Apple Inc.

Apple corecrypto Module v12 [Intel, Kernel, Software] FIPS 140-3 Non-Proprietary Security Policy

Document Version: 1.0

January 15, 2025

Prepared by:

Table of Contents

1.	General	3
2.	Cryptographic Module Specification	4
3.	Cryptographic Module Interfaces	12
4.	Roles, Services, and Authentication	14
5.	Software/Firmware Security	25
6.	Operational Environment	26
7.	Physical Security	27
8.	Non-invasive Security	28
9.	Sensitive Security Parameter Management	29
10.	Self-tests	36
11.	Life-cycle Assurance	39
12.	Mitigation of Other Attacks	40

List of Tables

Table 1 – Security Levels	3
Table 2 – Tested Operational Environments	4
Table 3 – Vendor Affirmed Operational Environments	5
Table 4 – Approved Algorithms	9
Table 5 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation with No Security	
Claimed	10
Table 6 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation	11
Table 7 – Ports and Interfaces	12
Table 8 – Roles, Service Commands, Input and Output	15
Table 9 – Approved Services	22
Table 10 – Non-Approved Services	24
Table 11 – SSPs	33
Table 12 – Non-Deterministic Random Number Generation Specification	33

List of Figures

Figure 1 -	 Cryptographic bound 	ary and physical perimeter	θ
------------	---	----------------------------	---

© 2024 Apple Inc., All rights reserved.

1. General

Trademarks

Apple's trademarks applicable to this document are listed in <u>https://www.apple.com/legal/intellectual-property/trademark/appletmlist.html</u>. Other company, product, and service names may be trademarks or service marks of others.

This document is the non-proprietary FIPS 140-3 Security Policy for the Apple Inc. Apple corecrypto Module v12 [Intel, Kernel, Software] cryptographic module. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for an Overall Security Level 1 module. This document provides all tables and diagrams (when applicable) required by NIST SP 800-140B. The column names of the tables follow the template tables provided in NIST SP 800-140B.

Table 1 describes the individual security areas of FIPS 140-3, as well as the Security Levels of those individual areas.

ISO/IEC 24759 Section 6. [Number Below]	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic Module Specification	1
3	Cryptographic Module Interfaces	1
4	Roles, Services, and Authentication	1
5	Software/Firmware Security	1
6	Operational Environment	1
7	Physical Security	Not Applicable
8	Non-invasive Security	Not Applicable
9	Sensitive Security Parameter Management	1
10	Self-tests	1
11	Life-cycle Assurance	1
12	Mitigation of Other Attacks	Not Applicable

Table 1 – Security Levels

The module claims an overall Security Level 1.

© 2024 Apple Inc., All rights reserved.

2. Cryptographic Module Specification

The Apple corecrypto Module v12 [Intel, Kernel, Software] cryptographic module (hereafter referred to as "the module") is a software module running on a multi-chip standalone general-purpose computing platform. The version of module is 12, written as v12. The module provides implementations of low-level cryptographic primitives to the Host OS's (macOS Monterey 12) Security Framework and Common Crypto. The module has been tested by Acumen Security, LLC. CST lab on the following platforms with and withoutAES-NI:

#	Operating System	Hardware Platform	Processor	PAA/Acceleration
1	macOS Monterey 12	MacBook Air	Intel i5 (Amber Lake)	AES-NI
2	macOS Monterey 12	MacBook Air	Intel i5 (Amber Lake)	N/A
3	macOS Monterey 12	iMac	Intel i5 (Comet Lake)	AES-NI
4	macOS Monterey 12	iMac	Intel i5 (Comet Lake)	N/A
5	macOS Monterey 12	MacBook Air	Intel i7 (Ice Lake)	AES-NI
6	macOS Monterey 12	MacBook Air	Intel i7 (Ice Lake)	N/A
7	macOS Monterey 12	MacBook Pro	Intel i7 (Coffee Lake)	AES-NI
8	macOS Monterey 12	MacBook Pro	Intel i7 (Coffee Lake)	N/A
9	macOS Monterey 12	iMac	Intel i7 (Comet Lake)	AES-NI
10	macOS Monterey 12	iMac	Intel i7 (Comet Lake)	N/A
11	macOS Monterey 12	MacBook Pro	Intel i9 (Coffee Lake)	AES-NI
12	macOS Monterey 12	MacBook Pro	Intel i9 (Coffee Lake)	N/A
13	macOS Monterey 12	iMac Pro	Xeon W Sky Lake	AES-NI
14	macOS Monterey 12	iMac Pro	Xeon W Sky Lake	N/A
15	macOS Monterey 12	Mac Pro	Xeon W Cascade Lake	AES-NI
16	macOS Monterey 12	Mac Pro	Xeon W Cascade Lake	N/A

Table 2 – Tested Operational Environments

© 2024 Apple Inc., All rights reserved.

In addition to the platforms listed in Table 2, Apple Inc. has also tested the module on the following platforms and claims vendor affirmation on them (the processor and year per platform have also been specified):

#	Operating System		Hardware Platform	I
1	macOS Monterey	MacBook Pro	i5 (Ice Lake)	2020
2	macOS Monterey	MacBook Pro	i5 (Coffee Lake)	2020, 2019, 2018
3	macOS Monterey 12	MacBook Pro	i7 (Amber Lake)	2019, 2018
4	macOS Monterey 12	MacBook Pro	i7 (Coffee Lake)	2020, 2019, 2018
5	macOS Monterey 12	MacBook Pro	i7 (Ice Lake)	2020
6	macOS Monterey 12	MacBook Pro	i9 (Coffee Lake)	2019, 2018
7	macOS Monterey 12	MacBook Air	i5 (Ice Lake)	2020
8	macOS Monterey 12	MacBook Air	i7 (Ice Lake)	2020
9	macOS Monterey 12	MacBook Air	i5 (Amber Lake)	2019, 2018
10	macOS Monterey 12	MacBook Air	i7 (Amber Lake)	2018
11	macOS Monterey 12	Mac mini	i5 (Coffee Lake)	2018
12	macOS Monterey 12	Mac mini	i7 (Coffee Lake)	2018
13	macOS Monterey 12	iMac	i5 (Comet Lake)	2020
14	macOS Monterey 12	iMac	i7 (Comet Lake)	2020
15	macOS Monterey 12	iMac	i9 (Comet Lake)	2020
16	macOS Monterey 12	iMac	i5 (Coffee Lake)	2019
17	macOS Monterey 12	iMac	i7 (Coffee Lake)	2019
18	macOS Monterey 12	iMac	i9 (Coffee Lake)	2019

