algorithms The module supports the following approved algorithms for use in the approved mode. Although the module's cryptographic implementation supports more options than listed below, only those listed are usable by the module. | CAVP Cert | Algorithm | Standard | Mode/Method | Key Lengths,
Curves or
Moduli | Use | |--|--|--------------------|--|--|---| | A2507 | AES | FIPS 197 | CBC,
CBC-CS3,
CFB128 | 128,
256 | Data Encryption / Decryption | | Vendor
Affirmed | CKG | SP 800-133r2 | Sections 5.1, 5.2, and 6.1 | | Key Generation | | A2507 | KAS-ECC-SSC | SP 800-56A
Rev3 | KAS ECC
(ephemeralUnifi
ed) | P-256 , P-384,
P-521 | Key Agreement | | A2507 | KAS-FFC-SSC | SP 800-56A
Rev3 | KAS FFC
(dhEphem) | MODP-2048,
FFDHE2048 | Key Agreement | | A2507 | CVL
(TLS ¹
1.0/1.1/1.2) | SP 800-135
Rev1 | | TLS 1.2:
SHA-256, SHA-
384 | Key Derivation | | A2505 | CVL (SNMP) | SP 800-
135Rev1 | | | Key Derivation | | A2506 | CVL (SSH) | SP 800-
135Rev1 | | SHA-1, SHA-
256, SHA-384,
SHA-512 | Key Derivation | | KAS-SSC Cert.
#A2507, CVL
Cert. #A2506 | KAS | SP 800-56A
Rev3 | KAS-FFC and
KAS-ECC with
SSH KDF | 2048 bits (KAS
FFC), 256, 384,
and 521 bits
(KAS ECC) | Key establishment methodology provides 112 bits (KAS-FFC) or between 128 and 256 bits (KAS-ECC) of encryption strength. | | KAS-SSC Cert.
#A2507, CVL
Cert. #A2507 | KAS | SP 800-56A
Rev3 | KAS-FFC with
TLS 1.0/1.1/1.2
KDF | 2048 bits | Key establishment methodology provides 112 bits of encryption strength. | | A2503 | DRBG | SP 800-90A
Rev1 | HMAC-SHA-
256 | | Deterministic
Random Bit
Generation | ¹ No parts of the TLS, SSH, SNMP protocols other than the KDF have been reviewed or tested by the CAVP and CMVP | A2507 | DRBG | SP 800-90A
Rev1 | HMAC-SHA-
256 | | Deterministic
Random Bit
Generation | |--------------|-------------------|--------------------------|---|--|---| | N/A
A2507 | ENT (NP)
ECDSA | SP 800-90B
FIPS 186-4 | | P-256 , P-384, | Entropy Source ECC Key | | | | | | P-521 (w/ SHA-
224, SHA-256,
SHA-384, or
SHA-512) | Generation ² , Digital Signature Verification | | A2507 | HMAC | FIPS 198-1 | HMAC-SHA-1-
96
HMAC-SHA-1,
HMAC-SHA-
256, | 160,
256 | Message
Authentication | | A2507 | KTS | SP 800-38F | AES-CBC,
HMAC-SHA-1 | AES: 128, 256
HMAC: 160 | Key Transport. Key establishment methodology provides 128 or 256 bits of encryption strength. | | A2507 | RSA | FIPS 186-4 | X9.31
PKCS1_V1_5
PSS | 2048, 3072,
4096 (w/ SHA-
224, SHA-256,
SHA-384, or
SHA-512) | Key Generation, Digital Signature Generation and Verification | | A2507 | SHS | FIPS 180-4 | SHA-1,
SHA-256 | | Message
Digest | Table 3 Approved Algorithms ## 3.6. Allowed Algorithms The following algorithms are non-approved but allowed for use in the approved mode. | Algorithm | Caveat | Use | |-----------|--|--------------| | RSA | Key Wrapping, key establishment methodology provides between 112 and 150 bits of encryption strength | Key Wrapping | #### Table 4 Allowed Algorithms # 3.7. Allowed Algorithms With No Security Claimed The following algorithms are non-approved but allowed for use in the approved mode with no security claimed. | Algorithm | Caveat | Use | |-----------|-------------------------------|------------------------------| | HMAC-MD5 | Only allowed for use with TLS | TLS 1.0/1.1, Internals (i.e. | | | protocol. | objects comparison) | ² The ECC keys used for EC-Diffie-Hellman are generated according to FIPS 186-4 | | | HMAC for cookie. | |-----|-------------------------------|------------------------------| | MD5 | Only allowed for use with TLS | TLS 1.0/1.1, Internals (i.e. | | | protocol. | objects comparison) | | | | HMAC for cookie. | Table 5 Allowed Algorithms With No Security Claimed # 3.8. Non-Approved Algorithms Table The following algorithms are non-approved for use in the approved mode. | Algorithm | Caveat | Use | |---------------------|--|----------------------------| | DES | | Encryption/Decryption | | KAS-FFC | Non-compliant when used with key sizes less than 2048 bits in length | Key Agreement | | DSA (non-compliant) | | Key Generation | | | | Signature Generation | | | | Signature Verification | | HMAC-MD5 | | Keyed Hash | | MD5 | | Message Digest | | OpenVPN KDF | | Key Derivation for OpenVPN | | | | protocol. | | RSA | Non-compliant when used with key sizes less than 2048 bits in length | Key Wrapping | Table 6 Non-Approved Algorithms # 4. Cryptographic Module Ports and Interfaces ## 4.1. Logical and Physical Interfaces The module's interfaces can be categorized under the following FIPS 140-2 logical interfaces. - Data Input - Data Output - Control Input - Status Output - Power Input Interface The following table provides a mapping of the module's interfaces to the FIPS 140-2 defined interface categories. | Physical Interface ³ | Logical Interface(s) | Description | Notes | |---------------------------------|---|---|--| | Network Interfaces | Data Input, Data Output,
Control Input, Status
Output | Trinzic 805, 1405, 2205, and 4005 series: Two 10/100/1000 Base-T Ethernet (LAN ports) One 10/100/1000 Base-T Ethernet (HA port) One 10/100/1000 Base-T Ethernet (MGMT port) Trinzic 1405, 2205, and 4005 series: Four 10GbE SFP/SFP+ ports in expansion slot | LED link lights are part of status output. | | Serial Port | Data Input, Data Output,
Control Input, Status
Output | Trinzic 805, 1405,
2205, and 4005 series:
• DB-9 (9600/8n1,
Xon/Xoff) | | | Unit Identification | Control Input, Status
Output | Trinzic 805, 1405,
2205, and 4005 series: | | ³ Although the module includes a USB port, this port is disabled and unused by the module as of the most recent FIPS 140-2 validation. | | | Front and back | | |-----------------|-------------------------------|---|---| | AC Power Supply | Power Input, Status
