Qualcomm Technologies, Inc

Qualcomm® Pseudo Random Number Generator

FIPS 140-3 Non-Proprietary Security Policy

Version 1.1

Last update: 2024-08-22

Prepared by:

atsec information security corporation

4516 Seton Center Parkway, Suite 250

Austin, TX 78759

www.atsec.com

©2024 Qualcomm Technologies, Inc.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. This document can be reproduced and distributed only whole and intact, including this copyright notice.

Table of Contents

1	Ge	neral	.4
	1.1	This Security Policy Document	4
	1.2	How this Security Policy was Prepared	4
2	Cry	yptographic Module Specification	.6
	2.1	Description of Module	6
	2.2	Cryptographic Module Boundary	7
	2.3	Description of Approved Mode	8
3	Cry	yptographic Module Ports and Interfaces	.9
4	Ro	les, services, and authentication	L O
	4.1	Roles	10
	4.2	Services	10
5	So	ftware/Firmware security	L2
	5.1	Integrity Techniques	12
	5.2	On-Demand Integrity Test	12
	5.3	Executable code	12
6	Ор	erational Environment	٤3
	6.1	Applicability	
	6.2	Tested Operational Environment	
	6.3	Specifications for the Operational Environment	
7		ysical Security	
8		n-invasive Security	
9	Se	nsitive Security Parameter Management1	
	9.1	Random Number Generation	16
	9.2	SSP List	
	9.3	SSP Generation, Entry and Output	
	9.4	SSP Storage and Zeroization	
1	0 Se	lf-tests	
	10.1	Pre-operational tests	
	10.2	Conditional self-tests	
	10.3	Periodic/On-demand self-tests	
		Error States	
1		e-cycle assurance	
	11.1	Delivery and Operation	
	11.2	End of Life	
	11.3	Crypto Officer Guidance	20

© 2024 Qualcomm Technologies, Inc.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

1	1.4	Configuration Management	20
12	Mit	tigation of other attacks	21

1 General

1.1 This Security Policy Document

This Security Policy describes the features and design of the Qualcomm[®] Pseudo Random Number Generator cryptographic module using the terminology contained in the FIPS 140-3 specification. The FIPS 140-3 Security Requirements for Cryptographic Modules specifies the security requirements that will be satisfied by a cryptographic module utilized within a security system protecting sensitive but unclassified information. The NIST/CCCS Cryptographic Module Validation Program (CMVP) validates cryptographic modules to FIPS 140-3. Validated products are accepted by the Federal agencies of both the USA and Canada for the protection of sensitive or designated information.

This Non-Proprietary Security Policy may be reproduced and distributed, but only whole and intact and including this notice. Other documentation is proprietary to their authors.

1.2 How this Security Policy was Prepared

In preparing the Security Policy document, the laboratory formatted the vendor-supplied documentation for consolidation without altering the technical statements therein contained. The further refining of the Security Policy document was conducted iteratively throughout the conformance testing, wherein the Security Policy was submitted to the vendor, who would then edit, modify, and add technical contents. The vendor would also supply additional documentation, which the laboratory formatted into the existing Security Policy, and resubmitted to the vendor for their final editing.

This document is the non-proprietary FIPS 140-3 Security Policy for the Qualcomm Pseudo Random Number Generator. It has a one-to-one mapping to the [SP 800-140B] starting with section B.2.1 named "General" that maps to section 1 in this document and ending with section B.2.12 named "Mitigation of other attacks" that maps to section 12 in this document.

ISO/IEC 24759 Section 6. [Number Below]	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic Module Specification	1
3	Cryptographic Module Interfaces	1
4	Roles, Services, and Authentication	1
5	Software/Firmware Security	1
6	Operational Environment	N/A
7	Physical Security	2
8	Non-invasive Security	N/A
9	Sensitive Security Parameter Manage- ment	1
10	Self-tests	1
11	Life-cycle Assurance	2

© 2024 Qualcomm Technologies, Inc.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

12	Mitigation of Other Attacks	N/A
Table 1 Cassility Lawrels	•	

Table 1 - Security Levels

2 Cryptographic Module Specification

2.1 Description of Module

The Qualcomm[®] Pseudo Random Number Generator is classified as a single chip firmware-hybrid module for the purpose of FIPS 140-3 validation. It is designed to provide random numbers. The Qualcomm Pseudo Random Number Generator is a collection of hardware and firmware components contained within the Snapdragon[®] 8 Gen 2 Mobile Platform SoC. The Qualcomm Pseudo Random Number Generator implements a SHA-256 Hash_DRBG as defined in SP 800-90Ar1. The firmware component of the module controls the ENT (P) and DRBG configuration parameters. The configuration is fixed for a given version of the firmware and cannot be altered by the operator of the module.