Table 3 – Vendor Affirmed Operational Environments

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

© 2024 Apple Inc., All rights reserved.

The physical perimeter of the module which is also the Tested Operational Environment's Physical Perimeter (TOEPP) is the physical perimeter of the macOS device that contains the module. Consequently, the embodiment of the module is a multi-chip standalone cryptographic module.

(Figure 1) below depicts the following information:

- The location of the module with respect to the operating system (green dotted outline), other supporting applications so that all the logical and physical layers between the cryptographic boundary and the physical perimeter are clearly defined; and
- The interactions of the logical object of the module with the operating system and other supporting applications resident within the physical perimeter.

Physical Perimeter (TOEPP)

Figure 1 – Cryptographic boundary and physical perimeter

The table below lists all Approved or Vendor-affirmed security functions of the module, including specific key size(s) employed for approved services, and implemented modes of operation. The module © 2024 Apple Inc., All rights reserved.

is in the Approved mode of operation when the module utilizes the services that use the security functions listed in the table below. The module supports an Approved mode and a non-Approved mode of operation. The module does not support a degraded operation. The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 10 - Non-Approved Services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode.

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
A2858 (vng_asm) A2853 (c_asm) A2852 (c-aesni) A2859 (vng_aesni)	CTR_DRBG [SP800- 90Ar1]	AES-128, AES-256 Derivation Function Enabled	Key Length: 128, 256	Random Number Generation
A2855 (c_avx2) A2854 (c_avx) A2856 (c_ssse3)	HMAC_DRBG [SP800- 90Ar1]	SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512 No Prediction Resistance	Key Length: 112 bits or greater	Random Number Generation
A2852 (c-aesni) A2853 (c_asm)	AES	CBC CFB128 CFB8 CTR ECB KW OFB	Key Length: 128, 192, 256	Symmetric Encryption and Decryption
A2850 (asm_aesni) A2851 (asm_x86)	AES	CBC, ECB, XTS	Key Length: 128, 192, 256 XTS (128 and 256- bits key size only)	Symmetric Encryption and Decryption
A2858 (vng_asm) A2859 (vng_aesni)	AES	ECB, CCM, CTR, GCM	Key Length: 128, 192, 256	Symmetric Encryption and Decryption
A2855 (c_avx2) A2854 (c_avx) A2856 (c_ssse3)	RSA [FIPS 186-4]	Key Generation (ANSI X9.31)	Modulus: 2048, 3072, 4096	Digital Signature

© 2024 Apple Inc., All rights reserved.

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
		Signature Generation (PKCS#1 v1.5) and (PKCS PSS)	2048 (SHA2-224, SHA2-256, SHA2- 284, SHA2-512), 3072 (SHA2-224, SHA2-256, SHA2- 284, SHA2-512), 4096 (SHA2-224, SHA2-256, SHA2- 284, SHA2-512)	and Asymmetric Key Generation
		Signature Verification (PKCS#1 v1.5) and (PKCS PSS)	Modulus: 1024 (SHA-1 (legacy), SHA2-224, SHA2- 256, SHA2-284), 2048 (SHA-1 (legacy), SHA2-224, SHA2-256, SHA2- 284, SHA2-512), 3072 (SHA-1 (legacy), SHA2-224, SHA2-256, SHA2- 284, SHA2-512), 4096 (SHA-1 (legacy), SHA2-224, SHA2-256, SHA2- 284, SHA2-512)	
A2855 (c_avx2) A2854 (c_avx) A2856 (c_ssse3)	ECDSA ANSI X9.62 [FIPS 186-4]	Key Pair Generation (PKG): Public Key Validation (PKV): Signature Generation Signature Verification	P-224, P-256, P- 384, P-512 SHA-1 (verification only, legacy), SHA2- 224, SHA2-256, SHA2-384, SHA2- 512	Digital Signature and Asymmetric Key Generation
A2856 (c_ssse3) A2860(vng_Intel) A2855 (c_avx2) A2854 (c_avx)	SHS [FIPS 180-4]	SHA-1, SHA2-224, SHA2-256, SHA2-384,	N/A	Message Digest

CAVP Cert	Algorithm and Standard	Mode/Method	Description / Key Size(s) / Key Strength(s)	Use / Function
		SHA2-512, SHA2-512/256 (except for A2860)		
A2860 (vng_Intel) A2855 (c_avx2) A2854 (c_avx) A2856 (c_ssse3)	HMAC [FIPS 198]	SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512 SHA2-512/256 (except for A2860)	112 bits or greater	Keyed Hash
A2856 (c_ssse3)	KBKDF [SP800- 108]	KDF Mode: Counter and Feedback MAC Mode: HMAC-SHA-1, HMAC-SHA2- 224, HMAC- SHA2- 256, HMAC- SHA2-384, HMAC-SHA2-512	Supported Lengths: 8-4096 Increment 8 Fixed Data Order: Before Fixed Data Counter Length: 32	Key Derivation
Vendor Affirmed	Cryptographic KeyGeneration (CKG) [SP800-133r2]	Sections 4, 5.1, 6.2.2 and 6.2.3 per SP800-132r2	RSA Key Generation (ANSI X9.31), Modulus: 2048, 3072, 4096 ECDSA Key Pair Generation (PKG): P-224, P-256, P- 384, P-521	Key Generation
KTS AES-KW/A2852 AES-KW/A2853	SP 800-38D and SP 800- 38F; key wrapping per IG D.G	AES KW	128, 192, and 256- bit keys providing 128, 192, or 256 bits of encryption strength	Key Wrapping

Table 4 – Approved Algorithms

This module does not have non-Approved algorithms but Allowed Algorithms used in the Approved mode of operation.