Output | Trinzic 805 series: Input voltage: 100– 240 VAC switchable, 50–60 Hz Output power: 350W | FIPS kit Tamper Evident
Label required | | | | Trinzic 1405 series: | | | | | One hot-swappable PSU | | | | | Input voltage: 100– 240 VAC switchable, 50–60 Hz | | | | | Output power: 600W | | | | | Trinzic 2205 and 4005 series: | | | | | Two hot-swappable PSUs | | | | | Input voltage: 100-
240 VAC switchable,
50-60 Hz | | | | | Output power: 600W | | | DC Power Supply | Power Input, Status
Output | Trinzic 1405 series: One
hot-swappable PSU | FIPS kit Tamper Evident
Label required | | | | Input voltage: -44 65DC; 600W | | | | | Trinzic 2205 and 4005 series: | | | | | Two hot-swappable PSUs | | | | | Input voltage: -44- 65DC; 600W | | | Chassis Ground | Power Input | Trinzic 805, 1405,
2205, and 4005 series: | | | | | Included (ground lug) | |---------------------|---------------|--| | System Power Switch | Control Input | Trinzic 805, 1405, 2205, and 4005 series: • Pin-Hole access "pc standard" Soft Power Switch | | System Power LED | Status Output | Trinzic 805, 1405, 2205, and 4005 series: • LED indicating system power status | Table 7 Logical and Physical Interfaces ## 5. Roles, Services, and Authentication #### 5.1. Roles The module defines user permissions based on roles. Roles are assigned to user groups. Custom roles can be created to restrict access to particular services. | FIPS Role | Trinzic Role | Description | |----------------|----------------------|--| | Crypto-Officer | Superuser | The Superuser role has full access to all resources on the appliance. Superusers can create limited-access admin groups and grant them specific permissions for Crypto Officer services. | | | Limited-Access Admin | An admin belonging to a limited-
access group which has been
granted permissions to Crypto Officer
services. | | User | Limited-Access User | An admin belonging to a limited-
access group which has only been
granted read permissions to Grid
Manager services. | #### 5.2. Services Listed below are the services for each of the module's roles that are approved for use in the FIPS approved mode. Key/CSP Access is specified as: - Generate (G) The module generates the Key/CSP - Read (R) The module reads the Key/CSP - Write (W) The module writes/modifies the Key/CSP - Execute (E) The module uses the Key/CSP - Delete (D) The module deletes the Key/CSP #### **5.2.1.Crypto-Officer Services** | Name | Description | Inputs | Outputs | Key/CSP Access (G/R/W/E/D) | |------|-------------|--------|---------|----------------------------| | | | | | | | Infoblox Console | Access NIOS CLI via console to manage appliance. | Commands and configuration data | Status of commands
and configuration
data | Superuser/Admin Password (E) | |----------------------------|--|--------------------------------------|---|--| | Infoblox Remote
Console | Access NIOS CLI via SSH to manage appliance. | SSH inputs,
commands, and
data | SSH outputs,
commands, and
data | Superuser/Admin Password (E) DRBG CSPs (G/E/D) SSHv2 private key (E) SSHv2 public key (E) SSHv2 Diffie-Hellman Private Key (G/E/D) SSHv2 Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Private Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Authentication Key (G/E/D) | | Infoblox Grid
Manager | Access NIOS web interface to manage appliance | TLS inputs, commands, and data | TLS outputs, commands, and data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key(G/E/D) TLS Diffie-Hellman Public Key(G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) Superuser/Admin Password (E) X. 509 User Certificate (E) X. 509 CA Certificate (E) | | Show Status | View currently
logged in user in
Grid Manager | N/A | Status and data | None | | Configure
Dashboards | Home page in Grid
Manager providing
quick access to task,
grid and network
status. | Commands and configuration data | Status of commands
and configuration
data | None | | Configure Smart
Folders | Organize core
networking service
data in Grid
Manager. | Commands and configuration data | Status of commands
and configuration
data | None | | Manage Licenses | Manage appliance
licenses from CLI or
Grid Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Manage Users | Setting up users,
groups, roles, and
permissions from
Grid Manager | Commands and configuration data | Status of commands
and configuration
data | Superuser/Admin/User Password (W/D) | | Manage Remote
Authentication
Services | Configure remote
authentication
services for Active
Directory, LDAPS,
or Certificate
Authentication from
Grid Manager. | Commands and configuration data | Status of commands
and configuration
data | LDAPS Bind User Password
(W/D) X. 509 CA Certificate (R/W/D) | |---|--|---------------------------------|---|---| | Deploy
Independent
appliances | Deploy Infoblox
appliance as a
standalone via Grid
Manager and CLI. | Commands and configuration data | Status of commands
and configuration
data | Superuser/Admin Password (E/D) | | Deploy Cloud
Network
Automation | Configuring Cloud
platform appliances
to provide DNS and
DHCP service in the
cloud from Grid
Manager. | Commands and configuration data | Status of commands
and configuration
data | None | | Configure Syslog
Backups | Configure Syslog to
backup over FTP or
SCP in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) SSHv2 Diffie-Hellman Private Key (G/E/D) SSHv2 Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie- Hellman Private Key (G/E/D) SSHv2 Elliptic-Curve Diffie- Hellman Public Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Authentication Key (G/E/D) | | Capture and Export Network Traffic | Capture network
traffic on appliance
interfaces and export
capture file via SCP