#	Operating System	Hardware Platform	Processor	PAA/Acceleration
1	Qualcomm [®] Trusted Execution Environment (TEE) TZ.XF.5.24	Snapdragon 8 Gen 2 Mobile Platform	Snapdragon 8 Gen 2 Mobile Platform	N/A

Table 2 - Tested Operational Environments

The hardware component in this submission is identified by hardware version (3.1.0). The firmware component ("hybrid_prng_library") has distinct versions (represented by a hash value), depending on the operational environment. The following firmware version is included:

7fab7110b4ff04e70460b9ffd9b2b5b96ba33faabbec40cb67c87a14c7 9f658fdd258ddd44163c90afe68b7a1766da625533f1f12e9819dade4c df913dd7138d

The approved algorithms implemented by the module are listed in Table 3.

CAVP Cert	Algorithm and Standard	Mode / Method	Description / Key Size(s) / Key Strength(s)	Use / Function
#A2945	SHA / FIPS 180-4	SHA2-256	SHA-256 digest computation (Implemented in hardware)	Hash for DRBG
#A2949	SHA / FIPS 180-4	SHA2-256	SHA-256 digest computation (Implemented in hardware)	Hash for DRBG
#A2945	DRBG / SP-800-90Ar1	Hash_DRBG	SHA2-256 (Implemented in hardware)	Random number generation
#A3946	SHA / FIPS 180-4	SHA2-256	SHA from firmware component	Hash for integrity test

Table 3 - Approved Algorithms

NOTE: the module does not implement any non-approved but allowed, non-approved but allowed with no security claimed, or non-approved algorithms.

2.2 Cryptographic Module Boundary

The physical perimeter of the Qualcomm Pseudo Random Number Generator is the physical perimeter of the SoC it is implement in, i.e., the Snapdragon 8 Gen 2 Mobile Platform SoC. Consequently, the embodiment of the Qualcomm Pseudo Random Number Generator is a single-chip cryptographic module. Figure 1 below is a block diagram which illustrates the cryptographic boundary.

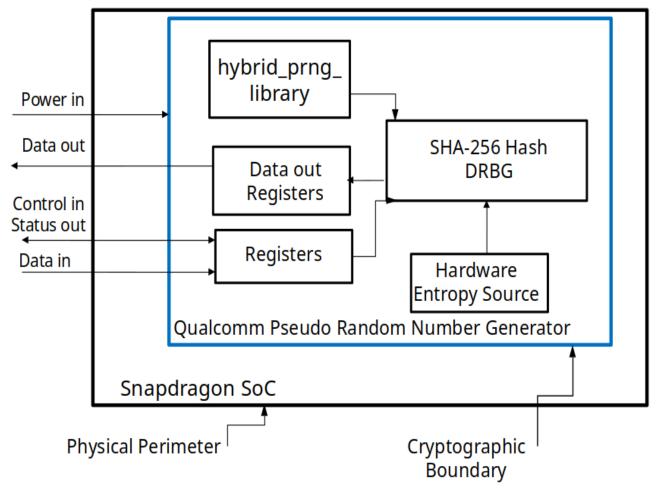


Figure 1: Block Diagram

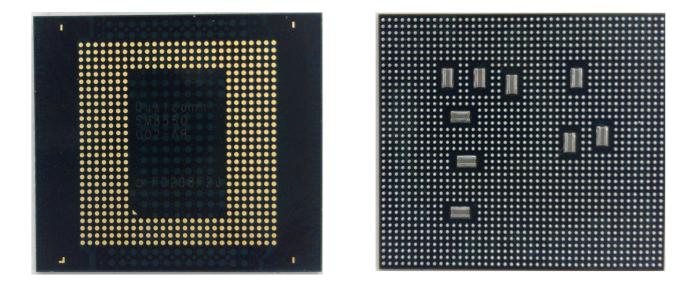


Figure 2 - [Snapdragon 8 Gen 2 Mobile Platform]

2.3 Description of Approved Mode

The Qualcomm Pseudo Random Number Generator only supports a single approved mode that is entered without any operator assistance.