© 2024 Apple Inc., All rights reserved.

The table below list non-Approved but Allowed security functions with no security claimed:

Algorithm	Caveat	Use / Function
MD5	no security claimed	Message Digest (used as part of the TLS key establishment scheme only), Digest Size: 128-bit

Table 5 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation with No Security Claimed

The table below lists Non-Approved security functions that are not Allowed in the Approved Mode of Operation:

Algorithm/Function	Use/Function
RSA	ANSI X9.31 Key Pair Generation Key Size <
Signature Generation / Signature Verification	2048
/ Asymmetric Key Generation	PKCS#1 v1.5 and PSS Signature Generation
	Key Size < 2048
	PKCS#1 v1.5 and PSS Signature Verification
	Key Size< 1024
RSA Key Wrapping	OAEP, PKCS#1 v1.5 and -PSS schemes
Ed25519	Key Agreement
	Sig(gen)
	Sig(ver)
ANSI X9.63 KDF	Hash based Key Derivation Function
RFC6637	Key Derivation Function
HKDF [SP800-56Cr1]	Key Derivation Function
DES	Encryption / Decryption Key Size 56-bits
CAST5	Encryption / Decryption
	Key Sizes 40 to 128-bits in 8-bit increments
RC4	Encryption / Decryption
	Key Sizes 8 to 4096-bits
RC2	Encryption / Decryption Key Sizes 8 to 1024-
	bits
MD2	Message Digest Digest size 128-bit
MD4	Message Digest Digest size 128-bit
RIPEMD	Message Digest Digest size 160-bits
ECDSA	
	PKG: Curve P-192 PKV:
	Curve P-192
	Signature Generation: Curve P-192
	Signature Verification: Curve P-192
	Non-Approved due to the small curve size

© 2024 Apple Inc., All rights reserved.

ECDSA	Key Pair Generation for compact point
Integrated Encryption Scheme on elliptic	Encryption / Decryption
curves (ECIES)	
Blowfish	Encryption / Decryption
OMAC (One-Key CBC MAC)	MAC generation
Triple-DES (ECB, CBC)	Encryption / Decryption
	Note The module itself does not enforce the
	limit of 216 encryptions with the same Triple-
	DES key, as required by FIPS 140-3 IG C.G.

Table 6 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

Overall Security Rules of Operation

- AES-GCM IV is constructed in compliance with IG C.H scenario 1b (IPsec-v3). The GCM IV generation follows RFC 4106 and shall only be used for the IPsec-v3 protocol version 3. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the IPsec protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the IPsec protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values. In case the module's power is lost and then restored, the key used for the AES GCM encryption/decryption shall be re-distributed. This condition is not enforced by the module; however, it is met implicitly. The module does not retain any state when power is lost. As indicated in Table 11, column Storage, the module exclusively uses volatile storage. This means that AES-GCM key/IVs are not persistently stored during power off: therefore, there is no reconnection possible when the power is back on with regeneration of the key used for GCM. After restoration of the power, the user of the module (e.g., IKE) along with User application that implements the protocol, must perform a complete new key establishment operation using new random numbers (Entropy input string, DRBG seed, DRBG internal state V and Key, shared secret values that are not retained during power cycle, see table 11) with subsequent KDF operations to establish a new GCM key/IV pair on either side of the network communication channel.
- AES-XTS mode is only approved for hardware storage applications. The length of the AES-XTS data unit does not exceed 220 blocks. The module checks explicitly that Key_1 ≠ Key_2 before using the keys in the XTS-Algorithm to process data with them compliant with IG C.I.

3. Cryptographic Module Interfaces

- As a software module, the module does not have physical ports. For the purpose of the FIPS 140-3 validation, the physical ports are interpreted to be the physical ports of the hardware platform on which it runs.
- The logical interfaces are the application program interface (API) through which applications request services and the Operating System calls that the module invokes.
- The underlying logical interfaces of the module are the C language Kernel Interfaces (KPIs). In detail these interfaces are described in (Table 7):

Logical interface	Data that passes over port/interface
Data input interface	Data inputs are provided in the variables passed in the KPI and callable service invocations, generally through caller-supplied buffers
Data output interface	Data outputs are provided in the variables passed in the KPI and callable service invocations, generally through caller-supplied buffers
Control input interface	Control inputs which control the mode of the module are provided through dedicated parameters, namely the kernel module plist whose information is supplied to the module by the kernel module loader.
Status output interface	Status output is provided in return codes and through messages. Documentation for each KPI lists possible return codes; A complete list of all return codes returned by the C language KPIs within the module is provided in the header files and the KPI documentation; Messages are also documented in the KPI documentation

Table 7 – Ports and Interfaces

© 2024 Apple Inc., All rights reserved.

The module does not support a control output interface.

The module is optimized for library use within the macOS kernel space and does not contain any terminating assertions or exceptions. It is implemented as a macOS dynamically loadable library. The dynamically loadable library is loaded into the macOS kernel and its cryptographic functions are made available to macOS kernel services only. Any internal error detected by the module is reflected back to the caller with an appropriate return code. The calling macOS kernel service must examine the return code and act accordingly.

