Apple Inc.

Apple corecrypto Module v13.0 [Intel, User, Software, SL1]

FIPS 140-3 Non-Proprietary Security Policy

Document Version 2.0 January 2025

Prepared by: Lightship Security Inc. 1101-150 Isabella Street, Ottawa, ON, K1S 1V7 www.lightshipsec.com

Trademarks

Apple's trademarks applicable to this document are listed in <u>https://www.apple.com/legal/intellectual-property/trademark/appletmlist.html</u>. Other company, product, and service names may be trademarks or service marks of others.

Contents

1.	Genera	General5				
2.	Cryptographic Module Specification					
3.	Crypto	Cryptographic Module Interfaces 12				
4.	Roles,	Service and Authentication	13			
	4.1	Authentication	14			
	4.2	Services	14			
5.	Softwa	re/Firmware Security	19			
	5.1	Integrity Techniques	19			
	5.2	On-demand Integrity Test	19			
6.	Operat	tional Environment	20			
	6.1	Applicability	20			
7.	Physic	al Security	21			
8.	Non-in	vasive Security	22			
9.	Sensiti	ve Security Parameter Management	23			
	9.1	Random Number Generation	25			
	9.2	Key / SSP Generation	25			
	9.3	Key / SSP Establishment	26			
	9.4	Key / SSP Import/Export	26			
	9.5	Key / SSP Storage	26			
	9.6	Key / SSP Zeroisation	27			
10.	Self-te	sts	28			
	10.1	Pre-operational Software Integrity Test	28			
	10.2	Conditional Self-Tests	28			
	10.3	Error Handling	29			
11.	Life-cy	cle Assurance	30			
	11.1	Delivery and Operation	30			
	11.2	Crypto Officer Guidance	30			
12.	Mitiga	tion of Attacks	32			

Tables

Гable 1 – Security levels	5
Гable 2 – Tested operational environments	6
Гable 3 – Affirmed operational environments	7
Гable 4 – Approved algorithms	9
rable 5 – Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed	
Гable 6 – Non-approved algorithms Not Allowed in the Approved Mode of Operation	10
Гable 7 – Ports and interfaces	12
Гable 8 – Roles, Services, Input and Output	14
Гable 9 – Approved services	16
Гable 10 – Non-approved services	18
Гable 11 – SSPs	25
Гable 12 – Non-Deterministic Random Number Generation Specification	25
Гable 13 – Conditional Cryptographic Algorithm Self-tests	29
Гable 14 – Error Indicators	29

1. General

This document is the non-proprietary FIPS 140-3 Security Policy for Apple corecrypto Module v13.0 [Intel, User, Software, SL1] cryptographic module. It contains the security rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing Standards Publication 140-3) for a Security Level 1 module.

This document provides all tables and diagrams (when applicable) required by NIST SP 800-140B. The column names of the tables follow the template tables provided in NIST SP 800-140B.

Table 1 describes the individual security areas of FIPS 140-3, as well as the Security Levels of those individual areas.

Section	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic module specification	1
3	Cryptographic module interfaces	1
4	Roles, services, and authentication	1
5	Software/Firmware security	1
6	Operational environment	1
7	Physical security	N/A
8	Non-invasive security	N/A
9	Sensitive security parameter management	1
10	Self-tests	1
11	Life-cycle assurance	1
12	Mitigation of other attacks	N/A

Table 1 – Security levels

The Module has an overall security level of 1.

2. Cryptographic Module Specification

The Apple corecrypto Module v13.0 [Intel, User, Software, SL1] cryptographic module (hereafter referred to as "the Module") is a software module running on a multi-chip standalone general-purpose computing platform. The version of module is 13 written as v13.0. The module provides implementations of low-level cryptographic primitives to the Host OS's (macOS Ventura v13) Security Framework and Common Crypto. The module has been tested by Lightship Security, Inc. CST lab on the following platforms with and without PAA:

#	Operating System	Hardware Platform	Processor	PAA/Acceleration
1	macOS Ventura v13	MacBook Air (2022)	Intel i5-8210Y (Amber Lake)	РАА
2	macOS Ventura v13	MacBook Air (2022)	Intel i7-1060NG7 (Ice Lake)	РАА
3	macOS Ventura v13	MacBook Pro (2022)	Intel i7-8700B (Coffee Lake)	РАА
4	macOS Ventura v13	iMac (2022)	Intel i7-10700K (Comet Lake)	РАА
5	macOS Ventura v13	MacBook Pro (2022)	Intel i9-9880H (Coffee Lake)	РАА
6	macOS Ventura v13	iMac Pro (2022)	Xeon W-2140B (SkyLake)	РАА
7	macOS Ventura v13	Mac Pro (2022)	Xeon W-3223 (Cascade Lake)	РАА
8	macOS Ventura v13	Mac Pro (2022)	Intel i5-8257U (Coffee Lake)	РАА
9	macOS Ventura v13	MacBook Air (2022)	Intel i5-8210Y (Amber Lake)	No
10	macOS Ventura v13	MacBook Air (2022)	Intel i7-1060NG7 (Ice Lake)	No
11	macOS Ventura v13	MacBook Pro (2022)	Intel i7-8700B (Coffee Lake)	No
12	macOS Ventura v13	iMac (2022)	Intel i7-10700K (Comet Lake)	No
13	macOS Ventura v13	MacBook Pro (2022)	Intel i9-9880H (Coffee Lake)	No
14	macOS Ventura v13	iMac Pro (2022)	Xeon W-2140B (SkyLake)	No
15	macOS Ventura v13	Mac Pro (2022)	Xeon W-3223 (Cascade Lake)	No
16	macOS Ventura v13	Mac Pro (2022)	Intel i5-8257U (Coffee Lake)	No

Table 2 – Tested operational environments.

In addition to the platforms listed above, Apple Inc. has also tested the module on the following platforms and claims vendor affirmation on them:

#	Operating System	Hardware Platform
1	macOS Ventura v13	MacBook Pro - i5 (Ice Lake), 2021, 2020
2	macOS Ventura v13	MacBook Pro - i5 (Coffee Lake), 2021, 2020, 2019, 2018
3	macOS Ventura v13	MacBook Pro - i7 (Amber Lake), 2021, 2019, 2018
4	macOS Ventura v13	MacBook Pro - i7 (Coffee Lake), 2021, 2020, 2019, 2018
5	macOS Ventura v13	MacBook Pro - i7 (Ice Lake), 2021, 2020
6	macOS Ventura v13	MacBook Pro - i9 (Coffee Lake), 2021, 2019, 2018
7	macOS Ventura v13	MacBook Air - i5 (Ice Lake), 2021, 2020
8	macOS Ventura v13	MacBook Air - i7 (Ice Lake), 2021, 2020
9	macOS Ventura v13	MacBook Air - i5 (Amber Lake), 2021, 2019, 2018
10	macOS Ventura v13	MacBook Air - i7 (Amber Lake), 2021, 2018
11	macOS Ventura v13	Mac mini - i5 (Coffee Lake), 2021, 2018

© 2025 Apple Inc., All rights reserved.

