
Copyright Security First Corp. May be reproduced only in its original entirety (without revision).

SecureParser®

Version 4.7.0

Security Policy
Revision 1.31

6 August 2009

© Security First Corp. 2009
All Rights Reserved.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 2

Revision History
Revision History

Version Date Author Notes

0.01 01/11/2007 Infogard,
Security First
Corp.

Documentation Workshop (Infogard template)

0.02 02/26/2007 Security First
Corp.

Accumulated changes to date after
Documentation Workshop.

0.03 03/20/2007 Security First
Corp.

Added key sizes for DSA & RSA keys in
Section 3 Modes of Operation

0.04 03/22/2007 Security First
Corp.

Added power-on self-test
RSA encrypt/decrypt

0.05 04/20/2007 Security First
Corp.

Corrected Security Rule 25 to reflect PRNG is
based on AES Encrypt, not AES Decrypt

0.06 05/22/2007 Security First
Corp.

Clarified that the same HMAC key is used for
Data & Share authentication/integrity

0.07 06/07/2007 Security First
Corp.

Added Algorithm certificate numbers

0.08 06/12/2007 Security First
Corp.

Added entropy assessment details

0.09 07/11/2007 Security First
Corp.

Updates after Operational Testing.
ECDSA added. Overview updated.

1.00 08/07/2007 Security First
Corp.

Final edit before submission

1.01 11/8/2007 Security First
Corp.

(ISE input)

V4.5.1 revision for submission.

Updated API section, removed references to
single-threaded requirement, added references
for libparser4.sys.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 3

1.02 12/16/2007 Security First
Corp.

(ISE input)

Title page updated.

1.03 01/07/2008 Security First
Corp.

(ISE input)

Responses to CMVP Comments.

Additional V4.5.1 changes for clarity regarding
Multi-threading and Kernel mode.

1.04 01/18/2008 Security First
Corp.

(ISE input)

Responses to CMVP Comments round 2.

All references to MS RSAENH.dll removed.
Standard platform services are providing
entropy.

Security Rule 24:3 corrected.

1.05 01/31/2008 Security First
Corp.

(ISE input)

Responses to CMVP Comments round 3.
Clarification: Key entry/output is always
encrypted.
PRNG_Seed_Value rationale of strength
modified as per CMVP suggestion.

1.1 08/15/2008 Security First
Corp.

(ISE Input)

V4.6 revision for submission.

Updated API, added algorithms, added operating
systems.

1.2 02/02/2009 Security First
Corp.

(ISE input)

V4.7.0 revision for submission.

Updated API section, added description of RPU.
Removed all operating systems but Ubuntu and
the Windows kernel.

1.21 02-17-2009 Security First
Corp.

(ISE input)

Removed function get_errorlog, it is disabled in
FIPS mode.

1.22 02-20-2009 Security First
Corp.

(ISE input)

Prior Track Changes accepted. Prior comments
removed.
Table 1: Level of Physical Security NA 1.
Real picture for Figure 2 – Image of the
Accelium

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 4

1.23 02-20-2009 Security First
Corp.

(ISE input)

Added real picture of the RPU for Figure 2.

1.24 02-23-2009 Security First
Corp.

(ISE input)

Updated photos in Figure 2. Adjusted verbiage
in the physical RPU section.

1.25 02-26-2009 Security First
Corp.

(ISE input)

Clarified key wrapping description under
Security Rules.

1.26 04-01-2009 Security First
Corp.

(ISE input)

Final edits before CMVP submission.

1.30 08-06-2009 Security First
Corp.

(ISE input)

Added Windows Server 2003 references in
anticipation of update submission.

Responses to CMVP Comments.

1.31 08-06-2009 Security First
Corp.

(ISE input)

Minor formatting changes.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 5

TABLE OF CONTENTS

REVISION HISTORY..2

1. MODULE OVERVIEW ...6

2. SECURITY LEVEL..10

3. MODES OF OPERATION...11

4. IDENTIFICATION AND AUTHENTICATION POLICY...13

5. ACCESS CONTROL POLICY..13
ROLES AND SERVICES..13
DEFINITION OF CRITICAL SECURITY PARAMETERS (CSPS)..20
DEFINITION OF CSPS MODES OF ACCESS ..21

6. OPERATIONAL ENVIRONMENT..27

7. SECURITY RULES ..27

8. PHYSICAL SECURITY...29

9. MITIGATION OF OTHER ATTACKS POLICY...29

10. REFERENCES ..30

11. DEFINITIONS AND ACRONYMS...30

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 6

1. Module Overview
The SecureParser (HW P/N AC2020-S, Version 1.0; FW Version 1.0; SW Version 4.7.0)
encryption module is a Hybrid cryptographic module as defined by FIPS Implementation
Guidance for FIPS 140-2: IG 1.9 Definition and Requirements of a Hybrid Cryptographic
Module. The SecureParser encryption module is a special type of software cryptographic module
that, as part of its operation, utilizes special purpose hardware to accelerate cryptographic
operations.

The SecureParser module is a security and data availability architecture delivered in the form of
a toolkit that provides cryptographic data splitting (data encryption, random or deterministic
distribution to multiple shares including additional fault tolerant bits, key splitting,
authentication, integrity, share reassembly, key restoration and decryption) of arbitrary data. The
SecureParser accepts any type of digital data and cryptographically splits it into shares so that no
discernible plaintext is transmitted across a network or is placed on a single storage device.
During the parse process, additional redundant data may be optionally written to each share
enabling the capability of restoring the original data when all shares are not available. The shares
can be stored in geographically disbursed nodes providing for continuous access to online
information.

Each share contains a cryptographically strong integrity check that prevents tampering with the
stored data and is immediately recognized by the other shares. Any change to the data in a share
precludes that share from being used in the data rebuild process. The encryption, integrity and
IDA session keys are encrypted with long-term, external workgroup keys, and a per-session key
encrypting key that is securely secret shared and stored with the data.

Data availability through redundant shares allows for a return to operations in the face of lost or
corrupted shares due to environmental, malicious or accidental catastrophes.