The module communicates any error status synchronously through the use of its documented return codes, thus indicating the module's status. It is the responsibility of the caller to handle exceptional conditions in a FIPS 140-3 appropriate manner.

Caller-induced or internal errors do not reveal any sensitive material to callers. Cryptographic bypass capability is not supported by the module.

4. Roles, Services, and Authentication

The module supports a single instance of one authorized role: The Crypto Officer. No support is provided for multiple concurrent operators or a Maintenance Operator.

Role	Service	Input	Output
Crypto Officer (CO)	AES Encryption / Decryption (Perform approved	Input for Encryption: key and plain text	Output for Encryption: cipher text
	security functions)	Input for Decryption: key and cipher text	Output for Decryption: plain tex
	AES Key Wrapping (Perform approved security functions)	key encryption key and key to be wrapped	wrapped key
	Secure Hash Generation (Perform approved security functions)	Message	Hash value
	HMAC generation (Perform approved security functions)	HMAC key and message	keyed Hash value
	RSA signature generation and verification	Input for SigGen: RSA private key and message	Output SigGen: signature
	(Perform approved security functions)	Input for SigVer: RSA public key and signature	Output for Sigver: True or False
	ECDSA signature generation and verification	Input for SigGen: ECDSA private key and message	Output for SigGen: signature
	(Perform approved security functions)	Input for SigVer: ECDSA public key and signature	Output for SigVer: True or False
	Random number generation (Perform approved security functions)	Entropy input string, nonce	Random numbers
	KBKDF (Perform approved security functions)	key derivation key	Derived key
	ECDSA (key pair generation)	random numbers	generated private and public key pair

© 2024 Apple Inc., All rights reserved.

Role	Service	Input	Output
	(Perform approved		
	security functions)		
	RSA (key pair	random prime	generated private
	generation)	numbers	and public key pair
	(Perform approved		
	security functions)		
	Release all resources	handler of symmetric	zeroised and released
	of symmetric crypto	crypto function	memory space
	function context	context	
	(Perform zeroisation)		
	Release all resources	handler of hash	zeroised and released
	of hash context	context	memory space
	(Perform zeroisation)		
	Release of all	handler of key	zeroised and released
	resources of key	derivation	memory space
	derivation function		
	context		
	(Perform zeroisation)		
	Release of all	handler of	zeroised and released
	resources of	asymmetric crypto	memory space
	asymmetric crypto	function context	
	function context		
	(Perform zeroisation)		
	Self-test	power	Pass/Fail status
	(Perform self-tests)		
	Show Status	KPI invocation	Operational/Error
			status
	Show Module Info	KPI invocation	Module Base Name +
	(Show module's		Module Version
	versioning		Number
	information)		

Table 8 – Roles, Service Commands, Input and Output

FIPS 140-3 does not require an authentication mechanism for level 1 modules. Therefore, the module does not implement an authentication mechanism for Crypto Officer. The Crypto Officer role is authorized to access all services provided by the module (see Table 9 - Approved Services and Table 10 - Non-Approved Services below).

The module implements a dedicated KPI function to indicate if a requested service utilizes an approved security function. For services listed in Table 9 - Approved Services, the indicator function returns 1. For services listed in Table 10 - Non-Approved Services, the indicator function returns 0.

The table below lists all approved services that can be used in the approved mode of operation. The abbreviations of the access rights to keys and SSPs have the following interpretation:

© 2024 Apple Inc., All rights reserved.

Service	Description	Approved Security Functions and certs	Keys and/or SSP's	Roles	Access rights to Keys and/or SSP's	Indicator
AES Encryption / Decryption (Perform approved security functions)	Input for Encryption: key and plain text Output for Encryption: cipher text Input for Decryption: key and cipher text Output for Decryption: plain text	Symmetric Encryption and Decryption AES-CBC (#A2852, #A2853, #A2850, #A2851, #A2851, #A2852, #A2853, #A2850, #A2851, #A2853, #A2859) AES-CFB128 (#A2852, #A2853) AES-CFB8 (#A2852, #A2853) AES-CFB8 (#A2852, #A2853) AES-OFB (#A2852, #A2853) AES-CTR (#A2852, #A2853) AES-CTR (#A2852, #A2853	AES key	Crypto Officer (CO)	W, E	1
		#A2859)				

		AES-CCM (#A2858, #A2859)				
AES Key Wrapping (Perform approved security functions)	Input: key encryption key and key to be wrapped Output: wrapped key	Key Wrapping KW (#A2852, #A2853)	AES key, key to be wrapped, wrapped key	Crypto Officer (CO)	W, E, R	1
Secure Hash Generation (Perform approved security functions)	Input: message Output: Hash value	Message Digest SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512, SHA2-512/256 (except for A2860) (#A2856, #A2860, #A2855, #A2854)	none	Crypto Officer (CO)	N/A	1
HMAC generation (Perform approved security functions)	Input: HMAC key and message Output: keyed Hash value	Keyed Hash SHA-1, SHA2-224, SHA2-256, SHA2-384, SHA2-512 SHA2-512/256 (except for A2860) (#A2855, #A2856, #A2856, #A2854, #A2860)	HMAC key	Crypto Officer (CO)	W, E	1
RSA signature generation and verification	Input for SigGen: RSA private key and message Output: signature	SigGen, SigVer Signature Generation Modulus: 2048,	RSA key pair (including intermediate keygen values)	Crypto Officer (CO)	W, E	1