12	macOS Ventura v13	Mac mini - i7 (Coffee Lake), 2021, 2018
13	macOS Ventura v13	iMac - i5 (Comet Lake), 2021, 2020
14	macOS Ventura v13	iMac - i7 (Comet Lake), 2021, 2020
15	macOS Ventura v13	iMac - i9 (Comet Lake), 2021, 2020
16	macOS Ventura v13	iMac - i5 (Coffee Lake), 2021, 2019
17	macOS Ventura v13	iMac - i7 (Coffee Lake), 2021, 2019
18	macOS Ventura v13	iMac - i9 (Coffee Lake), 2021, 2019
19	macOS Ventura v13	iMac - i9 (Comet Lake), 2022

Table 3 – Affirmed operational environments.

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when so ported if the specific operational environment is not listed on the validation certificate.

The table below lists all Approved or Vendor-affirmed security functions of the module, including specific key size(s) employed for approved services, and implemented modes of operation. The module is in the Approved mode of operation when the module utilizes the services that use the security functions listed in the table below. The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 10 – Non-approved services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode.

CAVP Cert	Algorithm and Standard	Mode / Method	Description / Key Size / Key Strength	Use / Function
A3501 (asm_aesni) A3502 (asm_x86) A3503 (c_aesni) A3504 (c_asm) A3508 (c_glad) A3509 (c_ltc)	AES [FIPS 197] [SP 800-38A]	CBC	128, 192, 256	Symmetric encryption and decryption
A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc)	AES [FIPS 197] [SP 800-38A]	CFB8, CFB128	128, 192, 256	Symmetric encryption and decryption
A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc) A3510 (vng_asm) A3511 (vng_aesni)	AES [FIPS 197] [SP 800-38C]	ССМ	128, 192, 256	Authenticated encryption and decryption
A3509 (c_ltc)	AES [FIPS 197] [SP 800-38C]	СМАС	128, 192, 256	Message authentication
A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc) A3510 (vng_asm) A3511 (vng_aesni)	AES [FIPS 197] [SP 800-38A]	CTR	128, 192, 256	Symmetric encryption and decryption
A3501 (asm_aesni) A3502 (asm_x86) A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc)	AES [FIPS 197] [SP 800-38A]	ECB	128, 192, 256	Symmetric encryption and decryption

© 2025 Apple Inc., All rights reserved.

A3510 (vng_asm) A3511 (vng_aesni)				
A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc) A3510 (vng_asm) A3511 (vng_aesni)	AES [FIPS 197] [SP 800-38D]	GCM	128, 192, 256	Authenticated encryption and decryption
A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc)	AES [FIPS 197] [SP 800-38F]	KW	128, 192, 256	Key wrapping
A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc)	AES [FIPS 197] [SP 800-38A]	OFB	128, 192, 256	Symmetric encryption and decryption
A3501 (asm_aesni) A3502 (asm_x86) A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc)	XTS-AES [FIPS 197] [SP 800-38E]	XTS	128, 256	Symmetric encryption and decryption on storage devices
A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc) A3510 (vng_asm) A3511 (vng_aesni)	CTR_DRBG [SP 800-90Ar1]	AES-CTR	Key Length/ Key Strength: 128, 256 Derivation Function Enabled: Yes	Random Number Generation
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	ECDSA [FIPS 186-4]	KeyGen, KeyVer, SigGen, SigVer	Curves: P-224, P-256, P-384, P-521 Key Strength: from 112 to 256	Digital signatures and asymmetric key generation and verification
Vendor Affirmed	СКС	Key Pair Generation (CKG) using method in Sections 4 and 5.1 in [SP 800-133r2]	-	Cryptographic key generation
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc) A3512 (vng_intel)	HMAC [FIPS 198-1]	HMAC-SHA-1 HMAC-SHA2-224 HMAC-SHA2-256 HMAC-SHA2-384 HMAC-SHA2-512	112 bits or greater	Message authentication
A3505 (c_avx) A3506 (c_avx2) A3509 (c_ltc) A3507 (c_sse3)	HMAC [FIPS 198-1]	HMAC-SHA2-512/256	512	Message authentication
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	HMAC_DRBG [SP 800-90Ar1]	SHA-1 SHA2-224 SHA2-256 SHA2-384 SHA2-512	112 bits or greater	Random Number Generation
A3509 (c_ltc)	KAS-FFC-SSC [SP 800-56Ar3] ¹	Scheme: dhEphem KAS Role: initiator, responder	Domain Parameter Generation Methods: MODP-2048, MODP- 3072, MODP-4096, MODP-6144, MODP- 8192 Key Strength: from 112 to 200	Shared Secret Computation
A3509 (c_ltc)	KAS-ECC-SSC [SP 800-56Ar3] ²	Scheme: ephemeral Unified	Domain Parameter Generation Methods:	Shared Secret Computation

¹ The TLS and IPSec/IKE protocols have not been reviewed or tested by the CAVP and CMVP.

² The TLS and IPSec/IKE protocols have not been reviewed or tested by the CAVP and CMVP.

^{© 2025} Apple Inc., All rights reserved.

This document may be reproduced and distributed only in its original entirety without revision.

		KAS Role: initiator, responder	P-224, P-256, P-384, P-521 Key Strength: from 112 to 256	
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	KBKDF [SP 800-108]	Counter Feedback HMAC-SHA-1 HMAC-SHA2-224 HMAC-SHA2-256 HMAC-SHA2-384 HMAC-SHA2-512	Supported Lengths: 8-4096 Increment 8 Fixed Data Order: Before Fixed Data Counter Length: 32	Key Derivation
A3509 (c_ltc)	KBKDF [SP 800-108]	Counter CMAC-AES128 CMAC-AES192 CMAC-AES256	Supported Lengths: 8-4096 Increment 8 Fixed Data Order: Before Fixed Data Counter Length: 8, 16, 24, 32	Key Derivation
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	PBKDF [SP 800-132]	HMAC with: SHA-1, SHA- 224, SHA-256, SHA-384, SHA-512	Password length: 8- 128 bytes Increment 1 Salt Length: 128- 4096 Increment 8 Iteration Count: 10- 1000 Increment 1	Key Derivation
A3509 (c_ltc)	Safe Primes Key Generation	KeyGen for DH	Safe Prime Groups: MODP-2048, MODP- 3072, MODP-4096, MODP-6144, MODP- 8192 Key Strength: from 112 to 200	Key Generation
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	RSA [FIPS 186-4]	KeyGen (ANSI X9.31) SigGen (PKCS#1 v1.5) and (PKCS PSS) SigVer (PKCS#1 v1.5) and (PKCS PSS)	KeyGen: 2048, 3072, 4096 SigGen: 2048, 3072, 4096 SigVer: 1024 (legacy use), 2048, 3072, 4096	Digital signatures and asymmetric key generation and verification
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc) A3512 (vng_intel)	SHS [FIPS 180-4]	SHA-1 SHA2-224 SHA2-256 SHA2-384 SHA2-512	160 224 256 384 512	Message digest
A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	SHS [FIPS 180-4]	SHA2-512/256	512	Message digest
H3309 (L_IIL)				

Table 4 – Approved algorithms

The table below list non-Approved but Allowed algorithm in Approved mode of operation when used as part of an approved key transport scheme where no security is provided by the algorithm.