When the Qualcomm Pseudo Random Number Generator is powered on, the pre-operational selftest and cryptographic algorithm self-tests are executed automatically without any operator intervention. The Qualcomm Pseudo Random Number Generator enters the operational mode automatically if all self-tests complete successfully.

If any of the self-tests fail, the Qualcomm Pseudo Random Number Generator goes into error state. All cryptographic services are prohibited while in error state. When an error state is entered, the Qualcomm Pseudo Random Number Generator can be reset by the Crypto Officer to reinitialize itself.

The status of the module can be determined by its availability. If the Qualcomm Pseudo Random Number Generator is available, it has passed all self-tests. If it is unavailable, it is in the error state.

The table in section 4.2 lists all security functions of the module employed for approved services and their implemented modes of operation.

3 Cryptographic Module Ports and Interfaces

Physical port Logical Interface		Data that passes over port/interface		
Registers Data Input		Input parameters for data		
Data Out Registers Data Output		Output parameters for data		
Registers	Control Input	Input parameters for control		
Registers	Status Output	Return code, status values		
Physical power connector	Power Input	Power port or pin for single-chip		

Table 4 - Ports and Interfaces

As indicated in Table 4, all status output, control input, and data input are directed through the interface of the cryptographic boundary, which are the registers of the Qualcomm Pseudo Random Number Generator. For data output, the data output is provided via data out registers. The module does not implement a control output interface.

4 Roles, services, and authentication

4.1 Roles

Role	Service	Input	Output
Crypto Of-		Personalization string, requested output length	Random string
ficer (CO)	Self-test	None	Pass/fail results of self-tests
	Status output		Current status in status output in- terface (as return codes and/or log messages).
	Show version	None	Version of the module
	Zeroization	All SSPs	None

Table 5 - Roles, Service Commands, Input and Output

The Qualcomm Pseudo Random Number Generator implements a single Crypto Officer role and does not allow concurrent operators. This Crypto Officer role is implicitly assumed by the entity accessing the module's services and no authentication is required.

4.2 Services

The Qualcomm Pseudo Random Number Generator does not implement any bypass capability. It provides random data through the SHA-256 Hash_DRBG service. After the SHA-256 Hash_DRBG service is successfully used, the Qualcomm Pseudo Random Number Generator will set the register "RNG_CM_PRNG_CHAR_STATUS" bit 1 to zero, indicating to the operator that an approved algorithm was used. Table 6 describes the services available to the operator. The following access rights are used in the table:

- **G** = **Generate**: The module generates or derives the SSP.
- **R** = **Read**: The SSP is read from the module (e.g., the SSP is output).
- **W** = **Write**: The SSP is updated, imported, or written to the module.
- **E** = **Execute**: The module uses the SSP in performing a cryptographic operation.
- **Z** = **Zeroize**: The module zeroizes the SSP.

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
SHA-256 Hash_DRBG	Hash_DRBG that uses SHA-256	DRBG SHA-256	DRBG entropy input string	СО	W, E	Explicit (RNG_CM_P RNG_CHAR
			DRBG internal state V and C, DRBG seed		G, E	STATUS register field bit 1 set to 0)
Self-test	Self-Test is executed automatically when device is booted or restarted	DRBG SHA-256	N/A	СО	N/A	None

© 2024 Qualcomm Technologies, Inc.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
	Show status of the module state	None	N/A	СО	N/A	None
	Show the version of the module	None	N/A	CO	N/A	None
Zeroization	Zeroizes all SSPs in the module	None	DRBG entropy input string; DRBG internal state V and C, DRBG seed	со	Z	None

Table 6 - Approved Services

5 Software/Firmware security

5.1 Integrity Techniques

The integrity of the firmware component of the module is verified by comparing a SHA-256 value computed at run-time with the SHA-256 value stored in the module that was computed at build time.

5.2 On-Demand Integrity Test

Integrity tests are performed as part of the Pre-Operational Self-Tests. A reset of the cryptographic module can be used to perform the "on-demand" integrity test.

5.3 Executable code

The module consists of executable code that is compiled into a firmware component (binary).

6 Operational Environment

6.1 Applicability

The Qualcomm Pseudo Random Number Generator is a single chip firmware-hybrid module at security level 1. The operational environment is non-modifiable.

6.2 Tested Operational Environment

See the tested operational environments in Table 2.

6.3 Specifications for the Operational Environment

There are no security rules, settings, or restrictions to the configuration of the operational environment.

7 Physical Security

The Qualcomm Pseudo Random Number Generator Cryptographic Module is a single-chip firmwarehybrid module which conforms to the level 2 requirements for physical security. The Qualcomm Pseudo Random Number Generator is a single chip enclosed in a production grade component.