or TLS. | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) SSHv2 Diffie-Hellman Private Key (G/E/D) SSHv2 Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Private Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Authentication Key (G/E/D) | | Manage NTP | Manage network
time protocol service
in Grid Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Manage Captive
Portal | Manage network
captive portal in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | |--|---|---------------------------------|---|---| | Manage IPAM | Managing IP address
management services
in Grid Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Manage File
Distribution
Service | Managing
transfer of
files through TFTP,
FTP and HTTP in
Grid Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Managing NIOS Software and Configuration Files | Performing software upgrades and downgrades in Grid Manager. (New firmware versions within the scope of this validation must be validated through the FIPS 140-2 CMVP. Any other firmware loaded into this module is out of the scope of this validation and requires a separate FIPS 140-2 validation.) | Commands and configuration data | Status of commands
and configuration
data | Software/Firmware Load Test
Public Key (W/E) | | Configure RIR
Registration
Updates | Managing Regional
Internet Registries in
Grid Manager. | Commands and configuration data | Status of commands
and configuration
data | None | | Configure IP
Address
Management | Managing network
and IP addresses in
Grid Manager and
CLI. | Commands and configuration data | Status of commands
and configuration
data | None | | Configure IP
Discovery and
vDiscovery | IP discovery for
detecting and
obtaining
information about
active hosts in
predefined networks
in Grid Manager | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | | Configure Infoblox
Network Insight | Configure united
network discovery
for geographically
dispersed networks
in Grid Manager | Commands and configuration data | Status of commands
and configuration
data | None | |--|---|---------------------------------|---|---| | Configure Advisor
Discovery
Properties | Configure Advisor
properties to monitor
lifecycle and
vulnerabilities of
discovered devices in
Grid Manager. | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | | Configure DNS | Configuring DNS
services in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure
DNSSEC | Configure DNSSEC
services in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) DNSSEC KSK Private Key (G/E/D) DNSSEC KSK Public Key (G/W/E/D) DNSSEC ZSK Private Key (G/W/E/D) DNSSEC ZSK Public Key (G/W/E/D) | | Configure DHCP | Configuring DHCP
services in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure
Authenticated
DHCP | Configure DHCP to
authenticate users
using configured
Remote
Authentication
servers in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure
Appliance
Monitoring | Configure
monitoring state of
appliance, service,
database capacity,
and ports in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure DHCP
Fingerprint
Detection | DHCP fingerprint
detection to identify
IPv4 and IPv6
devices in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure SNMPv3 | Configure SNMPv3
in Grid Manager | Commands and configuration data | Status of commands
and configuration
data | SNMPv3 Auth Password (W/D)SNMPv3 Privacy Password (W/D) | | Configure SMTP | Configure SMTP
Notifications in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | |---|--|---------------------------------|---|---| | Configure Infoblox
Reporting and
Analytics | Configure automated
collection, analysis
and presentation of
core networking data
in Grid Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure Infoblox
Advanced DNS
protection | Configure threat
protection rules to
detect, report and
stop DoS, DDoS and
other network attacks
targeting DNS in
Grid Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure Infoblox
DNS Firewall | Configure DNS
Resource policy
zones to control
DNS lookups in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure Infoblox
Threat Insight | Configure for
protecting mission
critical DNS
infrastructure in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure
Ecosystem –
Outbound
Notifications | Using RESTful API
and DXL for
obtaining core
network service
information | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) Superuser/Admin Password (E) X. 509 User Certificate (E) X. 509 CA Certificate (E) | | Configure
Informational GUI
Banner | Configure
informational banner
to display in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | None | | Configure Dynamic
DNS Services | Configure Kerberos
Authenticated
Dynamic DNS
services in Grid
Manager | Commands and configuration data | Status of commands
and configuration
data | GSS-TSIG Encryption Key (W/D) GSS-TSIG Authentication Key (W/D) | | Configure Proxy
Server | Configure HTTP/HTTPS proxy server in Grid Manager | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | |----------------------------|---|---------------------------------|---|---| | Download Support
Bundle | Export support
bundle for
configuration
troubleshooting in
Grid Manager | Commands and configuration data | Status of commands
and configuration
data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | | Backup
Configuration | Backup module
configuration via
HTTPS or SCP in
Grid Manager. | Commands and configuration
data | Status of commands and configuration data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) SSHv2 Diffie-Hellman Private Key (G/E/D) SSHv2 Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Private Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Authentication Key (G/E/D) | | Zeroization | Zeroize all