Algorithm	Caveat	Use/Function	
MD5	Allowed in Approved mode with no security claimed per IG 2.4.A Digest Size: 128-bit	Message Digest (used as part of the TLS v1.0, v1.1 key establishment scheme only)	

© 2025 Apple Inc., All rights reserved.

 Table 5 – Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed

The table below lists Non-Approved security functions that are not Allowed in the Approved Mode of Operation:

Algorithm	Use / Function
RSA	ANSI X9.31 Key Pair Generation Key Size < 2048 PKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 PKCS#1 v1.5 and PSS Signature Verification Key Size< 1024
RSA	Key Encapsulation: OAEP, PKCS#1 v1.5 and PSS schemes
Diffie Hellman	Shared Secret Computation using key size < 2048
EC Diffie Hellman	Shared Secret Computation using curves < P-224
X25519	Key Agreement Key Generation
Ed25519	Key Generation Signature Generation Signature Verification
ANSI X9.63 KDF	Hash based Key Derivation Function
RFC6637	Key Derivation Function
HKDF [SP 800-56C]	Key Derivation Function
DES	Encryption / Decryption, Key Size: 56-bits
CAST5	Encryption / Decryption, Key Sizes: 40 to 128-bits in 8-bit increments
RC4	Encryption / Decryption, Key Sizes: 8 to 4096-bits
RC2	Encryption / Decryption Key Sizes 8 to 1024-bits
MD2	Message Digest, Digest size 128-bit
MD4	Message Digest, Digest size 128-bit
RIPEMD	Message Digest, Digest size 160-bits
ECDSA	Key-pair generation: Curve P-192 Public key validation: Curve P-192 Signature Generation: Curve P-192 Signature Verification: Curve P-192 Key Pair Generation for compact point representation of points
Integrated Encryption Scheme on elliptic curves (ECIES)	Encryption / Decryption
Blowfish	Encryption / Decryption
OMAC (One-Key CBC MAC)	MAC generation
Triple-DES [SP 800-67r2] ³	CBC, ECB: Encryption/Decryption Note: The module does not enforce the limit of 2 ¹⁶ encryptions with the same Triple-DES key, as required by FIPS 140-3 IG C.G.

Table 6 – Non-approved algorithms Not Allowed in the Approved Mode of Operation

³ Triple-DES encryption/decryption was tested as part of CAVP algorithm testing, but is not utilized for any services implemented/supported by the module in Approved mode of operation.

^{© 2025} Apple Inc., All rights reserved.

This document may be reproduced and distributed only in its original entirety without revision.

The Apple corecrypto Module v13.0 [Inter, User, Software, SL1] executes within the user space of the computing platforms and operating systems listed in Table 2 – Tested operational environments. Figure 1 below shows the logical block diagram representing the following information:

- The location of the logical object of the module with respect to the operating system, other supporting applications and the cryptographic boundary so that all the logical and physical layers between the logical object and the cryptographic boundary are clearly defined; and
- The interactions of the logical object of the module with the operating system and other supporting applications resident within the cryptographic boundary.

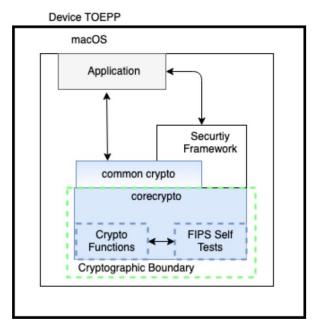


Figure 1 – Logical block diagram.

3. Cryptographic Module Interfaces

As a software-only module, the module does not have physical ports. For the purpose of the FIPS 140-3 validation, the physical ports are interpreted to be the physical ports of the hardware platform on which it runs.

The underlying logical interfaces of the module are the C language Application Programming Interfaces (APIs). In detail these interfaces are described in the table below.

Physical port	Logical interface	Data that passes over port / interface
N/A	Data Input	Data inputs are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers.
N/A	Data Output	Data outputs are provided in the variables passed in the API and callable service invocations, generally through caller-supplied buffers.
N/A	Control Input	Control inputs which control the mode of the module are provided through dedicated parameters.
N/A	Control Output	Not Applicable ⁴
N/A	Status Output	Status output is provided in return codes and through messages. Documentation for each API lists possible return codes. A complete list of all return codes returned by the C language APIs within the module is provided in the header files and the API documentation. Messages are also documented in the API documentation.

Table 7 – Ports and interfaces

The module is optimized for library use within the macOS user space and does not contain any terminating assertions or exceptions. It is implemented as a macOS dynamically loadable library. After the dynamically loadable library is loaded, its cryptographic functions are made available to the macOS application. Any internal error detected by the module is reflected back to the caller with an appropriate return code. The calling macOS application must examine the return code and act accordingly.

The module communicates any error status synchronously using its documented return codes, thus indicating the module's status. It is the responsibility of the caller to handle exceptional conditions in a FIPS 140-3 appropriate manner.

Caller-induced or internal errors do not reveal any sensitive material to callers. Cryptographic bypass capability is not supported by the module.

⁴ The Module does not output control information, and thus has no specified control output interface.

^{© 2025} Apple Inc., All rights reserved.

4. Roles, Service and Authentication

The Module supports a single instance of one authorized role, designated as the Crypto-Officer. No support is provided for multiple concurrent operators or a Maintenance Operator

Role	Service	Input	Output
Crypto-Officer (CO)	Symmetric encryption	AES Key Plain text data	Cipher text
Crypto-Officer (CO)	Symmetric decryption	AES Key Cipher text data	Plain text
Crypto-Officer (CO)	Key wrapping	Key-encryption-key Key to be wrapped	Wrapped key
Crypto-Officer (CO)	Key unwrapping	Key-encryption-key Wrapped key	Unwrapped key
Crypto-Officer (CO)	Secure Hashing	Message	Message digest
Crypto-Officer (CO)	MD5 (non-approved but allowed for TLS 1.0/1.1) Hash Generation	Message	Message digest
Crypto-Officer (CO)	Message Authentication Code (MAC) Generation	Message, MAC key, MAC algorithm	Message Authentication Code
Crypto-Officer (CO)	Message Authentication Code (MAC) Verification	MAC, message, HMAC key, MAC algorithm	pass/fail result
Crypto-Officer (CO)	Generate asymmetric key pair	asymmetric key pair Random numbers, domain parameters	
Crypto-Officer (CO)	Generate digital signature	private key, message, hash function	Digital signature
Crypto-Officer (CO)	Verify digital signature	public key	True or False
Crypto-Officer (CO)	Generate random number	entropy, seed, V and key values	random bit-string
Crypto-Officer (CO)	Shared Secret Computation	Domain parameters Possessed key pair Imported public key	Shared Secret
Crypto-Officer (CO)	Derive key via KBKDF	Key Derivation Key	Derived key
Crypto-Officer (CO)	Derive key via PBKDF	Password	Derived key
Crypto-Officer (CO)	Zeroise symmetric keys	Handler of symmetric crypto function context	Released memory space
Crypto-Officer (CO)	Zeroise asymmetric keys	Handler of asymmetric crypto function context	Released memory space
Crypto-Officer (CO)	Zeroise context for key agreement shared secrets	Handler of key agreement crypto function context	Released memory space
Crypto-Officer (CO)	Zeroise hash	Handler of hash context	Released memory space
Crypto-Officer (CO)	Self-test	Instantiation	Status
Crypto-Officer (CO)	Show status	API invocation	Operational / error status
Crypto-Officer (CO)	Show module info	API invocation	Module base name Module version

