Juniper Networks, Inc.

Juniper Networks QFX10002, QFX10008 and QFX10016

FIPS 140-3 Non-Proprietary Security Policy

Table of Contents

1 General	5
1.1 Overview	5
1.2 Security Levels	5
1.3 Additional Information	6
2 Cryptographic Module Specification	6
2.1 Description	6
2.2 Tested and Vendor Affirmed Module Version and Identification	10
2.3 Excluded Components	11
2.4 Modes of Operation	11
2.5 Algorithms	12
2.6 Security Function Implementations	15
2.7 Algorithm Specific Information	18
2.8 RBG and Entropy	18
2.9 Key Generation	18
2.10 Key Establishment	19
2.11 Industry Protocols	19
2.12 Additional Information	19
3 Cryptographic Module Interfaces	20
3.1 Ports and Interfaces	20
4 Roles, Services, and Authentication	21
4.1 Authentication Methods	21
4.2 Roles	23
4.3 Approved Services	24
4.4 Non-Approved Services	38
4.5 External Software/Firmware Loaded	39
4.6 Cryptographic Output Actions and Status	39
5 Software/Firmware Security	39
5.1 Integrity Techniques	39
5.2 Initiate on Demand	39
5.3 Additional Information	39
6 Operational Environment	40
6.1 Operational Environment Type and Requirements	40
6.2 Configuration Settings and Restrictions	40
7 Physical Security	40
7.1 Mechanisms and Actions Required	40

8 Non-Invasive Security	40
8.1 Mitigation Techniques	40
9 Sensitive Security Parameters Management	40
9.1 Storage Areas	40
9.2 SSP Input-Output Methods	41
9.3 SSP Zeroization Methods	41
9.4 SSPs	42
10 Self-Tests	49
10.1 Pre-Operational Self-Tests	49
10.2 Conditional Self-Tests	49
10.3 Periodic Self-Test Information	54
10.4 Error States	56
10.5 Operator Initiation of Self-Tests	57
11 Life-Cycle Assurance	57
11.1 Installation, Initialization, and Startup Procedures	57
11.2 Administrator Guidance	59
11.3 Non-Administrator Guidance	59
11.4 Maintenance Requirements	59
11.5 End of Life	60
12 Mitigation of Other Attacks	60
12.1 Attack List	60

List of Tables

Table 1: Security Levels	6
Table 2: Tested Module Identification – Hardware	
Table 3: Modes List and Description	11
Table 4: Approved Algorithms - Kernel	12
Table 5: Approved Algorithms - LibMD	12
Table 6: Approved Algorithms - OpenSSL	14
Table 7: Approved Algorithms	14
Table 8: Vendor-Affirmed Algorithms	14
Table 9: Non-Approved, Allowed Algorithms with No Security Claimed	15
Table 10: Non-Approved, Not Allowed Algorithms	15
Table 11: Security Function Implementations	18
Table 12: Entropy Certificates	18
Table 13: Entropy Sources	18
Table 14: Ports and Interfaces	
Table 15: Authentication Methods	22
Table 16: Roles	
Table 17: Approved Services	
Table 18: Non-Approved Services	39
Table 19: Storage Areas	
Table 20: SSP Input-Output Methods	
Table 21: SSP Zeroization Methods	
Table 22: SSP Table 1	
Table 23: SSP Table 2	
Table 24: Pre-Operational Self-Tests	
Table 25: Conditional Self-Tests	
Table 26: Pre-Operational Periodic Information	
Table 27: Conditional Periodic Information	
Table 28: Error States	56
List of Figures	
Figure 1: Front view of QFX10002-36Q, QFX10002-72Q and QFX10002-60C	7
Figure 2: Rear view for QFX10002-36Q	
Figure 3: Rear view of QFX10002-72Q	7
Figure 4: Rear view of QFX10002-60C	8
Figure 5: Front view of QFX10008	8
Figure 6: Rear view of QFX10008	8
Figure 7: Front view of QFX100016	
Figure 8: Rear view image QFX100016	9
Figure 9 – High-level Block Diagram for QFX10002/QFX10008/QFX10016	10

1 General

1.1 Overview

Introduction

Federal Information Processing Standards Publication 140-3 — Security Requirements for Cryptographic Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but Unclassified environment. The National Institute of Standards and Technology (NIST) and Canadian Centre for Cyber Security (CCCS) Cryptographic Module Validation Program (CMVP) run the FIPS 140-3 program. The NVLAP accredits independent testing labs to perform FIPS 140-3 testing; the CMVP validates modules meeting FIPS 140-3 validation. Validated is the term given to a module that is documented and tested against the FIPS 140-3 criteria.

More information is available on the CMVP website at: https://csrc.nist.gov/projects/cryptographic-module-validation-program.

About this Document

This non-proprietary Cryptographic Module Security Policy for the Juniper Networks QFX10002, QFX10008 and QFX10016 provides an overview of the product and a high-level description of how it meets the overall Level 1, security requirements of FIPS 140-3.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in methodology, design, and manufacturing. Juniper Networks shall have no liability for any error or damages of any kind resulting from the use of this document.

Notices

This document may be freely reproduced and distributed in its entirety without modification.

This document describes the cryptographic module security policy for the Juniper Networks QFX10002, QFX10008, QFX10016 (Hardware versions: QFX10002-36Q, QFX10002-60C, QFX10002-72Q, QFX10008 and QFX10016) cryptographic module (also referred to as the "module" hereafter) with firmware version Junos OS 22.3R1-S2.3. The module has a multi-chip standalone embodiment. It contains specification of the security rules, under which the cryptographic module operates, including the security rules derived from the requirements of the FIPS 140-3 standard.

1.2 Security Levels

Section	Title	Security Level
1	General	1
2	Cryptographic module specification	1
3	Cryptographic module interfaces	1
4	Roles, services, and authentication	3
5	Software/Firmware security	1
6	Operational environment	1
7	Physical security	1

Section	Title	Security Level
8	Non-invasive security	N/A
9	Sensitive security parameter management	1
10	Self-tests	1
11	Life-cycle assurance	1
12	Mitigation of other attacks	N/A
	Overall Level	1

Table 1: Security Levels

1.3 Additional Information

The module claims an overall Security Level of 1 with all individual sections at a Security Level 1 with the exceptions of Roles, Services and Authentication (claimed at Security Level 3). The module does not implement any non-invasive security mitigations or mitigations of other attacks and thus the requirements per these sections are inapplicable.

2 Cryptographic Module Specification

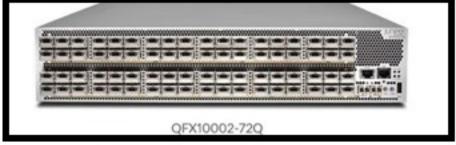
2.1 Description

Purpose and Use:

The cryptographic module provides for an encrypted connection, using SSH, between the management station and itself, i.e., the QFX switch.

Module Type: Hardware

Module Embodiment: MultiChipStand


Cryptographic Boundary:


The cryptographic module's operational environment is a limited operational environment. The cryptographic boundary of the hardware module is the entirety of the module/chassis (demarked with a black outline in the figures below). This includes the Routing Engine (RE). No components have been excluded from the cryptographic boundary of the module.

Tested Operational Environment's Physical Perimeter (TOEPP):

The Tested Operational Environment's Physical Perimeter (TOEPP) is the entirety of the module chassis.

Cryptographic Boundary

Figure 1: Front view of QFX10002-36Q, QFX10002-72Q and QFX10002-60C

Figure 2: Rear view for QFX10002-36Q

Figure 3: Rear view of QFX10002-72Q

Figure 4: Rear view of QFX10002-60C

Figure 5: Front view of QFX10008

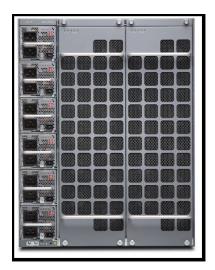


Figure 6: Rear view of QFX10008

Figure 7: Front view of QFX100016

Figure 8: Rear view image QFX100016

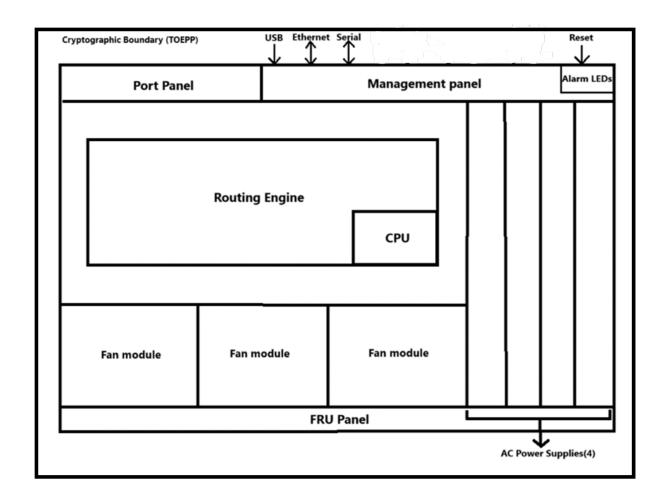


Figure 9 – High-level Block Diagram for QFX10002/QFX10008/QFX10016

2.2 Tested and Vendor Affirmed Module Version and Identification

Tested Module Identification – Hardware:

Model and/or Part Number	Hardware Version	Firmware Version	Processors	Features
QFX10002- 36Q	QFX10002 -36Q	Junos OS 22.3R1-S2.3	Intel Xeon E3- 1125V2	JPSU-1600W-AC- AFO JPSU-1600W- DC-AFO
QFX10002- 72Q	QFX10002-72Q	Junos OS 22.3R1-S2.3	Intel Xeon E3- 1125V2	JPSU-1600W-AC- AFO JPSU-1600W- DC-AFO
QFX10002- 60C	QFX10002-60C	Junos OS 22.3R1-S2.3	Intel Xeon E3- 1125V2	JPSU-1600W-AC- AFO JPSU-1600W- DC-AFO

Model and/or Part Number	Hardware Version	Firmware Version	Processors	Features
QFX10008	QFX10008 with QFX10000 Control board	Junos OS 22.3R1-S2.3	Intel Xeon E3- 1125V2	QFX10000-PWR-AC QFX10000-PWR-DC
QFX10016	QFX10016 with QFX10000 Control board	Junos OS 22.3R1-S2.3	Intel Xeon E3- 1125V2	QFX10000-PWR-AC QFX10000-PWR-DC

Table 2: Tested Module Identification – Hardware

2.3 Excluded Components

No components have been excluded from the cryptographic boundary of the module.

