Hewlett Packard Enterprise DevelopmentLP HPE BladeSystem c-Class Virtual Connect Firmware FirmwareVersion: 4.65 FIPS 140-2 Non-Proprietary Security Policy FIPS Security Level: 1 Document Version: 0.7 Preparedfor: Preparedby: HewlettPackard Enterprise DevelopmentLP Corsec Security,Inc. 11445 CompaqCenterDr.W. 13921 ParkCenterRoad Suite 460 Houston,TX 77070 Herndon,VA 20171 UnitedStatesof America UnitedStatesof America Phone:+1 (281) 370-0670 Phone:+1 703 267 6050 http://www.hpe.com www.corsec.com FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 2 of 33 Table of Contents 1. Introduction..........................................................................................................................................4 1.1 Purpose .......................................................................................................................................4 1.2 References...................................................................................................................................4 1.3 Document Organization................................................................................................................4 2. VC Firmware.........................................................................................................................................5 2.1 Overview .....................................................................................................................................5 2.2 Module Specification....................................................................................................................6 2.2.1 Logical Cryptographic Boundary.......................................................................................9 2.2.2 Physical Cryptographic Boundary...................................................................................10 2.3 Module Interfaces ......................................................................................................................11 2.4 Roles, Services, and Authentication .............................................................................................12 2.4.1 Authorized Roles...........................................................................................................12 2.4.2 Operator Services..........................................................................................................13 2.4.3 General Operator Services.............................................................................................15 2.4.4 Non-Security Relevant Services......................................................................................16 2.4.5 Authentication..............................................................................................................16 2.5 Physical Security.........................................................................................................................19 2.6 Operational Environment............................................................................................................19 2.7 Cryptographic Key Management..................................................................................................20 2.8 Self-Tests...................................................................................................................................25 2.8.1 Power-Up Self-Tests......................................................................................................25 2.8.2 Conditional Self-Tests....................................................................................................25 2.8.3 Critical Functions Self-Tests...........................................................................................26 2.9 Mitigation of Other Attacks.........................................................................................................26 3. Secure Operation................................................................................................................................27 3.1 Initial Setup................................................................................................................................27 3.2 Crypto Officer Guidance..............................................................................................................27 3.2.1 Secure Management.....................................................................................................27 3.2.2 Verifying the Approved Mode........................................................................................28 3.2.3 Save Domain and Export Dump......................................................................................28 3.2.4 Zeroization ...................................................................................................................28 3.2.5 Password Complexity ....................................................................................................28 3.2.6 TLS Version Configuration..............................................................................................28 3.3 User Guidance............................................................................................................................29 3.4 Non-Approved Mode of Operation..............................................................................................29 4. Acronyms ...........................................................................................................................................30 FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 3 of 33 List of Tables Table 1 – Security Level per FIPS 140-2 Section.................................................................................................6 Table 2 – FIPS-Approved Cryptographic Algorithms ..........................................................................................7 Table 3 – Allowed Algorithms..........................................................................................................................8 Table 4 – Non-Approved Algorithms ................................................................................................................9 Table 5 – FIPS 140-2 Logical Interface Mappings.............................................................................................12 Table 6 – Mapping of HPE Administrative Roles to FIPS-Defined Roles.............................................................13 Table 7 – Module Services by Role.................................................................................................................13 Table 8 – ServicesNot Requiring anAuthorized Role.......................................................................................15 Table 9 – Authentication Mechanism Used by the Module..............................................................................18 Table 10 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs.............................................20 Table 11 – Acronyms.....................................................................................................................................30 List of Figures Figure 1 – VC Firmware Logical Cryptographic Boundary.................................................................................10 Figure 2 – HPE BladeSystem c-Class Virtual Connect Hardware Platform Block Diagram....................................11 FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 4 of 33 1. Introduction 1.1 Purpose This is a non-proprietary Cryptographic Module Security Policy for the HPE BladeSystem c-Class Virtual Connect Firmware (FirmwareVersion:4.65) fromHewlettPackardEnterprise DevelopmentLP (HPE),hereafterreferredto in this document as the VC Firmware or the module. This SecurityPolicy describes how the VC Firmware meets the securityrequirementsof FederalInformationProcessingStandards(FIPS) Publication140-2,whichdetailsthe U.S.1 and Canadiangovernmentrequirementsforcryptographicmodules.More informationaboutthe FIPS140- 2 standard and validationprogramis available onthe National Institute of Standardsand Technology(NIST) and the CommunicationsSecurityEstablishment(CSE) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp. This document also describeshow to run the module in a secure FIPS-Approved mode of operation. This policy was preparedaspart of the Level 1 FIPS140-2 validationof the module. 1.2 References This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographicmodule securitypolicy.More informationisavailable onthe module fromthe followingsources:  The HPE website (www.hpe.com)containsinformationonthe full line of productsfrom HPE.  The CMVP website (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm) contains contact informationforindividualsresponsible for answeringtechnical orsales-relatedquestionsforthe module. 1.3 Document Organization The Security Policy document is organized into two (2) primary sections. Section 2 provides an overview of the validatedmodule.Thisincludesageneral descriptionof the module’scapabilitiesanduse of cryptographyaswell as a presentation of the validation level achieved in each applicable functional area of the FIPS standard. It also provides high-level descriptions of how the module meet FIPS requirements in each functional area. Section 3 documents the guidance needed for the secure use of the module, including initial setup instructions, managementmethods,andapplicableusage policies. 1 U.S. – United States FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 5 of 33 2. VC Firmware 2.1 Overview HPE’s Virtual Connect is a server edge virtualization solution that provides connections over Ethernet, Fibre Channel, and iSCSI2 betweendata and storage networks and a shared resource pool of HPE BladeSystemserver blades.These connections are virtualizedwithahardware abstractionlayersothatserverchanges,like upgrades or replacements, are transparent to the external LAN3 and SAN4 environments. Virtual Connect provides four times the number of connections per physical network link by partitioning server Ethernet ports into smaller- bandwidth physical functionNIC5 s(calledFlexNICs6 ). The VCFirmware operateson three differentHPEBladeSystemc-ClassVirtualConnecthardwareplatforms(called interconnectmodules) thatplugdirectly intothe rear bay of HPE BladeSystemc-Classenclosures.The platforms connect to server blades through the enclosure midplane. HPE BladeSystem is a rack-mount, enterprise-class computing infrastructure designed to maximize power while minimizing costs. A typical HPE BladeSystem environment may consist of an HPE BladeSystemc7000 enclosure, one or two HPE Onboard Administrator (OA) modules forenclosure management,one ormore HPE BladeSystemc-ClassVirtual Connect hardware platforms, and one or more of a range of serverbladesdesignedtoprovide flexiblecomputationorstorage services. Virtual Connectprovidesthe followingadvantages:  Cleanlyseparatesserverenclosure administrationfromLAN andSAN administration  Allows administrators to add, move, or replace servers without impacting production LAN and SAN availability  Simplifiesthe setupandadministrationof serverconnections  Enables HPEFlexFabric,whichisaconvergednetworksolutioncapable of transmittingbothEthernetand storage trafficreliablyincongestednetworks  Supplieseasyandefficientcentral managementtoolsforone tohundredsof domains Administratorsuse Virtual Connectmanagementtoolslike Virtual ConnectEnterpriseManager(VCEM) orVirtual ConnectManager (VCM) to create an I/O7 connectionprofile foreachserverafterphysicallymakingthe LAN and SAN connectionstothe HPE BladeSystemc-ClassVirtual Connect hardware platform.The I/Oconnectionprofile, or server profile, provides the linkage between the server and the connections defined in the Virtual Connect application.Serverprofilescontaininformationaboutserveraddresses,connections,andboot parameters. VCM management capabilities are provided through firmware running on a processor on Ethernet-capable interconnect modules. Consequently, each HPE BladeSystem enclosure must have at least one HPE Virtual 2 iSCSI –Internet SmallComputer Systems Interface 3 LAN – Local Area Network 4 SAN – Storage Area Network 5 NIC – Network InterfaceController 6 A FlexNIC is a physical PeripheralComponent InterconnectExpress (PCIe) function thatappears to thesystem read-only memory, operating system, and hypervisor as a discretephysicalNIC with its own driver instance. It is not a virtual NICcontainedin a softwarelayer. 7 I/O –Input/Output FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 6 of 33 Connect Ethernet-capable interconnect module. VCM provides a Web-based GUI8 (the Web GUI) and a CLI9 for managinga single Virtual Connectdomain. VCEM, a plug-in for HPE Systems Insight Manager (HPSIM), is an optional software application used to manage multiple Virtual Connect domains10 (up to 1,000 BladeSystem enclosures). It provides automation and group- basedmanagementcapabilitiesbeyondwhatVCMoffers.VCMcommunicateswithVCEMoveraSOAP11 interface to forward serverandnetworkconfigurationdata. Additional information about the Virtual Connect infrastructure and technologies can be found in the technical white paper Overview of HP Virtual Connect technologies, available from the HPE website at http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA4-8174ENW&cc=us&lc=en. The VC Firmware isvalidatedatthe FIPS140-2 Sectionlevelsshownin Table 1. Table 1 – Security Level per FIPS 140-2 Section Section Section Title Level 1 Cryptographic Module Specification 1 2 Cryptographic Module Ports and Interfaces 1 3 Roles, Services, and Authentication 2 4 Finite State Model 1 5 Physical Security 1 6 Operational Environment N/A12 7 Cryptographic KeyManagement 1 8 EMI/EMC13 1 9 Self-tests 1 10 Design Assurance 1 11 Mitigation ofOther Attacks N/A 2.2 Module Specification The VCFirmware isa firmware module withamulti-chipembeddedembodiment.The overallsecurity levelof the module is 1. The firmware image (vcfwall465.bin) runsonan HPE BladeSystemc-ClassVirtual Connecthardware platforminstalledinan HPE BladeSystemc-Classenclosure. The module implementsthe FIPS-Approvedalgorithmslistedin Table 2. 8 GUI – GraphicalUser Interface 9 CLI –Command LineInterface 10 Virtual Connect domain -AVirtual Connect domainconsists ofa BladeSystem enclosure anda setofassociated modules andserver blades that are managedtogetherby a singleinstanceoftheVCM. 11 SOAP – Simple ObjectAccess Protocol 12 N/A – Not Applicable 13 EMI/EMC – ElectromagneticInterference / ElectromagneticCompatibility FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 7 of 33 Table 2 – FIPS-Approved Cryptographic Algorithms CAVP Cert Algorithm Standard Mode / Method Key Lengths, Curves, or Moduli Use 4777 AES14 FIPS PUB 197, NIST SP15 800-38A CBC16 128, 192, 256 Data Encryption/Decryption CFB17128 128 Data Encryption/Decryption CTR18 128, 192, 256 Data Encryption/Decryption FIPS PUB 197, NIST SP 800-38D GCM19 128, 256 Data Encryption/Decryption and Authentication NIST SP 800-38F KW20 128, 192, 256 KeyWrapping/Unwrapping Vendor Affirmation CKG21 NIST SP 800-133 - - KeyGeneration 1424 CVL22 NIST SP 800-135Rev1 TLS23 1.2 - KeyDerivation No parts ofthis protocol, other than the KDF, have been testedbythe CAVPand CMVP. 1425 CVL24 NIST SP 800-135Rev1 SSH - KeyDerivation No parts ofthis protocol, other than the KDF, have been testedbythe CAVPand CMVP. 1426 CVL25 NIST SP 800-135Rev1 SNMP26v3 - KeyDerivation No parts ofthis protocol, other than the KDF, have been testedbythe CAVPand CMVP. 1655 DRBG27 NIST SP 800-90A CTR - Deterministic Random Bit Generation 3187 HMAC28 FIPS PUB 198-1 HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512 160, 256, 384, 512 Message Authentication 14 AES – Advance EncryptionStandard 15 SP – SpecialPublication 16 CBC – Cipher Block Chaining 17 CFB – Cipher Feedback 18 CTR –Counter 19 GCM – Galois Counter Mode 20 KW – Key Wrap 21 CKG – Cryptographic Key Generation 22 CVL – Component ValidationList 23 TLS – TransportLayerSecurity 24 CVL – Component ValidationList 25 CVL – Component ValidationList 26 SNMP – Simple Network Management Protocol 27 DRBG –Deterministic RandomBit Generator 28 HMAC – (Keyed-) HashMessageAuthenticationCode FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 8 of 33 CAVP Cert Algorithm Standard Mode / Method Key Lengths, Curves, or Moduli Use Vendor Affirmation PBKDF29 NIST SP 800-132 DerivingKeys for Storage Applications 2618 RSA30 FIPS PUB 186-4 SHA-256, SHA-384, SHA- 512 2048 KeyPair Generation SHA-224, SHA-256, SHA- 384, SHA-512 2048 Signature Generation and Verification 3923 SHS31 FIPS PUB 180-4 SHA32-1, SHA-256, SHA- 384, SHA-512 - Message Digest 2539 Triple-DES33 NIST SP 800-67 TCBC34 - Data Encryption/Decryption The TLS protocol governs the generationof Triple-DES keys. Refer to RFC5246 for details relevant to the generationof the Triple-DESkeys. The user is responsible for ensuring the module limits the number of encryptions with the same key to 232. The module implementsthe Allowedalgorithmslisted inTable 3below. Table 3 – Allowed Algorithms Algorithm Caveat Use FFC35 DH36 Provides between 112 and 150 bits of encryption strength Keyagreement RSA (keyencapsulation) Provides between 112 and 256 bits of encryption strength Keyestablishment NDRNG37 (/dev/random) N/A Seedingfor the DRBG The module implementsthe Non-Approvedalgorithmslistedin Table 4below. 29 PBKDF –Password-Based Key DerivationFunction 30 RSA –Rivest ShamirAdleman 31 SHS – Secure HashStandard 32 SHA –Secure Hash Algorithm 33 DES –Data Encryption Standard 34 TCBC – Triple Data Encryption AlgorithmCipher Block Chaining 35 FFC – Finite FieldCryptography 36 DH – Diffie-Hellman 37 NDRNG –Non-deterministicRandom Number Generator FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 9 of 33 Table 4 – Non-Approved Algorithms Algorithm Use OpenSSL md_rand Provides Salt as input to the PBKDF2 function Further,the vendoraffirmscompliance withthe followingsecuritymethods:  NIST SP 800-132 (PBKDF2) – The module implements option 1(a) from section 5.4 of the Special Publication.PleaserefertoSection 3.2.3for Crypto-Officerguidance specificto thisfunction.  NIST SP 800-133 (CKG) – When the module generates symmetric keys or seeds used for generating asymmetrickeys,unmodifiedDRBGoutputisusedasthe symmetrickeyorasthe seedforgeneratingthe asymmetrickeys. Asafirmware module, themodule hasbothalogical andphysical cryptographicboundary.Thelogical andphysical cryptographicboundariesare describedinSections 2.2.1and 2.2.2, respectively. 2.2.1 Logical Cryptographic Boundary The logical cryptographicboundaryis drawn around the VCFirmware executingonthe HPE BladeSystemc-Class Virtual Connecthardware platform. Figure 1 shows the module’s logical cryptographic boundary including the four main parts that comprise the VC Firmware. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 10 of 33 Figure 1 – VC Firmware Logical Cryptographic Boundary 2.2.2 Physical Cryptographic Boundary Asa firmware module, the cryptographicmodulehasnophysical characteristics;however,the physical boundary of the cryptographic module is defined by the HPE BladeSystem c-Class Virtual Connect hardware platform on whichitruns. The module wastestedandfoundcompliantonthe following HPEBladeSystemc-ClassVirtualConnect hardware platforms:  HPE Virtual ConnectFlexFabric-20/40F8 Module forc-Class BladeSystemwithTAA38  HPE Virtual ConnectFlexFabric10 Gb39 /24-portModule for c-ClassBladeSystem  HPE Virtual ConnectFlex-10/10DModule forc-ClassBladeSystem The module executesonthe Freescale MPC8535processorlocatedoneachof the HPEBladeSystemc-ClassVirtual Connecthardware platforms.The module’sphysical cryptographicboundary isthe physical perimeterof the HPE BladeSystem c-Class Virtual Connect hardware platform. This boundary fully encloses the processor and other hardware componentsthatstore andprotect the VCFirmware. 38 TAA – Trade Agreements Act. This extension on the model name signifies itis TAA-compliant, i.e., itwas manufactured in a TAAdesignated country; otherwise, it is thesamehardwareand firmware as the HPEVirtual ConnectFlexFabric20/40F8 Modulefor c-Class BladeSystem. 39 Gb – Gigabit HPE BladeSystem c-Class Virtual Connect Hardware Platform Data Output Data Input Control Input Status Output Logical Cryptographic Boundary HPE Operating System uBoot HPE Virtual Connect Application Cryptographic Library FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 11 of 33 Figure 2 presents ahardware blockdiagramforthe HPEBladeSystemc-ClassVirtualConnect hardware platforms. It illustratesthe physical componentsandthe portsandinterfacesacross the physical boundary. Data Output Data Input Control Input Status Output Physical Cryptographic Boundary Power Freescale Processor MPC8535 Flash ROM Boot ROM DDR RAM GBx Backplane Connector Ethernet (SFP+/QSFP) Broadcom Network Controller (Switch) LED Mini- USB Next Button Reset ISMIC Ethernet Transceiver ROM Bus ROM Bus DDR2 Bus RS-232 Bus PCIe/PCI Bus Ethernet Bus USB Bus I2 C Bus GPIO Bus DDR – Double Date Rate GPIO – General Purpose Input/Output I2 C – Inter-Integrated Circuit ISMIC – I2 C Switch Management Interface Controller LED – Light Emitting Diode PCI(e) – Peripheral Component Interface (express) QSFP – Quad Small Form-factor Pluggable RS – Requirement Specification RAM – Random Access Memory ROM – Read-Only Memory SFP – Small Form-factor Pluggable USB – Universal Serial Bus Figure 2 – HPE BladeSystem c-Class Virtual Connect Hardware Platform Block Diagram 2.3 Module Interfaces Asa firmware cryptographicmodule,the module’sphysicalportsandinterfacesare those of theHPEBladeSystem c-ClassVirtual Connecthardware platform onwhichthe VCFirmware runs. The module’s hardware platformsconnect to the BladeSystem Enclosure through the backplane connector that plugs into the enclosure,providing connectionpathways to all of the enclosure components and subsystems in order to provide administration. The backplane connector provides serial, Ethernet, and I2 C connectivity. In addition,the backplane connectoralsoprovidesVirtual Connectmanagementviaboththe WebGUI and the CLI. Informationflowingthroughthe Ethernetinterfaceisgeneral,non-securityrelevantdata. The followingisalistof physical interfacesimplementedbythese platforms:  GBx backplane connector  EthernetSFP+connector  EthernetQSFPconnector FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 12 of 33  Resetbutton  LED indicators  USB 2.0 (Mini) Type B connector(notusedby the module)  Nextbutton(notusedby the module) The physical portsare separatedintothe logical interfacesdefinedbyFIPS140-2:data input,dataoutput,control input,statusoutput,andpower.The module provides thissame setof logical interfacesthroughitsuserinterfaces (WebGUI andCLI),which allow itto receive andrespondto callsforcryptographicand administrative services. A mappingof the FIPS140-2 logical interfaces tothe module’sphysical andlogical interfaces isshown inTable 5. Table 5 – FIPS 140-2 Logical Interface Mappings FIPS 140-2 Logical Interface Module Physical Interface Module Logical Interface Data Input  Ethernet Interfaces (SFP+, QSFP)  Backplane connector Applicationinputs via user interfaces Data Output  Ethernet Interfaces (SFP+, QSFP)  Backplane connector Applicationoutputs via user interfaces Control Input  Backplane connector  Reset button Applicationmanagement commands and commandparameters via user interfaces Status Output  Backplane connector  LED40 indicators Applicationcommandreturn statuses via user interfaces Power Interface Power interface Not applicable 2.4 Roles, Services, and Authentication The sectionsbelowdescribethe module’srolesandservicesanddefine the authenticationmethodsemployed. 2.4.1 Authorized Roles There are twoauthorized FIPSrolessupportedbythe module:the Crypto-Officer(CO)role andthe Userrole. The module iscapable of supportingmultiple CO andUsersecure sessionsata time.Operatorsof the moduleassume the role of CO or User through role-based authenticationmechanisms implemented by the HPE Virtual Connect application. The module supports both local and remote authentication methods. An operator accesses the module byprovidingcredentialsthatmatchthose storedlocallyorona remote LDAPserver. Operators of the module are assignedto an HPE-defined administrative role, each of which maps to one of the authorizedFIPS roles.Anoperator’sroleisexplicitly assumedbasedontheirusername orcredentials storedona CAC41 card. 40 LED – Light Emitting Diode 41 CAC – Common Access Card FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 13 of 33 An operatorassignedtothe “Domain”HPE administrative role assumesthe COrole. Table 6 maps all of the HPE administrative roles to their FIPS-defined role and provides a description of the services available to each role. Table 7 liststhe Approvedsecurityservicesforboththe CO and User roles.The CO has access to all the services of the User. Table 6 – Mapping of HPE Administrative Roles to FIPS-Defined Roles FIPS-Defined Role HPE Administrative Role Description CO Domain Define localuser accounts, set passwords, define roles;configure role-baseduser authentication;Import enclosures User Network Configure networkdefault settings;select the MAC42 addressrange to be usedbythe Virtual Connect domain;create, delete, andedit networks Server Create, delete, andedit server VirtualConnect profiles;assignand unassign profiles to device bays;select and use available networks Storage Select the WWNs43 to be used bythe domain; set up the connections to the external FC44 Fabrics;configure FCSNMP settings 2.4.2 Operator Services Descriptions of the services available to an operator with the CO and User role are provided in Table 7. Please note that the keysand CSPslistedin Table 7indicate the type of access requiredusingthe followingnotation:  R – Read:The CSPis read.  W – Write:The CSP isestablished,generated,modified,orzeroized.  X – Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism. Table 7 – Module Services by Role Service Role Description CSP and Type of Access CO User Create/ModifyUsers  Create, edit, anddelete users;define user accounts and assignpermissions User password– W Change CO Password  Change the CO password CO password – W Change User Password   Change the User password User password – W 42 MAC – Media Access Control 43 WWN –World Wide Name 44 FC – Fibre Channel FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 14 of 33 Service Role Description CSP and Type of Access CO User Access the CLI   Manage the module using the CLI, accessed via SSHprotocol over Ethernet or directlyvia serial console Crypto Officer password – X User password – X SSH session key– W/X FFCDH public/private keycomponents – W/X SSH integritykey– W/X SSH encryptionkey– W/X RSA SSH public/private keys – X Access the WebGUI   Access the WebGUI via HTTPS connectionthroughwebbrowser Crypto Officer password – X User password – X Crypto Officer LDAPpassword – X User LDAPpassword – X TLS session Key– W/X FFCDH public/private keycomponents – W/X RSA TLS public/private keys – X TLS integritykey– W/X TLS encryptionkey – W/X AES GCM IV45 – W/X Access the Module using CACcards   Log in to the module usingCAC cards TLS session Key– W/X FFCDH public/private keycomponents – W/X RSA TLS public/private keys – X TLS integritykey– W/X TLS encryptionkey – W/X AES GCM IV – W/X Operator CACcredential – X Zeroize Keys  Zeroize all keys46 andcertificates; resets default CO password to factory settings All keys – W Show Status   Indicate whether the module is in FIPS mode None Initialize Module (Enter FIPS mode)  Initialize the module in FIPS mode Module key– W Module keypassword – W Utilitykey– W Utilitykeypassword – W RSA TLS private key – W RSA SSH private key – W BackupModule  Backupthe domainconfigurationfile to be loadedfor future use Backupencryptionkeypassword – W/X Backupencryptionkey – W/X Restore Module  Restore the module withanencrypted domainconfigurationfile Backupencryptionkeypassword – W/X Backupencryptionkey – W/X Create Support Dump  Generate a support log, whichcanbe usedfor technical assistance Support encryptionkeypassword – W/X Support encryptionkey – W/X Connect to HPE OA  Communicate with HPE OA to obtain status TLS session key– W/X TLS integritykey– W/X TLS encryptionkey – W/X 45 IV –Initialization Vector 46 PleaseseeTable 10 for the list ofkeys that can bezeroized using the“ZeroizeKeys”service. More specifically, ifa key listed in Table 10 has thetext “Zeroized via WebGUI or CLI zeroizationcommand” inthe“Zeroization”column, then it canbezeroizedwith the“ZeroizeKeys”service. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 15 of 33 Service Role Description CSP and Type of Access CO User Configure SNMPv3 Settings   Enable anddisable SNMPv3;configure SNMPv3 access types SNMPv3 privacykey– W SNMPv3 authentication key – W Connect via SNMPv3   Connect to the modulevia SNMPv3 SNMPv3 privacykey– RX SNMPv3 authentication key – RX Generate TLS Certificate  Generate a TLS certificate to be used for new TLS sessions RSA TLS public/private keys – W Import TLS Certificate  Import a TLS certificate generatedbya Certificate Authority RSA TLS public key – W Import Asymmetric Keys   Import a trustedkey pair to be used for services such as SSHandSFTP47 RSA SSH public/private Keys – W Update Firmware  Update module firmware with newer version;verifymodule firmware with public key Firmware Update Key – X Perform Self-Tests   Initiate power-upself-tests on demandvia reboot or power cycle None Configure CAC Authentication  Enable, disable, andconfigure CAC authentication. Requires LDAPto be enabledandconfigured, including LDAPService Account details. None 2.4.3 General Operator Services The module providesadditionalservices forwhich anoperatorisnot requiredtoassume an authorizedrole. Modules that are part of a single or multi-enclosure Virtual Connect domain may communicate to synchronize configurationdataand exchangeencrypted supportfiles. Thisallows amoduletobe aback-upincase the primary module forthe Virtual Connectdomainbecomesdisabled.These servicesallowexternal Virtual Connectmodules to accessstatusinformationfromthemodule. A requestforaconfiguration datafiledoesnotrequireanoperator to assume an authorizedrole asitdoesnot require operatorinteraction. The additional servicesare listed in Table 8. These services do not affect the overall security of the module, nor do theymodifyany private/secretkeysorCSPs. Table 8 – Services Not Requiring an Authorized Role Service Description CSP and Type of Access Synchronize with back-upmodule Synchronize configurationdata with the back-upmodule Backupmodule password – X SSH encryptionkey – X SSH integritykey– X Support file extraction Extract encryptedsupport file with anexternalVirtual Connect appliance Virtual Connect dumppassword – X SSH encryptionkey – X SSH integritykey– X 47 SFTP – Secure FileTransferProtocol FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 16 of 33 Service Description CSP and Type of Access Module management Provide configurationdata to HPE OA Virtual Connect management password – X SSH encryptionkey – X SSH integritykey– X Send/receive SOAP messages Establisha connectionwitha server and communicate via SOAP TLS encryptionkey – X TLS integritykey– X 2.4.4 Non-Security Relevant Services The module offersadditional servicestoall operators;these services are notrelevanttothe secure operationof the module.Allservicesprovidedbythe moduleare listedinthe HPEVirtualConnectforc-ClassBladeSystemUser GuideVersion 4.65; PartNumber:P01611-001, Dated:January2018,whichisavailablefromHPEcustomersupport. 2.4.5 Authentication The module supportsrole-basedauthentication.Rolesare explicitlyassumedbasedonthe credential providedby the operator.The followingauthenticationmethodsare supported:  Local Authentication(Username/Password) Local authentication employs a locally-stored username/passwordcombination that is unique to each supportedrole. To assume the CO role,operatorsmust authenticate usingthe username andpassword associated with the “Domain” HPE administrative role. To assume the User role, operators must authenticate using the username and password associated with the “Network”, “Server”, or “Storage” HPE administrativerole. CO andUser passwordsthatare createdbythe CO or Usermustbe at least8 characters inlengthandcan containuppercase andlowercase letters[A-z,a-z];numbers[0-9];andspecial characters.  Remote Authentication(LDAPCredential Certificate) Module operatoraccounts that are storedona remote LDAPserverare assignedtoone or more groups. Each group is assigned an HPE administrative role.Thus, when logging via LDAP, the operator explicitly assumesthe role designatedbytheLDAPgrouptowhichtheyare assigned.If theyare assignedtomultiple LDAP groups, the operator will assume multiple HPE administrative roles. To assume the CO role, operators must authenticate using the username and password associated with the “Domain” LDAP groups. To assume the User role, operators must authenticate using the username and password associatedwiththe “Network”,“Server”,or“Storage”LDAPgroups. If the userisassignedtoagroup that fallsintoboththe CO and User roles,the userassumesthe role withthe highestprivileges,the CO. CO and User passwords used for LDAP authentication follow the same complexity rules as those noted above forpasswordsusedforlocal authentication. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 17 of 33 In orderto accessthe remote LDAPserver,authenticationismade tothe serverusingthe server’s2048- bitRSA publickeylocatedonthe server’scertificate.Once aconnectiontothe LDAPserverisestablished, authenticationdataiswrappedwiththe server’sRSA publickey.  Remote Authentication(CACCardCertificate) CAC authentication is based on the certificate presented by the operator via CAC card. The operator selectsthe appropriate certificate fromthose readbyawebbrowserfromthe CACcard.The certificate is checkedforitsvalidity,chainof trust,andrevocationstatus.If itisavalidcertificate,LDAPserviceaccount detailssetinthe module are usedto login to LDAP and authenticate the subjectorsubjectAltNamedata obtainedfromthe certificate. The LDAPservice accountdetailsare usedtoestablishasessionbetweenthemoduleandthe LDAPserver to validate the subject or subjectAltName. Therefore, LDAP authentication must be enabled and LDAP service account details must be properly configured. Based on the LDAP server response to the authenticationrequestfromthe module,the operatorwillgetappropriate accessprivilege asconfigured inthe LDAPserverforthe corresponding subjectorsubjectAltName. In orderto accessthe remote LDAPserver,authenticationismade tothe serverusingthe server’s2048- bitRSA publickeylocatedonthe server’scertificate.Once aconnectiontothe LDAPserverisestablished, authentication dataiswrappedwiththe server’sRSA publickey. Note thatCACuserauthenticationissupportedonlyonthe WebGUI.WhenCACisenabled,the followingwillbe disabled:  CLI access  WebGUI loginwithusername andpassword  Local useraccounts For all supported authentication methods, the probability that a random attempt will succeed or a false acceptance will occurinone minuteis lessthan1:100,000 as requiredbyFIPS140-2.Table 9provides the strength of the authenticationmechanismsusedbythe module. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 18 of 33 Table 9 – Authentication Mechanism Used by the Module Authentication Type Strength Username/Password (local) Once properlyconfigured, the minimumlengthof the passwordis 8 characters, with 94 different case-sensitive alphanumeric characters andsymbolspossible for usage. Assuming a minimum passwordlengthof 8 characters, the chance ofa random attempt falselysucceeding is: 1: (948), or 1: 6,095,689,385,410,816 Which is less than1:1,000,000 as required byFIPS 140-2. The fastest networkconnectionsupportedbythe module (for management) is 100 Mbps. Hence at most (100 x 10242 bits × 60 seconds=) 6.29 x 109 bits of data canbe transmittedto the module in one minute (assumingno overhead). Each password attempt is (8 bits x 8 characters =) 64 bits in length, meaning (6.29 x 109/64=) 9.83 x 107 password attempts can be made in one minute. Therefore, the probability that a randomattempt willsucceed or a false acceptance willoccur inone minute is: 1: (948 possible passwords / 9.83 x 107 passwords per minute) 1: 62,011,082 Which is less than1:100,000 withinone minute as requiredbyFIPS140-2. RSA Public Key(LDAP authentication ofusername and password) The RSA public keyused for LDAPauthenticationof username and passwordis 2048 bits, yielding an equivalent 112 bits of strength. The chance of a random authentication attempt falselysucceeding is: 1: (2112), or 1: 5.1922968585348276285304963292201e+33 Which is less than1:1,000,000 as required byFIPS 140-2. The fastest networkconnectionsupportedbythe module (for management) is 100 Mbps. Hence at most (100 x 10242 bits × 60 seconds=) 6.29 x 109 bits of data canbe transmittedto the module in one minute (assumingno overhead). Each attempt is 112 bits in length, meaning(6.29 x 109/112=) 5.62 x 107 attempts canbe made in one minute. Therefore, the probability that a random attempt will succeed or a false acceptance will occur inone minute is: 1: (2112 possible keys / 5.62 x 107 keys per minute) 1: 9.24 x 1025 Which is less than1:100,000 withinone minute as requiredbyFIPS140-2. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 19 of 33 Authentication Type Strength RSA Public Key(LDAP authentication ofsubject or subjectAltName from CAC certificate) The RSA public keyused for LDAPauthenticationof subject or subjectAltName is 2048 bits, yielding an equivalent 112 bits of strength. The chance of a random authentication attempt falselysucceeding is: 1: (2112), or 1: 5.1922968585348276285304963292201e+33 Which is less than1:1,000,000 as required byFIPS 140-2. The fastest networkconnectionsupportedbythe module (for management) is 100 Mbps. Hence at most (100 x 10242 bits × 60 seconds=) 6.29 x 109 bits of data canbe transmittedto the module in one minute (assumingno overhead). Each attempt is 112 bits in length, meaning(6.29 x 109/112=) 5.62 x 107 attempts canbe made in one minute. Therefore, the probability that a random attempt will succeed or a false acceptance will occur inone minute is: 1: (2112 possible keys / 5.62 x 107 keys per minute) 1: 9.24 x 1025 Which is less than1:100,000 withinone minute as requiredbyFIPS140-2. Upon successful logintothe CLI, the operator ispresentedwitha bannerdisplayingthe Virtual Connectversion, the copyright notice, and a “Getting Started” message followedby the CLI command prompt, “FIPS->”. Upon successful logintothe WebGUI, the operatoris presentedwiththe Virtual ConnectManagerhome page. 2.5 Physical Security As a multi-chip embedded firmware module, the module relies on the HPE BladeSystem c-Class Virtual Connect hardware platform to provide the mechanisms necessary to meet FIPS 140-2 level 1 physical security requirements. All componentsof thehardware are madeof production-gradematerials,andall integratedcircuits are coatedwithcommercial standardpassivation. Additionally,the hardware hasbeentestedforandmeetsapplicable Federal CommunicationsCommission(FCC) Electromagnetic Interference and Electromagnetic Compatibility requirements for business use as defined in SubpartB of FCC Part 15. 2.6 Operational Environment The module does not provide a general-purpose OS to the user. The module runs a proprietary OS (HPE OS 2.6.32.60), which providesa limited operational environment, and onlythe module’s custom-writtenimage can be run on the system.Accessbyotherprocessesto plaintextprivateandsecretkeys,CSPs,andintermediatekey generationvaluesduringthe timethe firmwaremodule isexecuting/operational isprohibited. Processesthatare spawnedbythe firmwaremodule are ownedbythe moduleandare notownedbyexternalprocesses.The module providesamethodtoupdate itsfirmware toanewerversion. Thismethodinvolvesdownloadingadigitally-signed firmware update tothe module. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 20 of 33 2.7 Cryptographic Key Management The module supportsthe CSPslisted below inTable 10. Table 10 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs CSP CSP Type Generation / Input Output Storage Zeroization Use Module KeyPassword Random data (32 Bytes) Internallygeneratedvia Approved DRBG Not output from the module Stored inplaintext in NOR48 flashmemory Zeroizedvia WebGUI or CLI zeroizationcommand Used as PBKDF2 input to generate ModuleKey Module Key 32-byte Data Protection Key(AES 256-bit key) Internallygenerated via PBKDF2 Not output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Keyused to encrypt all CSPs storedinNAND49 flashmemory UtilityKeyPassword Random data (20 Bytes) Internallygenerated via Approved DRBG Output encrypted via SSH to the backupmodule Stored inplaintext in NOR Flashmemory; stored encrypted via Module Key in NAND flashmemory Zeroizedvia WebGUI or CLI zeroizationcommand Used as PBKDF2 input to generate UtilityKey UtilityKey 32-byte Data Protection Key(AES 256-bit key) Internallygenerated via PBKDF2 Output encrypted via SSH protocol Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Keyused to obfuscate BackupModule Password BackupEncryption Key Password 8-byte Password Externallygenerated;input electronicallyvia TLS or SSH Not output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Password input to PBKDF2 function to derive Backup Encryption Key BackupEncryption Key 32-byte Data Protection Key(AES 256-bit key) Internallygenerated via PBKDF2 Not output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Keyused to encrypt Virtual Connect configurationfile 48 NOR –Not OR 49 NAND – Not AND FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 21 of 33 CSP CSP Type Generation / Input Output Storage Zeroization Use Support EncryptionKey Password 8-byte Password Externallygenerated;input electronicallyvia TLS or SSH Not output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Password input to PBKDF2 function to derive Support Encryption Key Support EncryptionKey 32-byte Data Protection Key(AES 256-bit key) Internallygenerated via PBKDF2 Not output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Keyused to encrypt Virtual Connect support file RSA SSH Public Key RSA 2048-bit public key Internallygenerated via Approved RSAKeyGeneration method; input via configuration file restore Output in plaintext; output encrypted byBackup Encryption Key Stored encrypted via Module KeyinNAND flash memory N/A SSH Protocol; SFTP; Signature verification; Keyunwrapping RSA SSH Private Key RSA 2048-bit private key Internallygenerated via Approved RSAKeyGeneration method; input via configuration file restore Output encrypted byBackup Encryption Key Stored encrypted via Module KeyinNAND Flashmemory N/A SSH Protocol; SFTP; Signature generation; Keywrapping RSA TLS Public Key RSA 2048-bit public key Internallygenerated via Approved RSAKeyGeneration method; input via configuration file restore Output in plaintext; output encrypted byBackup Encryption Key Stored encrypted via Module KeyinNAND flash memory N/A TLS protocol; Signature verification; Keyunwrapping RSA TLS Private Key RSA 2048-bit private key Internallygenerated via Approved RSAKeyGeneration method; input via configuration file restore Output encrypted byBackup Encryption Key Stored encrypted via Module KeyinNAND Flashmemory N/A TLS protocol; Signature generation; Keywrapping SSH Session Key SSH sharedsecret Agreed usingDiffie-Hellman Never output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Sharedsessionkeyused to derive SSH IntegrityKey and SSH EncryptionKey SSH IntegrityKey HMAC SHA-256 HMAC SHA-512 Internallygenerated via SP800- 135rev1 SSH KDF Never output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Used to generate SSH payload integrity message; used to verify integrityof SSHpayload FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 22 of 33 CSP CSP Type Generation / Input Output Storage Zeroization Use SSH EncryptionKey AES 128, 192, 256 (CBC, CTR) Internallygenerated via SP800- 135rev1 SSH KDF Never output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Used to encrypt and decrypt SSH payload TLS Pre-Master Secret Pre-master secret for TLS Establishedusing RSA transport Never output from module Plaintext in volatile RAM Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Derivationof TLS Master Secret TLS Master Secret TLS master secret AES 128, 256 (CBC, GCM) Triple-DES168-bit Internallygenerated via SP800- 135rev1 TLS KDF Never output from the module Stored in plaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Sharedmaster secret usedto derive TLS IntegrityKeyandTLS SessionEncryption Key TLS IntegrityKey HMAC SHA-256 HMAC SHA-512 Internallygeneratedvia SP800- 135rev1 TLS KDF Never output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Used to generate TLS payload integrity message; usedto verifyintegrityof TLS payload TLS SessionEncryption Key AES 128, 256 (CBC, GCM) Triple-DES168-bit Internallygenerated via SP800- 135rev1 TLS KDF Never output from the module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Used to encrypt and decrypt TLS payload AES GCM IV 96 bit IV length InternallyGenerated deterministicallyincompliance with TLS 1.2 GCMCipher Suites for TLS and Section8.2.1 of NIST SP800-38D Not output from the module Stored inplaintext in volatile memory Zeroizedvia GUI or CLI zeroizationcommand; Module shutdown or reboot IV input to AES GCM function FFCDH Public Key Component Public components of FFC DH protocol 2048-bit Internallygenerated via Approved DRBG Output in plaintext Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Used for SSH session establishment andinitial keyexchange FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 23 of 33 CSP CSP Type Generation / Input Output Storage Zeroization Use FFCDH Private Key Component Private exponent of FFC DH protocol 2048-bit Internallygenerated via Approved DRBG Never output from module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Used for SSH session establishment andinitial keyexchange Crypto Officer Password ASCII string(minimum8 characters) Externallygenerated;input electronicallyvia TLS or SSH; input via configuration file restore Output encrypted byBackup Encryption Key Stored obfuscatedvia SHA-512 hash inNAND Flashmemoryand encrypted via Module Key Zeroizedvia WebGUI or CLI zeroizationcommand Used for CO authentication to the module User Password ASCII string(minimum8 characters) Externallygenerated;input electronicallyvia TLS or SSH; input via configuration file restore Output encrypted byBackup Encryption Key Stored obfuscatedvia SHA-512 hash inNAND Flashmemoryand encrypted via Module Key Zeroizedvia WebGUI or CLI zeroizationcommand Used for User authentication to the module Operator CACCredential Public keyassociatedwith module operator’s certificate Input byCO via TLS Never output from the module Stored inFlashmemory and inRAMinplaintext Zeroizedwhen the certificate validationand user authentication is complete Authenticatingthe Operator Crypto Officer LDAP Password ASCII string(minimum8 characters) Externallygenerated;input electronicallyvia TLS Never output from module Not storedon the module N/A Used for CO authentication to the module via LDAP User LDAPPassword ASCII string(minimum8 characters) Externallygenerated;input electronicallyvia TLS Never output from module Not storedon the module N/A Used for User authentication to the module via LDAP BackupModule Password ASCII string(16 characters, excludes specialcharacters) Internallygeneratedvia Approved DRBG Output encrypted via the UtilityKey Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand Used bythe backup Virtual Connect unit in order to synchronize configurationdata Virtual Connect Dump Password ASCII string(12 characters, excludes specialcharacters) Internallygenerated via Approved DRBG Output encrypted over SSH session Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand Password used by external VirtualConnect units to authenticate SSH sessioninorder to extract a support file FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 24 of 33 CSP CSP Type Generation / Input Output Storage Zeroization Use SNMPv3 PrivacyKey AES 128-bit key Internallygenerated via SNMP KDF Output encrypted byBackup Encryption Key Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand Encrypt packets being transferredvia SNMP SNMPv3 Authentication Key HMAC SHA-1 Key Internallygenerated via SNMP KDF Output encrypted byBackup Encryption Key Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand Authenticate packets being transferredvia SNMP Firmware Update Key RSA 2048-bit Public Key Externallygenerated;hardcoded Never output from module Stored unencryptedin NAND Flash memory N/A Verifythe RSA signature of new firmware prior to installation DRBG Seed Random data – (384 bits) Internallygenerated using nonce along withDRBG entropyinput Never output from module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Seedingmaterial for SP 800-90A DRBG DRBG Entropy 256-bit value Internallygenerated Never output from module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Entropymaterial for SP 800-90A DRBG DRBG ‘V’ Value Internalstate value Internallygenerated Never output from module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Internalstate value for SP 800-90A DRBG DRBG ‘Key’ Value Internalstate value Internallygenerated Never output from module Stored inplaintext in volatile memory Zeroizedvia WebGUI or CLI zeroizationcommand or by module shutdown or reboot Internalvalue for SP800- 90A DRBG FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 25 of 33 2.8 Self-Tests Cryptographic self-tests are performedby the module when the module begins operationin the FIPS mode and whena randomnumberor asymmetrickeypairiscreated. The followingsectionslistthe self-testsperformedby the module,expectederrorstatus,anderrorresolution. 2.8.1 Power-Up Self-Tests Power-upself-testsare automaticallyperformedbythe module whenpowerissuppliedtothe HPE BladeSystem c-ClassVirtual Connecthardware platform andthe module isloadedintomemory. The power-upself-testsinthe list that follows may also be run on-demand when the CO or User reboots the HPE BladeSystem c-ClassVirtual Connect hardware platform. The module will perform the listed power-up self-teststo successful completion. Duringthe executionof self-tests,dataoutputfromthe module isinhibited. If the module failsa power-up self-test,the module’s self-test error counter will increment and the module will reboot in order to recover from the failure. After rebooting, the module will attempt to perform the power-up self-tests again. After 10 failed self-test attempts throughout the lifetime of the module (including conditional self-tests), the module will enter a critical error state and no longer function, requiring the HPE BladeSystem c- Class Virtual Connect hardware platform to be returned to HPE. The module indicates the critical error to the operatorthroughthe Web GUIandviaLEDs. Error messagesforaKATfailure willindicate thealgorithmthatfailed alongwiththe text“selftestfailed”. The module performsthe followingself-testsatpower-up:  Firmware integritycheck(HMACSHA-256)  KnownAnswerTests(KATs) o AES EncryptKAT (CBCmode) o AES DecryptKAT (CBCmode) o AES EncryptKAT (GCMmode) o AES DecryptKAT (GCMmode) o Triple-DESEncryptKAT(CBC mode) o Triple-DESDecryptKAT(CBCmode) o RSA 186-4 Signature GenerationKAT o RSA 186-4 Signature VerificationKAT o RSA EncryptKAT o RSA DecryptKAT o SHA-1 KAT o HMAC SHA-256 KAT o HMAC SHA-384 KAT o HMAC SHA-512 KAT o CTR_DRBG KAT 2.8.2 ConditionalSelf-Tests Conditionalself-testsare performedbythe modulewheneveranew randomnumberisgeneratedorwhenanew RSA key pair is generated. If the module fails a conditional self-test, the module’s self-test error counter will increment and the module will reboot in order to recover from the failure. After 10 failed self-test attempts FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 26 of 33 throughoutthe lifetimeof the module (includingpower-upself-tests),the module entersintoacritical errorstate and will no longer function, requiring the HPE BladeSystem c-Class Virtual Connect hardware platform to be returnedtoHPE. The module indicatesthe critical errortothe operatorthroughthe Web GUI and viaLEDs. Error messagesfora conditional testfailure will indicatethe algorithmthatfailedalongwiththe reason,whichmaybe one of the following: “selftestfailed”,“internal error”,“drgbnotinitialized”, or“pairwise testfailed”. The module performsthe followingconditionalself-tests:  CTR_DRBG ContinuousRandomNumberGeneratorTest(CRNGT)  NDRNG CRNGT  RSA Pairwise ConsistencyTestfor sign/verify  Firmware LoadTest For the Firmware LoadTest,the module verifiesthatthe image isproperly signedusinga2048-bit RSA publickey (Firmware Update Keyin Table 10) withSHA-256 digest. 2.8.3 Critical FunctionsSelf-Tests The module performsfour critical functiontestsforeachof the fourSP 800-90A DRBGs: DRBG Instantiate,DRBG Reseed,DRBGGenerate,andDRBG Uninstantiate.The purpose of the DRBG InstantiationTestistoprepare each SP800-90A DRBG withinitial state valuesandareseedcountervalue.The purposeof the DRBGReseedingTestin eachof the SP800-90A DRBGs istoensure thatthe DRBGdoesnotrepeatapreviouslygeneratedrandomnumber. The purpose of the DRBG Generate Testis to verifythatboth the instantiationandreseedalgorithmsare tested duringpower-up.The purpose of the DRBG Uninstantiate testis to verifythat the DRBG uninstantiatesproperly and no secretvaluescreatedbythe DRBG are accessible. Critical functions tests are performed during power-up and conditionally. If the module fails a critical functions test, the module will cease operation and enter a critical error state. In the critical error state, the module will indicate the errortotheoperatorthroughtheWebGUI andautomaticallyreboot.After10failedself-testattempts throughoutthe lifetimeof the module,the modulewill nolongerfunction,requiringthe HPEBladeSystemc-Class Virtual Connecthardware platform tobe returnedto HPE. The module performsthe followingcritical functionstests:  SP 800-90A DRBG Instantiate Test  SP 800-90A DRBG Generate Test  SP 800-90A DRBG ReseedTest  SP 800-90A DRBG Uninstantiate Test 2.9 Mitigation of Other Attacks Thissectionisnot applicable.The module doesnotclaimtomitigate any otherattacks. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 27 of 33 3. Secure Operation The module meetsLevel 1for FIPS 140-2. The sectionsbelow describe how toplace and keepthe module in the FIPS-approvedmode of operation. HPE recommendsthatmodule operators readthe specificHPEVirtualConnectforc-ClassBladeSystemUserGuide for enclosure-specific information before proceeding with the VC Firmware setup. The User Guide provides informationonthe initial setupandoperationof the VCFirmware. 3.1 Initial Setup Prior to operating the module for the first time, the CO must configure a 4-pin DIP50 switch located on the motherboard of the HPE BladeSystem c-Class Virtual Connect hardware platform. The switch is located at the front of the platform, on the opposite end of the backplane connector. In order to place the module in the FIPS mode,the pinsof the switchshall be placedinthe followingpositions(fromswitch1to switch4): OFF,OFF,ON, OFF.The CO mustremove the coverof the platforminorderto access the DIP switch. After configuring the DIP switch, the CO shall replace the cover on the platform, reinsert the platform into the BladeSystem enclosure, and power-up the module for the first time. The CO can confirm that the module is operating in the FIPS mode via the Web GUI or the CLI. Additional information on confirming the FIPS mode of operation isprovidedinSection 3.2.2. 3.2 Crypto Officer Guidance The Crypto Officer is responsible for ensuring that the module has been properly configured as described in Section3.1 and istherefore operatingin itsFIPS-Approvedmode of operation. Whenconfiguredaccordingtothe CryptoOfficerguidance inthisSecurityPolicy,the moduleonlyrunsinitsFIPS-Approved mode of operation. 3.2.1 Secure Management The module can be managed remotely via a Web GUI or CLI. Through these management interfaces, a CO can viewthe statusof the FIPSmode of operation,managethe module’soperations,andback-upandrestore module configuration files. Access to the module is controlled by role-based authentication,described in Section 2.4. Accesstothe module viathe Web GUI isprovidedby HPEVCM.Accesstothe module viathe CLIisprovidedbyan SSH clientrunningona networkedmachine. While the module is operating in the FIPS-Approved mode, additional modules not configured to operate in an Approvedmode cannotcommunicate withthe module.Inorderforadditional modulestocommunicatewithone another, they too must be operating in the FIPS-Approvedmode. When initialized and configured per the CO guidance inthisSecurityPolicy,the module doesnotsupportanon-Approvedmode of operation. 50 DIP –Dual In-linePackage FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 28 of 33 3.2.2 Verifying the Approved Mode The CO shall be responsibleforregularlymonitoringthe modules’statusforFIPS-Approvedmode of operation. The module providesitscurrent operational statusviathe Web GUI andCLI. When connectingtothe module via the Web GUI, the CO or User can confirmthe current mode of operationbylocatingthe FIPS icon inthe top HPE VCMbanner. If the FIPSicon ispresent,the module isoperatinginthe FIPS-Approved mode. When accessing the module via the CLI, the CO or User can determine the current mode of operation withthe “showdomain”command. The CLI will output“FIPSMode:true”if the module isoperatinginthe FIPS-Approved mode. 3.2.3 Save Domainand Export Dump The CO iscapable of savinganencryptedversionof the module’sconfigurationfileorsupportfile.The generation of the keyusedforthe encryptionof these filesisperformedbyanSP800-132 PBKDF2.Whenthe COisprompted to enter a new “Encryption key” (password), the CO shall enter a password no less than 8 characters in length. The password shall consist of upper-case and lower-case letters and numbers. The probability of guessing the passwordwill be equalto1:628 ,or 1:2.18x1011 . The keyderivedbythe PBKDF2isusedsolelyforstorage purposes. 3.2.4 Zeroization Ephemeral keyscanbe zeroizedbypower-cyclingtheVirtual Connect hardwareplatform.KeysstoredinNORflash and the ISMIC51 (refer to Table 10) can be zeroized via the Destroy Domain screen in the “Configuration” tab of the Web GUI or withthe “delete domain –zeroize”commandinthe CLI. KeysstoredinNANDflashare encrypted withthe Module Key;therefore,theyare notrequiredtomeetzeroizationrequirements.The keysstoredinNAND flashwill notbe accessible afterazeroizationservice hasbeenperformedandthe Module Keyiszeroized. 3.2.5 Password Complexity Passwords that are created by module operators shall be at least 8 characters in length and may contain any combination of uppercase and lowercase letters [A-z, a-z]; numbers [0-9]; and special characters (not including space). 3.2.6 TLS Version Configuration The TLS v1.0 and TLS v1.1 protocol should not be used in the FIPS-Approved mode of operation. By default the TLS v1.2 protocol isenabledinthe FIPS-Approvedmode.Anadministratorwiththe CO role can use the Web SSL Configurationscreenofthe HPEVCMtobe certaintheTLSversionis1.2.Itmustremain“TLSv1.2only”. The“TLSv1, TLSv1.1, and TLSv1.2” optionmustnotbe selected. 51 ISMIC – I2c SwitchManagement Interface Controller FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 29 of 33 3.3 User Guidance An operator with the User role is neither authorizednor able to modify the configuration of the module. Users may onlyuse the serviceslistedin Table 7.AlthoughUsersdo not have any abilitytomodifythe configurationof the module, theyshouldreporttothe COif any irregularactivityisobserved. 3.4 Non-Approved Mode of Operation When configured according to the Crypto Officer’s guidance found herein,the module does not support a non- Approvedmode of operation. FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 30 of 33 4. Acronyms Table 11 providesdefinitionsforthe acronymsusedinthisdocument. Table 11 – Acronyms Acronym Definition AES AdvancedEncryptionStandard ANSI American National Standards Institute ASCII American StandardCode for InformationInterchange BIOS Basic Input/Output System CBC Cipher Block Chaining CLI CommandLine Interface CMVP Cryptographic Module Validation Program CO Crypto-Officer CPU Central Processing Unit CRNGT Continuous RandomNumber Generator Test CSE Communications SecurityEstablishment CSP Critical SecurityParameter CTR Counter CVL Component ValidationList DDR Double Data Rate DES Data EncryptionStandard DH Diffie-Hellman DIP Dual In-line Package DRBG Deterministic Random Bit Generator EC Elliptic Curve ECC Elliptic Curve Cryptography ECDA Elliptic Curve Digital Signature Algorithm EMC Electromagnetic Compatibility EMI Electromagnetic Interference FC Fibre Channel FCC FederalCommunications Commission FFC Finite FieldCryptography FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 31 of 33 Acronym Definition FIPS FederalInformationProcessing Standard Gb Gigabit Gbps Gigabits per second GCM Galois Counter Mode GPIO General Purpose Input/Output GUI GraphicalUser Interface HMAC (keyed-) HashMessage AuthenticationCode HP Hewlett Packard HPSIM HPSystems Insight Manager HTTP Hypertext Transport Protocol HTTPS Secure Hypertext Transport Protocol I2C Inter-IntegratedCircuit I/O Input/Output IP Internet Protocol iSCSI Internet Small Computer Systems Interface ISMIC I2c Switch Management Interface Controller KAS KeyAgreement Scheme KAT Known Answer Test KDF KeyDerivationFunction KO Keying Option KPW KeyWrap with Padding KW KeyWrap LAN Local Area Network LANIO Local Area Network I/O LDAP Lightweight DirectoryAccessProtocol LED Light-EmittingDiode MAC Media AccessControl Mbps Megabits per Second N/A Not Applicable NAND Not AND NDRNG Non-Deterministic Random Number Generator NIC Network Interface Controller NIST NationalInstitute of Standards and Technology NOR Not OR FIPS 140-2 Non-ProprietarySecurity Policy, Version 0.7 March 13, 2018 HPE BladeSystem c-Class Virtual Connect Firmware ©2018 Hewlett Packard Enterprise Development LP This document may be freely reproduced and distributed whole and intact including this copyright notice. Page 32 of 33 Acronym Definition NVLAP NationalVoluntaryLaboratoryAccreditationProgram NVRAM Non-Volatile Random Access Memory OA OnboardAdministrator OFB Output Feedback OS Operating System PBKDF Password-Based KeyDerivation Function PCI(e) PeripheralComponent Interface (express) PKCS Public KeyCryptographyStandards PKG Public Key(Q) Generation QSFP Quad Small Form-factor Pluggable RAM Random Access Memory RFC Request for Comments ROM Read-OnlyMemory RS Requirement Specification RSA Rivest Shamir andAdleman SAN Storage Area Network SDRAM Synchronous Dynamic RandomAccess Memory SFP Small Form-factor Pluggable SFPT Secure File Transfer Protocol SHA Secure HashAlgorithm SNMP Simple Network Management Protocol SOAP Simple Object Access Protocol SP Special Publication SSH Secure Shell SSL Secure Socket Layer TCP TransmissionControl Protocol TLS Transport Layer Security U.S. UnitedStates USB Universal Serial Bus VC Virtual Connect VCEM Virtual Connect Enterprise Manager VCM Virtual Connect Manager VLAN Virtual LocalArea Network WWN World Wide Name Prepared by: Corsec Security, Inc. 13921 Park Center Road, Suite 460 Herndon, VA 20171 United States of America Phone: +1 703 267 6050 Email: info@corsec.com http://www.corsec.com