The table below lists the services available to the Crypto Officer:

Table 8 – Roles, Services, Input and Output

4.1 Authentication

FIPS 140-3 does not require an authentication mechanism for level 1 modules. Therefore, the module does not implement an authentication mechanism for Crypto Officer. The Crypto Officer role is authorized to access all services provided by the module (see Table 9 – Approved services and Table 10 – Non-approved services below).

4.2 Services

The module implements a dedicated API function to indicate if a requested service utilizes an approved security function. For services listed in Table 9 – Approved services, the indicator function returns 1. For services listed in Table 10 – Non-approved services, the indicator function returns 0.

The table below lists all approved services that can be used in the approved mode of operation. The abbreviations of the access rights to keys and SSPs have the following interpretation:

G - Generate: The module generates or derives the SSP.

R - Read: The SSP is read from the module (e.g., the SSP is output).

W - Write: The SSP is updated, imported, or written to the module.

E - **Execute**: The module uses the SSP in performing a cryptographic operation.

Z - **Zeroise**: The module zeroises the SSP.

N/A - The service does not access any SSP during its operation

Service	Description	Approved Security Functions	Keys and/or SSPs	Roles	Access rights to Keys and/or SSPs	Indicator
ECDSA key pair generation	Generate a public/private key pair	ECDSA ⁵ CKG	ECDSA key pair	CO	GR	1
ECDSA signature generation	Generate a digital signature	ECDSA	ECDSA private key	CO	RE	1
ECDSA signature verification	Verify a digital signature	ECDSA	ECDSA public key	CO	RWE	1
Derive key via KBKDF	Derive keys	KBKDF	KBKDF Key derivation key KBKDF Derived key	CO	WE GRE	1
Key wrapping	Perform key wrapping	AES-KW	AES Key wrapping key	CO	WE	1
Key unwrapping	Perform key unwrapping	AES-KW	AES Key wrapping key	CO	WE	1
Hashing	Compute a message digest	SHA-1 SHA2-224 SHA2-256 SHA2-384 SHA2-512 SHA2-512/256	N/A	CO	N/A	1
MD5 (non- approved but allowed for TLS	Used in the context of TLS in conjunction	Message Digest: MD5	N/A	CO	N/A	1

⁵ In accordance with Section 4 and 5.1 of NIST [SP 800-133r2] (CKG), the module uses its approved DRBG to generate random bits and seeds used to generate asymmetric keys. Each generated seed is an unmodified output from the DRBG.

^{© 2025} Apple Inc., All rights reserved.

This document may be reproduced and distributed only in its original entirety without revision.

1.0/1.1) Hash Generation	with the approved algorithm SHA-1					
Symmetric encryption	Encrypt plaintext data	AES-CBC, AES-ECB, AES-CFB128, AES- CFB8, AES-OFB, AES-CTR, AES-XTS, AES-GCM, AES-CCM	AES Key	СО	WE	1
Symmetric decryption	Decrypt ciphertext data	AES-CBC, AES-ECB, AES-CFB128, AES- CFB8, AES-OFB, AES-CTR, AES-XTS, AES-GCM, AES-CCM	AES Key	CO	WE	1
MAC Generation	Compute a message authentication code	НМАС	HMAC key	CO	WE	1
MAC Verification	Verify a message authentication code	НМАС	HMAC key	CO	WE	1
RSA key pair generation	Generate a public/private key pair	RSA ⁶ CKG	RSA key pair	СО	GR	1
RSA signature generation	Generate a digital signature	RSA	RSA private key	CO	RE	1
RSA signature verification	Verify a digital signature	RSA	RSA public key	CO	RWE	1
Random number generation	Generate a random number	CTR_DRBG	DRBG entropy input DRBG seed DRBG 'V' value DRBG 'Key' value	СО	Input: WE Seed: GE V: GE Key: GE	1
Derive Key via PBKDF	Derive key from password	Key Derivation: PBKDF	PBKDF password PBKDF derived key	CO	WE GRE	1
Safe primes key generation	Generate a keypair for a requested 'safe' domain parameter	Key Pair Generation	Asymmetric Diffie Hellman key pair	CO	GRW	1
Diffie-Hellman Shared Secret Computation	generate a shared secret	KAS-FFC-SSC	Asymmetric keys (DH key pair) and shared secret	СО	GRWE	1
EC Diffie-Hellman Shared Secret Computation	generate a shared secret	KAS-ECC-SSC	Asymmetric keys (EC key pair) and shared secret	СО	GRWE	1
Zeroise symmetric keys	Release all resources of symmetric crypto function context	N/A	AES Key KBKDF Key derivation key KBKDF Derived key PBKDF password PBKDF derived key	CO	Z	1
Zeroise hash	Release all resources of hash context	N/A	HMAC key	CO	Z	1
Zeroise context for Diffie- Hellman and EC Diffie-Hellman	Release of all resources of key agreement crypto function context	N/A	Asymmetric keys (ECDH/DH) and shared secret	СО	Z	1
Zeroise asymmetric keys	Release of all resources of	N/A	RSA key pair ECDSA key pair	CO	Z	1

⁶ In accordance with Section 4 and 5.1 of NIST [SP 800-133r2] (CKG), the module uses its approved DRBG to generate random bits and seeds used to generate asymmetric keys. Each generated seed is an unmodified output from the DRBG.

^{© 2025} Apple Inc., All rights reserved.

This document may be reproduced and distributed only in its original entirety without revision.

	asymmetric crypto function context					
Self-test	Perform pre- operational and algorithm self-test	N/A	N/A	CO	N/A	1
Show status	Return module status	N/A	N/A	СО	N/A	N/A
Show module info	Return module name and versioning information	N/A	N/A	CO	N/A	N/A

Table 9 – Approved services

The table below lists all non-Approved services that can only be used in the non-Approved mode of operation.

Service	Description	Algorithms Accessed	Role	Indicator
Triple-DES encryption / decryption	Module does not meet FIPS 140-3 IG C.G. Input for Encryption: key and plain text Output for Encryption: cipher text Input for Decryption: key and cipher text Output for Decryption: plain text	Triple-DES	CO	0
RSA Key Encapsulation	RSA encrypt/decrypt. Input (RSA encrypt): RSA public key, key to be wrapped Output (RSA encrypt): wrapped key Input (RSA decrypt): RSA private key, key to be unwrapped Output (RSA encrypt): plaintext key	RSA encrypt/decrypt	СО	0
RSA Key-pair Generation	ANSI X9.31 Key-pair Generation Key Size < 2048 Input: key size Output: generated key pair	RSA KeyGen	СО	0
RSA Signature Generation	PKCS#1 v1.5 and PSS Signature Generation Key Size < 2048 Input: RSA private key, message Output: signature	RSA Signature Generation	СО	0
RSA Signature Verification	PKCS#1 v1.5 and PSS Signature Verification Key Size < 1024 Input: RSA public key, signature Output: true or false	RSA Signature Verification	CO	0
Diffie Hellman Shared Secret Computation	For key sizes < 2048 Input: peer public key and own private key Output: shared secret	KAS-FFC SSC	CO	0
EC Diffie Hellman Shared Secret Computation	For curve sizes < P-224 Input: peer public key and own private key Output: shared secret	KAS-ECC SSC	CO	0
ECDSA Key-pair Generation (PKG) and ECDSA Key Validation (PKV)	ECDSA PKG and PKV using curve P-192 Input for PKG: curve size (P-192) Output: generated (P-192) private and public key pair Input for PKV: public key Output: True or False	ECDSA Key Generation, ECDSA Key Validation	CO	0
ECDSA Signature Generation	ECDSA Signature Generation using curve P-192 Input: (P-192) private key and message Output: signature	ECDSA Signature Generation	CO	0

© 2025 Apple Inc., All rights reserved.

ECDSA Signature Verification	ECDSA Signature Verification using curve P-192 Input: (P-192) public key and signature Output: True or False	ECDSA Signature Verification	CO	0
ECDSA Key Pair Generation for compact point representation of points	Key Pair Generation for compact point representation of points Input: key size Output: generated private and public key pair	ECDSA Key Generation	CO	0
Ed25519/X25519 Key Generation	Ed25519 Key Generation Input: none Output: generated Ed25519/Curve25519 private and public key pair	Ed25519 Key Generation X25519 Key Generation	СО	0
Ed25519 Signature Generation	Ed25519 Signature Generation over Curve25519 Input: (Ed25519) private key and message Output: signature	Ed25519 Signature Generation	СО	0
Ed25519 Signature Verification	EdDSA Signature Verification over Ed25519 Input: (Ed25519) public key and signature Output: True or False	Ed25519 Signature Verification	CO	0
X25519 Key Agreement	X25519 Key Agreement Input: peer public key and own private key Output: shared secret	X25519 Key Agreement	CO	0
ECIES	Elliptic Curve encrypt/ decrypt Input for encryption: peer public key, plaintext Output for encryption: public key, ciphertext (with authentication tag) Input for decryption: authentication tag, ciphertext, own private key Output for decryption: plaintext message or error	ECIES Encrypt/Decrypt	CO	0
ANSI X9.63 Key Derivation	SHA-1 hash-based Input: key derivation key Output: derived key	SHA-1	CO	0
SP 800-56C Key Derivation (HKDF)	SHA-256 hash-based Input: key derivation key Output: derived key	SHA-256	CO	0
RFC6637 Key Derivation	SHA hash based Input: key derivation key Output: derived key	SHA-256, SHA-512, AES-128, AES-256	CO	0
OMAC Message Authentication Code Generation and Verification	One-Key CBC-MAC using 128-bit key For Message Authentication Code Generation Input: message and key Output: message authentication code (MAC) For Message Authentication Code Verification Input: message, key, and MAC Output: True or False	OMAC	CO	0
Message digest generation	Message digest generation using non-approved algorithms Input: message Output: message digest	MD2, MD4, RIPEMD	CO	0
(other) symmetric encryption / decryption	Symmetric encryption / decryption using non- approved algorithms Input for Encryption: key and plain text Output for Encryption: cipher text	Blowfish, CAST5, DES, RC2, RC4	CO	0

© 2025 Apple Inc., All rights reserved.

Input for Decryption: key and cipher text Output for Decryption: plain text			
--	--	--	--

Table 10 – Non-approved services

5. Software/Firmware Security

5.1 Integrity Techniques

The Apple corecrypto Module v13.0 [Intel, User, Software, SL1], which is made up of a single component, is provided in the form of binary executable code. A software integrity test is performed on the runtime image of the module. The HMAC-SHA2-256 implemented in the module is used as an approved algorithm for the integrity test. If the test fails, the module enters an error state where no cryptographic services are provided and data output is prohibited. In this state the module is not operational.

5.2 On-demand Integrity Test

Integrity tests are performed as part of the Pre-Operational Self-Tests. The software integrity test is automatically executed at power-on. It can also be invoked by self-test service or powering-off and reloading the module.

6. Operational Environment

6.1 Applicability

The Apple corecrypto Module v13.0 [Intel, User, Software, SL1] operates in a modifiable operational environment per FIPS 140-3 level 1 specifications. The module is supplied as part of macOS, a commercially available general-purpose operating system executing on the computing platforms specified in section 2.

7. Physical Security

The FIPS 140-3 physical security requirements do not apply to the Apple corecrypto Module v13.0 [Intel, User, Software, SL1] since it is a software module.

8. Non-invasive Security

Currently, the ISO/IEC 19790:2012 non-invasive security area is not required by FIPS 140-3 (see NIST SP 800-140F). The requirements of this area are not applicable to the module.

9. Sensitive Security Parameter Management

The following table summarizes the keys and Sensitive Security Parameters (SSPs) that are used by the cryptographic services implemented in the module:

Key/SSP Name/ Type	Strength	Security Function and Cert. Number	Generati on	Import /Export	Establish- ment	Storage	Zeroisation	Use & related keys
AES key	128 to 256 bits	AES (CBC, CCM, CFB, CTR, ECB, GCM, OFB, XTS modes) A3501 (asm_aesni) A3502 (asm_x86) A3503 (c_aesni) A3504 (c_asm) A3504 (c_glad) A3509 (c_ltc) A3510 (vng_asm) A3511 (vng_aesni)	N/A	Imported from calling application No export	N/A	N/A. The module does not provide persistent keys/SSPs storage.	Automatic zeroisation when structure is deallocated or when the system is powered down	Symmetric Encryption and Decryption
AES Key wrapping key	128 to 256 bits	AES-KW A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc)	N/A	Imported from calling application No export	N/A			Key Wrapping and Unwrapping (KTS)
DH public key	112 to 200 bits	KAS-FFC-SSC A3509 (c_ltc)	The key pairs are generated conformant	Imported from or exported to calling application	N/A	-		Key Agreement
DH private key			to [SP 800- 133r2] Section 4 (CKG) using Safe-prime groups MODP groups belonging to (RFC 3526)	Exported to calling application. Intermediate keygen values are not output	N/A	-		
DH shared secret	112 to 200 bits		Internally generated using [SP 800-56Ar3] DH SSC		N/A			Shared Secret Computation
EC DH public key	112 to 256 bits	KAS-ECC-SSC A3509 (c_ltc)	The key pairs are generated conformant	Imported from or exported to calling application	N/A			Key Agreement
EC DH private key			to [SP 800- 133r2] Section 4 (CKG) using FIPS186-4 Key Generation method, and the random value used in the key generation is generated using [SP 800-90Ar1] DRBG	Exported to calling application. Intermediate keygen values are not output	N/A			
ECC CDH shared secret	112 to 256 bits		Internally generated via [SP 800- 56Ar3] ECC CDH shared		N/A			Shared secret computation

© 2025 Apple Inc., All rights reserved.

			secret computatio n				
DRBG entropy input	256 bits	Random Number Generation	N/A	Imported from entropy source	N/A		Random Number Generation
DRBG seed, DRBG V, DRBG key	256 bits	CTR_DRBG A3503 (c_aesni) A3504 (c_asm) A3509 (c_ltc) A3510 (vng_asm) A3511 (vng_aesni)	Internally generated as defined by [SP 800- 90Ar1]	N/A	N/A		Random Number Generation
ECDSA public key	112 – 256 bits	ECDSA A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3)	The key pairs are generated conformant	Imported from or exported to calling application	N/A		Signature verification
ECDSA private key		A3509 (c_ltc)	to [SP 800- 133r2] Section 4 (CKG) using FIPS186-4 Key Generation method, and the random value used in the key generation is generated using [SP 800-90Ar1] DRBG	Exported to calling application. Intermediate keygen values are not output	N/A		Signature generation
HMAC key	>=112 bits	HMAC-SHA-1 HMAC-SHA-2 A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc) A3512 (vng_intel)	N/A	Imported from calling application No export	N/A		Generate and Verify MAC
KBKDF Key derivation key	Min: 112 bits	KBKDF A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	N/A	Imported from calling application No export	N/A		Key Derivation
KBKDF Derived key	Min: 112 bits	KBKDF A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	Generated via KBKDF	No import Exported to calling application	N/A		Key Derivation
RSA public key	112 - 150 bits	RSA A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3)	The key pairs are generated conformant	Imported from or exported to calling application	N/A		Signature verification
RSA private key		A3509 (c_ltc)	to [SP 800- 133r2] Section 4 (CKG) using FIPS186-4 Key Generation method, and the random value used in the key generation is generated using [SP	Exported to calling application. Intermediate keygen values are not output	N/A		Signature generation

© 2025 Apple Inc., All rights reserved.

			800-90Ar1] DRBG				
PBKDF Password	N/A	PBKDF A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	N/A	Imported from calling application No export	N/A		Key Derivation
PBKDF derived key	Min: 112 bits	PBKDF A3505 (c_avx) A3506 (c_avx2) A3507 (c_sse3) A3509 (c_ltc)	Generated via [SP 800- 132] PBKDF	No Import Export to calling application	N/A		Key Derivation

9.1 Random Number Generation

A NIST approved deterministic random bit generator based on a block cipher as specified in NIST [SP 800-90Ar1] is used. The default Approved DRBG used for random number generation is a CTR_DRBG using AES-256 with derivation function and without prediction resistance. The random numbers used for key generation are all generated by CTR_DRBG in this module. Per section 10.2.1.1 of [SP 800-90Ar1], the internal state of CTR_DRBG is the value V and Key.

The deterministic random bit generators are seeded by /dev/random. The /dev/random is the User Space interface that extracts random bits from the entropy pool. Two entropy sources (one non-physical entropy source and one physical entropy source) residing within the TOEPP provide the random bits. The output of entropy pool provides 256-bits of entropy to seed and reseed [SP 800-90Ar1] DRBG during initialization (seed) and reseeding (reseed).

The module also employs a HMAC_DRBG for random number generation. The HMAC_DRBG is only used at the early boot time of macOS kernel for memory randomization. The output of HMAC_DRBG is not used for key generation. Per section 10.1.2.1 of [SP 800-90Ar1], the internal state of HMAC_DRBG is the value V, Key.

For both Apple Entropy sources tested in the OEs listed in Table 2, the customer does not have the ability to modify the ES configuration settings (see details in Public Use Document referenced in 3 and 4).

The module also performs DRBG health tests according to section 11.3 of [SP 800-90Ar1].

Entropy source	Minimum number of bits of entropy	Details
ESV Cert #E14 (physical source) ESV Cert #E110 (non-physical source)	256	The seed is provided by post-processed entropy data from two entropy sources. The entropy sources are located within the physical perimeter of the module but outside the cryptographic boundary of the module.

 Table 12 – Non-Deterministic Random Number Generation Specification

9.2 Key / SSP Generation

The module generates Keys and SSPs in accordance with FIPS 140-3 IG D.H. The cryptographic module performs Cryptographic Key Generation (CKG) for asymmetric keys as per [SP 800-133r2] Section 4 (vendor affirmed), compliant with [FIPS186-4], and using DRBG compliant with [SP 800-90Ar1]. A seed (the random value) used in asymmetric key generation is obtained from [SP 800-90Ar1] DRBG. The key generation service for RSA, Diffie-Hellman and EC key pairs as well as the [SP 800-90Ar1] DRBG have been ACVT tested with algorithm certificates found in Table 4.

The module also implements the following key derivation functions:

- KBKDF key derivation according to [SP 800-108r1] to derive symmetric keys. The module supports both Counter and Feedback modes with HMAC-SHA-1, HMAC-SHA2-224, HMAC-SHA2-256, HMAC-SHA2-384, or HMAC-SHA2-512 as the pseudo-random function (PRF).
- PBKDF Key Derivation according to [SP 800-132]. The service returns the key derived from the provided password to the caller. The length of the password used as input to PBKDFv2 shall be at least 8 characters and the worst-case probability of guessing the value is 10⁸ assuming all characters are digits only. The user shall choose the password length and the iteration count in such a way that the combination will make the key derivation computationally intensive. PBKDFv2 is implemented to support the option 1a specified in section 5.4 of [SP 800-132]. The keys derived from [SP 800-132] map to section 4.1 of [SP 800-133r2] as indirect generation from DRBG. The derived keys may only be used in storage applications.

9.3 Key / SSP Establishment

The module provides the following SSP establishment related services in the Approved mode:

- AES Key Wrapping The module implements a Key Transport Scheme (KTS) using AES-KW compliant to [SP 800-38F]. The SSP establishment methodology provides 128, 192 or 256 bits of encryption strength.
- Diffie-Hellman Shared Secret Computation The module provides [SP 800-56Ar3] compliant key establishment according to FIPS 140-3 IG D.F scenario 2 path (1) with DH shared secret computation. The shared secret computation provides between 112 and 200 bits of encryption strength.