keys/CSPs | Commands and configuration data | Status of commands
and configuration
data | All (D) | Table 8 Crypto-Officer Services #### **5.2.2.User Services** | Name | Description | Inputs | Outputs | Key/CSP Access | |--------------------|---|--|---|--| | Authenticated DHCP | Authenticate to
DHCP server via
Remote Access
Server | Remote authentication inputs and data. | Status and Client
network
configuration | User Password (E) LDAPS Bind User Password (E) X. 509 CA Certificate (E) | | Infoblox Grid
Manager | Access NIOS web interface over TLS. | TLS inputs,
commands, and
data | TLS outputs, commands, and data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) Superuser/Admin Password (E) X. 509 User Certificate (E) X. 509 CA Certificate (E) | |-------------------------------------|--|--------------------------------------|---------------------------------|---| | Show Status | View currently
logged in user in
Grid Manager | N/A | Status and data | None | | Change User
Password | Change password of currently authenticated user | Commands and configuration data | Command status and data | User Password (W/D) | | Configure
Dashboards | Configure home
page in Grid
Manager providing
quick access to task,
grid and network
status. | Commands and configuration data | Status and data | None | | View Dashboards | Home page in Grid
Manager providing
quick access to task,
grid and network
status. | Commands and data | Status and data | None | | Access Smart
Folders | Organize core
networking service
data in Grid
Manager. | Commands and data | Status and data | None | | View Licenses | View appliance
licenses from Grid
Manager | Commands and data | Status and data | None | | Infoblox Advanced
DNS protection | Utilize threat
protection rules to
detect, report and
stop DoS, DDoS and
other network attacks
targeting DNS in
Grid Manager | Commands and data | Status and data | • None | | DNSSEC | Utilize signed DNS queries. | Commands and data | Status and data | DRBG CSPs (G/E/D) DNSSEC KSK Private Key (G/E/D) DNSSEC KSK Public Key (G/W/E/D) | | | | | | DNSSEC ZSK Private Key (G/W/E/D) DNSSEC ZSK Public Key (G/W/E/D) | |--|--|-------------------|-----------------|---| | Discovery (without
Network Insight) | IP discovery for
detecting and
obtaining
information about
active hosts in
predefined networks
in Grid Manager | Commands and data | Status and data | None | | vDiscovery | Discovery of assets
in AWS, Azure,
OpenStack or
VMWare
environments in Grid
Manager | Commands and data | Status and data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | | Advisor Discovery | Monitor equipment
lifecycle and
vulnerability data for
devices discovered
by Network Insight | Commands and data | Status and data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | | Cloud Network
Automation | Manage devices
discovered by
vDiscovery | Commands and data | Status and data | DRBG CSPs (G/E/D) X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) | | Port Scanning | Nmap scans of network. | Commands and data | Status and data | None | | NetBIOS Scanning | NetBIOS scan of network. | Commands and data | Status and data | None | |--|---|-----------------------------------|----------------------------------|--| | View and Export
Log Files | View and export log
files from Grid
Manager. | Commands and data | Status and data | X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) SSHv2 Diffie-Hellman Private Key (G/E/D) SSHv2 Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Private Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Authentication Key (G/E/D) | | Export Syslog
Backups | Export syslog to external syslog server via FTP or SCP. | Commands and data | Status and data | SSHv2 Diffie-Hellman Private Key (G/E/D) SSHv2 Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie- Hellman Private Key (G/E/D) SSHv2 Elliptic-Curve Diffie- Hellman Public Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Authentication Key (G/E/D) | | Capture and
Export Network
Traffic | Capture network
traffic on appliance
interfaces and export
capture file via SCP
or TLS. | Commands and data | Status and data | X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) SSHv2 Diffie-Hellman Private Key (G/E/D) SSHv2 Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Private Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Elliptic-Curve Diffie-Hellman Public Key (G/E/D) SSHv2 Encryption Key (G/E/D) SSHv2 Authentication Key (G/E/D) | | SNMPv3 | Send SNMPv3 traps | SNMPv3 inputs, commands, and data | SNMPv3 outputs, status, and data | SNMPv3 encryption key (G/E/D) SNMPv3 authentication key (G/E/D) | | Infoblox Reporting and Analytics | Collect automated collection, analysis and presentation of core networking data. | Commands and data | Status and data | None | |--|--
--------------------------------|-------------------------------|--| | Ecosystem –
Outbound
Notifications | Using RESTful API
and DXL for
obtaining core
network service
information | TLS inputs, commands, and data | TLS outputs, status, and data | X.509 HTTPS Certificate (E) TLS Diffie-Hellman Private Key (G/E/D) TLS Diffie-Hellman Public Key (G/E/D) TLS pre-master secret (G/E/D) TLS master secret (G/E/D) TLS encryption key (G/E/D) TLS authentication key (G/E/D) Superuser/Admin Password (E) X. 509 User Certificate (E) X. 509 CA Certificate (E) | Table 9 User Services #### **5.2.3. Unauthenticated Services** | Name | Description | Inputs | Outputs | |------------------------------|---|-------------------|-------------------------| | Captive Portal | Access captive portal. | Commands and data | Command status and data | | DNS | Domain Name
Service queries. | Commands and data | Command status and data | | DHCP | Receive network configuration from appliance DHCP server. | Commands and data | Command status and data | | File Distribution