2.4 Modes of Operation

Modes List and Description:

Mode Name	Description	Туре	Status Indicator
Approved mode	• The operator can verify that the cryptographic module is in the Approved mode by observing the console prompt and running the "show version" command; • When operating in the Approved mode, the prompt will read " <operator>:fips#" (e.g. root:fips#); • The "show version" command will allow the Crypto Officer to verify that the validated firmware version is running on the module; • The Crypto Officer can also use the "show system fips chassis level" command (returns "level 1") to determine if the module is operating in the Approved mode; • The Approved mode is entered when the module is configured for it and successfully passes all self-tests (both pre-operational and conditional cryptographic algorithm self-tests (CASTs))</operator>	Approved	global indicator (string 'fips' included in the command prompt)
Non- Approved mode	• The cryptographic module supports a non- Approved mode of operation; • When operated in the non-Approved mode of operation, the module supports non-Approved algorithms as well as the algorithms supported in the Approved mode of operation	Non- Approved	global indicator (implicit indicator based on exclusion of string 'fips' from the command prompt)

Table 3: Modes List and Description

The hardware versions contained in Table 2, with Junos OS 22.3R1-S2.3 installed, contain one Approved mode of operation and a non-Approved mode of operation. The Junos OS 22.3R1-S2.3 firmware image must first be installed on the module. The module is configured during initialization by the Crypto Officer to operate in the Approved mode or the non-Approved mode.

When operated in the non-Approved mode of operation, the module supports non-Approved algorithms as well as the algorithms supported in the Approved mode of operation. The module is in a non-compliant state by default and the Crypto Officer can place the module into the non-Approved mode of operation by following the instructions in Section 11 Life-Cyle Assurance in this document.

Mode Change Instructions and Status:

The module must always be zeroised when switching between the Approved mode of operation and the non-Approved mode of operation and vice versa.

Degraded Mode Description:

The module does not support a degraded mode of operation.

2.5 Algorithms

Approved Algorithms:

Kernel

Algorithm	CAVP	Properties	Reference
	Cert		
HMAC DRBG	A3337	Prediction Resistance - Yes	SP 800-90A
		Mode - SHA2-256	Rev. 1
HMAC-SHA2-	A3337	Key Length - Key Length: 256	FIPS 198-1
256			
SHA2-256	A3337	Message Length - Message Length: 0-	FIPS 180-4
		65536 Increment 8	

Table 4: Approved Algorithms - Kernel

LibMD

Algorithm	CAVP Cert	Properties	Reference
SHA2-512	A3348	Message Length - Message Length: 0-65536	FIPS 180-4
		Increment 8	

Table 5: Approved Algorithms - LibMD

OpenSSL

Algorithm	CAVP Cert	Properties	Reference
AES-CBC	A3349	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
AES-CTR	A3349	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A

Algorithm	CAVP Cert	Properties	Reference
AES-ECB	A3349	Direction - Decrypt, Encrypt Key Length - 128, 192, 256	SP 800-38A
ECDSA KeyGen (FIPS186-4)	A3349	Curve - P-256, P-384, P-521 Secret Generation Mode - Testing Candidates	FIPS 186-4
ECDSA KeyVer (FIPS186-4)	A3349	Curve - P-256, P-384, P-521	FIPS 186-4
ECDSA SigGen (FIPS186-4)	A3349	Component - No Curve - P-256, P-384, P-521 Hash Algorithm - SHA2-256, SHA2-384, SHA2-512	FIPS 186-4
ECDSA SigVer (FIPS186-4)	A3349	Component - No Curve - P-256, P-384, P-521 Hash Algorithm - SHA2-256, SHA2-384, SHA2-512	FIPS 186-4
HMAC DRBG	A3349	Prediction Resistance - Yes Mode - SHA2-256	SP 800-90A Rev. 1
HMAC-SHA-1	A3349	Key Length - Key Length: 160	FIPS 198-1
HMAC-SHA2-256	A3349	Key Length - Key Length: 256	FIPS 198-1
HMAC-SHA2-512	A3349	Key Length - Key Length: 512	FIPS 198-1
KAS-ECC-SSC	A3349	Domain Parameter Generation Methods	SP 800-56A
Sp800-56Ar3		- P-256, P-384, P-521 Scheme - ephemeralUnified - KAS Role - initiator, responder	Rev. 3
KAS-FFC-SSC Sp800-56Ar3	A3349	Domain Parameter Generation Methods - FC, MODP-2048 Scheme - dhEphem - KAS Role - initiator	SP 800-56A Rev. 3
KDF SSH (CVL)	A3349	Cipher - AES-128, AES-192, AES-256, TDES Hash Algorithm - SHA-1, SHA2-256, SHA2-384, SHA2-512	SP 800-135 Rev. 1
RSA KeyGen (FIPS186-4)	A3349	Key Generation Mode - B.3.3 Modulo - 2048, 3072, 4096 Primality Tests - Table C.2 Private Key Format - Standard	FIPS 186-4
RSA SigGen (FIPS186-4)	A3349	Signature Type - PKCS 1.5 Modulo - 2048, 3072, 4096	FIPS 186-4
RSA SigVer (FIPS186-4)	A3349	Signature Type - PKCS 1.5 Modulo - 2048, 3072, 4096	FIPS 186-4
SHA-1	A3349	Message Length - Message Length: 0-65536 Increment 8	FIPS 180-4
SHA2-256	A3349	Message Length - Message Length: 0-65536 Increment 8	FIPS 180-4
SHA2-512	A3349	Message Length - Message Length: 0-65536 Increment 8	FIPS 180-4

Table 6: Approved Algorithms - OpenSSL

Algorithm	CAVP	Properties	Reference
	Cert		
SHA2-512	A3337	Message Length - Message Length: 0-	FIPS 180-4
		65536 Increment 8	
Safe Primes Key	A3349	Safe Prime Groups - MODP-2048	SP 800-56A
Generation		·	Rev. 3
Safe Primes Key	A3349	Safe Prime Groups - MODP-2048	SP 800-56A
Verification		·	Rev. 3

Table 7: Approved Algorithms -

The following protocol is supported by the module in the Approved mode:

SSHv2 (EC Diffie-Hellman P-256, P-384, P-521; Diffie-Hellman MODP2048; RSA 2048, 3072 4096 bits; ECDSA P-256, P-384, P-521; AES CBC 128, 192, 256 bits; AES CTR 128, 192, 256 bits, HMAC-SHA-1, HMAC-SHA2-256, HMAC-SHA2-512)

The SSH protocol allows independent selection of key exchange, authentication, cipher and integrity algorithms. Please note that there are algorithms, modes, and key/moduli sizes that have been CAVP-tested but are not used by any approved service of the module. Only the algorithms, modes/methods, and key lengths/curves/moduli shown in the table above are used by an approved service of the module.

Vendor-Affirmed Algorithms:

Name	Properties	Implementation	Reference
CKG -	Key	N/A	NIST SP800-133r2 Section 4:
Section 4 and 5.1	Type:Asymmetric		Asymmetric seed generation using an unmodified output from an Approved DRBG; Section 5.1: Key Pairs for Digital
CKC	Var	NI/A	Signature Schemes
CKG - Section 4 and 5.2	Key Type:Asymmetric	N/A	NIST SP800-133r2 Section 4: Asymmetric seed generation using an unmodified output from an Approved DRBG; Section 5.2: Key Pairs for Key Establishment
CKG - Section 6.2.1	Key Type:Symmetric	N/A	NIST SP800-133r2 Section 6.2.1: Derivation of symmetric keys

Table 8: Vendor-Affirmed Algorithms

Non-Approved, Allowed Algorithms:

The module does not support any non-Approved algorithms in the Approved mode, i.e., it does not support Non-Approved Algorithms Allowed in the Approved Mode of Operation.

Non-Approved, Allowed Algorithms with No Security Claimed:

Name	Caveat	Use and Function
SHA2-256 (JUNOS 22.3R1	no	Used to store operator passwords in hashed form,
QFX10K-LibMD	security	per IG 2.4.A: Use of a non-approved cryptographic
Implementation)	claimed	algorithm to "obfuscate" a CSP
SHA-1 (JUNOS 22.3R1	no	Used for an extraneous check in the Kernel, per IG
QFX10K-Kernel)	security	2.4.A: Use of an approved, non-approved or
,	claimed	proprietary algorithm for a purpose that is not
		security relevant

Table 9: Non-Approved, Allowed Algorithms with No Security Claimed

The module does not support any non-Approved algorithms in the Approved mode, i.e., it does not support Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed.