(Perform approved security functions)	Input for SigVer: RSA public key and signature Output: True or False	3072, 4096 Signature Verification Modulus: 1024, 2048, 3072, 4096 (#A2855, #A2856, #A2854)				
ECDSA signature generation and verification (Perform approved security functions)	Input for SigGen: ECDSA private key and message Output: signature Input for SigVer: ECDSA public key and signature Output: True or False	SigGen, SigVer P-224, P-256, P- 384, P-512 (#A2855, #A2856, #A2854)	ECDSA key pair (including intermediate keygen values)	Crypto Officer (CO)	W,E	1
Random number generation (Perform approved security functions)	Input: Entropy input string, nonce Output: Random numbers	Random number generation CTR_DRBG (#A2853, #A2852, #A2858, #A2859) HMAC_DRBG (#A2855, #A2854, #A2856) CKG	Entropy Input String, Seed, DRBG V and DRBG Key, random numbers (DRBG Output)	Crypto Officer (CO)	G, R, W, E	1
KBKDF (Perform approved security functions)	Input: key derivation key Output: derived key	Key Derivation KDF Mode: Counter and Feedback MAC Mode: HMAC-SHA-1, HMAC-SHA2- 224, HMAC-	KBKDF key derivation key, KBKDF derived key	Crypto Officer (CO)	W, G, R, E	1

		SHA2- 256, HMAC-SHA2- 384, HMAC- SHA2-512 (#A2856) CKG				
ECDSA (key pair generation) (Perform approved security functions)	Input: random numbers Output: generated private and public key pair	KeyGen Key Generation Modulus: 2048, 3072, 4096 (#A2855, #A2855, #A2856, #A2854) CKG	ECDSA Key pair (including intermediate keygen values)	Crypto Officer (CO)	W, G, R, E	1
RSA (key pair generation) (Perform approved security functions)	Input: random prime numbers Output: generated private and public key pair	KeyGen Key Generation Modulus: 2048, 3072, 4096 (#A2855, #A2856, #A2856, #A2854) CKG	RSA Key Pair (including intermediate keygen values)	Crypto Officer (CO)	W, G, R, E	1
Release all resources of symmetric crypto function context (Perform zeroisation)	Input: handler of symmetric crypto function context Output: zeroised and released memory space	N/A	AES Key	Crypto Officer (CO)	Z	1
Release all resources of hash context (Perform zeroisation)	Input: handler of hash context Output: released memory space	N/A	HMAC key	Crypto Officer (CO)	Z	1
Release of all resources of key	Input: handler of key derivation function	N/A	KBKDF key derivation key, KBKDF derived key	Crypto Officer (CO)	Z	1

derivation	context					
context	zeroised and					
(Perform	released					
zeroisation)	memory space				_	
Release of	Input: handler	N/A	RSA/EC/DH	Crypto	Z	1
dii resources of	crypto function		кеуз	(CO)		
asymmetric	context			(00)		
crypto	Output:					
function	zeroised and					
context	released					
(Perform	memory space					
Self-test	Input: power	AES-CBC	All SSPs	Crypto	E	1
(Perform	Output:	(#A2852,		Officer	_	-
self-tests)	Pass/Fail	#A2853,		(CO)		
	status	#A2850,				
		#A2851);				
		AES-CCM				
		(#A2858,				
		#A2859);				
		(#A2858.				
		#A2859);				
		AES-XIS				
		(#A2050, #A2851):				
		<i>",</i> <u>,</u>				
		AES-ECB				
		(#A2852,				
		#Α2853, #Δ2850				
		#A2851.				
		#A2858,				
		#A2859);				
		AFS-KW				
		(#A2852.				
		#A2853);				
		UTK_DKBG				
		#A2853.				
		#A2852,				
		#A2859);				

		 HMAC_DRBG (#A2855, #A2854, #A2856); HMAC (#A2860, #A2855, #A2854, #A2856); RSA Signature Generation (#A2855, #A2854, #A2856); RSA Signature Verification (#A2855, #A2854, #A2856); ECDSA Signature Generation (#A2855, #A2856); ECDSA Signature Verification (#A2855, #A2856); ECDSA Signature Verification (#A2855, #A2856); ECDSA Signature Signature Verification (#A2855, #A2856); ECDSA Signature Signature Verification (#A2855, #A2856); ECDSA Signature Verification (#A2855, #A2856); ECDSA Signature Verification (#A2855, #A2856); ECDSA Signature Verification (#A2855, #A2856); 				
Show	Input: KPI	#A2854) N/A	None	Crypto	N/A	Status
56665	Output:			(CO)		

	Operational/Er ror status					
Show Module Info (Show module's versioning information)	Input: KPI invocation Output: Module Base Name + Module Version Number	N/A	None	Crypto Officer (CO)	N/A	Versioning informatio n returned

Table 9 – Approved Services

- **G** = Generate: The module generates or derives the SSP.
- **R** = Read: The SSP is read from the module (e.g. the SSP is output).
- **W** = Write: The SSP is updated, imported, or written to the module.
- **E** = Execute: The module uses the SSP in performing a cryptographic operation.
- **Z** = Zeroise: The module zeroises the SSP.
- N/A= The service does not access any SSP during its operation.

Service	Description	Algorithms Accessed	Role	Indicator
Triple-DES encryption / decryption	Module does not meet FIPS 140-3 IG C.G because it does not have a control over the number of blocks to be encrypted under the same Triple-DES key; Input for Encryption : key and plain text Output for Encryption : cipher text Input for Decryption : key and ciphertext Output for Decryption : plain text	Triple-DES	Crypto Officer (CO)	0
Other symmetric encryption / decryption	They are non- approved encryption algorithms; Input for Encryption : key and plain text Output for	Blowfish, CAST5, DES, ECIES, RC2, RC4	Crypto Officer (CO)	0

© 2024 Apple Inc., All rights reserved.

Service	Description	Algorithms Accessed	Role	Indicator
	Encryption : cipher text Input for Decryption : key an decipher text Output for Decryption : plain text			
RSA Key Wrapping	The CAST does not perform the full KTS, only the raw RSA encrypt/decrypt. Input: RSA public key and key to be wrapped Output: wrapped key	RSA encrypt/decrypt	Crypto Officer (CO)	0
RSA Signature Generation/Signature Verification/Key-pair Generation	ANSI X9.31 Key Pair Generation Key Size < 2048 PKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 PKCS#1 v1.5 and PSS Signature Verification key size < 1024	RSA KeyGen, SigGen, SigVer	Crypto Officer (CO)	0
ECDSA PKG, PKV, Signature Generation/Signature Verification	ECDSA keys with curve P-192	ECDSA PKG, PKV, SigGen/SigVer	Crypto Officer (CO)	0
Ed25519 Key Generation, Signature Generation/Signature Verification	256-bit key	Ed25519 KeyGen Ed25519 SigGen Ed25519 SigVer	Crypto Officer (CO)	0
ANSI X9.63 Key Derivation	SHA-1 hash-based	SHA-1	Crypto Officer (CO)	0
SP800-56Cr1 Key Derivation (HKDF)	SHA2-256 hash- based	SHA2-256	Crypto Officer (CO)	0
RFC6637 Key Derivation	SHA hash based	SHA2-256, SHA2-512, AES-128, AES-256	Crypto Officer (CO)	0
OMAC Message Authentication Code Generation and Verification	One-Key CBC MAC using 128-bit key	OMAC	Crypto Officer (CO)	0

Service	Description	Algorithms Accessed	Role	Indicator
Message digest generation	Input: message Output: message digest	MD2, MD4, RIPEMD	Crypto Officer (CO)	0
Ed25519 Key Agreement	Input: peer public key, own private key Output: shared secret	Ed25519	Crypto Officer (CO)	0
Integrated Encryption Scheme on elliptic curves (ECIES) Encryption/Decryption	Encrypt: Input: peer public key, plaintext Output: public key, ciphertext (with authentication tag) Decrypt: Input: authentication tag, ciphertext, own private key Output: plaintext message or error	ECIES	Crypto Officer (CO)	0

Table 10 – Non-Approved Services

5. Software/Firmware Security

Integrity Techniques

The Apple corecrypto Module v12 [Intel, Kernel, Software] is in the form of binary executable code. A software integrity test is performed on the runtime image of the module. The HMAC-SHA2-256 implemented in the module is used as an approved algorithm for the integrity test. If the test fails, the module enters an error state where no cryptographic services are provided, and data output is prohibited i.e. the module is not operational. The Software Integrity Key (HMAC-SHA2-256 with 256 bits of security strength), a non-SSP, is stored in the module binary computed during build.

On-Demand Integrity Test

The integrity test is also performed as part of the Pre-Operational Self-Tests. It is automatically executed at power-on. It can also be invoked by powering-off and reloading the module to meet the on-demand request for integrity test.

In addition, the module provides the Self-Test service to perform self-tests, including integrity test and algorithm tests, on demand.

Software Loading

The module does not support loading of any additional software.

6. Operational Environment

Applicability

The Apple corecrypto Module v12 [Intel, Kernel, Software] operates in a modifiable operational environment per FIPS 140-3 level 1 specifications. The module is supplied as part of macOS Monterey 12, a commercially available general-purpose operating system executing on the hardware specified in section 2.

Policy

The operating system is restricted to a single operator (single-user mode; i.e. concurrent operators are explicitly excluded).

When the operating system loads the module into memory, it invokes the Self-Test functionality, which in turn runs the mandatory self-tests.

7. Physical Security

The ISO/IEC 19790 physical security requirements do not apply to the Apple corecrypto Module v12 [Intel, Kernel, Software] since it is a software module.

8. Non-invasive Security

Currently, the non-invasive security is not required by FIPS 140-3 (see NIST SP 800-140F). The requirements of this area are not applicable to the module.

9. Sensitive Security Parameter Management

The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the module:

Key/SSP Name/ Type	Strengt h	Security Function and Cert. Number	Gener- ation	Impor t /Expor t	Establis h- ment	Storage	Zero- isation	Use & related keys
AES Key CSP	Size: 128, 192, 256 Strength: 128, 192, 256	AES Encryption / Decryption CBC (#A2850, #A2851) ECB (#A2850, #A2851, #A2859) XTS (#A2850, #A2859), CTR (#A2858, #A2859), CTR (#A2852, #A2853, #A2853, #A2853, #A2859) KW #A2850	N/A	Import from and Export to calling applicat ion	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is powered down	Symmetr ic Encryptio n and Decrypti on
HMAC Key CSP	Min: 112 bits	HMAC generation SHA-1, SHA2- 224, SHA2-256, SHA2-384, SHA2-512 SHA2- 512/256 #A2860	N/A	Import from and Export to calling applicat ion	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is	Keyed Hash

© 2024 Apple Inc., All rights reserved.

Key/SSP Name/ Type	Strengt h	Security Function and Cert. Number	Gener- ation	Impor t /Expor t	Establis h- ment	Storage	Zero- isation	Use & related keys
		#A2855 #A2854 #A2856					powered down	
ECDSA Key Pair CSP	Curves: P-224, P-256, P-384, P-521 Strength: 112, 128, 192, 256	ECDSA KeyGen #A2855 #A2854 #A2856 CKG	The key pairs are generated conforman t to SP800- 133r2 (CKG) using FIPS186-4 Key Generatio n method, and the random	Import from and Export to calling applicat ion Interme dia te keygen values are not output.	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is powered down	Digital signature
RSA Key Pair CSP	Modulus: 2048, 3072, 4096 Strength: 112, 128, 152	RSA KeyGen #A2855 #A2854 #A2856 CKG	value used in the key generation is generated using SP800- 90Ar1 DRBG	Import from and Export to calling applicat ion Interme dia te keygen values are not output.	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is powered down	Digital Signatur e
Entropy Input String CSP	256 bits	ENT (P)	Obtained from the ENT	Import from OS; No Export	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is	Random Number Generati on

Key/SSP Name/ Type	Strengt h	Security Function and Cert. Number	Gener- ation	Impor t /Expor t	Establis h- ment	Storage	Zero- isation	Use & related keys
							powered down	
Seed CSP	256 bits	CTR_DRB G #A2853 #A2852 #A2858 #A2859 HMAC_DR BG #A2855 #A2855 #A2854 #A2856	Derived from entropy input string as defined by SP800- 90Ar1	N/A	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is powered down	Random Number Generati on
DRBG Output CSP	256 bits	CTR_DRB G #A2853 #A2852 #A2858 #A2859 HMAC_DR BG #A2855 #A2855 #A2854 #A2856 CKG	Generated internally using the approved DRBG	N/A	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is powered down	Random Number Generati on
DRBG Key CSP	256 bits	CTR_DRB G #A2853 #A2852 #A2858 #A2859 HMAC_DR BG #A2855 #A2855 #A2854 #A2856	Generated internally using the approved DRBG	N/A	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is powered down	Random Number Generati on

Key/SSP Name/ Type	Strengt h	Security Function and Cert. Number	Gener- ation	Impor t /Expor t	Establis h- ment	Storage	Zero- isation	Use & related keys
DRBG V CSP	256 bits	CTR_DRB G #A2853 #A2852 #A2858 #A2859 HMAC_DR BG #A2855 #A2855 #A2854 #A2856	Generated internally using the approved DRBG	N/A	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati C zeroisati on when structure is deallocat ed or when the system is powered down	Random Number Generati on
KBKDF Key Derivatio n Key CSP	Min: 112 bits	KBKDF Key Derivation KDF Mode: Counter and Feedback MAC Mode: HMAC- SHA-1, HMAC- SHA2-224, HMAC- SHA2-224, HMAC- SHA2-384, HMAC- SHA2-384, HMAC- SHA2-384, HMAC- SHA2-512 #A2856	N/A	Import ed from calling applicat ion, No Export	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or when the system is powered down	Key Derivatio n
KBKDF Derived Key CSP	Min: 112 bits	SP800-108 KDF #A2856 CKG	Internally generated via SP800- 108 KBKDF key derivation algorithm	No Import; Export to calling applicat ion	N/A	N/A: The module does not provide persisten t keys/SSP s storage	Automati c zeroisati on when structure is deallocat ed or	Key Derivatio n

Key/SSP Name/ Type	Strengt h	Security Function and Cert. Number	Gener- ation	Impor t /Expor t	Establis h- ment	Storage	Zero- isation	Use & related keys
							when the	
							system is	
							powered	
							down	

Table 11 – SSPs

The Software Integrity Key (HMAC-SHA2-256 with 256 bits of security strength), a non-SSP, is stored in the module binary computed during build.

Random Number Generation

A NIST approved deterministic random bit generator based on a block cipher as specified in NIST [SP 800-90Ar1] is used. The default Approved DRBG used for random number generation is a CTR_DRBG using AES-256 with derivation function and without prediction resistance. The random numbers used for key generation are all generated by CTR_DRBG in this module. Per section 10.2.1.1 of [SP 800-90Ar1], the internal state of CTR_DRBG is the value V, Key and a reseed counter.

The module also employs a HMAC_DRBG for random number generation. The HMAC_DRBG is only used at the early boot time of macOS kernel for memory randomization. The output of HMAC_DRBG is not used for key generation. Per section 10.1.2.1 of [SP 800-90Ar1], the internal state of HMAC_DRBG is the value V, Key and a reseed counter.

The deterministic random bit generators are seeded by read_random. The read_random is the Kernel Space interface that extracts random bits from the entropy pool. The output of entropy pool provides 256-bits of entropy to seed and reseed SP800-90B DRBG during initialization (seed) and reseeding (reseed).

Entropy sources	Minimum number of bits of entropy	Details
NISP SP800-90B compliant ENT (P)	256-bits per 256-bit output sample	The seed is provided by an SP 800-90B compliant
ESV Cert. #E14		entropy source

Table 12 – Non-Deterministic Random Number Generation Specification

Key / SSP Generation

The module generates Keys and SSPs in accordance with FIPS 140-3 IG D.H. The cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per [SP800-133r2] sections 4, 5.1, 6.2.2 and 6.2.3 (vendor affirmed), compliant with [FIPS186-4], and using DRBG compliant with [SP800-90Ar1]. A seed (i.e., the random value) used in asymmetric key generation is a direct output from [SP800-90Ar1] DRBG. The key generation service for RSA, ECDSA, as well as the [SP 800-90Ar1] DRBG have been ACVT tested with algorithm certificates found in Table 4.

© 2024 Apple Inc., All rights reserved.

Keys/SSPs Establishment

The module provides the following key/SSP establishment services in the Approved mode:

• AES-Key Wrapping

The module implements a Key Transport Scheme (KTS) using AES-KW compliant to [SP800-38F]. The SSP establishment methodology provides between 128 and 256 bits of encryption strength.

• KBKDF Key Derivation

The KBKDF is compliant to [SP800-108]. The module implements both Counter and Feedback modes with HMAC-SHA-1, HMAC-SHA2-224, HMAC-SHA2-256, HMAC-SHA2-384, or HMAC-SHA2-512 as the PRF.

Keys/SSPs Import/Export

All keys and SSPs that are entered from, or output to module, are entered from or output to the invoking application running on the same device. Keys/SSPs entered into the module are electronically entered in plain text form. Keys/SSPs are output from the module in plain text form if required by the calling application.

The module allows the output of plaintext CSPs (i.e., EC/RSA Key Pairs). To prevent inadvertent output of sensitive information, the module performs the following two independent internal actions:

1. The module will internally request the random number generation service to obtain the random numbers and verify that the service completed without errors.