The SecureParser module is designed to be integrated at any point where data is written,
retrieved, sent or received.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 7

Boundaries

Figure 1 – Image of the Cryptographic Module

Physical Boundary (case of general purpose computer)
 Logical Boundary

Logical Boundary

When operating on the Linux operating system Ubuntu 8, the SecureParser cryptographic logical
boundary is defined as containing several objects: the SecureParser libparser4.so, the RPU
Manager files librpu_crypto.so, libRpu.so, and libRPWare.so, the RPU driver drcmod.ko, and
the bitstream image. Seed values for the SecureParser’s random number generator are imported
from standard operating system services within the physical boundary of the general purpose
computer.

When operating on Windows Server 2003, the SecureParser module cryptographic logical
boundary is defined as containing two executable files, the SecureParser libparser4.sys, the RPU
driver/manager rpudrv.sys, and the bitstream image. Seed values for the SecureParser’s random
number generator will be imported from standard operating system services within the physical
boundary of the general purpose computer

The RPU sub-module’s logical boundary consists of the RPU Manager, the RPU driver, and the
RPU’s physical boundary (including the bitstream running therein).

Physical Boundary

The SecureParser cryptographic physical boundary is the case of the General Purpose Computer
(GPC) on which the libparser4 executable is instantiated and in which the RPU coprocessor
resides. Ports at the physical boundary of the GPC are those typical of a GPC for connecting
external devices such as keyboards, monitors, mice, and printers. These devices are outside the
physical boundary of the cryptographic module and are excluded from the validation.

SecureParser module toolkit dynamic
link library:
libparser4.so, Linux
libparser4.sys, Windows

Module’s
exposed
 API

Application
that uses
the module
toolkit
library

Data Input
Data Output
Control Input
Status Output

 Persistent Keystore

All Secret and Private
Key Entry/Output is
encrypted.

Linux RPU Manager:
 librpu_crypto.so
 libRpu.so
 libRPWare.so
Windows RPU Manager:
 rpudrv.sys

Sub-service’s exposed

RPU Kernel Driver:
drcmod.ko, Linux
rpudrv.sys, Windows

HyperTransport Bus

Active
bitstream
on FPGA

Stored
RPWare
on Flash

RPU
Physical Boundary

Volatile Keystore

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 8

Note that all input and output to/from the hardware component of this module (an AcceliumTM
brand RPU) is directed through the module’s software component. The hardware component of
the module does have a JTAG port but that port is disabled during manufacturing via compile
time options.

Operating Systems & Platforms

The SecureParser module has been tested on and found to be conformant with the requirements
of FIPS 140-2 overall Level 1 on the following GPC operating systems: Ubuntu 8 and Windows
Server 2003.

Operational testing was performed on all the above operating systems on a SuperMicro
SuperServer with a motherboard model H8DMU+.

Additionally, the module runs without recompilation on other GPC’s equipped with x64
compatible processors running kernels compatible with Ubuntu 8 and Windows Server 2003.

The Physical RPU

Figure 2 – Images of the RPU Module

The top of the AcceliumTM RPU can be seen on the left of Figure 2. The bottom can be seen on the right.

The AcceliumTM brand RPU used by the SecureParser is made by DRC. The RPU module (see
Figure 2) is a high-performance computing system for use in data intensive applications.
Application images, known as bitstreams, are loaded into the FPGA to configure its operation.
These are stored on the RPU in flash memory so that the RPU can be configured immediately at
power-on. The bitstream application communicates with the outside world over the industry
standard HyperTransportTM bus. Two of the three available HT busses are used for
communication with the OpteronTM CPU. The MilanoTM Hardware OS connects all these
components and provides a simple, well-behaved interface to the RPU Driver running on the
CPU.1 The SecureParser interfaces with the RPU Driver through the RPU Manager to control the
RPU.

1 This paragraph adapted from the DRC Coprocessor System User Guide v3.0.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 9

Figure 3 – Data Flow in Accelerated vs. Unaccelerated Applications

Figure 3 shows two example applications, one in which all code is executed on a CPU and the
second whose core functions have been accelerated using the RPU Coprocessor2.

2 This paragraph adapted from the DRC Coprocessor System User Guide v3.0.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 10

RPU Versioning Information

As per the Implementation Guidance 1.9 Definition and Requirements of a Hybrid
Cryptographic Module, the following is a table of RPU-related part and version numbers:

Item Part/Version Description

RPU Coprocessor AC2030 Socket F daughter board

Windows RPU Manager/Driver 0.91 SecureParser combined RPU
Driver and Manager

Ubuntu RPU Manager 0.8

Ubuntu RPU Driver 3.0 beta 4 SecureParser RPU Driver and
support

RPU SecureParser Bitstream 1.0 rev 16 RPU Bitstream – binary
consists of Milano Hardware
OS, AES, BitSplit and SHA
codes

Milano OS SV1.0 Hardware OS for the DRC RPU

Motherboard of GPC SuperMicro H8DMU+

2. Security Level
The cryptographic module meets the overall requirements applicable to Level 1 security of
FIPS 140-2.

 Table 1 – Module Security Level Specification

 Security Requirements Section Level

Cryptographic Module Specification 3

Module Ports and Interfaces 1

Roles, Services and Authentication 1

Finite State Model 1

Physical Security 1

Operational Environment 1

Cryptographic Key Management 3

EMI/EMC 3

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks N/A

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 11

3. Modes of Operation
Approved Algorithms

In FIPS mode, the SecureParser module supports FIPS Approved algorithms as follows. The
certificate #’s sited below have all been obtained by SecureParser module algorithm testing with
the CAVP:

Software (CPU) Algorithms:

 AES-CBC/ECB - 128/192/256 bit key Cert. #1027
 AES-CTR - 128/192/256 bit key Cert. #1027
 AES-GCM 128/192/256 bit key Cert. #1028
 HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512 Cert. #576
 SHA-1, SHA-256, SHA-384, SHA-512 hashing Cert. #981
 DSA sign/verify – 1024 bit key Cert. #346
 RSA sign/verify – 1024/2048/4096 bit key Cert. #491
 PRNG Key Generation ANSI X9.31 with AES Cert. #584
 ECDSA sign/verify – 521 bit key Cert. #123

Hardware/Firmware (RPU) Algorithms:

 AES-ECB - 256 bit key (ENC only) Cert. #1017
 AES-CTR - 256 bit key Cert. #1017
 HMAC-SHA256 Cert. #575
 SHA-256 Cert. #980

Key Entry and Output

All Key Entry and Output in FIPS mode must be in encrypted form. Plaintext keys are never
entered or output from the module.