Service | Appliance hosted FTP, TFTP, or HTTP file distribution service. *Cannot be used to distribute keys or CSPs. | Commands and data | Command status and data | | NTP | Receive network time protocol updates from appliance NTP service. | Commands and data | Command status and data | | View Console
Status | DB-9 Console Output. | None | Status and data | | On-Demand Self-
Tests | On-demand self-tests invoked by rebooting the module. | None | Status and data | |--------------------------|---|------|-----------------| | | | | | Table 10 Unauthenticated Services ## **5.2.4.Non-Approved Services** The following services are non-approved for use in the FIPS approved mode. | Name | Description | |------------------------------|---| | Support Access | Support Access SSH service | | bloxTools | Pre-installed environment to host custom webbased applications | | RADIUS
Authentication | Remote user authentication using RADIUS protocol | | TACACS+
Authentication | Remote user authentication using TACACS+ protocol | | Cisco ISE
Integration | Authenticating to Cisco Identity Services Engine | | Microsoft Server Integration | Managing Microsoft DNS/DHCP servers using BIND | | SNMPv1/v2 | Simple Network Management Protocol versions 1 and 2 | | Deploy Grid | Creating and managing Grid master and members via Grid Manager and CLI. | Table 11 Non-approved Services #### 5.3. Authentication The module has the following methods of role based authentication: - Local password-based authentication - Remote password-based authentication (Active Directory, LDAPS) - Remote SAML-based authentication - Certificate authentication - Two-Factor authentication #### Local password-based authentication, Remote password-based authentication Assuming that the Secure Initialization routine is followed, Infoblox enforces a 6 character minimum password, using a 72 character set of **a-z**, **A-Z**, **0-9**, and "!@#%^&*()". This results in a bare minimum of 139,314,069,504 (72^6) possible passwords. Thus the FIPS 140-2 requirement that for a single random password attempt the probability of success must be less than 1 in 1,000,000 is satisfied. FIPS 140-2 requires that in a 1-minute span, the probability of guessing the password correct (at random) must be less than 1 in 100,000. The web interface only allows 5 unsuccessful login attempts per minute. This calculates to a 1 in 27,862,813,900.8 ((72^6)/5) chance of a successful password attempt in a minute, which is less than the 1 in 100,000 requirement. The SSH interface implements a maximum of 3 tries per login attempt with each failed attempt adding an incremented delay of 5 seconds. 3 failed attempts will take 30 seconds (5 + 10 + 15), therefore, in 1 minute only 6 attempts can be made. This calculates to a 1 in 23,219,011,584 ((72^6)/6) chance of a successful password attempt in a minute, which is less than the 1 in 100,000 requirement. The console interface implements a delay of three seconds per invalid login attempt. As such, a maximum of 20 invalid login attempts are possible per minute. This calculates to a 1 in 6965703475.2 ((72^6)/20) chance of a successful password attempt in a minute, which is less than the 1 in 100,000 requirement. For remote password-authentication the module defers password verification to a trusted authenticator (Active Directory, or LDAPS). This connection is protected by TLS. #### Certificate authentication/Two-Factor authentication (Password + X.509 certificate authentication) If Certificate authentication or Two-Factor authentication is used, the calculations are based on the security-strength of the algorithm of the X.509 certificate. For example, if the X.509 certificate is RSA-2048 w/ SHA-256, then the security-strength is 112 bits (based on SP 800-57). Based on this, a 1 in 2^12 chance is much less than 1 in 1,000,000 per single attempt. With the worst case assumption that the network interface can support up to 29,296,875 ((1,000,000,000 bps / 2048 bits) * 60 seconds) connection attempts per minute. The chance of a successful authentication attempt in a minute calculates to a (2^112)/29,296,875, which satisfies the 1 in 100,000 requirement. Infoblox Two-Factor authentication provides option 'Username/password request'. If you select this option NIOS populates the username from the certificate and requests password from the user. If you do not select this option, only the certificate is necessary to log in to the appliance. NIOS performs lookup against local users by default. You can enable remote lookup for user membership (Active Directory or LDAPS). A password must not be empty. Certificates are validated by an OCSP responder. #### **Remote SAML-based authentication** NIOS uses SAML (Security Assertion Markup Language) 2.0 authentication support for Single-Sign-On in NIOS. SAML provides a standard vendor-independent grammar and protocol for transferring information about a user from one web server to another independent of the server DNS domains. NIOS as a Service Provider uses SAML to defer authentication of users to a trusted authenticator called an Identity Provider (IDP). The IDP provides NIOS with a public-key signed authentication assertion. Refer to the certificate authentication strength justification above. # 6. Physical Security The module must be opaque within the visible spectrum and have tamper evident labels for doors or removable covers in order to be compliant with FIPS 140-2 Security Level 2 requirements. Infoblox provides tamper evident labels (TELs) which must be installed for the module to operate in the FIPS approved mode. The Crypto Officer is responsible for inspecting the TELs regularly⁴ for signs of tamper, and should contact Infoblox customer support if any signs of tamper are found. | Label Kit – Description | Label Kit - Part