2. Once the keys are generated the module will perform the pairwise consistency test and verify that the test is completed without errors.

Only after successful completion of both actions, are the generated CSPs output via the KPI output parameter in plaintext.

Keys/SSPs Storage

The Apple corecrypto Module v12 [Intel, Kernel, Software] stores ephemeral keys/SSPs in memory only. They are received for use or generated by the module only at the command of the calling application. The module does not provide persistent keys/SSPs storage.

The module protects all keys/SSPs through the memory separation and protection mechanisms provided by the operating system. No process other than the module itself can access the keys/SSPs in its process' memory.

Keys/SSPs Zeroization

Keys and SSPs are zeroised when the appropriate context object is destroyed or when the system is powered down. Input and output interfaces are inhibited while zeroisation is performed.

10. Self-tests

The module performs pre-operational self-tests automatically when the module is loaded into memory; the pre- operational self-tests triggered at power-on ensure that the module is not corrupted and that the cryptographic algorithms work as expected.

The ISO/IEC 19790 only requires that software/firmware integrity test(s) and the requisite cryptographic algorithm(s) be tested during power-up, but the Apple corecrypto Module v12 [Intel, Kernel, Software] runs all Cryptographic Algorithm Tests (CASTs) during power-up as well.

The following tests are performed each time the Apple corecrypto Module v12 [Intel, Kernel, Software] starts. If any of the following tests fails the device (tested platform) fails to startup. To invoke the self-tests (pre-operational integrity test as well as CASTs) on demand (and periodically), the user may reboot the system.

While the module is executing the self-tests, services are not available and input and output are inhibited. The self-tests are implemented for the following algorithms:

• <u>Pre-operational Self-Tests:</u>

• HMAC-SHA2-256: Used for module integrity test

• Conditional Self-Tests:

- Conditional Cryptographic Algorithm Self-tests (CAST):
 - AES CBC 128 bits Encrypt KAT
 - AES CCM 128 bits Encrypt KAT
 - AES GCM 128 bits Encrypt KAT
 - AES XTS 128 bits Encrypt KAT
 - AES ECB 128 bits Encrypt KAT
 - AES CBC 128 bits Decrypt KAT
 - AES CCM 128 bits Decrypt KAT
 - AES GCM 128 bits Decrypt KAT
 - AES XTS 128 bits Decrypt KAT
 - AES ECB 128 bits Decrypt KAT
 - CTR_DRBG KAT
 - Generate, Instantiate and Reseed
 - HMAC_DRBG KAT
 - Generate, Instantiate and Reseed
 - HMAC-SHA-1 KAT; covers SHA-1 KAT
 - HMAC-SHA2-256 KAT; covers SHA2-256 KAT
 - HMAC-SHA2-512 KAT; covers SHA2-512 KAT
 - RSA 2048 bits SHA2-256 Signature Generation KAT
 - RSA 2048 bits SHA2-256 Verify KAT

- ECDSA P-224 SHA2-224 Sig Gen KAT
- ECDSA P-224 SHA2-224 Sig Ver KAT
- KBKDF counter KAT
- NIST SP 800-90B Repetitive Count Test (RCT)
- NIST SP 800-90B Adaptive Proportion Test (APT)
- Pairwise consistency test when generating ECDSA key pairs (for signature generation/verification)
- Pairwise consistency test when generating RSA key pairs (for signature generation/verification)

Integrity Test

A software integrity test is performed on the runtime image of the Apple corecrypto Module v12 [Intel, Kernel, Software]. The module's HMAC-SHA2-256 is used as an approved algorithm for the integrity test. If the test fails, then the device powers itself off. The HMAC value is pre-computed at build time and stored in the module. The HMAC value is recalculated during runtime and compared with the stored value.

Conditional Tests

The following sub-sections describe the conditional tests supported by the Apple

corecrypto Module v12 [Intel, Kernel, Software].

Cryptographic algorithm tests

The Apple corecrypto Module v12 [Intel, Kernel, Software] runs all Cryptographic Algorithm Tests during power-up. These tests are detailed above in this section.

Pairwise Consistency Test

The Apple corecrypto Module v12 [Intel, Kernel, Software] does generate asymmetric keys and performs all required pair-wise consistency tests on the newly generated key pairs.

Error Handling

If any of the above-mentioned self-tests fail, the module reports the cause of the error and enters an error state where no cryptographic services are provided and data output is prohibited. The only method to clear the error state is to power cycle the device. The module will only enter into the operational state after successfully passing the preoperational software integrity test and the Conditional CASTs. The module returns the "FAILED: fipspost_post_integrity" error indicator in case of a software integrity test failure, "FAILED: <a href="#railto: railto: software integrity test failure, "FAILED: software integrity" error indicator in case of a software integrity test failure, "FAILED: software integrity" error indicator in case of a software integrity test failure.

11. Life-cycle Assurance

Delivery and Operation

The module is built into macOS Monterey 12 and delivered with macOS. There is no standalone delivery of the module as a software library.

The vendor's internal development process guarantees that the correct version of module goes with its intended macOS version. For additional assurance, the module is digitally signed by vendor and it is verified during the integration into macOS.

This digital signature-based integrity protection during the delivery/integration process is not to be confused with the HMAC-SHA2-256 based integrity check performed by the module itself as its pre-operational self-test. No additional maintenance requirements apply.

Crypto Officer Guidance

The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 10 - Non-Approved Services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode.

A Crypto Officer Role Guide is provided by Apple which offers IT System Administrators with the necessary technical information to ensure FIPS 140-3 Compliance of macOS Monterey 12 systems. This guide walks the reader through the system's assertion of cryptographic module integrity and the steps necessary if module integrity requires remediation. A link to the Guide can be found on the Product security, validations, and guidance page.

Page 39 of 40

12. Mitigation of Other Attacks

The module does not claim mitigation of other attacks.