Non-Approved, Not Allowed Algorithms:

Name	Use and Function
RSA with key size less than 2048	SSH
ECDSA with ed25519 curve	SSH
EC Diffie-Hellman with ed25519 curve	SSH
ARCFOUR	SSH
Blowfish	SSH
CAST	SSH
DSA (SignGen, SigVer, non-compliant)	SSH
HMAC-MD5	SSH
HMAC-RIPEMD160	SSH
UMAC	SSH

Table 10: Non-Approved, Not Allowed Algorithms

In addition to the above non-Approved Algorithms Not Allowed in the Approved Mode of Operation, all Approved algorithms supported in the Approved mode of operation are also supported in the non-Approved mode.

2.6 Security Function Implementations

Name	Туре	Description	Properties	Algorithms
KAS1	KAS-135KDF KAS-SSC	Key Agreement for SSHv2	SP 800-56Arev3 KAS-ECC per IG D.F Scenario 2 path (2):size: P- 256, P-384, P- 521 curves; encryption strength:128,	KAS-ECC-SSC Sp800-56Ar3 KDF SSH

Name	Туре	Description	Properties	Algorithms
			192, 256 bits; strength caveat: SSP establishment methodology provides between 128 and 256 bits of encryption strength	
KAS2	AsymKeyPair- KeyGen AsymKeyPair- KeyVer KAS-135KDF KAS-SSC	Key Agreement for SSHv2	SP800-56Arev3 KAS-FFC per IG D.F Scenario 2 path (2):size: MODP 2048; encryption strength: SSP establishment methodology provides 112 bits of encryption strength	KAS-FFC-SSC Sp800-56Ar3 KDF SSH Safe Primes Key Generation Safe Primes Key Verification
KTS1	KTS-Wrap	Key Transport for SSHv2	SP800-38A AES CBC, CTR and HMAC 198 per IG D.G:size: 128, 192, and 256-bit keys; SSP establishment methodology provides between 128 and 256 bits of encryption strength	AES-CBC AES-CTR AES-ECB HMAC-SHA-1 HMAC-SHA2- 256 HMAC-SHA2- 512 SHA-1 SHA2-256 SHA2-512
ECDSA SigVer	DigSig-SigVer	ECDSA Signature Verification used for firmware integrity	FIPS 186-4 :size: P-256, encryption strength: 128 bits	ECDSA SigVer (FIPS186-4)
ECDSA SigVer2	DigSig-SigVer	ECDSA Signature Verification used for identity- based public key authentication	FIPS 186-4:size: P-256, P-384, P- 521 curves, 128, 192 and 256 bits	ECDSA SigVer (FIPS186-4)

Name	Туре	Description	Properties	Algorithms
DRBG	DRBG	Kernel DRBG		HMAC DRBG
		providing		HMAC-SHA2-
		random bits to		256
		the DRBG2 for		SHA2-256
		SSP generation		011/12-230
		in the		
		user/application		
DDDOO	DDDO	space		LIMA O DDDO
DRBG2	DRBG	SSP generation		HMAC DRBG
		in , , , ,		HMAC-SHA2-
		user/application		256
		space		SHA2-256
Entropy Souce	ENT-Cond	Non-Physical		SHA2-512
		Entropy Source		
ECDSA KeyGen	AsymKeyPair-	Generation of		ECDSA KeyGen
	KeyGen	SSH host keys		(FIPS186-4)
ECDSA	AsymKeyPair-	SSP Agreement		ECDSA KeyGen
KeyGen2	KeyGen	in the context of		(FIPS186-4)
	, -	SSH		, ,
ECDSA KeyVer	AsymKeyPair-	Verification of		ECDSA KeyVer
2020/11/09/10/	KeyVer	keys generated		(FIPS186-4)
ECDSA SigGen	DigSig-SigGen	Signature		ECDSA SigGen
Lobortolgocii	Digoig digodii	Generation		(FIPS186-4)
		using ECDSA in		(111 0 100-4)
		the context of		
		SSH		
RSA KeyGen	AsymKeyPair-	Generation of		RSA KeyGen
	KeyGen	SSH host keys		(FIPS186-4)
RSA SigGen	DigSig-SigGen	Signature		RSA SigGen
1 to to igoon	Digoig digodii	Generation		(FIPS186-4)
		using RSA in the		(1 11 0 100 4)
		context of SSH		
RSA SigVer	DigSig-SigVer	Signature		RSA SigVer
TOA Olg VCI	Digoig-oig voi	Verification		(FIPS186-4)
		using RSA for		(1115 100-4)
		_		
		public key		
Decement Heek	SHA	authentication		CLIAD E40
Password Hash	SHA	Used to store		SHA2-512
		passwords in		
0140	01/0	hashed form		01(0 0 1)
CKG	CKG	Cryptographic		CKG - Section
		Key Generation		6.2.1
		(CKG)		Key Type:
				Symmetric
CASTs on boot	BC-UnAuth	List of		AES-CBC
	DigSig-SigGen	algorithms for		HMAC DRBG
	DigSig-SigVer	which Known		HMAC-SHA-1
	DRBG	Answer Tests		HMAC-SHA2-
	ENT-Cond	(CASTs) have		256

Name	Туре	Description	Properties	Algorithms
Name	KAS-135KDF MAC SHA	been implemented in the module and perform on each boot	Properties	HMAC-SHA2- 512 KAS-ECC-SSC Sp800-56Ar3 KAS-FFC-SSC Sp800-56Ar3 KDF SSH ECDSA SigGen (FIPS186-4) ECDSA SigVer (FIPS186-4) RSA SigGen (FIPS186-4) RSA SigVer (FIPS186-4) RSA SigVer (FIPS186-4) RSA SigVer (FIPS186-4) SHAC-SHA2- 256 SHA2-512 SHA2-512

Table 11: Security Function Implementations

2.7 Algorithm Specific Information

The module only supports testable RSA moduli/key sizes (2048, 3072 and 4096 bits) and thus the requirements per FIPS 140-3 IG C.F do not apply.

2.8 RBG and Entropy

Cert Number	Vendor Name
E89	Juniper Networks

Table 12: Entropy Certificates

Name	Туре	Operational Environment	Sample Size	Entropy per Sample	Conditioning Component
Junos OS Non- Physical Entropy Source	Non- Physical	Intel Xeon E3- 1125v2	8 bits	0.83 bits	SHA2-512 (CAVP Cert. #A3337)

Table 13: Entropy Sources

2.9 Key Generation

The module implements two NIST SP 800-90Ar1 DRBGs and supports the following sections per NIST SP 800-133r2 (CKG): Sections 4, 5.1, 5.2 and 6.2.1.

2.10 Key Establishment

Per IG D.F:

The module implements full KAS (KAS-ECC-SSC, KAS-FFC-SSC per NIST SP 800-56Ar3 and KDF SSH per NIST SP 800-135r1; IG D.F Scenario 2 (path 2 option 2, separate testing of the SSC and SP800-135r1 KDF). The KAS1 and KAS2 in the SFI Table have been documented in accordance with this requirement.

KAS1: KAS (KAS-ECC-SSC Cert.#A3349 and CVL Cert. #A3349; SSP establishment methodology provides between 128 and 256 bits of encryption strength)

KAS2: KAS (KAS-FFC-SSC Cert.#A3349 and CVL Cert. #A3349; SSP establishment methodology provides 112 bits of encryption strength)

The Approved Algorithm list includes the tested components (KAS-ECC-SSC, KAS-FFC-SSC and KDF SSH) as individual entries.

Per IG D.G:

The module supports the IETF SSH protocol and thus implements key transport in the context of the protocol (per the KTS1 entry in the SFI table of the Security Policy).

The module implements the following approved KTS using approved AES modes:

AES CBC and CTR: KTS (AES Cert. #A3349 and HMAC Cert. #A3349; key establishment methodology provides between 128 and 256 bits of encryption strength)

2.11 Industry Protocols

No parts of the SSH protocol, other than the KDF, have been tested by the CAVP or CMVP.

2.12 Additional Information

The module design corresponds to the security rules below. The term *shall* in this context specifically refers to a requirement for correct usage of the module in the Approved mode; all other statements indicate a security rule implemented by the module.

- 1. The module clears previous authentications on power cycle.
- 2. When the module has not been placed in a valid role, the operator does not have access to any cryptographic services.
- 3. Self-tests do not require any operator action.
- 4. Data output is inhibited during SSP generation, self-test execution, zeroisation, and error states.
- 5. Status information does not contain SSPs or sensitive data that if misused could lead to a compromise of the module.
- 6. There are no restrictions on which SSPs are zeroised by the zeroisation service.

- 7. The module does not support a maintenance interface or role.
- 8. The module does not output intermediate key values.
- 9. The module does not output plaintext CSPs.
- 10. The Crypto officer shall verify that the firmware image to be loaded on the module is a FIPS 140-3 validated image. If any non-validated firmware image is loaded the module will no longer be a validated module.
- 11. The Crypto Officer shall retain control of the module while zeroisation is in process.

3 Cryptographic Module Interfaces

3.1 Ports and Interfaces

Physical Port	Logical Interface(s)	Data That Passes
Ethernet	Data Input Data Output Control Input Status Output	LAN Communications (QFX10002-36Q(40: 2 MGMT, 36 QSFP+, 1 ETH), QFX10002-72Q(80: 2 MGMT, 72 QSFP+, 1 ETH), QFX10002-60C (63: 2 MGMT, 60 QSFP+, 1 ETH), QFX10008(12: 4 MGMT, 8 SFP+), QFX10016(12: 4 MGMT, 8 SFP+))
Serial	Control Input Status Output	Serial Console Port (QFX10002(1), QFX10008(2), QFX10016(2))
USB	Data Input Control Input	Load Junos OS image/configuration (QFX10002(1), QFX10008(2), QFX10016(2))
Power	Power	Power connector (QFX10002-36Q(4), QFX10002-72Q(4), QFX10002-60C(4), QFX10008(6), QFX10016(10))
LED	Status Output	Status indicator lighting (QFX10002(4) QFX10008(13) QFX10016(13))
Reset	Control Input	Reset (QFX10002(1) QFX10008(2) QFX10016(2))
SMB	Control Input Status Output	PTP Connectors (QFX10002(2) QFX10008(8) QFX10016(8))
Backplane Line Card Interface	Data Input Data Output Control Input Status Output	Line card interface (QFX10008(8) QFX10016(16))

Table 14: Ports and Interfaces

The module does not support control output.