At the time of manufacturing, the die is embedded within a printed circuit board (PCB), which prevents visibility into the internal circuity of the Qualcomm Pseudo Random Number Generator. The layering process which is used to embed the die into the PCB also prevents tampering of the physical components without leaving tamper evidence.

The Qualcomm Pseudo Random Number Generator is further protected by being enclosed in commercial off the shelf mobile device utilizing production grade commercially available components and that the mobile device enclosure completely surrounds the Qualcomm Pseudo Random Number Generator.

There are no steps required to ensure that physical security is maintained.

8 Non-invasive Security

The Qualcomm Pseudo Random Number Generator does not support any non-invasive security techniques, this section is not applicable.

9 Sensitive Security Parameter Management

9.1 Random Number Generation

The DRBG used to generate random bits is an SP 800-90Ar1 compliant SHA-256 Hash_DRBG using a derivation function without prediction resistance. It processes a personalization string that is written by the calling application into a hardware register for use by the module. The calling application has read/write access to the hardware register that holds the personalization string.

The DRBG obtains 550 samples of 4 bits each as entropy input, from the entropy source. As the entropy source provides the min entropy rate of 0.420625 bits per sample, the 550 samples provide 231 bits of entropy, so the DRBG is limited to 231 bits of effective security strength in its output. Consequently, the module generates random strings whose strengths are modified by available entropy. The PUD for E67 can be found as a link on the certificate below.

Entropy Source	Minimum number of bits of entropy	Details
NIST SP800-90B com- pliant ESV (Cert. <u>#E67</u>)		The seed is provided by the digitized entropy data from the physical noise source provided by ESV.

Table 7 - Non-Deterministic Random Number Generation Specification

9.2 SSP List

The entropy input string inputs to the DRBG are generated internal to the hardware and do not have an external interface. The DRBG internal state is never output from the module.

Name /Type	Strength	Function and Cert. Number	Generation	Import /Export	Establish- ment	Storage	Zero- ization	Use and related keys
tropy input string		(A2945)	Source of the Qual- comm Pseudo ran- dom Number Generator (ESV cert #E67)		N/A	registers	Module reset	Used to compute the DRBG seed Related SSPs: DRBG in- ternal state, DRBG seed
DRBG seed	231 bits		Internally in the DRBG	N/A	N/A		Module reset	Used to compute the DRBG internal state V and C Related SSPs: DRBG in- ternal state, DRBG

© 2024 Qualcomm Technologies, Inc.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

						entropy in- put string
DRBG in- ternal state V and C	231 bits	Internally in the DRBG	N/A		reset	Random number generation Related SSPs: DRBG en- tropy input string, DRBG seed

Table 8 - SSPs

9.3 SSP Generation, Entry and Output

The module does not provide any SSP generation service or perform SSP generation for any of its approved algorithms. The caller of the DRBG could use the random strings output for SSP generation, but this service is not explicitly provided by the module.

The module does not provide any kind of SSP establishment, entry, or output.

9.4 SSP Storage and Zeroization

The entropy input string and internal state used by the DRBG are generated internally by the hardware and are not accessible externally to the Qualcomm Pseudo Random Number Generator. Zeroization of the DRBG CSPs is accomplished by a reset event of the SoC. The registers for the CSPs will implicitly be set to zero upon the reset, indicating the zeroization was successful.

10 Self-tests

Self-tests implemented by the module consist of the pre-operational integrity test and cryptographic algorithm self-test used for algorithm implementations. All self-tests are automatically performed without any operator intervention during power-up of the module (with the exception of the ESV continuous health tests). This includes the pre-operational integrity test and the cryptographic algorithm self-tests. While the module is executing the self-tests, services are not available, and input and output are inhibited.

For information about the error state, refer to Section 10.4

10.1 Pre-operational tests

The firmware integrity test is run at startup of the module. The CAST for SHA-256 is executed before the integrity test is ran.

Algorithm	Test
SHA-256	Integrity test for the firmware component
Table 9 - Pre-Operational Self-Tests	

10.2 Conditional self-tests

The module performs self-tests on all approved cryptographic algorithms as part of the approved services using the tests shown in Table 10. The module transitions to the operational state only after the cryptographic algorithm self-tests are passed successfully. The ESV continuous health tests are performed throughout the operation of the module.