Number | |----------------------------------|----------------------------| | Infoblox Tamper Evident Seal Kit | IB-FIPS | Table 12 Tamper Evident Labels #### 6.1. Tamper Evident Label Placement The tamper evident labels must be affixed to the module by the Crypto Officer at the following locations after ensuring the applying surface is clean. ⁴ The inspection interval for the TELs is at the discretion of the Crypto Officer, and their standard operating procedures. Table 13 Infoblox Trinzic 805 series Tamper Evident Label Placement Table 14 Infoblox Trinzic 1405 Series Tamper Evident Label Placement Infoblox Trinzic 2205 and 4005 Series Tamper Evident Label Placement (12 labels) Table 15 Infoblox Trinzic 2205 and 4005 series Tamper Evident Label Placement # 7. Operational Environment The module is a multi-chip standalone hardware module operating with a non-modifiable operational environment. # 8. Cryptographic Key Management | Key/CSP
Name | Key/CSP
Type | Key/CSP
Size | Generation/
Input ⁵ | Output | Storage | Zeroization | Use ⁶ | |---|--|---|--|------------------------|---|--------------------------------|---| | Superuser /
Admin /
User
Password | Password | 6 (or more) characters, a-z, A-Z, 0-9, or "!@#%^&*() | Input into
module
encrypted
(via SSH or
TLS) | N/A | The password is stored in the module's persistent memory (DB) | Via
zeroization
service. | Authenticati
on for
Superuser,
Limited-
Access
Admin, or
User | | LDAPS
Bind User
Password | Password | 6 (or more) characters, a-z, A-Z, 0-9, or "!@#%^&*() | Input into
module
encrypted
(via TLS) | N/A | The password is stored in the module's persistent memory (DB) | Via
zeroization
service. | Authenticati
on for
credential
for remote
LDAPS
server. | | Integrity Test Public Key | RSA Public
Key
(with
SHA256
Signature
Algorithm) | 4096 bits | Generated internally. | N/A | Stored in the
module's
persistent
memory | Via
zeroization
service. | Integrity
Test | | Integrity Test Private Key | RSA Private
Key | 4096 bits | Generated internally. | N/A | Stored in the
module's
persistent
memory | Via
zeroization
service. | Integrity
Test | | Software /
Firmware
Load Test
Public Key | RSA Public
Key (with
SHA256
Signature
Algorithm) | 2048 bits | This key is not generated by the module. | N/A | This key is hard-coded into the module; stored in the module's persistent memory. | N/A | Software /
Firmware
Load Test | | X.509 CA
Certificate | x.509 Certificate with ECDSA, or RSA Public Key (with SHA-224, SHA-256, SHA-384, or SHA-512 Signature Algorithm) | ECDSA: P-256 (256 bits), P-384 (384 bits), P-521 (521 bits) RSA: 2048 bits, 3072 bits, 4096 bits | Generated
Externally | Encrypted
(via TLS) | Stored in the
module's
persistent
memory
(DB) | Via
zeroization
service. | External
Trusted CA
Certificate | For all keys marked as "generated internally", the resulting symmetric key or the generated seed to be used in the asymmetric key generation is an unmodified output from the DRBG unless otherwise noted. ⁶ Keys/CSPs generated in FIPS mode cannot be used in non-FIPS mode and vice-versa. | X.509
HTTPS
Certificate | X.509 Certificate with RSA Public Key (with SHA- 256 Signature Algorithm) | 2048 bits,
4096 bits | Generated internally, or input into module encrypted (via TLS) | Encrypted
(via TLS) | Stored in the
module's
persistent
memory
(DB) | Via
zeroization
service. | HTTPS
Server
Certificate | |--|---|-------------------------------------|--|------------------------|---|---|---| | X.509
HTTPS
Certificate
Private Key | RŠA | 2048 bits,
4096 bits | Generated
Internally | N/A | Stored in the
module's
persistent
memory
(DB) | Via
zeroization
service. | Private key
for HTTPS
Server
Certificate | | X. 509
Client
Certificate | X.509 Certificate with RSA Public Key (with SHA- 256 Signature Algorithm) | 2048 bits | Generated
Internally | Encrypted
(via TLS) | Stored in the
module's
persistent
memory
(DB) | Via
zeroization
service. | Authenticati
ng the
Module to
an external
server. | | X. 509
Client
Certificate
Private Key | RSA | 2048 bits | Generated
Internally | N/A | Stored in the
module's
persistent
memory
(DB) | Via
zeroization
service. | Private Key
for Client
Certificate | | X. 509 User
Certificate | X.509 Certificate with RSA Public Key (with SHA- 256 or SHA- 512 Signature Algorithm) | 2048 bits
3072 bits
4096 bits | Generate
Externally | Plaintext | Stored in the module's dynamic memory | After user is authenticate d | Authenticate user to module. | | SSHv2
Private Key | RŠA | 2048 bits | Generated internally | N/A | Stored in the module's persistent memory. | Upon
session re-
key or
termination. | This is the private host key used for SSHv2 authenticatio n | | SSHv2
Public Key | RSA | 2048 bits | Generated internally | Plaintext | Stored in the module's persistent memory. | Via
zeroization
service. | This is the public host key used for SSHv2 authentication | | SSHv2
Diffie-
Hellman
Private Key | KAS-FFC | 2048 bits | Generated internally | N/A | Stored in dynamic memory. | Upon
negotiation
of shared
secret | SSH Key
Agreement | | SSHv2
Diffie-
Hellman
Public Key | KAS-FFC | 2048 bits | Generated internally | Plaintext | Stored in
dynamic
memory | Upon
negotiation
of shared
secret | SSH Key
Agreement | |--|----------------------------------|---|--|-----------|--|---|---| | SSHv2
Elliptic-
Curve
Diffie-
Hellman
Private Key | KAS-ECC | 256 bits,
384 bits,
521 bits | Generated internally | N/A | Stored in
dynamic
memory | Upon
negotiation
of shared
secret | SSH Key
Agreement | | SSHv2
Elliptic-
Curve
Diffie-
Hellman
Public Key | KAS-ECC | P-256 (256