4 Roles, Services, and Authentication

4.1 Authentication Methods

Method Name	Description	Security Mechanism	Strength Each Attempt	Strength per Minute
Username and password over the console and SSH	• The module enforces 10-character passwords (at minimum) chosen from the 96 human readable ASCII characters; The maximum password length is 20-characters; Thus, the probability of a successful random attempt is 1/(96^10), which is less than 1/1,000,000 (million); • The module enforces a timed access mechanism as follows: For the first two failed attempts (assuming 0 time to process), no timed access is enforced; Upon the third attempt, the module enforces a 5-second delay; Each failed attempt thereafter results in an additional 5-second delay above the previous (e.g., 4th failed attempt = 10-second delay, 5th failed attempt = 15-second delay, 6th failed attempt = 20-second delay, 7th failed attempt = 25-second delay); This leads to a maximum of 7 possible attempts in a one-minute period for each getty; The best approach for the attacker would be to disconnect after 4 failed attempts and wait for a new getty to be spawned; This would allow the attacker to perform roughly 9.6 attempts per minute (576 attempts per hour/60 mins); this would be rounded down to 9 per minute, because there is no such thing as 0.6 attempts; The probability of a success with multiple consecutive attempts in	SHA2-512 (A3348)	1/(96^10)	9/(96^10)

Method Name	Description	Security Mechanism	Strength Each Attempt	Strength per Minute
	a one-minute period is 9/(96^10), which is less than 1/100,000			
Username and ECDSA public key over SSH	• The module supports ECDSA (P-256, P-384, and P-521), which has a minimum equivalent computational resistance to attack of either 2^128, 2^192 or 2^256 depending on the curve; Thus, the probability of a successful random attempt is 1/(2^128), which is less than 1/1,000,000 (million) • Configurable SSH connection establishment rate limits the number of connection attempts, and thus failed authentication attempts in a one-minute period to a maximum of 15,000 attempts; The probability of a success with multiple consecutive attempts in a one-minute period is 15,000/(2^128), which is less than 1/100,000	ECDSA SigVer (FIPS186-4) (A3349)	1/(2^128)	15,000/(2^128)
Username and RSA public key over SSH	• The module supports RSA (2048, 3072, 4096 bits), which has a minimum equivalent computational resistance to attack of 2^112 (2048 bits); Thus, the probability of a successful random attempt is 1/ (2^112), which is less than 1/1,000,000 (million) • Configurable SSH connection establishment rate limits the number of connection attempts, and thus failed authentication attempts in a oneminute period to a maximum of 15,000 attempts; The probability of a success with multiple consecutive attempts in a oneminute period is 15,000/(2^112), which is less than 1/100,000	RSA SigVer (FIPS186-4) (A3349)	1/ (2^112)	15,000/(2^112)

Table 15: Authentication Methods

The module enforces the separation of roles using identity-based operator authentication. The module implements two forms of identity-based authentication, username, and password over

the console and SSH connections, as well as username and an ECDSA or RSA public key-based authentication over SSHv2.

4.2 Roles

Name	Туре	Operator Type	Authentication Methods
Super-user	Identity	Crypto Officer (CO)	Username and password over the console and SSH Username and ECDSA public key over SSH Username and RSA public key over SSH
Operator	Identity	User	Username and password over the console and SSH Username and ECDSA public key over SSH Username and RSA public key over SSH
Read-only	Identity	User	Username and password over the console and SSH Username and ECDSA public key over SSH Username and RSA public key over SSH
Root	Identity	Crypto Officer (CO)	Username and password over the console and SSH Username and ECDSA public key over SSH Username and RSA public key over SSH
Unauthorised	Identity	User	Username and password over the console and SSH Username and ECDSA public key over SSH Username and RSA public key over SSH

Table 16: Roles

The module supports two roles: Crypto Officer (CO) and User. Root and Super-user correspond to the Crypto Officer role whereas Operator, Read-Only and Unauthorised operator types correspond to the User role. The module supports concurrent operators but does not support a maintenance role and/or bypass capability.

An operator assuming the Crypto Officer role configures and monitors the module via a console or SSH connection. As Root or Super-user, the Crypto Officer has permission to view and configure passwords and public keys within the module. The User role monitors the module via the console or SSH. The User role does not have the permission to modify the configuration.

4.3 Approved Services

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
Configure security (security relevant)	Security relevant configuratio n (SSH, authenticati on data)	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Commands (SSH configuration: set system services ssh root-login allow)	Traffic	DRBG DRBG2 Passwor d Hash CKG	Root - SSH Private Host Key: G - User Password: W,E - CO Password: W,E - HMAC_DRBG V value: E - HMAC_DRBG Key value: E - HMAC_DRBG entropy input: E - HMAC_DRBG seed: E - SSH Public Host Key: G - User Authentication Public Keys: W - CO Authentication

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
					5	HMAC_DRBG Key value: E - HMAC_DRBG entropy input: E - HMAC_DRBG seed: E - HMAC_DRBG Key value: E - SSH Public Host Key: G - CO Authentication Public Keys: W - User Authentication Public Keys:
Configure (non- security relevant)	Non- security relevant configuratio n	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Commands (miscellaneous commands e.g., for IP address configuration, routing protocols, etc.)	Traffic	Passwor d Hash	Super-user - CO Password: E Root - CO Password: E
Show status	Query the module status	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Command (show)	CLI output	Passwor d Hash	Super-user - CO Password: E Root - CO Password: E Operator - User Password: E Read-only - User Password: E Unauthorised

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
						- User Password: E
Show status (LED)	LEDs on the module provide physical status output	LED(s) on the chassis turned on	N/A	LED	None	Super-user Operator Read-only Unauthorised Root Unauthenticat ed
Show module's versioning informatio n	Query the module's versioning information	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Command (show version)	CLI output	Passwor d Hash	Super-user - CO Password: E Operator - User Password: E Read-only - User Password: E Unauthorised - User Password: E Root - CO Password: E
Zeroise (Perform zeroisatio n)	Destroy all SSPs	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Command (request vmhost zeroise no-forwarding)	N/A	Passwor d Hash	Super-user - SSH Private Host Key: Z - SSH ECDH Private Key: Z - SSH DH Private Key: Z - SSH Session Key: Z - User Password: Z - CO Password: E,Z - HMAC_DRBG V value: Z - HMAC_DRBG Key value: Z - HMAC_DRBG entropy input: Z

HMAC_DRBG seed: Z - ECDH Shared Secret: Z - DH Shared Secret: Z - HMAC Key: Z - SSH Public Host Key: Z - User Authentication Public Keys: Z - CO Authentication Public Keys: Z - PackageCA: Z - PackageCA: Z - SSH ECDH Public Key: Z - SSH BCDH Public Key: Z - SSH ECDH Client Public Key: Z - SSH DH Client Public Key: Z - SSH ECDH Private Key: Z - SSH ECDH Private Key: Z - SSH ECDH Private Key: Z - SSH Session Key: Z - User Password: Z - CO Password: E,Z - CO Password: E,Z - HMAC_DRBG

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
						V value: Z
						HMAC_DRBG Key value: Z
						HMAC_DRBG entropy input: Z
						HMAC_DRBG seed: Z - ECDH Shared Secret: Z - DH Shared Secret: Z - HMAC Key: Z - SSH Public Host Key: Z - User Authentication Public Keys: Z - CO Authentication Public Keys: Z - JuniperRootC
						A: Z - PackageCA: Z - SSH ECDH Public Key: Z - SSH DH Public Key: Z - SSH ECDH Client Public Key: Z - SSH DH Client Public Key: Z - SSH DH Client Public Key: Z
Perform approved security functions (SSH connectio n)	Initiate SSH connection for SSH monitoring and control (CLI)	Global Approved Mode indicator "fips" at the CLI combined	Authentication data (Username and password/publi c-key based authentication)	SSH session	KAS1 KAS2 KTS1 ECDSA SigVer2 DRBG DRBG2	Super-user - SSH Private Host Key: E - SSH ECDH Private Key: G,E,Z - SSH DH

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
		with successful completion of each service			Entropy Souce ECDSA KeyGen ECDSA KeyGen2 ECDSA KeyVer ECDSA SigGen RSA SigVer Passwor d Hash CKG	Private Key: G,E,Z - SSH Session Key: G,E,Z - HMAC_DRBG V value: E - HMAC_DRBG Key value: E - HMAC_DRBG entropy input: E - HMAC_DRBG seed: E - ECDH Shared Secret: G,E,Z - DH Shared Secret: G,E,Z - DH Shared Secret: G,E,Z - HMAC Key: G,E,Z - SSH Public Host Key: E - SSH DH Public Key: G,E,Z - SSH ECDH Public Key: G,E,Z - SSH ECDH Client Public Key: W,E,Z - SSH DH Client Public Key: W,E,Z - SSH ECDH Private Key:

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
						G,E,Z - SSH DH Private Key: G,E,Z - SSH Session Key: G,E,Z - HMAC_DRBG V value: E - HMAC_DRBG Key value: E
						- HMAC_DRBG entropy input: E - HMAC_DRBG seed: E - ECDH Shared Secret: G,E,Z - DH Shared Secret: G,E,Z - HMAC Key: G,E,Z - SSH Public Host Key: E - SSH ECDH Public Key: G,E,Z - SSH DH Public Key: G,E,Z - CO Password: E - CO Authentication Public Keys: E - SSH ECDH Client Public Key: G,E,Z - SSH DH Client Public Key: G,E,Z - SSH Private Host Key: E

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
						- SSH ECDH Private Key: G,E,Z - SSH DH Private Key: G,E,Z - SSH Session Key: G,E,Z
						HMAC_DRBG V value: E
						HMAC_DRBG entropy input: E
						- HMAC_DRBG seed: E - ECDH Shared Secret: G,E,Z - DH Shared Secret: G,E,Z - HMAC Key: G,E,Z - SSH Public Host Key: E - SSH ECDH Public Key: G,E,Z - User Password: E - User Authentication Public Keys: E - SSH ECDH Client Public Key: G,E,Z - SSH DH Client Public Key: G,E,Z -
						HMAC_DRBG Key value: E Read-only

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
				S	Function	- SSH Private Host Key: E - SSH ECDH Private Key: G,E,Z - SSH DH Private Key: G,E,Z - SSH Session Key: G,E,Z - HMAC_DRBG V value: E - HMAC_DRBG Key value: E - HMAC_DRBG entropy input: E - HMAC_DRBG seed: E - ECDH Shared Secret: G,E,Z - DH Shared Secret: G,E,Z - HMAC Key: G,E,Z - SSH Public Host Key: E - SSH ECDH Public Key: G,E,Z - SSH DH Public Key:
						G,E,Z - User Password: E - User Authentication Public Keys: E - SSH ECDH
						Client Public Key: G,E,Z - SSH DH Client Public

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
						Key: G,E,Z Unauthorised - SSH Private Host Key: E - SSH ECDH Private Key: G,E,Z - SSH DH Private Key: G,E,Z - SSH Session Key: G,E,Z
						HMAC_DRBG V value: E
						- HMAC_DRBG entropy input: E - HMAC_DRBG seed: E - ECDH Shared Secret: G,E,Z - DH Shared Secret: G,E,Z - HMAC Key: G,E,Z - SSH Public Host Key: E - SSH ECDH Public Key: G,E,Z - SSH DH Public Key: G,E,Z - User Password: E - User Authentication Public Keys: E - SSH ECDH Client Public Key: G,E,Z - SSH DH Client Public Key: G,E,Z - SSH DH Client Public Key: G,E,Z

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
Console Access	Console monitoring and control (CLI)	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Username, password (set system login user <username> class <crypto- class="" officer="" user=""> operator authentication plaintext- password)</crypto-></username>	N/A	Passwor d Hash	HMAC_DRBG Key value: E Super-user - CO Password: E Operator - CO Password: E Read-only - User Password: E Unauthorised - User Password: E Root - CO Password: E
Perform self-tests (remote reset)	Software initiated reset, performs self-tests on demand via SSH	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Control input/reset signal (request vmhost reboot)	N/A	KAS1 KAS2 KTS1 DRBG DRBG2 Entropy Souce ECDSA KeyGen ECDSA KeyGen2 ECDSA SigGen RSA KeyGen RSA SigGen RSA SigGen Passwor d Hash CKG CASTs on boot	Super-user - SSH ECDH Private Key: G,E,Z - SSH DH Private Key: G,E,Z - SSH Session Key: G,E,Z - HMAC_DRBG Key value: G,E,Z - HMAC_DRBG V value: G,E,Z - HMAC_DRBG entropy input: G,E,Z - HMAC_DRBG seed: G,E,Z - HMAC_DRBG seed: G,E,Z - HMAC_DRBG seed: G,E,Z - HMAC_DRBG seed: G,E,Z - HMAC_DRBG

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
						- SSH ECDH Public Key: G,E,Z - SSH DH Public Key: G,E,Z - CO Password: E - Firmware Integrity Key: E - SSH Private Host Key: E - SSH Public Host Key: E - SSH ECDH Client Public Key: W,E,Z - SSH DH Client Public Key: W,E,Z - SSH Private Host Key: E - SSH Public Host Key: E - SSH Session Public Keys: E - CO Authentication Public Keys: E - Wathentication Public Keys: E - Wathenti

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
						HMAC_DRBG entropy input: G,E,Z
						- HMAC_DRBG seed: G,E,Z - ECDH Shared Secret: G,E,Z - DH Shared Secret: G,E,Z - HMAC Key: G,E,Z - SSH ECDH Public Key: G,E,Z - SSH DH Public Key: G,E,Z - CO Password: E - Firmware Integrity Key: E - SSH Private Host Key: E - SSH Public Host Key: E - SSH DH Client Public Key: W,E,Z - SSH DH Client Public Key: W,E,Z - SSH Private Host Key: E - SSH Private Host Key: E - SSH Public Key: W,E,Z - SSH Private Host Key: E - SSH Public Host Key: E - CSH Public Key: W,E,Z - SSH Private Host Key: E - User Authentication Public Keys: E - CO Authentication
Perform	Hardware	Global	Control	N/A	CASTs	Public Keys: E Super-user
self-tests (local reset)	reset or power cycle	Approved Mode indicator	input/reset signal		on boot	- Firmware Integrity Key:

Name	Description	Indicator	Inputs	Output s	Security Function s	SSP Access
		"fips" at the CLI combined with successful completion of each service				Root - Firmware Integrity Key: E Operator - Firmware Integrity Key: E Read-only - Firmware Integrity Key: E Unauthorised - Firmware Integrity Key: E Unauthericat ed - Firmware Integrity Key: E
Load Image	Verification and loading of a validated firmware image into the router/switch	Global Approved Mode indicator "fips" at the CLI combined with successf ul completio n of each service	Image, commands	N/A	ECDSA SigVer Passwor d Hash	Super-user - CO Password: E - Firmware Integrity Key: E - JuniperRootC A: E - PackageCA: E Root - CO Password: E - Firmware Integrity Key: E - JuniperRootC A: E - JuniperRootC A: E - PackageCA: E

Table 17: Approved Services

4.4 Non-Approved Services

Name	Description	Algorithms	Role
Configure security (security relevant)	Security relevant configuration	RSA with key size less than 2048 ECDSA with ed25519 curve EC Diffie-Hellman with ed25519 curve ARCFOUR Blowfish CAST DSA (SignGen, SigVer, noncompliant) HMAC-MD5 HMAC-RIPEMD160 UMAC	Root, Super-user
Configure (non- security relevant)	Non-security relevant configuration	None	Root, Super-user
Show status	Query the module status	None	Root, Super-user, Operator, Read-Only, Unauthorized
Show status (LED)	LEDs on the module provide physical status output	None	Root, Super-user, Operator, Read-Only, Unauthorized, Unauthenticated
Show module's versioning information	Query the module's versioning information	None	Root, Super-user, Operator, Read-Only, Unauthorized
Zeroise (Perform zeroisation)	Destroy all SSPs	None	Root, Super-user
Perform approved security functions (SSH connection)	Initiate SSH connection for SSH monitoring and control (CLI)	RSA with key size less than 2048 ECDSA with ed25519 curve EC Diffie-Hellman with ed25519 curve ARCFOUR Blowfish CAST DSA (SignGen, SigVer, noncompliant) HMAC-MD5	Root, Super-user, Operator, Read-Only, Unauthorized

Name	Description	Algorithms	Role
		HMAC- RIPEMD160 UMAC	
Console Access	Console monitoring and control (CLI)	None	Root, Super-user, Operator, Read-Only, Unauthorized
Perform self-tests (remote reset)	Software initiated reset, performs self-tests on demand	None	Root, Super-user, Operator, Read-Only, Unauthorized
Perform self-tests (local reset)	Hardware reset or power cycle	None	Root, Super-user, Operator, Read-Only, Unauthorized, Unauthenticated
Load Image	Verification and loading of a validated firmware image into the router/switch	None	Root, Super-user

Table 18: Non-Approved Services

4.5 External Software/Firmware Loaded

The module supports loading of firmware from an external source (a complete image replacement) and a firmware load test using ECDSA P-256 with SHA2-256 (CAVP Cert. #A3349) is performed in support of the load.

4.6 Cryptographic Output Actions and Status

The module does not support self-initiated cryptographic output.

5 Software/Firmware Security

5.1 Integrity Techniques

The module performs the firmware integrity check using ECDSA P-256 with SHA2-256 (CAVP Cert. #A3349). The ECDSA P-256 public key used for signature verification is a non-SSP and stored persistently across reboots in the module's Non-Volatile RAM (NVRAM) and is exempt from zeroisation.

5.2 Initiate on Demand

The operator can initiate the integrity test on demand by rebooting the module.

5.3 Additional Information

The module firmware image is delivered in the form of a pre-compiled tarball (.tgz).

6 Operational Environment

6.1 Operational Environment Type and Requirements

Type of Operational Environment: Limited

How Requirements are Satisfied:

The module contains a limited operational environment since it supports loading of firmware from an external source. The Junos OS 22.3R1-S2.3 operating system is contained within the module, i.e., the tested configurations listed in the Tested Module Identification – Hardware in this document.

6.2 Configuration Settings and Restrictions

Security rules and restrictions for configuration of the operational environment have been specified in Sections 2.12 and 11.1 of this document.