Algorithm	Test		
SHA-256	KAT performed for SHA-256 used for integrity test (firmware)		
SHA-256	KAT performed for both SHA-256 cores independently (hardware)		
SP 800-90Ar1 DRBG	KAT for DRBG only (hardware)		
ESV	Startup health tests, performed on 1024 consecutive samples		
	Continuous health tests (RCT and APT as defined in SP 800-90B)		

Table 10 - Conditional Algorithm Self-Tests

10.3 Periodic/On-demand self-tests

A power cycle or reset event is the methodology used to perform the "on-demand" tests.

10.4 Error States

If any of the pre-operational self-tests or conditional self-tests fail, the Qualcomm Pseudo Random Number Generator will enter the error state. While in the error state, data output is prohibited, and no further cryptographic operation is performed. This is enforced by the control logic and prevents external usage when an error is detected.

To recover from the error state, re-initialization is only possible by successful execution of the preoperational tests, which can be triggered by either a power-off/power-on cycle or the receipt of a reset event. Once in the error state, the Qualcomm Pseudo Random Number Generator will only respond to a reset event, which will cause it to re-execute the power up tests. If the error persists, the Qualcomm Pseudo Random Number Generator will remain unavailable.

Error State	Cause of Error	Status Indicator	
Error	Integrity test or CAST failure (firmware)	Error status TZBSP_ERR_FATAL_PRNG_FIPS_HYBRID_ERR	
	Continuous health test failure	Error status TZ_RNG_STATUSPRNG_PERMANENT_FAILU RE is set	
	Cryptographic algorithm self-test failure (hardware)	BIST_FAILURE indicator is set	

Table 11 - Error States

11 Life-cycle assurance

11.1 Delivery and Operation

The Qualcomm Pseudo Random Number Generator is a single chip module in the Snapdragon 8 Gen 2 Mobile Platform. The chips are delivered from the vendor via a trusted delivery courier. Upon delivery, the customer can detect any potential tampering by visually inspecting the chips. Any tampering will result in obvious damage or scratches and will likely render the chips non-functional. Once the product is received by the customer and powered up the self-tests defined in Section 10 will be executed.

11.2 End of Life

As stated in Section 9.4, the module does not possess persistent storage of SSPs. The SSP value only exists in volatile memory and that value is zeroized when the module is powered off. The procedure for secure sanitization of the module at the end of life is simply to power it off, which is the action of zeroization of the SSPs (Section 9.4). As a result of this sanitization via power-off, the SSP is removed from the module, so that the module may either be distributed to other operators or disposed.

11.3 Crypto Officer Guidance

There is no specific crypto officer guidance required for the module.

11.4 Configuration Management

ClearCase, a version control system from IBM/Rational, is used to manage the revision control of the hardware code (Verilog code) and hardware documentation. The ClearCase version control system provides version control, workspace management, parallel development support, and build auditing. The Verilog code is maintained within the ClearCase database used by Qualcomm Technologies, Inc. Perforce Visual Client(P4V), a version control system from Perforce, is used to manage the revision control of the Qualcomm firmware code. The Perforce Visual Client provides version control, branching and merging of code lines, and concurrent development.

12 Mitigation of other attacks

The module does not implement security mechanisms to mitigate other attacks.

Appendix A. Glossary and Abbreviations

CAVP	Cryptographic Algorithm Validation Program		
СМТ	Cryptographic Module Testing		
СМУР	Cryptographic Module Validation Program		
CSP	Critical Security Parameter		
СVТ	Component Verification Testing		
DRBG	Deterministic Random Bit Generator		
FIPS	Federal Information Processing Standards Publication		
FSM	Finite State Model		
КАТ	Known Answer Test		
NIST	National Institute of Science and Technology		
PR	Prediction Resistance		
RNG	Random Number Generator		
SHA	Secure Hash Algorithm		
SHS	Secure Hash Standard		
SoC	System on Chip		

Appendix B. References

- FIPS140-3 FIPS PUB 140-3 Security Requirements For Cryptographic Modules March 2019 https://doi.org/10.6028/NIST.FIPS.140-3
- FIPS140-3_IG Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation Program

August 2023 https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements

- FIPS180-4 Secure Hash Standard (SHS) March 2012 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
- SP800-90Ar1 NIST Special Publication 800-90A Revision 1 Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
- SP800-90B (Second DRAFT) NIST Special Publication 800-90B Recommendation for the Entropy Sources Used for Random Bit Generation January 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf

SP800-140B NIST Special Publication 800-140B - CMVP Security Policy Requirements March 2020

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf