

ISC Cryptographic Development Kit (CDK)

FIPS 140-2 Non-Proprietary Security Policy

Software Version: 8.0

Document Version: 4.0.15

Issue Date: June 1, 2018

Authors: Michael J. Markowitz, Roger S. Schlafly, Jonathan C. Schulze-Hewett

Abstract: This document is a non-proprietary FIPS 140-2 Security Policy for ISC’s Cryptographic Development
Kit (CDK). It applies to CDK Version 8.0 and to all subsequent versions until otherwise indicated in new
editions. It describes how the CDK meets the security requirements of FIPS 140-2 and how to run the CDK in a
secure FIPS 140-2 mode. This policy was prepared as part of the FIPS 140-2 Level 1 validation of the module.

Notices

Unless expressly indicated to the contrary, all trade secret, copyright, patent, and trademark rights are
reserved. Contact ISC for licensing information. Use of the CDK is subject to the terms of your license
agreement with ISC.

© Copyright 2002-2018 Information Security Corporation. All rights reserved.
This document may be freely reproduced and distributed in its entirety without modification.

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 2

Document History

Version Date Change Author
1.0.12 2002-05-22 First submitted version Michael Markowitz
2.0.0 2003-02-04 Tweaks to language per lab Jonathan Schulze-Hewett
3.0.0 2003-03-17 Added methods available to CO and Users Jonathan Schulze-Hewett
3.1.0 2003-03-21 Tweaks to language per lab Jonathan Schulze-Hewett
3.4.0 2003-04-30 Added HMAC-SHA-1 to CO/User table, removed CTR from

the list of modes for EES
Jonathan Schulze-Hewett

3.5.0 2003-05-01 Revisions Michael Markowitz
3.6.0 2003-05-07 Revised footer explaining CTR mode applicability Michael Markowitz
3.7.0 2003-05-12 Added second footer explaining CTR mode applicability or

lack thereof
Jonathan Schulze-Hewett

3.8.0 2003-06-04 Added footer explaining DES variants Jonathan Schulze-Hewett
3.9.0 2003-07-25 Revisions Jonathan Schulze-Hewett
3.10.0 2003-08-25 Final 140-1 document Michael Markowitz
4.0.0 2016-02-23 Updated for CDK 8/FIPS 140-2 Jonathan Schulze-Hewett
4.0.1 2016-04-08 Revisions as per lab comments Michael Markowitz,

Jonathan Schulze-Hewett
4.0.2 2016-05-23 Revisions as per lab comments Jonathan Schulze-Hewett
4.0.3 2016-06-23 Revisions as per lab comments Jonathan Schulze-Hewett
4.0.4 2016-08-09 Revisions as per lab comments Jonathan Schulze-Hewett
4.0.5 2016-09-09 Revisions as per lab comments Jonathan Schulze-Hewett
4.0.6 2016-09-13 Changed RSA self-test from PCT to KAT

Updated the filename of the CDK DLL
Revisions as per lab comments

Jonathan Schulze-Hewett

4.0.7 2016-09-30 Modified the algorithm tables to comply with CMVP’s
October 2016 requirements

Jonathan Schulze-Hewett

4.0.8 2016-10-28 Moved HMAC-SHA-3 into approved from table 4 to table 3
and Revisions as per lab comments

Jonathan Schulze-Hewett

4.0.9 2016-12-16 Moved Skipjack (EES) into non-approved table per lab
comments.

Jonathan Schulze-Hewett

4.0.10 2017-03-27 Revisions per lab comments Jonathan Schulze-Hewett
4.0.11 2017-03-28 Revisions per lab comments Jonathan Schulze-Hewett
4.0.12 2017-04-18 Revisions per lab comments Jonathan Schulze-Hewett
4.0.13 2017-06-06 AES-GCM clarifications Jonathan Schulze-Hewett
4.0.14 2017-10-13 AES-GCM clarifications Jonathan Schulze-Hewett
4.0.15 2018-06-01 Updated for 1SUB version change Jonathan Schulze-Hewett

Page 3 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

References

Reference Full Specification Name

[ANS X9.30 Part 1] Public Key Cryptography Using Irreversible Algorithms - Part 1: The Digital Signature Algorithm (DSA)

[ANS X9.30 Part 2] Public Key Cryptography Using Irreversible Algorithms - Part 2: The Secure Hash Algorithm (SHA-1)

[ANS X9.31] Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)

[FIPS 46-3] Data Encryption Standard (DES)

[FIPS 81] DES Modes of Operation

[FIPS 140-2] Security Requirements for Cryptographic modules, May 25, 2001

[FIPS 180-4] Secure Hash Standard (SHS)

[FIPS 185] Escrowed Encryption Standard (obsolete)

[FIPS 186-4] Digital Signature Standard

[FIPS 197] Advanced Encryption Standard

[FIPS 198-1] The Keyed-Hash Message Authentication Code (HMAC)

[FIPS 202] SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

[IEEE P1619-2007] Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices

[ISO/IEC 10118-3:1998] Information technology -- Security techniques -- Hash-functions -- Part 3: Dedicated hash-functions

[RFC 2437] PKCS #1: RSA Cryptography Specifications, Version 2.0

[RFC 2104] HMAC: Keyed-Hashing for Message Authentication

[RFC 3447] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1

[RFC 3610] Counter with CBC-MAC (CCM)

[RFC 4493] The AES-CMAC Algorithm

[SP 800-20] Modes of Operation Validation System for the Triple Data Encryption Algorithm (TMOVS):
Requirements and Procedures

[SP 800-38A] Recommendation for Block Cipher Modes of Operation: Methods and Techniques

[SP 800-38B] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication

[SP 800-38C] Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and
Confidentiality

[SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

[SP 800-38E] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
Storage Devices

[SP 800-56A R2] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

[SP 800-67 R1] Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher

[SP 800-89] Recommendation for Obtaining Assurances for Digital Signature Applications

[SP 800-90] Recommendation for Random Number Generation Using Deterministic Random Bit Generators

[SP 800-107 R1] Recommendation for Applications Using Approved Hash Algorithms

[SP 800-131A R1] Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key
Lengths

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 4

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips81/fips81.htm
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://www.itl.nist.gov/fipspubs/fip185.htm
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://standards.ieee.org/findstds/standard/1619-2007.html
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2104.txt
https://www.ietf.org/rfc/rfc3447.txt
https://www.ietf.org/rfc/rfc3610.txt
https://tools.ietf.org/html/rfc4493
http://csrc.nist.gov/publications/nistpubs/800-20/800-20.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://http/csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-89/SP-800-89_November2006.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

Table of Contents

0. Introduction ... 6
0.1 Document Organization ...6
0.2 Platform Availability...6
0.3 Security Level Summary ...7
0.4 References ...8

1. Cryptographic Module Specification ... 8
1.1 Module Description and Overview ..8
1.2 Cryptographic Algorithms ... 10
1.3 CDK Modes ... 17

2. Cryptographic Module Ports and Interfaces .. 18

3. Roles, Services, and Authentication .. 18

4. Finite State Model .. 22

5. Physical Security .. 22

6. Operational Environment ... 22

7. Cryptographic Key Management .. 22
7.1 Key Generation ... 22
7.2 Key Distribution .. 22
7.3 Key Entry and Output ... 23
7.4 Key Storage/Archiving .. 23
7.5 Key Destruction... 23

8. EMI/EMC .. 23

9. Self-Tests ... 23
9.1 Power-Up Tests ... 24
9.2 Conditional Self-Tests ... 25

10. Mitigation of Other Attacks .. 26

11. Acronyms ... 26

Page 5 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

0. Introduction

Information Security Corporation’s Cryptographic Development Kit (CDK) Version 8.0 is a software module.
The software module is a shared library that contains cryptographic primitives that are cryptographic
software building blocks which may be used by application developers to build security-enhanced features
into their own applications. The CDK provides public-key algorithms, as well as symmetric ciphers, hashing
functions, and related cryptographic and PKI operations.

The CDK was designed and implemented to meet FIPS 140-2 level 1 security requirements.

0.1 Document Organization

ISC’s submission for FIPS 140-2 validation includes this security policy document and:

• Vender evidence (Entropy statement, Crypto Officer’s Guide, Cryptographic Key Management Document,
Evaluator’s Guide, and the CDK User’s Guide),

• Finite state machine model diagram and explanation,

• Proprietary source code and build configurations for various target platforms.

0.2 Platform Availability

The CDK software was designed for use on a variety of operating systems and hardware platforms. For FIPS
140-2 validation purposes, operational testing was performed on the following operating systems running on
general purpose computers:

Operating System Processors Module Filename

Windows 10 64-bit
(single-user mode)

Intel Core i7 with AES-NI CDKC8008S.DLL

Windows 10 64-bit
(single-user mode)

Intel Core i7 w/o AES-NI CDKC8008S.DLL

Windows 10 64-bit
(single-user mode)

AMD A8-3850 w/o AES-NI CDKC8008S.DLL

CentOS 6.7 64-bit
(single-user mode)

Intel Core i7 with AES-NI libcdkc.so.8.0.0

CentOS 6.7 64-bit
(single-user mode)

Intel Core i7 w/o AES-NI libcdkc.so.8.0.0

Table 1 ꟷ Tested Platforms

The CDK software is provided as compiled code in the form of shared link libraries that can be run on
Microsoft Windows and Linux operating systems.

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 6

The module’s application programming interface (API), which provides access to the supported cryptographic
primitives, consists of a set of C++ classes as documented in ‘cdk_fips.h’, the other header files referenced
therein, and related documentation. For the purpose of FIPS 140-2 validation, the CDK was loaded by
multiple test applications (one for each algorithm family) and executed on each of the supported platform
listed in the above table.

0.3 Security Level Summary

The following table lists the validation level met by the CDK for each area in FIPS 140-2. The CDK meets the
requirements for an overall FIPS 140-2 level 1 validation.

Security Component Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Test 1

Design Assurance 1

Mitigation of Other Attacks N/A

Overall Security Level 1

Table 2 ꟷ Security Component and Level

The “Physical Security” section is not applicable as the module is a software only, level 1, module. The
“Mitigation of Other Attacks” section is not relevant as the CDK is a software/firmware module and does not
implement any countermeasures towards special attacks.

Page 7 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

0.4 References

Federal Information Processing Standards Publication (FIPS PUB) 140-2, Security Requirements for
Cryptographic Modules, details U.S. Government requirements for cryptographic modules. Below are
hyperlinks to websites containing more information on NIST cryptographic programs, FIPS 140-2, and the
CDK.

NIST Cryptographic Module Validation
Program (CMVP)

http://csrc.nist.gov/groups/STM/cmvp/

FIPS 140-2 Security Requirements http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

ISC CDK http://www.infoseccorp.com/products/cdks.htm

NIST Validation Lists for Cryptographic
Standards – this site contains the technical
implementations of the algorithms that have
been validated to conform to the NIST
approved algorithm standards

http://csrc.nist.gov/groups/STM/cavp/validation.html

1. Cryptographic Module Specification

1.1 Module Description and Overview

The CDK is a software module. The physical embodiment of the computer hardware on which it runs is a
“multi-chip standalone module” in FIPS 140-2 terminology. The “physical cryptographic boundary” is defined
to be the entire computer on which the CDK software runs. As a software module, the “logical boundary”
contains the software modules that comprise the CDK shared link library.

The following diagram (Figure 1) illustrates the relationship between a typical software application (such as
the supplied CDK test program) and the CDK, the computer’s operating system, and system BIOS.

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 8

http://csrc.nist.gov/groups/STM/cmvp/
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.infoseccorp.com/products/cdks.htm
http://csrc.nist.gov/groups/STM/cavp/validation.html

Application

ISC CDK

Operating
System

BIOS

Physical Boundary

Logical Boundary

Figure 1 ꟷ Relationship between an Application and the Module

The following diagram (Figure 2) is a block diagram displaying the most important components of the CDK
software. (Certain dependencies between the various components are suppressed for simplicity.)

self-tests strings,
utilities

CDK API
(data and control I/O, error handling)

message
digests

symmetric
ciphers public key

algorithms

groups, rings,
fields, curves

high-precision
arithmetic

DRBG

Figure 2 ꟷ Important Components of the CDK

Page 9 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

1.2 Cryptographic Algorithms

The CDK supports a wide variety of cryptographic algorithms and can be configured to run in a NIST FIPS
Approved mode or a non-FIPS mode. The keys and CSPs used for cryptographic operations are not shared
between the modes of operation. Whenever possible, all FIPS approved algorithms designed for a particular
cryptographic function (such as encryption, message and entity authentication, hashing, etc.) are provided.

1.2.1 Algorithms and Parameters Allowed in FIPS-mode

1.2.1.1 FIPS-Approved Algorithms

The FIPS-approved cryptographic algorithms implemented in the CDK and the corresponding NIST standards
(or alternate standards referenced by NIST) are listed in Table 3 along with CAVP certificate numbers. When
the CDK is run in FIPS 140-2 Approved mode, only algorithms in the following three tables can be used.

CAVP Cert Algorithm Standard Mode/Method Key Lengths, Curves or Moduli Use

4002 AES

FIPS 197,
SP 800-38A,
SP 800-38B,
SP 800-38C,
SP 800-38D,
SP 800-38E

ECB, CBC, CFB8,
CFB128, GCM1 OFB,
CTR,
CCM, XTS2, CMAC

128, 192, 256

Data Encryption/
Decryption

4002 AES SP 800-38F KW, KWP 128, 192, 256 Key Wrapping/
Unwrapping

854 (CVL) ANSI x9.63
KDF

SP 800-135,
ANSI x9.63
2001

SHA-224, SHA-256,
SHA-384, SHA-512 Key Derivation

1090 DSA FIPS 186-4

PQG Gen:
(2048, 224) w/SHA(224, 256, 384, 512)
(2048, 256) w/SHA(256, 384, 512)
(3072, 256) w/SHA(256, 384, 512)
PQG Ver:
(1024, 160) w/SHA(1, 224, 256, 384, 512)
(2048, 224) w/SHA(224, 256, 384, 512)
(2048, 256) w/SHA(256, 384, 512)
(3072, 256) w/SHA(256, 384, 512)
Key Pair Gen:
(2048, 224)
(2048, 256)
(3072, 256)
Sig Gen:
(2048, 224) w/SHA(1, 224, 256, 384, 512)
(2048, 256) w/SHA(1, 224, 256, 384, 512)

Digital Signature
Generation and
Verification

1 Internal IV generation only. The AES-GCM IV is generated internally randomly (scenario 2) or as a counter
(scenario 1) per IG A.5.

2 For storage applications only

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 10

(3072, 256) w/SHA(1, 224, 256, 384, 512)
Sig Ver:
(1024, 160) w/SHA(1, 224, 256, 384, 512)
(2048, 224) w/SHA(1, 224, 256, 384, 512)
(2048, 256) w/SHA(1, 224, 256, 384, 512)
(3072, 256) w/SHA(1, 224, 256, 384, 512)

892 ECDSA FIPS 186-4

PKG: P-224, P-256, P-384, P-521, K-233,
K-283, K-409, K-571, B-233, B-283, B-409,
B-571
PKV: ALL-P, ALL-K, ALL-B
SigVer:
Curves: P-192, P-224, P-256, P-384, P-
521, K-163, K-233, K-283, K-409, K-571, B-
163, B-233, B-283, B-409, B-571
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512

Digital Signature
Verification

832 (CVL) ECDSA FIPS 186-4

SigGen:
Curves: P-224, P-256, P-384, P-521, K-
233, K-283, K-409, K-571, B-233, B-283, B-
409, B-571
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512

Digital Signature
Generation
Primitive

853 (CVL) KAS EC-DH SP 800-56A ECC P-224, P-256, P-384, P-521, K-233, K-283,
K-409, K-571, B-233, B-283, B-409, B-571 Key Derivation

2615 HMAC FIPS 198-1

HMAC-SHA-1,
HMAC-SHA-224,
HMAC-SHA-256,
HMAC-SHA-384,
HMAC-SHA-512,
HMAC-SHA-512/224,
HMAC-SHA-512/256,
HMAC-SHA-3-224,
HMAC-SHA-3-256,
HMAC-SHA-3-384,
HMAC-SHA-3-512

112,
112,
128,
192,
256,
112,
128

Message
Authentication

1192 DRBG SP 800-90A HMAC-SHA-256
Deterministic
Random Bit
Generation

85 KAS SP800-56A FFC, ECC

(FB:2048/224)
dhEphem(init/resp)
FB: SHA-224, SHA-256, SHA-384, SHA-512
dhOneFlow(init/resp)
FB: SHA-224, SHA-256, SHA-384, SHA-512
dhStatic(init/resp)
FB: SHA-224, SHA-256, SHA-384, SHA-512
(EB:P-224, EC: P-256, ED P-384, EE: P-
521)
ephemeralUnified(init/resp)
EB: SHA-224, SHA-256, SHA-384, SHA-512
HMAC
EC: SHA-256, SHA-384, SHA-512 HMAC
ED: SHA-384, SHA-512 HMAC
EE: SHA-512 HMAC
onePassDH(init/resp)
EB: SHA-224, SHA-256, SHA-384, SHA-512
HMAC
EC: SHA-256, SHA-384, SHA-512 HMAC

Key Agreement

Page 11 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

ED: SHA-384, SHA-512 HMAC
EE: SHA-512 HMAC
staticUnified(init/resp)
EB: SHA-224, SHA-256, SHA-384, SHA-512
HMAC
EC: SHA-256, SHA-384, SHA-512 HMAC
ED: SHA-384, SHA-512 HMAC
EE: SHA-512 HMAC

2065
 RSA FIPS 186-2,

FIPS 186-4

FIPS 186-2
SigVer9.31
Key Sizes: 1024, 1536, 2048, 3072
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256
SigVerPKCS1.5
Key Sizes: 1024, 1536, 2048, 3072
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256

FIPS 186-4
KeyGenProbRandomRandomE
Key Sizes: 2048, 3072
SigGen9.31
Key Sizes: 2048, 3072
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256
SigVer9.31
Key Sizes: 1024, 2048, 3072
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256
SigGenPKCS1.5
Key Sizes: 2048, 3072
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256
SigVerPKCS1.5
Key Sizes: 1024, 2048, 3072
Hash Algorithms: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256

Digital Signature
Generation,
Digital Signature
Verification

831 (CVL) RSA FIPS 186-4 RSADP: (Mod2048) RSADP Primitive

3307 SHS

SHA-1, SHA-224,
SHA-256, SHA-384,
SHA-512,
SHA-512/224,
SHA-512/256

 Message Digest

4 SHA-3 FIPS 202
SHA3-224, SHA3-256,
SHA3-384, SHA3-512,
SHAKE128, SHAKE256

 Message Digest

2197 Triple-DES SP 800-38A,
SP 800-67

TECB, TCBC, TCFB8,
TCFB64, TOFB, TCTR 192 Data Encryption/

Decryption

Table 3 ꟷ FIPS-Approved Cryptographic Algorithms

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 12

The CDK provides several FIPS approved methods for which there are no algorithm tests, but whose use is
nevertheless allowed in FIPS-mode. The proper implementation and functionality of these mechanisms is
“Vendor Affirmed.” These are algorithms are listed in Table 4.

CAVP Cert Algorithm Standard Mode/ Method Key Lengths,
Curves or

Moduli

Use

Vendor Affirmation AES
Addendum
to SP 800-
38A

CBC-CS3 128, 192, 256 Data Encryption/ Decryption

Table 4 ꟷ Vendor-Affirmed Cryptographic Algorithms

1.2.1.2 Non-Approved but Allowed in FIPS-mode Algorithms

The CDK implements several non-approved but allowed algorithms whose use is permitted in FIPS-mode.
Table 5 lists these algorithms, the CDK classes in which they are implemented, their relevant key sizes and/or
modes of operation, the referenced standards on which they are based.

Algorithm Caveat Use
Diffie-Hellman
Supported sizes (2048, 224), (2048,256), (3072, 256) Provides 112 or 128 bits of encryption strength Key establishment

Elliptic Curve Diffie-Hellman
Supported curves: P-224, K-233, B-233, P-256, K-283,
B-283, P-384, K-409, B-409, P-521, K-571, B-571

Provides between 112 and 256 bits of encryption
strength Key establishment

NDRNG – entropy token external to the module’s
cryptographic boundary

Minimum bits requested per call:
Windows 10: 1024-bits
CentOS 6.7: 384-bits

The module generates cryptographic keys whose
strengths are modified by available entropy

Seeding for the DRBG

RSA Key Wrapping Provides 112 or 128 bits of encryption strength Key establishment

Table 5 ꟷ Non-FIPS Approved But Allowed Algorithms

1.2.1.3 FIPS-mode Keys and CSPs

Listed in Table 6 are the keys and CSPs used by the module in FIPS-mode.

Keys/CSPs Generation Storage Input/Output
Description

or Use

Accessible
Role

Size
(in

bits)
Zeroization

AES key DRBG RAM Input/output
via API AES encrypt/decrypt key User, CO

128,
192,
256

Overwritten
by 0’s when
freed

AES CMAC key DRBG RAM Input/output
via API AES CMAC generate/verify key User, CO

128,
192,
256

Overwritten
by 0’s when
freed

Page 13 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

AES GCM IV3

Internally
using a
counter or
random
value

RAM Input/output
via API AES GCM initialization vector User, CO 8-

1024

Overwritten
by 0’s when
freed

AES GCM key DRBG RAM Input/output
via API

AES GCM
encrypt/decrypt/generate/verify
key

User, CO
128,
192,
256

Overwritten
by 0’s when
freed

AES key wrap
key DRBG RAM Input/output

via API AES encrypt/decrypt key User, CO
128,
192,
256

Overwritten
by 0’s when
freed

AES XTS key DRBG RAM Input/output
via API AES XTS encrypt/decrypt key User, CO

128,
192,
256

Overwritten
by 0’s when
freed

DH private key
Internally
using the
DRBG

RAM Input/output
via API DH private key agreement key User, CO 2048-

4096

Overwritten
by 0’s when
freed

DH public key

Internally
computed
based on
the private
key

RAM Input/output
via API DH public key agreement key User, CO 2048-

4096

Overwritten
by 0’s when
freed

DSA private
key

Internally
using the
DRBG

RAM Input/output
via API

DSA signature generation
private key User, CO 2048-

4096

Overwritten
by 0’s when
freed

DSA public key

Internally
computed
based on
the private
key

RAM Input/output
via API

DSA signature generation public
key User, CO 2048-

4096

Overwritten
by 0’s when
freed

ECC DH
private key

Internally
using the
DRBG

RAM Input/output
via API

ECC DH private key agreement
key User, CO 224-

571

Overwritten
by 0’s when
freed

ECC DH public
key

Internally
computed
based on
the private
key

RAM Input/output
via API

ECC DH public key agreement
key User, CO 224-

571

Overwritten
by 0’s when
freed

ECDSA private
key

Internally
using the
DRBG

RAM Input/output
via API

ECDSA signature generation
private key User, CO 224-

571

Overwritten
by 0’s when
freed

ECDSA public
key

Internally
computed
based on

RAM Input/output
via API

ECDSA signature generation
public key User, CO 224-

571

Overwritten
by 0’s when
freed

3 The AES-GCM IV is generated internally randomly or as a counter per IG A.5. In the former case the IV is exactly
96-bits. In the latter case the IV may be 8- to 1024-bits in length.

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 14

the private
key

HMAC key DRBG RAM Input/output
via API Keyed hash key User, CO 160-

512

Overwritten
by 0’s when
freed

HMAC
integrity key N/A Disk N/A

Keyed hash key to verify the
integrity of the module at
startup and on demand

None 256

Securely
erasing the
CDK library
from disk

RSA key wrap
private key

Internally
using the
DRBG

RAM Input/output
via API

Private component of an RSA
key pair User, CO 2048,

3072

Overwritten
by 0’s when
freed

RSA key wrap
public key

Internally
computed
based on
the private
key

RAM Input/output
via API

Public component of an RSA key
pair User, CO 2048,

3072

Overwritten
by 0’s when
freed

RSA signature
private key

Internally
using the
DRBG

RAM Input/output
via API

Private component of an RSA
key pair User, CO 2048,

3072

Overwritten
by 0’s when
freed

RSA signature
public key

Internally
computed
based on
the private
key

RAM Input/output
via API

Public component of an RSA key
pair User, CO 2048,

3072

Overwritten
by 0’s when
freed

Triple-DES key DRBG RAM Input/output
via API

Triple-DES (3-Key)
encrypt/decrypt key User, CO 192 Overwritten

by 0’s when
freed Triple-DES (2-Key) decrypt key

for legacy use only User, CO 112

DRBG V and
key

Internally
using
entropy
input

RAM N/A DRBG internal state values None 256

Overwritten
by 0’s when
freed

DRBG seed
key

Internally
using
entropy
input

RAM N/A
Entropy input (length is platform
dependent but always greater
than 256-bits)

None >256

Overwritten
by 0’s when
freed

Table 6 ꟷ Keys and CSPs, Key Sizes, and Security Strengths

1.2.1.4 AES-GCM Notes

1.2.1.4.1 IV Construction
In FIPS mode only internal 96-bit IV generation is allowed. The CDK supports both SP800-38D Section 8.1 and
8.2 for internal IV generation and therefore complies with both Scenario 1 and Scenario 2 of IG A.5.

1.2.1.4.1.1 TLS – Section 8.1 SP800-38D, Scenario 1 IG A.5
The CDK does not implement the TLS protocol. The CDK implements cryptographic operations that can be
used to implement the TLS protocol. The CDK’s AES GCM TLS internal IV generation is in compliance with TLS
1.2 per RFC 5288 and in support of the GCM ciphersuites listed in SP800-52. The AES GCM IV is generated

Page 15 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

internally using a deterministic counter as the nonce_explicit value and takes as input a 16-bit salt. The
resulting IV is exactly 96-bits in length.

1.2.1.4.1.2 Random – Section 8.2 SP800-38D, Scenario 2 IG A.5
The CDK implements random internal IV generation that uses the module’s Approved DRBG. The seed used
by the CDK’s DRBG is provided by operating system APIs. The IV is exactly 96-bits in length.

1.2.1.4.2 Power Loss
In the event that module power is lost and restored, the application using the CDK must ensure that any of its
AES-GCM keys used for encryption are re-established or re-generated.

1.2.1.4.3 Limits
The CDK enforces the following limits on the number of encryption operations that can be performed with
GCM:

- TLS IV 64-bit Deterministic Counter with 16-bit salt – if the counter exceeds 264 the CDK returns
a CDK_INVALID_IV error with value 1064.

- Random IV – if the number of AES operations exceeds 232-1 the CDK
returns CDK_INPUT_LENGTH_ERR error with value 1151.

1.2.2 Non-FIPS-mode Algorithms

When run in non-FIPS-mode all of the algorithms, modes, and sizes described above are available as well as
the following additional algorithms, modes, and sizes which are not allowed to be used in FIPS mode.

Algorithm Non-Compliant Use

AES Encryption/decryption using the CFB64 mode

AES GCM Encryption using external IV generation by calling init() or initExt()

ANSI x9.63 KDF Key derivation – using SHA-1 or SHA-3

DES Encryption/decryption using the DES, DESX, or DES40 variants

Diffie-Hellman
Key establishment using keys whose size is less than (2048, 224)
Key generation of keys with size less than (2048,224)
(Non-compliant less than 112 bits of encryption strength)

DSA Digital signature generation with keys whose size is less than (2048, 224)
Key generation of keys with size less than (2048,224)

Elliptic Curve
Diffie-Hellman

Key establishment using keys whose size is less than 224-bits
Key generation of keys with size less than 224-bits
Any use of non-NIST approved curves
(Non-compliant less than 112 bits of encryption strength)

ECDSA
Digital signature generation using keys whose size is less than 224-bits
Key generation of keys with size less than 224-bits
Any use of non-NIST approved curves

RSA

Digital signature generation using keys whose size is less than 2048-bits
Key generation of keys with size less than 2048-bits
Key wrapping using keys whose size is less than 2048-bits
(Non-compliant less than 112 bits of encryption strength)

SHA-0 Hashing - any use (API input 0 to the SHA constructor)

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 16

SHS Hashing - using ISC’s incorrect, non-compliant, versions of SHA-256, SHA-384, SHA-512, or SHA-224
corresponding to API input 12, 13, 15 , or 17 to the SHA2 constructor

Skipjack Encryption/decryption

Triple-DES
Encryption/decryption using 1-key (API input key length of 64-bits)
Encryption using 2-key (API input key length of 128-bits)
Encryption/decryption using the CFB32 mode

Table 7 ꟷ Non-Approved Algorithms

1.3 CDK Modes

1.3.1 Running the CDK in FIPS-mode

When the CDK is run in FIPS-mode, only FIPS 140-2 approved algorithms are allowed to be used. It is the
responsibility of the CO to properly configure the computer system, operating system, applications, and the
CDK to operate in a secure FIPS-mode, if that is desired. (This may include configuring the system on which
the application is installed as part of the installation process.) In configuring a system for use, the CO has
access to the complete set of services declared in cdk_fips.h. The CO can allow or disallow User access to
the CDK’s built-in integrity tests, control the loading of applications by the User, and restrict User access to
only FIPS 140-2 approved algorithms. A User has access to only those services provided by the CDK that are
exposed for his use by the CO.

In order to operate in FIPS-mode, the CO must ensure that applications loaded by the operating system call
the enableFIPS() method at startup and are limited in their use of the CDK to:

• only algorithms (and modes) noted above as FIPS-approved or those noted as exceptions

• only methods that are commented as being usable by a FIPS 140-2 compliant application

• only classes that are commented as being usable by a FIPS 140-2 compliant application

• only modes that are commented as being usable by a FIPS 140-2 compliant application

• only variants that are commented as being usable by a FIPS 140-2 compliant application

The CO may use the isFIPS() method in their application to determine whether or not the CDK is
operating in FIPS mode. The CO’s application must provide an indication of the mode of operation by either
calling isFIPS() and outputting a custom message, or by outputting the output of the StrVersion()
method.

1.3.2 Running the CDK in non-FIPS Mode

If the enableFIPS() is not called, the CDK will operate in non-FIPS mode. The isFIPS()function will return
false to indicate that the CDK is not operating in FIPS mode. The output of StrVersion()will not include the
statement that the module is operating in FIPS mode.

Page 17 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

2. Cryptographic Module Ports and Interfaces

As a FIPS 140-2 multi-chip standalone module, the CDK has a physical power interface and physical input and
output data paths, which are the computer system’s standard input/output ports and power interface. The
input/output ports on the computer are used for connecting external devices such as monitors and
keyboards however these devices are outside the physical boundary of the CDK.

The CDK software is written in C++; its logical interfaces are the application program interfaces (API) defined
by C++ classes and global methods. The calling program inputs control and data to the CDK through the input
fields of the API and receives output data and/or status information through the output parameters of the
API. Vendor documentation describes what output indicates an error and what output constitutes successful
completion of the operation.

A “show status” service is provided by the static Algorithm::isErrorState() method which may be
called at any time to determine if the CDK is in the hard error state. If the CDK enters the hard error state, an
error code is returned through the API interface, and no data output is returned.

Methods performing key generation do not output intermediate key values. Methods performing key
zeroization only return status output describing success or failure of the operation.

Below is a table that maps the logical interfaces to the physical interfaces.

Interface Logical Interface Physical Port
Data Input Data passed to the API calls to be used by the Module Standard Input Port (e.g. Keyboard)
Data Output Data returned from API calls, generated by the Module Standard Output Port (e.g. Monitor)
Control Input API calls N/A
Status Output C++ exceptions, the Algorithm::isErrorState() function,

and the ISC_CDK::isFIPS() functions
Standard Output Port (e.g. Monitor)

Power N/A Supplied by PC

Table 8 ꟷ Module Interface Mapping

3. Roles, Services, and Authentication

The CDK module supports two roles: “Crypto-Officer” (CO) and “User.” The CO is the human being who
initializes the module using services provided by the CDK. The User is the resulting application.

The CDK provides no maintenance access interface and therefore does not support a Maintenance role. FIPS
140-2 Level 1 cryptographic modules are not required to employ authentication as a means of controlling
access to the module. Such authentication mechanisms are not supported by the CDK for the CO and User
roles. No other roles are supported.

The CO configures the computer system, operating system, and the CDK to operate in a secure FIPS 140-2
mode, if that is desired (this may include configuring the system on which the application is installed as part

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 18

of the installation process). Additional conditions for meeting FIPS 140-2 requirements are provided in a
separate document: Crypto Officer’s Guide. The User has access to only those services provided by the CDK
that are exposed by the CO.

Self-test services are described in Section 9 of this document.

Bypass services are not provided.

Tables 9 and 10 provide details on the services available to each role, and each role’s access rights with
respect to those services. If the CO does not place any restrictions on users during installation, users have the
right to perform any of the following basic encryption or decryption methods:

• AES::crypt – perform AES encryption or decryption.

• DES::crypt – perform Triple-DES encryption or decryption.

• EES::crypt – perform Skipjack encryption or decryption.

• Key::Encrypt – perform RSA, Diffie-Hellman, or Elliptic Curve Diffie-Hellman, key wrapping.

• Key::Decrypt – perform RSA, Diffie-Hellman, or Elliptic Curve Diffie-Hellman, key unwrapping.

Page 19 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

Security
Service

Description
Input/
Output

Role
Cryptographic Keys and

Critical Security Parameters
Type of
Access

Configure initialize and configure
module

configuration
parameters/
status

CO All algorithms and modes Read,
Write

Integrity self-test check module integrity none/
status

User,
CO Integrity test HMAC-SHA-256 key Read

Perform self-
tests

check module algorithm
correctness

none/
status

User,
CO

Known Answers for SHA-1, SHA-2,
SHA-3, HMAC, Triple-DES, AES,
DRBG
Pairwise Consistency for DSA,
ECDSA, RSA

Read

Show status output hard error state none/
status

User,
CO None Read

Zeroize erase key or critical
security parameter

key/
status

User,
CO

Any key or security parameter
listed further down in this table Write

Symmetric key
generation using
DRBG

generate a random key key size/
key, status

User,
CO

Symmetric Key
(AES, Triple-DES, CMAC or HMAC)

Create,
Read

Random number
generation

generate a random
number

size/
value, status

User,
CO DRBG Key Create,

Read

Asymmetric key
generation

generate an asymmetric
public and private key

key type, size/
key, status

User,
CO DH, DSA, ECDH, ECDSA, RSA key Create,

Read

Symmetric
encrypt/decrypt

encrypt/decrypt data
using a symmetric
algorithm

key, data/
ciphertext, status

User,
CO Symmetric Key Use,

Read

Symmetric digest digest data
key, data/
digest value,
status

User,
CO AES CMAC Key Use,

Read

Message digest digest data
data/
digest value,
status

User,
CO None None

Keyed hash digest data
key, data/
digest value,
status

User,
CO HMAC Key Use,

Read

Key agreement derive a shared key
keys/
shared secret,
status

User,
CO

DH, ECDH private key; DH, EC DH
public key (provided as input by
the caller); ANSI x9.63 KDF

Create,
Use,
Read

Key transport
encrypt a data
encryption key with a
key encryption key

keys/
ciphertext, status

User,
CO

DH, ECDH, RSA public key,
symmetric key (provided as input
by the caller); ANSI x9.63 KDF

Use,
Read

Digital signature create a digital
signature

key, digest value,
digest type/
signature, status

User,
CO DSA, ECDSA, RSA private key Use,

Read

Table 9 ꟷ Services Available to Cryptographic Officer and User Roles in FIPS mode

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 20

Security
Service

Description
Input/
Output

Role
Cryptographic Keys and

Critical Security Parameters
Type of
Access

Configure initialize and configure
module

configuration
parameters/
status

CO All algorithms and modes Read,
Write

Integrity self-test check module integrity none/
status

User,
CO Integrity test HMAC-SHA-256 key Read

Perform self-
tests

check module algorithm
correctness

none/
status

User,
CO

KAT for SHA-1, SHA-2, SHA-3,
HMAC, Triple-DES, AES, Skipjack,
DRBG, RSA
PCT for DSA, ECDSA

Read

Show status output hard error state none/
status

User,
CO None Read

Zeroize erase key or critical
security parameter

key/
status

User,
CO

Any key or security parameter
listed further down in this table Write

Symmetric key
generation using
DRBG

generate a random key key size/
key, status

User,
CO

Symmetric Key
(AES, DES, Skipjack, Triple-DES,
CMAC or HMAC)

Create,
Read

Random number
generation

generate a random
number

size/
value, status

User,
CO Random numbers Create,

Read

Asymmetric key
generation

generate an asymmetric
public and private key

key type, size/
key, status

User,
CO DH, DSA, ECDH, ECDSA, RSA key Create,

Read

Symmetric
encrypt/decrypt

encrypt/decrypt data
using a symmetric
algorithm

key, data/
ciphertext, status

User,
CO Symmetric Key Use,

Read

Symmetric digest digest data
key, data/
digest value,
status

User,
CO AES CMAC Key Use,

Read

Message digest digest data
data/
digest value,
status

User,
CO None None

Keyed hash digest data
key, data/
digest value,
status

User,
CO HMAC Key Use,

Read

Key agreement derive a shared key
keys/
shared secret,
status

User,
CO

DH, ECDH private key; DH, EC DH
public key (provided as input by
the caller); ANSI x9.63 KDF

Create,
Use,
Read

Key transport
encrypt a data
encryption key with a
key encryption key

keys/
ciphertext, status

User,
CO

DH, ECDH, RSA public key,
symmetric key (provided as input
by the caller); ANSI x9.63 KDF

Use,
Read

Digital signature create a digital
signature

key, digest value,
digest type/
signature, status

User,
CO DSA, ECDSA, RSA private key Use,

Read

Table 10 ꟷ Services Available to Cryptographic Officer and User Roles in non-FIPS mode

Page 21 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

4. Finite State Model

The CDK was designed around a Finite State Model (FSM) that is detailed in a proprietary document
submitted with this security policy.

5. Physical Security

The module is a software-only module and the physical security requirements of FIPS 140-2 level 1 do not
apply.

6. Operational Environment

The CDK is a software module that operates in a modifiable operational environment running on a general
purpose computer. The CDK is a single shared library as described in section 1 of this document.

Within the tested environments user processes are segregated in to their own process space. Processes are
logically separated from all other processes by the operating system and underlying hardware. As the module
exists within the process space of the calling application, acting in the user role, and no other process can
access the same instance of the module, the module operates in single user mode.

7. Cryptographic Key Management

The CDK uses, creates, and/or manages:

• symmetric keys (for use with a symmetric cipher or keyed hash function), and

• asymmetric key pairs (for digital signatures and key agreement protocols based on public key
schemes)

7.1 Key Generation

The CDK generates keys for the FIPS-approved and vendor affirmed algorithms listed in Table 3 and Table 4.
The CDK also generates non-FIPS-Approved keys for algorithms listed in Table 5. The CDK can generate
symmetric keys (for a symmetric cipher or keyed hash function) using its DRBG. In order to generate key
pairs, the public key generation methods use the CDK’s random number generator.

7.2 Key Distribution

The CDK doesn’t perform key distribution. The CDK has basic cryptographic functions which can be used by
developers to build key distribution capabilities into their applications. The key distribution techniques
available for use include RSA Key Exchange, ECC Diffie-Hellman Key Agreement, Diffie-Hellman Key Exchange,
and AES key wrapping.

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 22

7.3 Key Entry and Output

The CDK does not manage any manually distributed cryptographic keys, either entry or output, external to
the physical cryptographic boundary. However, the logical C++ API exposed by the CDK provides methods for
loading and unloading symmetric keys and public/private key pairs in electronic form for manual key
distribution by the application.

7.4 Key Storage/Archiving

The CDK is a low-level cryptographic toolkit and does not provide any key storage. As detailed in 9.1 Power-
Up Tests, a single, special purpose, integrity key is hard coded in the module in plaintext form and is used to
verify the integrity of the module.

7.5 Key Destruction

An instantiated CDK object may contain a cryptographic key during its lifetime. Such keys are available to the
user for manipulation, but when the object is released, its memory and all keys in it are cleared. Under
normal operations all internal memory allocated by the CDK for temporary key storage is zeroized when the
object owning that memory is destroyed. The CO is responsible for ensuring that CDK objects are destroyed
properly (i.e. the application must allow the C++ destructors to be called by properly exiting the application
or by calling the clear method in all existing CDK objects before application termination). In order to zeroize
the special purpose integrity key embedded in the CDK in plaintext form, the CDK shared library must be
securely erased from the hard disk.

8. EMI/EMC

The CDK should only be run on commercial computer systems that, at a minimum, conform to the EMI/EMC
requirements specified by 47 CFR FCC Part 15, Subpart B, Class A.

9. Self-Tests

The CDK performs self-tests in order to ensure that it is functioning properly. If the message digest value
computed over the CDK does not match the embedded expected value, or if an algorithm KAT fails, then the
module enters a hard error state and no further cryptographic operations are possible. To recovery from this
error reimage the module.

The CDK returns error codes from its API to enable the calling application to detect an issue and allow the
user to resolve it. There are two special error codes that the CDK returns that indicate it has entered the hard
error state. The CDK returns CDK_ERROR_STATE with value 1470 from its interfaces when it is in the hard error
state. The CDK returns CDK_KEYPAIR_INCONSISTENT with value 1234 when a pairwise key test fails during an
on-demand self-test and the CDK transitions into the hard error state.

Page 23 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

9.1 Power-Up Tests

When the CDK module is loaded from disk by the operating system, it executes a software/firmware integrity
test as well as a critical functions test. Self-test and library verification is performed at library load by using a
C++ static constructor to call the self-test and integrity test methods. The critical function test includes known
answer tests (KATs) or pair-wise consistency tests (PCTs) for each of the FIPS-approved algorithms in the CDK
(see Section 1.2.1 and 1.2.1.2 above). The integrity test operates by calculating a 256-bit HMAC (HMAC-SHA-
256) over the module and comparing it to an expected value embedded (along with the key) in the module
itself at the factory. These tests are performed at startup regardless of whether or not the module is put into
FIPS-mode. If the software integrity test fails or if any self-test fails, the module displays a message on the
output interface, enters the hard error state, and inhibits all cryptographic services.

Algorithm Type Description

Software Integrity KAT HMAC-SHA-256

DRBG KAT SP 800-90A compliant health test (with and without PR)

HMAC
KAT One KAT each: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224, SHA3-256,

SHA3-384, SHA3-512

AES KAT Encrypt and decrypt AES-128 ECB, AES-128 CBC

AES CCM KAT Generate and verify AES-128

AES GCM KAT Encrypt and decrypt AES-128

AES XTS KAT Encrypt and decrypt AES-256

AES CMAC KAT Generate AES-128

Triple-DES KAT 2-key Triple-DES decrypt-only and 3-key Triple-DES encrypt/decrypt

Skipjack KAT Decrypt

RSA KAT Sign and verify using 2048-bit key, SHA-256, PKCS#1

DSA PCT Sign and verify using 2048-bit key, SHA-256

ECDSA PCT Sign and verify using P-256, SHA-256 Sign and verify using B-233, SHA-256

ECC CDH KAT Primitive “Z” computation using two P-256 keys

SHA-1 KAT FIPS 180-4 KATs

SHA-2 KAT One KAT each: SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256

SHA-3 KAT One KAT each: SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128, SHAKE256

Table 11 ꟷ Power-Up Self-Tests

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 24

9.2 Conditional Self-Tests

Conditional self-tests are performed when certain specific conditions arise within the CDK. The conditional
self-tests are described in the following paragraphs.

If any conditional self-test fails, the module displays a message on the output interface, enters the hard error
state, and inhibits all cryptographic services.

9.2.1 Random Number Tests

9.2.1.1 NIST SP 800-90A Generate Periodic Test

SP 800-90A, Section 11.3 requires that the generate function be tested at reasonable intervals. In the CDK,
the self-test interval for calls to the generate function is 32,768 and was chosen arbitrarily: every 32,768th call
to the generate function causes the DRBG to run its self-tests.

9.2.1.2 FIPS 140-2 Reseed Test/NDRNG Test

During a reseed operation the random number generator compares the new seed key, from the NDRNG, with
the current key and if the values are identical the DRBG enters the uninitialized state and returns an error.

9.2.1.3 FIPS 140-2 Continuous Random Number Generation Test

The CDK performs a continuous test of the DRBG implementation. This health test is compliant with NIST SP
800-90A Section 11.3. If two successive DRBG output blocks are ever equal, the CDK aborts the current
operation and enters its hard error state.

9.2.2 Pair-Wise Self-Tests

All DSA and ECDSA public/private key pairs are automatically tested for pair-wise consistency upon
generation by generating a signature and verifying the signature for an embedded message.

All Diffie-Hellman, or Elliptic Curve Diffie-Hellman public/private key pairs are automatically tested for pair-
wise consistency upon generation by computing a shared secret, deriving the key, and encrypting a message
and then decrypting the message.

All RSA key pairs are automatically tested for pair-wise consistency upon generation by generating a
signature and verifying the signature over, and by encrypting and decrypting, an embedded message.

9.2.3 SP 800-56A Assurances

As required per IG 9.6, the CDK conditionally performs the necessary checks when generating, importing, or
using domain parameters and keys according to SP 800-56A-rev2 sections 5.5.2, 5.6.2, and/or 5.6.3.

9.2.4 IG A.9 XTS-AES Test

As required per IG A.9, when the XTS-AES object is initialized by a user the CDK ensures that the key and
tweak values are not identical. If they are identical, the CDK returns error code 1038, CDK_INVALID_KEY from
its API.

Page 25 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

9.2.5 On-Demand Self-Tests

As documented in the Crypto Officer’s Guide and the User’s Guide, the CO or User may, on-demand, invoke
any of the self-tests listed in Table 11 to ensure the integrity of specific algorithms. There is also a master test
function that a User can call to run all self and integrity tests.

10. Mitigation of Other Attacks

The CDK has not been designed to mitigate any specific attacks.

11. Acronyms

Acronym Meaning
AES Advanced Encryption Standard
ANSI American National Standards Institute
API Application Programming Interface
CBC Cipher Block Chaining
CCM Counter with CBC-Message Authentication Code
CMAC Cipher-based Message Authentication Code
CO Crypto Officer
CDK Cryptographic Development Kit
CSP Critical Security Parameter
DES Data Encryption Standard
DH Diffie-Hellman
DHE Diffie Hellman Key Exchange
DRGB Deterministic Random Bit Generator
DSA Digital Signature Algorithm
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EES Escrowed Encryption Standard (also known as Skipjack)
FSM Finite State Machine
FFC Finite-Field Cryptography
FIPS Federal Information Processing Standard
GCM Galois/Counter Mode
HMAC Keyed Hash Message Authentication Code
ISC Information Security Corporation
IV Initialization Vector
KAT Known Answer Test
KDF Key Derivation Function
MAC Message Authentication Code
NIST National Institute of Standards and Technology
OS Operating System
PC Personal Computer
PCT Pair-wise Consistency Test

CDK 8.0 Security Policy © 2002-2018 Information Security Corporation. Page 26

PKV Public Key Verification
RAM Random Access Memory
RBG Random Bit Generator
rDSA RSA Digital Signature Algorithm
RSA Rivest Shamir Adleman
SHA Secure Hash Algorithm
SHS Secure Hash Standard
SP Special Publication
XEX Xor-encrypt-xor
XTS XEX-based tweaked-codebook mode with ciphertext stealing

Page 27 © 2002-2018 Information Security Corporation CDK 8.0 Security Policy

	ISC Cryptographic Development Kit (CDK)
	Notices
	Document History
	References
	Table of Contents
	0. Introduction
	0.1 Document Organization
	0.2 Platform Availability
	0.3 Security Level Summary
	0.4 References

	1. Cryptographic Module Specification
	1.1 Module Description and Overview
	1.2 Cryptographic Algorithms
	1.2.1 Algorithms and Parameters Allowed in FIPS-mode
	1.2.1.1 FIPS-Approved Algorithms
	1.2.1.2 Non-Approved but Allowed in FIPS-mode Algorithms
	1.2.1.3 FIPS-mode Keys and CSPs
	1.2.1.4 AES-GCM Notes
	1.2.1.4.1 IV Construction
	1.2.1.4.1.1 TLS – Section 8.1 SP800-38D, Scenario 1 IG A.5
	1.2.1.4.1.2 Random – Section 8.2 SP800-38D, Scenario 2 IG A.5

	1.2.1.4.2 Power Loss
	1.2.1.4.3 Limits

	1.2.2 Non-FIPS-mode Algorithms

	1.3 CDK Modes
	1.3.1 Running the CDK in FIPS-mode
	1.3.2 Running the CDK in non-FIPS Mode

	2. Cryptographic Module Ports and Interfaces
	3. Roles, Services, and Authentication
	4. Finite State Model
	5. Physical Security
	6. Operational Environment
	7. Cryptographic Key Management
	7.1 Key Generation
	7.2 Key Distribution
	7.3 Key Entry and Output
	7.4 Key Storage/Archiving
	7.5 Key Destruction

	8. EMI/EMC
	9. Self-Tests
	9.1 Power-Up Tests
	9.2 Conditional Self-Tests
	9.2.1 Random Number Tests
	9.2.1.1 NIST SP 800-90A Generate Periodic Test
	9.2.1.2 FIPS 140-2 Reseed Test/NDRNG Test
	9.2.1.3 FIPS 140-2 Continuous Random Number Generation Test
	9.2.2 Pair-Wise Self-Tests
	9.2.3 SP 800-56A Assurances
	9.2.4 IG A.9 XTS-AES Test
	9.2.5 On-Demand Self-Tests

	10. Mitigation of Other Attacks
	11. Acronyms