bits),
P-384 (384
bits),
P-521 (521
bits) | Generated internally | Plaintext | Stored in
dynamic
memory | Upon
negotiation
of shared
secret | SSH Key
Agreement | | SSHv2
Encryption
Key | AES-128-
CBC, AES-
256-CBC | 128 bits,
256 bits | Derived via
the SP800-
135 KDF | N/A | Ephemeral | Upon
session re-
key or
termination. | This is the
SSHv2
session key;
used to
encrypt
SSHv2 data
traffic | | SSHv2
Authenticat
ion Key | HMAC-
SHA1 | 160 bits | Derived via
the SP800-
135 KDF | N/A | Ephemeral | Upon
session re-
key or
termination. | This is the SSHv2 authenticatio n key; used to authenticate SSHv2 data traffic | | snmpEngin
eID | Unique ID | 32-byte
maximum
length | Generated externally | Plaintext | Hardcoded,
stored in the
module's
persistent
memory. | N/A | This is the SnmpEngine ID as defined in RFC3411, used to identify the SNMP engine | | SNMPv3
Auth
Password | Password | 6 (or more) characters, a-z, A-Z, 0-9, or "!@#%^&*() | Input into
module
encrypted
(via SSH or
TLS) | N/A | This password is stored in the module's persistent memory (DB) in AES encrypted form | Via
zeroization
service. | Authenticati
on for
SNMPv3 | | SNMPv3
Privacy
Password | Password | 6 (or more) characters, a-z, A-Z, 0-9, or "!@#%^&*() | Input into
module
encrypted
(via SSH or
TLS) | N/A | This password is stored in the module's persistent memory (DB) in AES encrypted form | Via
zeroization
service. | Privacy for
SNMPv3 | |---------------------------------------|---------------------------------|---|---|-----------|--|---|--| | SNMPv3
Encryption
Key | AES-128
CFB | 128 bits | Derived via
the SP800-
135 KDF | N/A | Ephemeral | Upon
session re-
key or
termination. | Encryption for SNMPv3 | | SNMPv3
Authenticat
ion Key | HMAC-SHA-
1-96 | 160 bits | Derived via
the SP800-
135 KDF | N/A | Ephemeral | Upon
session re-
key or
termination. | Encryption
for SNMPv3 | | TLS Diffie-
Hellman
Private Key | KAS-FFC | 2048 bits | Generated internally | N/A | Stored in dynamic memory. | Upon
negotiation
of shared
secret | TLS Key
Agreement | | TLS Diffie-
Hellman
Public Key | KAS-FFC | 2048 bits | Generated internally | Plaintext | Stored in dynamic memory | Upon
negotiation
of shared
secret | TLS Key
Agreement | | TLS Pre-
master
Secret | Key Material | 384 bits
(RSA Key
Transport),
2048 bits
(KAS-FFC
Key
Agreement) | Entered into
the module
protected by
RSA, or
derived via
KAS-FFC | N/A | Ephemeral | Upon
completion
of key
derivation. | Used to
derive TLS
master
secret | | TLS Master
Secret | Key Material | 48 bytes
(384 bits) | Derived from
pre-master
secret | N/A | Ephemeral | Upon
completion
of key
derivation. | Used to
produce
keys in TLS
handshake | | TLS
Encryption
Key | AES-128
CBC, AES-
256 CBC | 128 bits,
256 bits | Derived via
the SP800-
135 KDF | N/A | Ephemeral | Upon
session re-
key or
termination. | Used to
encrypt
traffic in TLS | | TLS
Authenticat
ion Key | HMAC-SHA-
1 | 160 bits | Derived via
the SP800-
135 KDF | N/A | Ephemeral | Upon
session re-
key or
termination. | Used to
authenticate
traffic in TLS | |----------------------------------|---|---------------------------------------|--|-----------|-----------------------------|---|---| | DNSSEC
KSK Private
Key | RSA Private
Key | 2048 bits,
3072 bits,
4096 bits | Generated
Internally | N/A | Stored in persistent memory | Via
zeroization
service. | Used to sign
all DNSKEY
records | | DNSSEC
KSK Public
Key | RSA Public
Key (with
SHA-256 or
SHA-512
signatures) | 2048 bits,
3072 bits,
4096 bits | Generated
Internally | Plaintext | Stored in persistent memory | Via
zeroization
service. | Used to sign
all DNSKEY
records | | DNSSEC
ZSK Private
Key | RSA Private
Key | 2048 bits,
3072 bits,
4096 bits | Generated
Internally | N/A | Stored in persistent memory | Via
zeroization
service. | Used to sign
each RRset
in a zone | | DNSSEC
ZSK Public
Key | RSA Public
Key (with
SHA-256 or
SHA-512
signatures) | 2048
bits,
3072 bits,
4096 bits | Generated
Internally | Plaintext | Stored in persistent memory | Via
zeroization
service. | Used to sign
each RRset
in a zone | | HMAC
DRBG
entropy
input | 2400-bit
entropy
input for
DRBG Cert.
#A2503 ⁷ ,
256-bit for
DRBG Cert.
#A2507 ⁸ | | Generated
by the
module's
Entropy
Source | N/A | Ephemeral | Upon reseed
and
shutdown. | Random
Number
Generation | | HMAC
DRBG seed | Seed | 440-bits | Derived via
the SP800-
90A
Mechanisms | N/A | Ephemeral | Upon reseed and shutdown. | DRBG Seed | | HMAC
DRBG V | Internal
State Value | 256 bits | Derived via
the SP800-
90A
Mechanisms | N/A | Ephemeral | Upon reseed and shutdown. | DRBG
Internal
State | ⁷ The module's entropy source, ENT (NP), provides an estimated 58 bits of entropy per 64-bit output. DRBG Cert. #A2503 requests 2400-bits of output from the ENT (NP). Therefore, DRBG Cert. #A2503 is seeded with at least 2175 bits of entropy and fully seeded. ⁸ DRBG Cert. #A2507 requests 256-bits of entropy output from DRBG Cert. #A2503, which is considered a vetted conditioner providing full entropy per FIPS 140-2 IG 7.19. | HMAC
DRBG Key | Internal
State Value | 256 bits | Derived via
the SP800-
90A
Mechanisms | N/A | Ephemeral | Upon reseed and shutdown. | Random
Number
Generation | |------------------------------------|---|-----------------------|--|----------------------------------|---|--------------------------------|---------------------------------------| | GSS-TSIG
Encryption
Key | AES-128-
CTS, AES-
256-CTS
Kerberos
Key | 128 bits,
256 bits | Generated externally. Input into module encrypted (via TLS) | Output
encrypted
(via TLS) | Stored encrypted in persistent memory. | Via
zeroization
service. | Used for
Secure
DDNS
Updates | | GSS-TSIG
Authenticat
ion Key | HMAC-SHA-
1-96
Kerberos
Key | 160 bits | Generated
externally.
Input into
module
encrypted
(via TLS) | Output
encrypted
(via TLS) | Stored
encrypted in
persistent
memory. | Via
zeroization
service. | Used for
Secure
DDNS
Updates | | Key
Encryption
Key (KEK) | AES-128-
CBC key | 128 bits | Generated internally | N/A | Stored in persistent memory. | Via
zeroization
service. | Used for encrypting database keys. | Table 16 Cryptographic Keys and CSPs #### 9. Self-Tests Output via the Data Output interface is inhibited during the performance of self-tests. The module enters the error state upon any self-test failure. The following self-tests are executed automatically without any need for input or actions from the user. #### 9.1. Power-on Self-Tests The results of the power-on self-tests are output via the console and to the system syslog. - Integrity Test - SHA-1 Known Answer Test - HMAC-SHA-1/256/384/512 Known Answer Tests - AES ECB encrypt / decrypt Known Answer Test (128-bit key) - RSA sign / verify Known Answer Test (2048-bit key, PKCS #1 v1.5 with SHA-256) - ECDSA sign / verify Known Answer Test (P-256 with SHA-256) - HMAC_DRBG w/ SHA-256 Known Answer Tests (Instantiate, Reseed, Generate)⁹ - Primitive "Z" Computation Known Answer Test for KAS-FFC - Primitive "Z" Computation Known Answer Test for KAS-ECC - SP 800-90B Startup Health Tests (Repetition Count Test and Adaptive Proportion Test) - SP 800-135 TLS 1.0/1.1 KDF Known Answer Test - SP 800-135 TLS 1.2 KDF Known Answer Test - SP 800-135 SSH KDF Known Answer Test #### 9.2. Conditional Self-Tests - Continuous Random Number Generator Test (CRNGT) on the SP800-90A HMAC_DRBG w/ SHA-256 - Health Tests (Instantiate, Reseed, Generate) on the SP800-90A HMAC DRBG's w/ SHA-256 - SP800-90B Health Tests (Repetition Count Test and Adaptive Proportion Test) - ECDSA Pair-wise Consistency Test - RSA Pair-wise Consistency Test - KAS-FFC Pair-wise Conditional Test - KAS-ECC Pair-wise Conditional Test - Conditional Tests for Assurances (as specified in SP800-56A Sections 5.5.2, 5.6.2 and 5.6.3) - Firmware Load Test #### 9.3. Critical Functions Tests Memory test – All memory is tested and isolated faulty memory is disabled ⁹ Tested for DRBG Certs. #A2503 and #A2507 # A. Appendices Table of Acronyms: | Acronym | Definition | |----------------|--| | Acronym
8N1 | Eight Data Bits, No Parity Bit, One Stop Bit | | AC | Alternating Current | | AES | Advanced Encryption Standard | | CA | Certificate Authority | | CVL | Component Validation List | | DB9/DB-9 | D-Subminiature 9 | | DC | Direct Current | | DDI | DNS, DHCP, and IPAM | | DHCP | Dynamic Host Configuration Protocol | | DNS | Domain Name System | | DRBG | Deterministic Random Bit Generator | | DSA | Digital Signature Algorithm | | DTC | DNS Traffic Control | | ECDSA | Elliptic Curve Digital Signature Algorithm | | EMI | Electromagnetic Interference | | EMC | Electromagnetic Compatibility | | FIPS | Federal Information Processing Standard | | FTP | File Transfer Protocol | | HA | High Availability | | HMAC | Hash-based Message Authentication Code | | HSM | Hardware Security Module | | IKE | Internet Key Exchange | | IP . | Internet Protocol | | IPAM | Internet Protocol Address Management | | IPMI | Intelligent Platform Management Interface | | IPsec | Internet Protocol Security | | KAS | Key Agreement Scheme | | KDF | Key Derivation Function | | LAN | Local Area Network | | LBDN | Load Balanced Domain Name | | LDAP | Lightweight Directory Access Protocol | | LCD | Liquid-Crystal Display | | LOM | Lights-Out Management | | MAC | Media Access Control | | MD5 | Message Digest 5 | | MGMT | Management | | NEBS | Network Equipment-Building System | | NDRNG | Non-Deterministic Random Number Generator | | PKI | Public Key Infrastructure | | PRNG | Pseudo-Random Number Generator | | PSU | Power Supply Unit | | RADIUS | Remote Authentication Dial-In User Service | | RAID | Redundant Array of Independent Disks | | RC4 | Rivest Cipher 4 | | RSA | Rivest Cipher 4 Rivest, Shamir and Adleman (cryptosystem) | | SAML | Security Assertion Markup Language | | SHA | Secure Hash Algorithm | | SHS | Secure Hash Standard | | SNMP | Simple Network Management Protocol | | Ortifol | omple Network Management Flotocol | | SSH | Secure Shell | |---------|--| | TACACS+ | Terminal Access Controller Access-Control System | | TLS | Transport Layer Security | | TFTP | Trivial File Transfer Protocol | | USB | Universal Serial Bus | | VAC | Voltage in Alternating Current | | XOFF | Pause Transmission | | XON | Resume Transmission |