7 Physical Security

7.1 Mechanisms and Actions Required

The module's physical embodiment is that of a multi-chip standalone meeting Level 1 Physical Security requirements. The module is completely enclosed in a rectangular nickel or clear zinc coated, cold rolled steel, plated steel and brushed aluminum enclosure. The module enclosure is made of production grade materials. There are no ventilation holes, gaps, slits, cracks, slots, or crevices that would allow for any sort of observation of any component contained within the cryptographic boundary. No actions are required by the operator to ensure that physical security is maintained.

8 Non-Invasive Security

8.1 Mitigation Techniques

The module does not implement any non-invasive security mitigations and thus the requirements per this section do not apply to the module.

9 Sensitive Security Parameters Management

9.1 Storage Areas

Storage Area Name	Description	Persistence Type
NVRAM	Non-Volatile Random Access Memory	Static
RAM	Random Access Memory	Dynamic

Table 19: Storage Areas

9.2 SSP Input-Output Methods

Name	From	То	Format Type	Distribution Type	Entry Type	SFI or Algorithm
Entered over SSH - NVRAM	External endpoint	NVRAM	Encrypted	Automated	Electronic	KTS1
Loaded at manufacture	External endpoint	NVRAM	Plaintext	N/A	N/A	
Entered through the CLI via console connection - NVRAM	External endpoint	NVRAM	Plaintext	Manual	Direct	
Input during SSH negotiation	External endpoint	RAM	Plaintext	Automated	Electronic	
Output during SSH negotiation (host key)	NVRAM	External endpoint	Plaintext	Automated	Electronic	
Output during SSH negotiation (Key Agreement public key)	RAM	External endpoint	Plaintext	Automated	Electronic	

Table 20: SSP Input-Output Methods

The module is complaint with FIPS 140-3 IG 9.5.A MD/DE and AD/EE for SSPs entered via the module's CLI via a direct connection to its serial/console port and for SSPs entered/ouput/established via SSH respectively.

9.3 SSP Zeroization Methods

Zeroization Method	Description	Rationale	Operator Initiation
Zeroisation command	Command used to zeroise the module: request vmhost zeroize no-forwarding	Used to provide zeroisation as a service	Operator initiated
Power-cycle	Power cycling the module to zeroise temporary SSPs	Power cycling the module to zeroise temporary SSPs	Operator initiated
Session termination	Termination of SSH sessions automatically zeroises	Termination of SSH sessions automatically zeroises	Module initiated

Zeroization Method	Description	Rationale	Operator Initiation
	temporary SSPs used as part	temporary SSPs used as part	
	of the session	of the session	
Not zeroised	PSP not zeroised since it	PSP not zeroised since it	N/A
	cannot be modified due to	cannot be modified due to	
	being inaccessible in the	being inaccessible in the	
	filesystem	filesystem	
Derivation of	EC Diffie-Hellman/Diffie-	EC Diffie-Hellman/Diffie-	Module
SSH session	Hellman shared secrets are	Hellman shared secrets are	initiated
key	zeroised after use in	zeroised after use in	
	derivation of SSH session key	derivation of SSH session key	

Table 21: SSP Zeroization Methods

9.4 SSPs

Name	Description	Size - Strength	Type - Category	Generate d By	Establishe d By	Used By
SSH Private Host Key	Host key generated, used for authenticatio n and encryption in the context of SSH	P-256 for ECDSA, 2048 bits for RSA - 128 bits for ECDSA, 112 bits for RSA	Private Host Key - CSP	DRBG2 ECDSA KeyGen RSA KeyGen	и Бу	KAS1 KAS2
SSH ECDH Private Key	Ephemeral EC Diffie- Hellman private key used in SSH	KAS- ECC- SSC P- 256, P- 384, P- 512 - 128 bits, 192 bits, 256 bits	ECDH Private Key - CSP	DRBG2 ECDSA KeyGen2		KAS1
SSH DH Private Key	Ephemeral Diffie- Hellman private key used in SSH	2048 bits for KAS- FFC-SSC - 112 bits for KAS- FFC-SSC	DH Private Key - CSP	DRBG2		KAS2
SSH Session Key	SSH Session Key	128 bits, 192 bits, 256 bits - 128 bits, 192 bits, 256 bits	Session Key - CSP	CKG	KAS1 KAS2	

Name	Description	Size - Strength	Type - Category	Generate d By	Establishe d By	Used By
User Password	Passwords used to authenticate users to the module	10-20 character s - 1/(96^10) per attempt, 9/(96^10) per minute	User Password - CSP	и Бу	d By	Бу
CO Password	Passwords used to authenticate COs to the module	10-20 character s - 1/(96^10) per attempt, 9/(96^10) per minute	CO Password - CSP			
HMAC_DRB G V value	A critical value of the internal state of DRBG	256 bits - 256 bits	Internal state of the DRBG - CSP	DRBG DRBG2		DRBG DRBG 2
HMAC_DRB G Key value	A critical value of the internal state of DRBG	440 bits - 440 bits	Internal state of the DRBG - CSP	DRBG DRBG2		DRBG DRBG 2
HMAC_DRB G entropy input	Entropy input to the HMAC_DRB G	512 bits - 448 bits	Entropy input to the HMAC_DRB G - CSP	Entropy Souce		
HMAC_DRB G seed	Seed provided to the HMAC_DRB G	512 bits - 440 bits	Seed provided to the HMAC_DRB G - CSP	DRBG DRBG2		DRBG DRBG 2
ECDH Shared Secret	Used in EC Diffie- Hellman (ECDH) exchange	P-256, P- 384, P- 521 - 128 bits, 192 bits, 256 bits	Shared secret - CSP		KAS1	
DH Shared Secret	Used in Diffie- Hellman (DH) exchange	2048 bits - 112 bits	Shared secret - CSP		KAS2	
HMAC Key	MAC key	128 bits and 256	MAC key - CSP		KAS1 KAS2	

Name	Description	Size - Strength	Type - Category	Generate d By	Establishe d By	Used By
		bits - 128 bits and 256 bits		-	-	•
SSH Public Host Key	Host key generated, used to identify the host. Also paired with the private key for authentication and encryption in the context of SSH	P-256 for ECDSA and 2048 bits for RSA - 128 bits for ECDSA, 112 bits for RSA	Public key - PSP	DRBG2 ECDSA KeyGen RSA KeyGen		
User Authenticatio n Public Keys	Used to authenticate users to the module	P-256, P-384, P-521 for ECDSA and 2048, 3072 and 4096 bits for RSA -128, 192, 256 bits for ECDSA, 112, 192 and 256 bits for RSA	Public key - PSP			
CO Authenticatio n Public Keys	Used to authenticate the CO to the module	P-256, P- 384, P- 521 for ECDSA and 2048, 3072 and 4096 bits for RSA - 128, 192, 256 bits for ECDSA, 112, 192 and 256	Public key - PSP			

Name	Description	Size - Strength	Type - Category	Generate d By	Establishe d By	Used By
		bits for RSA	.			1
JuniperRootC A	ECDSA prime256v1 X.509 V3 Certificate Used to verify the validity of the PackagCA	ECDSA P-256 - 128 bits	Public key certificate - Neither			
PackageCA	ECDSA prime256v1 X.509 V3 Certificate Certificate that holds the public key for the signing key used to generate all the signatures used on the packages and signature lists	ECDSA P-256 - 128 bits	Public key certificate - Neither			
SSH ECDH Public Key	Ephemeral EC Diffie- Hellman public key used in SSH	KAS- ECC- SSC P- 256, P- 384, P- 512 - 128 bits, 192 bits, 256 bits for KAS- ECC- SSC	Public key - PSP	DRBG2 ECDSA KeyGen2		
SSH DH Public Key	Ephemeral Diffie- Hellman public key used in SSH	2048 bits for KAS- FFC-SSC - 112 bits for KAS- FFC-SSC	Public key - PSP	DRBG2		

Name	Description	Size - Strength	Type - Category	Generate d By	Establishe d By	Used By
Firmware Integrity Key	Public key used to perform the firmware integrity test on each boot and authenticate firmware loaded from an external source	ECDSA P-256 - 128 bits	Public key - Neither			
SSH ECDH Client Public Key	Ephemeral EC Diffie- Hellman public key used in SSH (sent by the client to the module acting as the server)	KAS- ECC- SSC P- 256, P- 384, P- 512 - 128 bits, 192 bits, 256 bits for KAS- ECC- SSC	Public key - PSP			
SSH DH Client Public Key	Ephemeral Diffie- Hellman public key used in SSH (sent by the client to the module acting as the server)	2048 bits for KAS- FFC-SSC - 112 bits for KAS- FFC-SSC	Public key - PSP			

Table 22: SSP Table 1

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
SSH Private Host Key		NVRAM:Plaintext		Zeroisation command	
SSH ECDH Private Key		RAM:Plaintext	Until session termination	Zeroisation command Power-cycle Session termination	
SSH DH Private Key		RAM:Plaintext	Until session termination	Zeroisation command Power-cycle	

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
	•			Session termination	
SSH Session Key		RAM:Plaintext	Until session termination	Zeroisation command Power-cycle Session termination	
User Password	Entered over SSH - NVRAM Entered through the CLI via console connection - NVRAM	NVRAM:Obfuscated NVRAM:Obfuscated		Zeroisation command	
CO Password	Entered over SSH - NVRAM Entered through the CLI via console connection - NVRAM	NVRAM:Obfuscated NVRAM:Obfuscated		Zeroisation command	
HMAC_DRBG V value		RAM:Plaintext	Until power- cycle	Power-cycle	
HMAC_DRBG Key value		RAM:Plaintext	Until power- cycle	Power-cycle	
HMAC_DRBG entropy input		RAM:Plaintext	Until power- cycle	Power-cycle	
HMAC_DRBG seed		RAM:Plaintext	Until power- cycle	Power-cycle	
ECDH Shared Secret		RAM:Plaintext	Until SSH session key derivation	Zeroisation command Power-cycle Derivation of SSH session key	
DH Shared Secret		RAM:Plaintext	Until SSH session key derivation	Zeroisation command Power-cycle Derivation	

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
	•			of SSH session key	
HMAC Key		RAM:Plaintext	Until session termination	Zeroisation command Power-cycle Session termination	
SSH Public Host Key	Output during SSH negotiation (host key)	NVRAM:Plaintext		Zeroisation command	
User Authentication Public Keys	Entered over SSH - NVRAM Entered through the CLI via console connection - NVRAM	NVRAM:Plaintext		Zeroisation command	
CO Authentication Public Keys	Entered over SSH - NVRAM Entered through the CLI via console connection - NVRAM	NVRAM:Plaintext		Zeroisation command	
JuniperRootCA	Loaded at manufacture	NVRAM:Plaintext		Not zeroised	
PackageCA	Loaded at manufacture	NVRAM:Plaintext		Not zeroised	
SSH ECDH Public Key	Output during SSH negotiation (Key Agreement public key)	RAM:Plaintext	Until session termination	Zeroisation command Power-cycle Session termination	
SSH DH Public Key	Output during SSH negotiation (Key Agreement public key)	RAM:Plaintext	Until session termination	Zeroisation command Power-cycle Session termination	
Firmware Integrity Key	Loaded at manufacture	NVRAM:Plaintext		Not zeroised	

Name	Input - Output	Storage	Storage Duration	Zeroization	Related SSPs
SSH ECDH Client Public Key	Input during SSH negotiation	RAM:Plaintext	Until session termination	Zeroisation command Power-cycle Session termination	
SSH DH Client Public Key	Input during SSH negotiation	RAM:Plaintext	Until session termination	Zeroisation command Power-cycle Session termination	

Table 23: SSP Table 2

10 Self-Tests

10.1 Pre-Operational Self-Tests

Algorithm or Test	Test Properties	Test Method	Test Type	Indicator	Details
Firmware	Using ECDSA P-256	KAT	SW/FW	FIPS Self-tests	Verify
Integrity Test	with SHA2-256		Integrity	Passed	

Table 24: Pre-Operational Self-Tests

The module is complaint with FIPS 140-3 IG 10.2.A in that it performs a self-test, a Known Answer Test (KAT) for the ECDSA P-256 (with SHA2-256) algorithm used in the firmware integrity test on each boot prior to executing the firmware integrity test.

10.2 Conditional Self-Tests

Algorith m or Test	Test Properties	Test Method	Test Type	Indicator	Details	Condition s
HMAC DRBG (A3337)	Prediction Resistance: Yes Supports Reseed Capabilities: Mode: SHA2- 256 Entropy Input: 256 Nonce: 128 Personalizati on String Length: 0- 256 Increment 8 Additional	KAT	CAST	NIST 800-90 HMAC DRBG Known Answer Test: Passed	N/A	During boot

Algorith m or Test	Test Properties	Test Method	Test Type	Indicator	Details	Condition s
	Input: 8-256 Increment 8 Returned Bits: 1024					
HMAC- SHA2- 256 (A3337)	Key Length: 256 bits	KAT	CAST	HMAC- SHA2- 256 Known Answer Test: Passed	N/A	During boot
AES- CBC (A3349)	Key Length: 128 bits	KAT	CAST	AES-CBC Known Answer Test: Passed	Encrypt	During boot
AES- CBC (A3349)	Key Length: 192 bits	KAT	CAST	AES-CBC Known Answer Test: Passed	Encrypt	During boot
AES- CBC (A3349)	Key Length: 256 bits	KAT	CAST	AES-CBC Known Answer Test: Passed	Encrypt	During boot
AES- CBC (A3349)	Key Length: 128 bits	KAT	CAST	AES-CBC Known Answer Test: Passed	Decrypt	During boot
AES- CBC (A3349)	Key Length: 192 bits	KAT	CAST	AES-CBC Known Answer Test: Passed	Decrypt	During boot
AES- CBC (A3349)	Key Length: 256 bits	KAT	CAST	AES-CBC Known Answer Test: Passed	Decrypt	During boot
HMAC DRBG (A3349)	Mode: SHA2- 256, Entropy Input: 256, Nonce: 128, Personalizati on String	KAT	CAST	NIST 800-90 HMAC DRBG Known Answer	N/A	During boot

Algorith m or Test	Test Properties	Test Method	Test Type	Indicator	Details	Condition s
	Length: 0- 256, Increment 8, Additional Input: 8-256 Increment 8, Returned Bits: 1024			Test : Passed		
HMAC- SHA-1 (A3349)	Key Length: 160 bits	KAT	CAST	HMAC- SHA-1 Known Answer Test: Passed	N/A	During boot
HMAC- SHA2- 256 (A3349)	Key Length: 256 bits	KAT	CAST	HMAC- SHA2- 256 Known Answer Test: Passed	N/A	During boot
HMAC- SHA2- 512 (A3349)	Key Length: 512 bits	KAT	CAST	HMAC- SHA2- 512 Known Answer Test: Passed	N/A	During boot
KAS- ECC- SSC Sp800- 56Ar3 (A3349)	Domain Parameter Generation Methods: P- 256	KAT	CAST	KAS- ECC- EPHEM- UNIFIED- NOKC Known Answer Test: Passed	N/A	During boot
KAS- ECC- SSC Sp800- 56Ar3 (A3349)	Domain Parameter Generation Methods: P- 384	KAT	CAST	KAS- ECC- EPHEM- UNIFIED- NOKC Known Answer Test: Passed	N/A	During boot

Algorith m or Test	Test Properties	Test Method	Test Type	Indicator	Details	Condition s
KAS- FFC- SSC Sp800- 56Ar3 (A3349)	Domain Parameter Generation Methods: MODP-2048	KAT	CAST	KAS- FFC- EPHEM- NOKC Known Answer Test: Passed	N/A	During boot
KDF SSH (A3349)	Cipher: AES- 128, AES- 192, AES- 256; Hash Algorithm: SHA-1, SHA2-256, SHA2-384, SHA2-512	KAT	CAST	KDF- SSH- SHA2- 256 Known Answer Test: Passed	N/A	During boot
RSA SigGen (FIPS186 -4) (A3349)	Modulus 2048 bits SHA2-256	KAT	CAST	RSA- SIGN Known Answer Test: Passed	Sign	During boot
RSA SigVer (FIPS186 -4) (A3349)	Modulus 2048 bits SHA2-256	KAT	CAST	RSA- VERIFY Known Answer Test: Passed	Verify	During boot
ECDSA SigGen (FIPS186 -4) (A3349)	Curve: P-256 Hash Algorithm: SHA2-256	KAT	CAST	ECDSA- SIGN Known Answer Test: Passed	Sign	During boot
ECDSA SigVer (FIPS186 -4) (A3349)	Curve: P-256 Hash Algorithm: SHA2-256	KAT	CAST	ECDSA- VERIFY Known Answer Test: Passed	Verify	During boot
SHA2- 512 (A3348)	SHA2-512	KAT	CAST	SHA-2- 512 Known Answer Test: Passed	N/A	During boot

Algorith m or Test	Test Properties	Test Method	Test Type	Indicator	Details	Condition s
Entropy test	NIST SP 800-90B Repetitive Count Test	RCT	CAST	pass	Cutoff value C = 21	During boot and continually
Entropy test	NIST SP 800-90B Adapative Proportion Test	APT	CAST	pass	W = 512; Cutoff value C = 311	During boot and continually
ECDSA KeyGen (FIPS186 -4) (A3349)	Curve: P-256 Hash Algorithm: SHA2-256	PCT	PCT	0	Key pair generated for signature generation/verificati on in the context of SSHv2 protocol	On key generation
ECDSA KeyGen (FIPS186 -4) (A3349)	Curve: P-256 Hash Algorithm: SHA2-256	PCT	PCT	0	Key pair generated for SSP agreement in the context of SSHv2 protocol	On key generation
KAS- FFC- SSC Sp800- 56Ar3 (A3349)	Capabilities: Domain Parameter: MODP2048	PCT	PCT	0	Key pair generated for SSP agreement in the context of SSHv2 protocol	On key generation
RSA KeyGen (FIPS186 -4) (A3349)	Modulus: 2048 Hash SHA2-256	PCT	PCT	0	Key pair generated for signature generation/verificati on in the context of SSHv2 protocol	On key generation
ECDSA SigVer (FIPS186 -4) (A3349)	Curve: P-256 Hash Algorithm: SHA2-256	KAT	SW/F W Load	Host OS upgrade staged. Reboot the system to complete installatio n!	Verify	On loading of firmware from an external source
Manual entry test (duplicat e entries)	Duplicate entry test required for entry of operator passwords via direct connection to	Duplicat e entry test	Manua I Entry	Comman d prompt with "fips" string provided post completio	N/A	On configurati on of operator passwords

Algorith m or Test	Test Properties	Test Method	Test Type	Indicator	Details	Condition s
	the module's console (serial) interface			n of the test		

Table 25: Conditional Self-Tests

Cryptographic Algorithm Self-tests (CASTs) are performed on each boot of the module. Other conditional self-tests are performed by the module when the corresponding condition is met. The pairwise consistency tests are performed on key pair generation for use in signature generation/verification (ECDSA and/or RSA tests) and/or for use in KAS-ECC-SSC or KAS-FFC-SSC SSP agreement (ECDSA and FFC tests respectively). The firmware load test is performed when a firmware image is loaded onto the module from an external source.

10.3 Periodic Self-Test Information

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
Firmware	KAT	SW/FW Integrity	On Demand	Manually via a
Integrity Test				reboot

Table 26: Pre-Operational Periodic Information

Algorithm or	Test Method	Test Type	Period	Periodic
Test				Method
HMAC DRBG	KAT	CAST	On Demand	Manually via a
(A3337)				reboot
HMAC-SHA2-	KAT	CAST	On Demand	Manually via a
256 (A3337)				reboot
AES-CBC	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
AES-CBC	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
AES-CBC	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
AES-CBC	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
AES-CBC	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
AES-CBC	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
HMAC DRBG	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
HMAC-SHA-1	KAT	CAST	On Demand	Manually via a
(A3349)				reboot
HMAC-SHA2-	KAT	CAST	On Demand	Manually via a
256 (A3349)				reboot

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
HMAC-SHA2- 512 (A3349)	KAT	CAST	On Demand	Manually via a reboot
KAS-ECC-SSC Sp800-56Ar3 (A3349)	KAT	CAST	On Demand	Manually via a reboot
KAS-ECC-SSC Sp800-56Ar3 (A3349)	KAT	CAST	On Demand	Manually via a reboot
KAS-FFC-SSC Sp800-56Ar3 (A3349)	KAT	CAST	On Demand	Manually via a reboot
KDF SSH (A3349)	KAT	CAST	On Demand	Manually via a reboot
RSA SigGen (FIPS186-4) (A3349)	KAT	CAST	On Demand	Manually via a reboot
RSA SigVer (FIPS186-4) (A3349)	KAT	CAST	On Demand	Manually via a reboot
ECDSA SigGen (FIPS186-4) (A3349)	KAT	CAST	On Demand	Manually via a reboot
ECDSA SigVer (FIPS186-4) (A3349)	KAT	CAST	On Demand	Manually via a reboot
SHA2-512 (A3348)	KAT	CAST	On Demand	Manually via a reboot
Entropy test	RCT	CAST	On Demand	Manually via a reboot
Entropy test	APT	CAST	On Demand	Manually via a reboot
ECDSA KeyGen (FIPS186-4) (A3349)	PCT	PCT	On Demand	Manually via a reboot
ECDSA KeyGen (FIPS186-4) (A3349)	PCT	PCT	On Demand	Manually via a reboot
KAS-FFC-SSC Sp800-56Ar3 (A3349)	PCT	PCT	On Demand	Manually via a reboot
RSA KeyGen (FIPS186-4) (A3349)	PCT	PCT	On Demand	Manually via a reboot
ECDSA SigVer (FIPS186-4) (A3349)	KAT	SW/FW Load	On Demand	Manually via loading of firmware from an external source

Algorithm or Test	Test Method	Test Type	Period	Periodic Method
Manual entry test (duplicate entries)	Duplicate entry test	Manual Entry	On Demand	Manually via configuration of operator passwords

Table 27: Conditional Periodic Information

The pre-operational firmware integrity test as well as all CASTs must be completed successfully prior to any other use of cryptography by the module in the Approved mode of operation. These tests can also be performed periodically by rebooting the module.

10.4 Error States

Name	Description	Conditions	Recovery Method	Indicator
Hard Error state	If the pre-operation firmware integrity test, if any of the CASTs or pairwise consistency tests fail, then the module returns an error indicator, inhibits all data output and enters the hard error state	If the pre- operational firmware integrity test or if any of the CASTs fail	N/A	"FIPS error: self- test failure" for firmware integrity failure, "FIPS error 1: <name of="" the<br="">algorithm> Known Answer Test: Failed" for CAST failure and -1 for pair-wise consistency test failure</name>
Soft Error state	•In case of a firmware load test failure, the module rejects the firmware, returns an error indicator and enters the soft error state •In the event of an APT or RCT health test failure, output from the entropy source is inhibited, all entropy accumulated in the conditioning context is discarded and the start-up health-tests are performed again	If the firmware load test fails If the APT or RCT test fails	N/A for firmware load test failure; In case of APT and/or RCT failures, new data continues to be tested by the health tests, and once both health tests indicate a "pass", the entropy source again outputs data	"Validation Error" for the firmware load test failure; entropy data discarded in case of APT/RCT failure

Table 28: Error States

If the pre-operation firmware integrity test or if any of the CASTs fail, then the module returns the error indicator "FIPS error: self-test failure", inhibits all data output and enters the hard error state.

If the conditional self-tests fail, the module enters the soft error state, i.e., it rejects the generated keypair/loaded image, returns an error indicator and resumes normal operation.

10.5 Operator Initiation of Self-Tests

Each time the module is powered up it tests that all the cryptographic algorithms operate correctly, and that sensitive data have not been damaged. Pre-operational as well as Conditional Cryptographic Algorithm Self-tests (CAST) are performed on each power up/boot of the module and on demand by power cycling the module (Perform self-tests (remote reset) service).

11 Life-Cycle Assurance

11.1 Installation, Initialization, and Startup Procedures

The Crypto Officer must follow the procedures defined below for secure installation, initialization, startup and operation of the module.

Crypto Officer Guidance

The Crypto Officer must check to verify the firmware image being loaded on the module is the FIPS 140-3 validated version/image. If the image is the FIPS 140-3 validated image, then proceed with installation of the image.

Installing The Firmware Image

Download the validated firmware image from

https://www.juniper.net/support/downloads/junos.html. Log in to the Juniper Networks authentication system using the username (generally your e-mail address) and password supplied by Juniper Networks representatives. Select the validated firmware image. Download the firmware image to a local host or to an internal software distribution site.

Connect to the console port on the device from your management device and log in to the Junos OS CLI. Copy the firmware package to the device to the /var/tmp/ directory. Install the new package on the device using the following command: operator > request vmhost software add /var/tmp/<package>.tgz.

NOTE: If you need to terminate the installation, do not reboot your device; instead, finish the installation and then issue the request system software delete package.tgz command, where package.tgz is, for example, jinstall-host-qfx-10-f-x86-64.22.3R1-S2.3.secure-signed.tgz.This is your last chance to stop the installation.

Reboot the device to complete the load and start the installation:

For QFX10002-60C:

operator> request vmhost reboot

For QFX10002-36Q/QFX10002-72Q/QFX10008/QFX10016:

operator> request system reboot

After the reboot has completed, log in and use the show version command to verify that the new version of the firmware is successfully installed.

Also install the built-in fips-mode.tgz package needed for enabling the Approved-mode and the jpfe-fips package needed for execution of the CASTs. Please note that this is a one-time installation after which the module remains in the Approved mode once enabled and automatically executes the CASTs on each boot without requiring any operator or external intervention. The following are the commands used for installing these packages: operator >request system software add optional://fips-mode.tgz operator >request system software add optional://jpfe-fips.tgz

Enabling Approved Mode of Operation

The Crypto Officer is responsible for initializing the module in the Approved mode of operation. The Approved mode of operation is not automatically enabled. The Crypto Officer shall place the module in the Approved mode by first zeroising it to ensure no SSPs are present. Next, the cryptographic officer shall follow the steps found in the Junos OS FIPS Evaluated Configuration Guide for QFX Series, Release 22.3R1 document Chapter 2 to place the module into an Approved mode of operation. The steps from the aforementioned document have been reiterated below.

To enable the Approved mode in Junos OS on the module:

1. Zeroise the module using the "request vmhost zeroize" command for QFX10002-60C hardware version or "request system zeroize" command for the other hardware versions. Once the module comes up in the "amnesiac mode" post zeroisation, connect to it using the console port with username "root" and enter the configuration mode. Enable the Approved mode on the device by setting the Approved level to 1, and verify the level:

```
[edit]
root# set system fips level 1
[edit]
root# show system fips level
level 1;
```

2. Configure the root-authentication password (i.e., Crypto Officer credentials) as follows:

root> edit

Entering configuration mode

[edit]

root# set system root-authentication plain-text password

New password:

Retype new password:

3. Commit the configuration

[edit]

root# commit configuration

check succeeds

Generating RSA key /etc/ssh/fips ssh host key

Generating RSA2 key /etc/ssh/fips_ssh_host_rsa_key

Generating ECDSA key

/etc/ssh/fips ssh host ecdsa key

'system' reboot is required to transition to fips level 1 commit complete

4. Reboot the device:

[edit]

root# run request system reboot Reboot

the system ? [yes,no] (no) yes

During the reboot, the device runs the pre-operational firmware integrity test and all CASTs. It returns a login prompt as follows:

root:fips>

5. After the reboot has completed, log in and use the show version command to verify the firmware version is the validated version:

root:fips > show version

Placing the Module in the Non-Approved Mode of Operation

As Crypto Officer, the operator needs to disable the Approved mode of operation on the device to return it to the non-Approved mode of operation. To disable the Approved mode on the device, the module must be zeroised (step 1 defined above).

11.2 Administrator Guidance

For further information and for the Administrator guidance, please see the Junos OS FIPS Evaluated Configuration Guide for QFX, Release 22.3R1 document.

11.3 Non-Administrator Guidance

For further information and for the Administrator guidance, please see the Junos OS FIPS Evaluated Configuration Guide for QFX, Release 22.3R1 document.

11.4 Maintenance Requirements

No other maintenance requirements apply for operation of the module in the Approved/non-Approved modes as defined above.

11.5 End of Life

The module can be securely sanitized at the end of its lifetime by zeroising it.

12 Mitigation of Other Attacks

12.1 Attack List

The module does not implement any mitigation of other attacks and thus the requirements per this section do not apply to the module.