NIST Key Wrapping per FIPS 140-2 Annex D using 128/192/256 bit keys. AES (Cert. #1027,
key wrapping; key establishment methodology provides 128, 192 or 256 bits of encryption
strength) for NIST Key Wrapping per FIPS 140-2 Annex D)

RSA Key Wrapping per FIPS 140-2 IG 7.1 Acceptable Key Establishment Protocols, Key
Transport using asymmetric keys [key wrapping] using k = 4096. RSA (key wrapping; key
establishment methodology provides 128 bits of encryption strength).

In FIPS mode the SecureParser module does not support any non-allowed FIPS algorithms.

Configuring the module for FIPS mode

The SecureParser module may be configured for FIPS mode by calling the module’s exposed
module_initialize() API function with the calling parameter “fipsEnabled” set to true.
Subsequent SecureParser module API calls that are used to further configure the SecureParser
will have their calling parameters checked by the SecureParser based on the value of the
“fipsEnabled” calling parameter used in the original module_initialize() API function call.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 12

These subsequent checks are used to insure that all FIPS mode configuration values are set
properly.

Operators can determine if the cryptographic module is running in FIPS versus non-FIPS mode
via execution of the module’s module_getStatus() API function call, which is used to meet the
FIPS area 1 requirements to achieve Level 3. The module_getStatus() API function call equates
to the FIPS “show status” service and will indicate if a FIPS mode of operation has been
selected. The module_getStatus() API call returns two items:

• Whether the module is in FIPS mode (value set = 1), or non-FIPS mode (value set = 0)

• The current FSM state of the module (MODULE_STATE enum)

Once a FIPS mode of operation has been selected the module cannot transition into a non-FIPS
mode of operation during the lifetime of the module instantiation in executable memory.
Similarly once a non-FIPS mode of operation has been selected the module cannot transition into
a FIPS mode of operation during the lifetime of the module instantiation in executable memory.

Non-FIPS mode of operation

The SecureParser module can be initialized in to a non-FIPS Approved mode of operation by
setting the “fipsEnabled” flag to 0 during the first call to the API function module_initialize().

Applications cannot transition their use of the module toolkit library to/from FIPS mode and
non-FIPS mode while the module is instantiated. The module must be shut down by the calling
application and then restarted to transition to/from FIPS mode and non-FIPS mode. Note that the
module does not have any persistent CSPs. All CSPs are zeroed when the module is shut down
or transitions between modes.

RPU sub-module operation

The RPU sub-module, as used by the SecureParser, always operates in a FIPS-Approved mode
whether the SecureParser is in FIPS-Approved or non-FIPS Approved mode. It supports strictly
FIPS-Approved cryptographic algorithms, and the SecureParser will always zero all keys in the
RPU during module destruction. To verify that the RPU has been successfully programmed, the
operator can refer to the LED on the RPU that will blink during power-on, then turn on steadily
after the RPU is programmed. Additionally, the RPU manager, driver, and bitstream image are
digitally signed and verified as part of the module integrity test, and all cryptographic algorithms
on the RPU are subject to known-answer-tests during module initialization.

Once the SecureParser has initialized the RPU device, it has exclusive access. No other
processes can access the RPU device until the SecureParser releases it. Before releasing the
RPU, the SecureParser destroys all CSPs in the RPU by calling rpu_zeroize(). Since no CSPs
natively exist in the RPU, there is no threat of CSP compromise by an untrusted process
accessing the RPU before the SecureParser.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 13

4. Identification and Authentication Policy
Assumption of roles

The SecureParser module has two distinct operator roles - governed by a single operator (the
operating system): Cryptographic-Officer role; User role. Operators of the cryptographic module
implicitly assume roles each time they call into the SecureParser module via exposed
SecureParser API function calls. Each API call into the SecureParser module performs a module
service. Consistent with FIPS 140-2 area 3 Level 1 requirements, the operators of the
SecureParser cryptographic module are not authenticated to the module. Note that the operating
systems the module is run on provide functionality to require an operator to be successfully
authenticated prior to using any service provided by the module.

Table 2 – Roles and Required Identification and Authentication

Role Type of Authentication Authentication Data

Cryptographic-Officer None None

User None None

Table 3 – Strengths of Authentication Mechanisms

Authentication Mechanism Strength of Mechanism

None None

5. Access Control Policy
Roles and Services

Table 4 – Services Authorized for Roles

Role Authorized Services

Cryptographic-Officer:

The Cryptographic-Officer
role is assumed when
applications call the
module’s exposed API
functions that perform
initialization,
configuration, and

• module_initialize. Initializes the module, sets FIPS mode or
non-FIPS mode, performs self tests, and moves the module
into an operational state.

• parser_create. Allocates the memory for a Parser structure.
There can be multiple parser instances within the module –
they are all either in FIPS mode, or they are all in non-FIPS
mode (determined by the module_initialize service).

• parser_destroy. Deallocates the memory of a Parser
structure.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 14

Role Authorized Services

administrative services.

• parser_generateHeaders. Configures parser context and
generates headers.

• parser_restoreHeaders. Configures parser context based
on headers with optional modifications.

• parser_regenerateHeaders. Produces headers associated
with an already-configured parser context.

• parser_recoverHeaders. Recovers missing headers and
places them in the output buffers that are unused.

• parser_setWorkgroupKeys. Changes the workgroup keys
in an existing parser context.

• keystore_getImportKey. Provides the RSA public key
needed for asymmetric key wrapping for all key entry into
the specified keystore of the module (note that each keystore
will have its own ephemeral public/private keypair).

• keystore_create. Allocates memory for a volatile KeyStore
structure, and creates a non-persistent RSA public/private
encryption keypair to be used for key import (note that each
keystore will have its own public/private keypair).

• keystore_destroy. Deallocates the memory of a volatile
KeyStore structure.

• keystore_addKeyFromBuffer. Imports a key into the
specified volatile keystore structure. All imported keys will
be RSA key wrapped and will need to be unwrapped by the
module. Note: x509 certificates can be in the buffer, their
public keys will be imported.

• keystore_removeKey. Removes a key from the volatile
keystore.

• keystore_getKeyType. Returns the key type for the
requested key.

• keystore_getkeylength. Returns the key length for the
requested key.

• keystore_keyexists. True or False, the requested key exists
or does not exist within the specified volatile keystore.

• module_getStatus: This service provides the current status
of the cryptographic module including whether or not a
FIPS Approved mode of operation has been selected.

• module_destroy: Zeroization, called by the application
prior to (graceful) application termination. Zeroes non-
persistent CSPs including the RSA import public/private
keypair, and the volatile Keystores. ALL keystores and ALL
parsers in memory are zeroed.

• Self tests: Power cycle

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 15

Role Authorized Services

User:

The User role is assumed
when applications call the
module’s exposed API
functions that perform
general cryptographic
services.

• parser_parseData. Parses data from the input buffer into
the output buffers.

• parser_restoreData. Restores data from the output buffers
into the input buffer.

• parser_parseDataEx. Parses an array of input buffers into
the output buffers.

• parser_recoverData. Rebuilds all N data shares given only
M input shares.

• parser_getFieldOffsets. Returns an array of {share number,
offset, length} tuples necessary to create M of N shares for a
given M value and a set of “N of N” parsed shares.

• parser_setFaultTolerance. Sets a new fault tolerance value
(M). Designed for use with parser_getFieldOffsets().

• parser_getHeaderInfo. Processes the header and returns
information about specific header fields.

• parser_getParsedLength. Returns the number of bytes
needed for each output share when parsing.

• parser_getRestoredLength. Returns the number of bytes
needed for the original share when restoring.

• module_getStatus: This service provides the current status
of the cryptographic module including whether or not a
FIPS Approved mode of operation has been selected.

• Self tests: Power cycle

Table 5 – Specification of Service Inputs & Outputs

Service Control Input Data Input Data Output Status
Output

module_initialize int fipsEnabled

N/A N/A Success or
ERROR_TYPE

parser_create N/A N/A Parser **ret Success or
ERROR_TYPE

parser_destroy Parser *p N/A N/A Success or
ERROR_TYPE

parser_
generateHeaders

Parser *p
KeyStore *ks
int L
int M
int N
IDA_TYPE idaMode
ENC_TYPE encMode
HASH_TYPE hashMode
uint8 *encWgKeyId

N/A uint8 **outputBuffers
uint32
*outputBufferLengths

Success or
ERROR_TYPE

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 16

Service Control Input Data Input Data Output Status
Output

uint32 encWgKeyIdMem
uint32 encWgKeyIdLength
uint8 *macWgKeyId
uint32 macWgKeyIdMem
uint32 macWgKeyIdLength
uint8 *idaWgKeyId
uint32 idaWgKeyIdMem
uint32 idaWgKeyIdLength
AUTH_TYPE postAuthMode
HASH_TYPE postHashMode
uint8 *postAuthPubKeyId
uint32
postAuthPubKeyIdMem
uint32
postAuthPubKeyIdLength
uint8 *postAuthPrivKeyId
uint32
postAuthPrivKeyIdMem
uint32
postAuthPrivKeyIdLength
uint32 *outputBufferMems
int outputBuffersCount

parser_
restoreHeaders

Parser *p
KeyStore *ks
HASH_TYPE hashMode
uint8 *encWgKeyId
uint32 encWgKeyIdMem
uint32 encWgKeyIdLength
uint8 *macWgKeyId
uint32 macWgKeyIdMem
uint32 macWgKeyIdLength
uint8 *idaWgKeyId
uint32 idaWgKeyIdMem
uint32 idaWgKeyIdLength
AUTH_TYPE postAuthMode
HASH_TYPE postHashMode
uint8 *postAuthPubKeyId
uint32
postAuthPubKeyIdMem
uint32
postAuthPubKeyIdLength
uint8 *postAuthPrivKeyId
uint32
postAuthPrivKeyIdMem
uint32
postAuthPrivKeyIdLength
uint32 * inputBufferMems
uint32 * inputBufferLengths
int inputBuffersCount
int trustedShareNumber

uint8
**inputBuffers

N/A Success or
ERROR_TYPE

parser_ Parser *p N/A uint8 **outputBuffers Success or

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 17

Service Control Input Data Input Data Output Status
Output

regenerateHeaders uint32 *outputBufferMems
int outputBuffersCount

uint32
*outputBufferLengths

ERROR_TYPE

parser_
recoverHeaders

KeyStore *ks
HASH_TYPE hashMode
char *workgroupKeyId
uint32 workgroupKeyIdMem
uint32 workgroupKeyIdSize,
AUTH_TYPE postAuthMode
char *postAuthKeyId
uint32 postAuthKeyIdMem
uint32 postAuthKeyIdSize
uint32 *outputBufferMems
uint32 *outputBufferLengths

uint8
**outputBuffers

uint8 **outputBuffers
uint32
*outputBufferLengths

Success or
ERROR_TYPE

parser_
setWorkgroupKey
s

Parser * p
char * encWgKeyId
uint32 encWgKeyIdMem
uint32 encWgKeyIdLength
char * macWgKeyId
uint32 macWgKeyIdMem
uint32 macWgKeyIdLength
char * idaWgKeyId
uint32 idaWgKeyIdMem
uint32 idaWgKeyIdLength

N/A N/A Success or
ERROR_TYPE

keystore_
getImportKey

KeyStore *ks
uint32 bufferMem

N/A uint8 *buffer
uint32 *bufferLength

Success or
ERROR_TYPE

keystore_create int minimumKeyCount N/A KeyStore **ret Success or
ERROR_TYPE

keystore_destroy KeyStore *ks

N/A N/A Success or
ERROR_TYPE

keystore_
addKeyFromBuffe
r

KeyStore *ks
uint32 bufferMem
uint32 bufferLength
char *id
uint32 idMem
uint32 idLength
char *passphrase
uint32 passphraseMem
uint32 passphraseLength
IMPORT_TYPE importType

uint8* buffer
char *id

N/A Success or
ERROR_TYPE

keystore_
removeKey

KeyStore *ks
char *id
uint32 idMem
uint32 idLength

N/A N/A Success or
ERROR_TYPE

keystore_
getKeyType

KeyStore *ks
char *id
uint32 idMem
uint32 idLength

N/A KEY_TYPE *keyType Success or
ERROR_TYPE

keystore_
getKeyLength

KeyStore *ks
char *id
uint32 idMem

N/A uint32 *keyLength Success or
ERROR_TYPE

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 18

Service Control Input Data Input Data Output Status
Output

uint32 idLength
keystore_keyExist
s

KeyStore *ks
char *id
uint32 idMem
uint32 idLength

N/A int *keyExists Success or
ERROR_TYPE

parser_parseData Parser *p
uint32 inputBufferLength
uint32 inputBufferMem
uint32 *outputBufferMems
int outputBuffersCount

uint8 *inputBuffer uint8**outputBuffers
uint32
*outputBufferLengths

Success or
ERROR_TYPE

parser_parseDataE
x

Parser * p
uint32 * inputBufferMems
uint32 * inputBufferLengths
uint32 inputBuffersCount
uint32 * outputBufferMems
uint32 outputBuffersCount

uint8 **
inputBuffers

uint8**outputBuffers
uint32
*outputBufferLengths

Success or
ERROR_TYPE

parser_restoreData Parser *p
uint32 outputBufferMem
uint32 *inputBufferLengths
uint32 *inputBufferMems
int inputBuffersCount
int trustedShareNumber

uint8
**inputBuffers

uint8 *outputBuffer
uint32
*outputBufferLength

Success or
ERROR_TYPE

parser_recoverDat
a

Parser *p
uint32 *outputBufferLengths
uint32 *outputBufferMems
int outputBuffersCount
int trustedShareNumber

uint8
*outputBuffers

uint8**outputBuffers
uint32
*outputBufferLengths

Success or
ERROR_TYPE

parser_
getHeaderInfo

uint32 headerMem
uint32 headerLength
uint32 retMem

DATAFIELD_TYP
E t
uint8 *header

void *ret
uint32 *retLength

Success or
ERROR_TYPE

parser_
getParsedLength

Parser *p uint32 inputLength

uint32 *ret

Success or
ERROR_TYPE

parser_
getRestoredLength

Parser *p uint32 inputLength uint32 *ret

Success or
ERROR_TYPE

parser_
getFieldOffsets

Parser * p
uint32 plaintextLength
int intendedM

N/A FieldOffsets * o

Success or
ERROR_TYPE

parser_
setFaultTolerance

Parser *p
int newM

N/A N/A Success or
ERROR_TYPE

module_getStatus N/A N/A int *fipsEnabled
MODULE_STATE *state

Success or
ERROR_TYPE

module_destroy
(Zeroization)

N/A N/A N/A Success or
ERROR_TYPE

Self-Tests (Power
cycle)

N/A N/A N/A

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 19

Table 5.1 – Specification of Accelerator Subservice Inputs & Outputs

Service Control Input Data Input Data Output Status
Output

rpu_parse_init bool useRpu
rpu_enc_t encMode
rpu_ida_t idaMode
rpu_macIV_t
macIVMode

N/A size_t * shareStrideRpu
DHANDLE
*pHndlRpuIF

Success or
Error

rpu_parse_cleanup DHANDLE hndlRpuIF N/A N/A Success or
Error

rpu_parseData bool useRpu
DHANDLE hndlRpuIF
int numShares
size_t bufferLen
size_t shareStride
unsigned char *encKey
size_t encKeyLen
unsigned char *encIV
size_t encIVLen
unsigned char *idaKey
size_t idaKeyLen
rpu_mac_t macMode
unsigned char *macKey
size_t macKeyLen

unsigned char
**aInBuffer
unsigned char
*inBuffer

unsigned char
**aOutBuffer
unsigned char *outBuffer
unsigned char **aDigest
size_t digestLen

Success or
Error

rpu_restoreData bool useRpu
DHANDLE hndlRpuIF
int numShares
size_t bufferLen
size_t shareStride
unsigned char *encKey
size_t encKeyLen
unsigned char *encIV
size_t encIVLen
unsigned char *idaKey
size_t idaKeyLen
rpu_mac_t macMode
unsigned char *macKey
size_t macKeyLen

unsigned char
**aInBuffer
unsigned char
*inBuffer

unsigned char
**aOutBuffer
unsigned char *outBuffer
uint32_t *aMacVerified

Success or
Error

rpu_getStatus N/A N/A uint32 * rpuInitialized Success or
ERROR_TYPE

rpu_zeroize N/A N/A N/A Success or
ERROR_TYPE

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 20

Definition of Critical Security Parameters (CSPs)

The following are CSPs contained within the module:

• Private_Import_Key_RSA_Unwrap: Used by the SecureParser module to unwrap
encrypted keys sent to it by applications. All keys sent to the SecureParser will be RSA
key wrapped by applications with CSP Public_Import_Key_RSA_Wrap. Note that
each SecureParser keystore will have its own associated RSA public/private import
keypair.

• Workgroup_Key_Enc: Used to NIST key wrap internally generated encryption session
key (Session_Key_Enc), also used to unwrap encryption session key when headers are
being restored.

• Workgroup_Key_Mac: Used to NIST key wrap internally generated integrity session
key (Session_Key_Mac), also used to unwrap integrity session key when headers are
being restored.

• Workgroup_Key_Ida: Used to NIST key wrap internally generated IDA session key
(Session_Key_Ida), also used to unwrap IDA session key when headers are being
restored.

• Session_Key_Enc: Used to encrypt all plaintext data prior to data splitting. Encrypted by
Workgroup_Key_Enc using the NIST Key wrap and then placed into share headers.

• Session_Key_Mac: HMAC-SHA1, SHA256, SHA384, or SHA512 key used for
ciphertext data integrity once splitting is complete. Encrypted by Workgroup_Key_Mac
using the NIST Key wrap and then placed into share headers.

• Session_Key_Ida: Random seed used as input to IDAs for adding randomness.
Encrypted by Workgroup_Key_Mac using the NIST Key wrap and then placed into share
headers.

• Share_Integrity_Key_HMAC: Optional HMAC-SHA1, HMAC-SHA256, HMAC-
SHA384, or HMAC-SHA512 key used for additional ciphertext share data integrity after
data splitting. Never output.

• Share_Integrity_Key_ DSA_Sign: Optional DSA Private Key (PEM or ANSI) used to
sign ciphertext share data after the data splitting process. Never output.

• Share_Integrity_Key_ RSA_Sign: Optional RSA Private Key used to sign ciphertext
share data after the data splitting process. Never output.

• Share_Integrity_Key_ ECDSA_Sign: Optional ECDSA Private Key (PEM or ANSI)
used to sign ciphertext share data after the data splitting process. Never output.

• PRNG_Seed_Key: Imported from standard operating system services within the physical
boundary of the general purpose computer. Used to seed the module’s own FIPS ANSI
X9.31 pseudo random number generator. Rationale of strength follows
PRNG_Seed_Value description.

• PRNG_Seed_Value: Imported from standard operating system services within the
physical boundary of the general purpose computer. Used to seed the module’s own FIPS
ANSI X9.31 pseudo random number generator. Must not be identical to
PRNG_Seed_Key. Since the PRNG seed comes from the operating system, which is
outside the logical boundary of the module, for the purposes of FIPS 140-2, the
entropy of this seed may be assumed to be equal to the length of the seed. The seed
length is 128 bits.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 21

• SecureParser PRNG_State: Internal state of the SecureParser’s PRNG (Cert. #584).

Definition of Public Keys

The following are the public keys contained in the module:

• Public_Import_Key_RSA_Wrap: Used by applications to wrap keys they are sending
to the SecureParser module. All keys sent to the SecureParser must be RSA wrapped.
Note that each SecureParser keystore will have its own public/private key pair.

• SW_Integrity_Key_DSA_Verify: Used for verification of the signed module executable
during power-on self-tests. Hard coded in the module.

• Share_Integrity_Key_DSA_Verify: Optional DSA Public Key (PEM or ANSI) used to
verify ciphertext share data during the restoration process. Can be imported into the
module from an X509 certificate.

• Share_Integrity_Key_RSA_Verify: Optional RSA Public Key used to verify ciphertext
share data during the restoration process. Can be imported into the module from an X509
certificate.

• Share_Integrity_Key_ECDSA_Verify: Optional ECDSA Public Key (PEM or ANSI)
used to verify ciphertext share data during the restoration process. Can be imported into
the module from an X509 certificate.

Definition of CSPs Modes of Access

Table 6 defines the relationship between access to CSPs and the different module services. The
modes of access shown in the table are defined as follows:

• G = Generate CSP
• R = Read CSP
• W = Write CSP
• Z = Zero CSP
• WR = Write CSP to RPU3
• ZR = Zero CSP on RPU

Table 6 – CSP Access Rights within Roles & Services
Ref. SecureParser Specification: 4.4 Critical Security Parameters

 Role

C.O. User

Service Cryptographic Keys and CSPs
Access Operation

X module_initialize PRNG_Seed_Key, G-Z
PRNG_Seed_Value, G-Z
PRNG_State, W

X parser_create N/A

3 The RPU provides no interface to read back CSPs after they are written.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 22

 Role

C.O. User

Service Cryptographic Keys and CSPs
Access Operation

X parser_destroy Session_Key_Enc, Z
Session_Key_Mac, Z
Session_Key_Ida, Z

X parser_generateHeaders Session_Key_Enc, G-R-W
Session_Key_Mac, G-R-W
Session_Key_Ida, G-R-W
Workgroup_Key_Enc, R
Workgroup_Key_Mac, R
Workgroup_Key_Ida, R
Share_Integrity_Key_HMAC, R
Share_Integrity_Key_DSA_Sign, R
Share_Integrity_Key_RSA_Sign, R
Share_Integrity_Key_ECDSA_Sign, R
PRNG_State, R-W

X parser_restoreHeaders Session_Key_Enc, R-W
Session_Key_Mac, R-W
Session_Key_Ida, R-W
Workgroup_Key_Enc, R
Workgroup_Key_Mac, R
Workgroup_Key_Ida, R
Share_Integrity_Key_HMAC, R

X parser_regenerateHeaders Session_Key_Enc, R
Session_Key_Mac, R
Session_Key_Ida, R
Workgroup_Key_Enc, R
Workgroup_Key_Mac, R
Workgroup_Key_Ida, R
Share_Integrity_Key_HMAC, R
Share_Integrity_Key_DSA_Sign, R
Share_Integrity_Key_RSA_Sign, R
Share_Integrity_Key_ECDSA_Sign, R

X parser_recoverHeaders Session_Key_Enc, R
Session_Key_Mac, R
Session_Key_Ida, R
Workgroup_Key_Enc, R
Workgroup_Key_Mac, R
Workgroup_Key_Ida, R
Share_Integrity_Key_HMAC, R
Share_Integrity_Key_DSA_Sign, R
Share_Integrity_Key_RSA_Sign, R
Share_Integrity_Key_ECDSA_Sign, R

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 23

 Role

C.O. User

Service Cryptographic Keys and CSPs
Access Operation

X parser_setWorkgroupKeys Session_Key_Enc, R
Session_Key_Mac, R
Session_Key_Ida, R
Workgroup_Key_Enc, W
Workgroup_Key_Mac, W
Workgroup_Key_Ida, W

X keystore_create Private_Import_Key_RSA_Unwrap, G
Public_Import_Key_RSA_Wrap, G

X keystore_destroy All CSPs in the keystore, Z
X keystore_addKeyFromBuffer All keys that are imported, R-W

Private_Import_Key_RSA_ Unwrap, R
X keystore_removeKey Specified key in volatile keystore

structure Z
X keystore_getKeyType Specified key in volatile keystore

structure R
X keystore_getKeyLength Specified key in volatile keystore

structure R
X keystore_keyExists Specified key in volatile keystore

structure R
X keystore_getImportKey Public_Import_Key_RSA_Wrap, R
 X parser_parseDataEx Session_Key_Enc, R, WR

Session_Key_Mac, R, WR
Session_Key_Ida, R, WR
Share_Integrity_Key_HMAC, R
Share_Integrity_Key_DSA_Sign, R
Share_Integrity_Key_RSA_Sign, R
Share_Integrity_Key_ECDSA_Sign, R
PRNG_State, R-W

 X parser_parseData Session_Key_Enc, R, WR
Session_Key_Mac, R, WR
Session_Key_Ida, R, WR
Share_Integrity_Key_HMAC, R
Share_Integrity_Key_DSA_Sign, R
Share_Integrity_Key_RSA_Sign, R
Share_Integrity_Key_ECDSA_Sign, R
PRNG_State, R-W

 X parser_restoreData Session_Key_Enc, R, WR
Session_Key_Mac, R, WR
Session_Key_Ida, R, WR
Share_Integrity_Key_HMAC, R

 X parser_recoverData Session_Key_Mac, R

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 24

 Role

C.O. User

Service Cryptographic Keys and CSPs
Access Operation

Session_Key_Ida, R
Share_Integrity_Key_HMAC, R
Share_Integrity_Key_DSA_Sign, R
Share_Integrity_Key_RSA_Sign, R
Share_Integrity_Key_ECDSA_Sign, R

 X parser_getHeaderInfo N/A
 X parser_getFieldOffsets N/A
 X parser_setFaultTolerance N/A
 X parser_getParsedLength N/A
 X parser_getRestoredLength N/A
X X module_getstatus N/A
X Zeroization:

module_destroy

All CSPs (includes imported public
keys and everything in the volatile
keystore). Also zeroes all keys in the
RPU sub-module by calling
rpu_zeroize, Z, ZR

 Self tests (power cycle) SW Integrity: Digital signature using
Security First Corp. public DSA key
SW_Integrity_Key_ DSA_Verify, R

For each service listed in Table 6 above, the following identifies all CSPs that are entered into
and output from the module during execution of each service.

• module_initialize:
o Entry: N/A.
o Output: N/A.

• parser_create:
o Entry: N/A.
o Output: N/A.

• parser_destroy:
o Entry: N/A.
o Output: N/A.

• parser_generateHeaders:
o Entry: N/A.
o Output:

 Session_Key_Enc (encrypted with Workgroup_Key_Enc).
 Session_Key_Mac (encrypted with Workgroup_Key_Mac).
 Session_Key_Ida (encrypted with Workgroup_Key_Ida).

• parser_restoreHeaders:
o Entry:

 Session_Key_Enc (encrypted with Workgroup_Key_Enc).
 Session_Key_Mac (encrypted with Workgroup_Key_Mac).

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 25

 Session_Key_Ida (encrypted with Workgroup_Key_Ida).
o Output: N/A.

• parser_regenerateHeaders:
o Entry: N/A.
o Output:

 Session_Key_Enc (encrypted with Workgroup_Key_Enc).
 Session_Key_Mac (encrypted with Workgroup_Key_Mac).
 Session_Key_Ida (encrypted with Workgroup_Key_Ida).

• parser_recoverHeaders:
o Entry:

 Session_Key_Enc (encrypted with Workgroup_Key_Enc).
 Session_Key_Mac (encrypted with Workgroup_Key_Mac).
 Session_Key_Ida (encrypted with Workgroup_Key_Ida).

o Output:
 Session_Key_Enc (encrypted with Workgroup_Key_Enc).
 Session_Key_Mac (encrypted with Workgroup_Key_Mac).
 Session_Key_Ida (encrypted with Workgroup_Key_Ida).

• parser_setWorkgroupKeys:
o Entry: N/A.
o Output: N/A.

• keystore_create:
o Entry: N/A.
o Output: N/A.

• keystore_destroy:
o Entry: N/A.
o Output: N/A.

• keystore_addKeyFromBuffer:
o Entry:

 Workgroup_Key_Enc (encrypted with Public_Import_Key_RSA_Wrap).
 Workgroup_Key_Mac (encrypted with Public_Import_Key_RSA_Wrap).
 Workgroup_Key_Ida (encrypted with Public_Import_Key_RSA_Wrap).
 Share_Integrity_Key_HMAC (encrypted with

Public_Import_Key_RSA_Wrap).
 Share_Integrity_Key_DSA_Sign (encrypted with

Public_Import_Key_RSA_Wrap).
 Share_Integrity_Key_RSA_Sign (encrypted with

Public_Import_Key_RSA_Wrap).
 Share_Integrity_Key_ECDSA_Sign (encrypted with

Public_Import_Key_RSA_Wrap).
o Output: N/A.

• keystore_removeKey:
o Entry: N/A.
o Output: N/A.

• keystore_getKeyType:
o Entry: N/A.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 26

o Output: N/A.
• keystore_getKeyLength:

o Entry: N/A.
o Output: N/A.

• keystore_keyExists:
o Entry: N/A.
o Output: N/A.

• keystore_getImportKey:
o Entry: N/A.
o Output: Public_Import_Key_RSA_Wrap (plaintext).

• parser_parseDataEx:
o Entry: N/A.
o Output: N/A.

• parser_parseData:
o Entry: N/A.
o Output: N/A.

• parser_restoreData:
o Entry: N/A.
o Output: N/A.

• parser_recoverData:
o Entry: N/A.
o Output: N/A.

• parser_getHeaderInfo:
o Entry: N/A.
o Output: N/A.

• parser_getFieldOffsets:
o Entry: N/A.
o Output: N/A.

• parser_setFaultTolerance:
o Entry: N/A.
o Output: N/A.

• parser_getParsedLength:
o Entry: N/A.
o Output: N/A.

• parser_getRestoredLength:
o No key Entry or Output.

• module_getstatus:
o Entry: N/A.
o Output: N/A.

• Zeroization: module_destroy:
o Entry: N/A.
o Output: N/A.

• Self tests (power cycle):
o Entry: N/A.
o Output: N/A.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 27

6. Operational Environment
The FIPS 140-2 Area 6 Operational Environment requirements are applicable because the
SecureParser module operates in a modifiable operational environment on a general purpose
computer. See the description of the operational environment in Section 1, Module Overview,
above.

7. Security Rules
The SecureParser cryptographic module’s design corresponds to the module’s security rules.
This section documents the security rules enforced by the cryptographic module to implement
the security requirements of this FIPS 140-2 Level 1 hybrid module.

1. The SecureParser module interfaces shall be logically distinct from each other as
defined by the SecureParser API for the following interfaces: Data Input; Data
Output; Control Input; Status Output.

2. Status information shall not contain CSPs or sensitive data that if misused could lead
to a compromise of the module.

3. Data output shall be inhibited during self-tests, and while in error states.
4. Data output shall be disconnected from the module processes that perform key

generation, and plaintext CSP zeroing (the module will not support manual key
entry).

5. All input and output to/from the RPU sub-module must be directed through the
SecureParser’s interface.

6. Two independent internal actions will be required to output data via the output
interface through which sensitive restored plaintext share data is output.

7. Plaintext secret/private key output is not supported. No SecureParser API calls will
permit secret/private key output.

8. The SecureParser module shall provide two distinct operator roles. These are the
User role, and the Cryptographic-Officer role.

9. The SecureParser module shall not support concurrent operators.
10. The SecureParser module shall not support a maintenance role.
11. The SecureParser module shall not support a bypass capability.
12. The SecureParser module does not provide any operator authentication.
13. Explicit service API calls into the SecureParser module shall allow the implicit

assumption of operator roles.
14. The SecureParser module includes the following operational and error states: Power

on/off state; Crypto officer state; User state; Self-test state; Error state; Key/CSP
Entry state.

15. Recovery from error states shall be possible by power cycling the module.
16. Secret keys, private keys, and CSPs shall be protected within the cryptographic

module from unauthorized disclosure, modification, and substitution.
17. Public keys shall be protected within the cryptographic module against unauthorized

modification and substitution.
18. An Approved RNG (ANSIX9.31 with AES) shall be used for the generation of AES

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 28

cryptographic keys within the module.
19. An Approved RNG (ANSIX9.31 with AES) shall be used for the generation of RSA

cryptographic key pairs within the module.
20. The PRNG seed and seed key shall not have the same value.
21. Compromising the security of the key generation method (e.g., guessing the seed

value to initialize the deterministic RNG) shall require as least as many operations as
determining the value of the generated key.

22. The SecureParser module shall associate all cryptographic keys (secret, private, or
public) stored within the module with the correct entity (KeyID) to which the key is
assigned.

23. The SecureParser module shall provide a method to zero all plaintext secret and
private cryptographic keys and CSPs within the module (including the RPU sub-
module) in a time that is not sufficient to compromise the plaintext secret and private
keys and CSPs (service: module_destroy).

24. Power-on Self-tests will not require operator intervention, they will be performed
automatically when the module is initialized.

25. The cryptographic module shall perform the following self-tests:
a. Power up Self-Tests:

i. Software cryptographic algorithm tests:
1. PRNG KAT, covers AES Encrypt
2. AES Decrypt KAT (ECB mode with 256-bit key)
3. AES Encrypt and Decrypt KAT (GCM mode with 128,192,

and 256-bit keys)
4. HMAC KATS using SHA-256, SHA-384, SHA-512, covers

SHA-256, SHA-384, and SHA-512 hashing
5. DSA sign/verify using SHA-1, covers SHA-1 hashing
6. RSA-PSS sign/verify
7. RSA encrypt/decrypt
8. ECDSA sign/verify

ii. RPU cryptographic algorithm tests:
1. AES256-CTR KAT, covers ECB Encrypt
2. HMAC KAT using SHA-256
3. SHA-256 KAT

iii. Software/Firmware Integrity Test – DSA public key verification of a
private key signature. Covers all module executables listed in Figure 1
- Image of the Cryptographic Module.

b. Conditional Self-Tests:
i. Continuous Random Number Generator (PRNG) test – performed on

each sample from the PRNG (each sample will be 128 AES bits).
ii. Pairwise consistency test – performed each time an RSA “import” key

pair is generated inside the module.
26. If the SecureParser module fails a self-test, the module shall enter an error state and

output an error indicator via the status output interface.
27. The SecureParser module, including the RPU sub-module, shall not perform any

cryptographic operations while in an error state.
28. The SecureParser module and the RPU sub-module shall have a shared error state.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 29

29. When the power-up tests are completed, the results (i.e. indications of success or
failure) shall be output via the “status output” interface.

30. The operator shall be capable of commanding the module to perform the power-up
self-tests at any time by power cycling the cryptographic module.

31. None of the mentioned hardware, software, or firmware components will be excluded
from the module.

This section documents the security rules imposed by the vendor:

1. An approved encryption mode and an approved integrity mechanism must be
requested by calling applications to run the SecureParser module in FIPS Approved
mode.

2. Workgroup keys shall be mandatory for the SecureParser module to run in a FIPS
Approved mode.

3. Workgroup keys shall not be placed in data shares.
4. The SecureParser module shall encrypt all share data using AES session keys.
5. The SecureParser module shall provide for the integrity of encrypted data shares

using HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512, or GCM.
In addition an optional configurable second layer of integrity will be provided using
either HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512, DSA,
ECDSA, or RSA.

6. All Secret and Private Keys entered via the module's keystore_addKeyFromBuffer()
service are encrypted using RSA key wrapping. All Secret and Private Keys
entered/output via the module's parser_parseData() and parser_restoreData()
services are encrypted using NIST Key Wrapping.

7. There is a procedural control prohibiting the use of the JTAG debugging port on the
physical RPU.

8. Physical Security
FIPS 140-2 Area 5 Physical Security requirements are applicable because the SecureParser is a
hybrid module. The SecureParser is intended to operate on a general purpose computer, which is
defined as a Multi-Chip Standalone device. The general purpose computer shall be comprised of
production grade components and a production grade enclosure. The DRC RPU hardware
component of the hybrid module also consists of production-grade components that include
standard passivation techniques to protect against environmental or other physical damage. The
Secure Delivery Document for SecureParser by Security First Corp. defines the procedures for
maintaining security while distributing the module to operators.

9. Mitigation of Other Attacks Policy
The SecureParser module has not been designed to mitigate any specific attacks.

Security First Corp. SecureParser Security Policy Version 1.31 Revision 08/06/2009

Page 30

10. References
OpenSSL: This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org)

Portions of this document were based upon the DRC Coprocessor System User Guide v3.0 (©
2009 DRC Computer Corporation).

11. Definitions and Acronyms
Share

A partition of data created after the SecureParser is enacted to parse data.

Mandatory Share

A mandatory share is a share that must be present for the proper recovery of data. In other words,
all mandatory shares must be available. The number of mandatory shares is denoted by L.

Non-mandatory Share

The SecureParser allows for the reconstruction of data with a subset of non-mandatory shares.
The number of non-mandatory shares is denoted by N and the number of non-mandatory shares
that must be available to restore is denoted by M.

M of N

In this document, we refer to M of N shares which is intended to mean M of N non-mandatory
shares and L mandatory shares. For example, “without M of N shares...” means without at least
M non-mandatory shares and L mandatory shares.

Trusted

Something that is trusted is known to meet its security assumptions. For example, a trusted share
is known to be valid, untampered with, and otherwise uncompromised by any adversaries.

Workgroup key

This can be any encryption key that can be used to encrypt or decrypt data. Often it is a shared
key between users of the application working together.

Integrity Authentication key:

This can be any key used for generating or verifying a MAC or signature of data.

Information Dispersal Algorithm (IDA):

An algorithm, possibly keyed, that divides information into multiple components. An IDA may
add redundancy to allow the information to be recovered if some of the components are
unavailable. Each IDA has an inverse algorithm that, when given some or all of the
aforementioned components, produces the original information.