EC Diffie-Hellman Shared Secret Computation

The module provides [SP 800-56Ar3] compliant key establishment according to FIPS 140-3 IG D.F scenario 2 path (1) with ECDH shared secret computation. The shared secret computation provides between 112 and 256 bits of encryption strength.

9.4 Key / SSP Import/Export

All keys and SSPs that are entered from, or output to module, are entered from or output to the invoking application running on the same device. Keys/SSPs entered into the module are electronically entered in plain text form. Keys/SSPs are output from the module in plain text form if required by the calling application.

The module allows the output of plaintext CSPs (for example: EC/DH/RSA Key Pairs). To prevent inadvertent output of sensitive information, the module performs the following two independent internal actions:

- 1. The module will internally request the random number generation service to obtain the random numbers and verify that the service completed without errors.
- 2. Once the keys are generated the module will perform the pairwise consistency test and verify that the test is completed without errors.

Only after successful completion of both actions, are the generated CSPs output via the API output parameter in plaintext.

9.5 Key / SSP Storage

The Module stores keys/SSPs in volatile memory only. They are received for use or generated by the module only at the command of the calling application. The module does not provide persistent keys/SSPs storage.

The module protects all keys/SSPs through the memory separation and protection mechanisms provided by the operating system. No process other than the module itself can access the keys/SSPs in its process memory.

9.6 Key / SSP Zeroisation

Keys and SSPs are zeroised when the appropriate context object is destroyed or when the system is powered down. Input and output interfaces are inhibited while zeroisation is performed.

10. Self-tests

This section specifies the pre-operational and conditional self-tests performed by the module. The preoperational and conditional self-tests ensure that the module is not corrupted and that the cryptographic algorithms work as expected.

The module does not implement a bypass mode nor security functions critical to the secure operation of the cryptographic module and thus, does not implement either a pre-operational bypass test or pre-operational critical functions test.

While the module is executing the self-tests, services are not available and input and output are inhibited. If any pre-operational or conditional self-tests fail, the module reports an error message indicating the cause of the failure and enters the Error State (See section 10.3). The module permits operators to initiate the pre-operational or conditional self-tests on demand for periodic testing of the module by rebooting the system (i.e., power-cycling).

10.1 Pre-operational Software Integrity Test

The module performs a pre-operational software integrity automatically when the module is loaded into memory (i.e., at power on) before the module transitions to the operational state. A software integrity test is performed on the runtime image of the Apple corecrypto Module v13.0 [Intel, User, Software, SL1] with HMAC-SHA2-256 used to perform the approved integrity technique. Prior to using HMAC-SHA2-256, Conditional Cryptographic Algorithm Self-Test (CAST) is performed. If the CAST on the HMAC-SHA2-256 is successful, the HMAC value of the runtime image is recalculated and compared with the stored HMAC value pre-computed at compilation time.

10.2 Conditional Self-Tests

Conditional self-tests are performed by a cryptographic module when the conditions specified for the following tests occur: Cryptographic Algorithm Self-Test, Pair-Wise Consistency Test.

The module does not implement any functions requiring a Software/Firmware Load Test, Manual Entry Test, Conditional Bypass Test nor Conditional Critical Functions Test; therefore, these tests are not performed by the module.

The following sub-sections describe the conditional tests supported by the Apple corecrypto Module v13.0 [Intel, User, Software, SL1].

10.2.1. Conditional Cryptographic Algorithm Self-Tests

In addition to the pre-operational software integrity test described in Section 10.1, the Apple corecrypto Module v13.0 [Intel, User, Software, SL1] also runs the Conditional Cryptographic Algorithm Self-Tests (CAST) for all cryptographic functions of each approved cryptographic algorithm implemented by the module during power-up as well. All CASTs are performed prior to the first operational use of the cryptographic algorithm. These tests are detailed in Table 13 – Conditional Cryptographic Algorithm Self-tests below.

Algorithm(s)	Notes
HMAC-SHA256	CAST (KAT) performed prior to module's integrity test during POSTs
AES implementations selected by the module for the corresponding environment AES-CCM, AES-GCM, AES- XTS, AES-CBC, AES-ECB, AES-KW using 128-bit key	Separate encryption / decryption operations CAST (KAT) are performed
CTR_DRBG and HMAC_DRBG	Each DRBG mode tested separately

© 2025 Apple Inc., All rights reserved.

	KAT and Health test per NIST [SP 800-90Ar1] Section 11.3
HMAC-SHA-1, HMAC-SHA-256, HMAC-SHA-512, AES- CMAC	CAST (KAT)
SHA-1, SHA-256, SHA-512	Covered by high level HMAC CAST
RSA, 2048-bit modulus with SHA-256	Separate Signature generation/ verification CAST (KAT) are performed
ECDSA, P-256 curve with SHA-256	Separate Signature generation/ verification CAST (KAT) are performed
Diffie-Hellman "Z" computation	CAST (KAT))
EC Diffie-Hellman "Z" computation	CAST (KAT)
PBKDF	CAST (KAT)
KBKDF (counter and feedback modes)	CAST (KAT)

Table 13 - Conditional Cryptographic Algorithm Self-tests

10.2.2. Conditional Pairwise Consistency Test

The Apple corecrypto Module v13.0 [Intel, User, Software, SL1] does generate RSA, DH and EC keys and performs the required pair-wise consistency tests on the newly generated key pairs.

10.3 Error Handling

If any of the above-mentioned self-tests described in Sections 10.1, 10.2.1 or 10.2.2 fail, the module reports the cause of the error and enters an error state. In the Error State, no cryptographic services are provided, and data output is prohibited. The only method to recover from the error state is to power cycle the device which results in the module being reloaded into memory and reperforming the pre-operational software integrity test and the Conditional CASTs. The module will only enter into the operational state after successfully passing the preoperational software integrity test and the Conditional CASTs. The table below shows the different causes that lead to the Error State and the status indicators reported.

Cause of Error	Error indicator
Failed Pre-operational Software Integrity Test	print statement "FAILED: fipspost_post_integrity" to stdout
Failed Conditional CAST	print statement "FAILED: <event>" to stdout (<event> refers to any of the cryptographic functions listed in Table 13 – Conditional Cryptographic Algorithm Self-tests)</event></event>
Failed Conditional PCT	Error code "CCEC_GENERATE_KEY_CONSISTENCY" returned for ECDSA and EC DH Error code "CCRSA_GENERATE_KEY_CONSISTENCY" returned for RSA Error code "CCDH_GENERATE_KEY_CONSISTENCY" returned for DH

Table 14 – Error Indicators

11. Life-cycle Assurance

11.1 Delivery and Operation

The module is built into macOS Ventura v13 and delivered with the respective device. There is no standalone delivery of the module as a software library.

The vendor's internal development process guarantees that the correct version of module goes with its intended macOS version. For additional assurance, the module is digitally signed by vendor and it is verified during the integration into macOS.

This digital signature-based integrity protection during the delivery/integration process is not to be confused with the HMAC-SHA2-256 based integrity check performed by the module itself as part of its pre-operational self-tests.

11.2 Crypto Officer Guidance

The Approved mode of operation is configured in the system by default and can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 10 – Non-approved services. If the device starts up successfully, then the module has passed all self-tests and is operating in the Approved mode.

The ESV Public Use Document (PUD) reference for physical entropy source is: https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validationprogram/documents/entropy/E14_PublicUse.pdf

The ESV Public Use Document (PUD) reference for non-physical entropy source is: https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validationprogram/documents/entropy/E110 PublicUse.pdf

Apple Platform Certifications guide [platform certifications] and Apple Platform Security guide [SEC] are provided by Apple which offers IT System Administrators with the necessary technical information to ensure FIPS 140-3 Compliance of the deployed systems. This guide walks the reader through the system's assertion of cryptographic module integrity and the steps necessary if module integrity requires remediation.

The Crypto Officer shall consider the following requirements and restrictions when using the module:

- AES-GCM IV is constructed in compliance with IG C.H scenario 1 (TLS 1.2) and scenario 2 (IPsec-v3). Users should consult IG C.H specific scenario, for all the details and requirements of using AES-GCM mode.
- The GCM IV generation follows RFC 5288 and shall only be used for the TLS protocol version 1.2. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the TLS protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the TLS protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.
- The GCM IV generation follows RFC 4106 and shall only be used for the IPsec-v3 protocol version 3. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the IPsec protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the IPsec protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.
- In both protocols in case the module's power is lost and then restored, the key used for the AES GCM encryption/decryption shall be re-distributed. This condition is not enforced by the module; however, it

is met implicitly. The module does not retain any state when power is lost. As indicated in Table 11, column Storage, the module exclusively uses volatile storage. This means that AES-GCM key/IVs are not persistently stored during power off: therefore, there is no re-connection possible when the power is back on with re-generation of the key used for GCM. After restoration of the power, the user of the module (e.g., TLS, IKE) along with User application that implements the protocol, must perform a complete new key establishment operation using new random numbers (Entropy input string, DRBG seed, DRBG internal state V and Key, shared secret values that are not retained during power cycle, see table 11) with subsequent KDF operations to establish a new GCM key/IV pair on either side of the network communication channel. These protocols have not been reviewed or tested by the CAVP and CMVP.

• AES-XTS mode is only approved for hardware storage applications. The length of the AES-XTS data unit does not exceed 2²⁰ blocks. The module checks explicitly that Key_1 ≠ Key_2 before using the keys in the XTS-Algorithm to process data with them compliant with IG C.I.

12. Mitigation of Attacks

The module does not claim mitigation of other attacks.

Appendix A. Glossary and Abbreviations

AES	Advanced Encryption Standard
AES-NI	Advanced Encryption Standard New Instructions
CAVP	Cryptographic Algorithm Validation Program
CAST	Cryptographic Algorithm Self-Test
CBC	Cipher Block Chaining
ССМ	Counter with Cipher Block Chaining-Message Authentication Code
CFB	Cipher Feedback
СМАС	Cipher-based Message Authentication Code
CMVP	Cryptographic Module Validation Program
CSP	Critical Security Parameter
CTR	Counter Mode
DRBG	Deterministic Random Bit Generator
ECB	Electronic Code Book
ENT	NIST SP 800-90B Compliant Entropy Source
FFC	Finite Field Cryptography
FIPS	Federal Information Processing Standards Publication
GCM	Galois Counter Mode
HMAC	Hash Message Authentication Code
KAS	Key Agreement Scheme
КАТ	Known Answer Test
KBKDF	Key Based Key Derivation Function
KDF	Key Derivation Function
KW	AES Key Wrap
MAC	Message Authentication Code
NIST	National Institute of Science and Technology
OAEP	Optimal Asymmetric Encryption Padding
OFB	Output Feedback
PAA	Processor Algorithm Acceleration
PBKDF	Password Based Key Derivation Function
PKG	Key-Pair Generation
PKV	Public Key Validation
PRF	Pseudo-Random Function
PSS	Probabilistic Signature Scheme
RSA	Rivest, Shamir, Addleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SSC	Shared Secret Computation
TOEPP	Tested Operational Environment Physical Perimeter
XTS	XEX Tweakable Block Ciphertext Stealing

© 2025 Apple Inc., All rights reserved.

Appendix B. References

- FIPS140-3 FIPS PUB 140-3 Security Requirements for Cryptographic Modules March 2019 https://doi.org/10.6028/NIST.FIPS.140-3
- SP 800-140x CMVP FIPS 140-3 Related Reference https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3standards
- FIPS140-3_IG
 Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module

 Validation Program
 https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
- FIPS140-3_MM
 CMVP FIPS 140-3 Draft Management Manual https://csrc.nist.gov/csrc/media/Projects/cryptographic-module-validationprogram/documents/fips%20140-3/Draft%20FIPS-140-3-CMVP%20Management%20Manual%20v1.2%20%5BDec%2023%202022%5D.pdf
- SP 800-140
 FIPS 140-3 Derived Test Requirements (DTR)

 https://csrc.nist.gov/publications/detail/sp/800-140/final
- SP 800-140A CMVP Documentation Requirements https://csrc.nist.gov/publications/detail/sp/800-140a/final
- SP 800-140B
 CMVP Security Policy Requirements

 https://csrc.nist.gov/publications/detail/sp/800-140b/final
- SP 800-140C CMVP Approved Security Functions https://csrc.nist.gov/publications/detail/sp/800-140c/final
- SP 800-140D CMVP Approved Sensitive Security Parameter Generation and Establishment Methods https://csrc.nist.gov/publications/detail/sp/800-140d/final
- SP 800-140E
 CMVP Approved Authentication Mechanisms

 https://csrc.nist.gov/publications/detail/sp/800-140e/final
- SP 800-140F
 CMVP Approved Non-Invasive Attack Mitigation Test Metrics

 https://csrc.nist.gov/publications/detail/sp/800-140f/final
- FIPS180-4 Secure Hash Standard (SHS) March 2012 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4	Digital Signature Standard (DSS)
	July 2013 http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
FIPS197	Advanced Encryption Standard
	November 2001 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
	http://csrc.hise.gov/publications/hps/hps17/hps-177.put
FIPS198-1	The Keyed Hash Message Authentication Code (HMAC) July 2008
	http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
PKCS#1	Public Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
	Version 2.1
	February 2003 http://www.ietf.org/rfc/rfc3447.txt
RFC3394	Advanced Encryption Standard (AES) Key Wrap Algorithm
	September 2002
	http://www.ietf.org/rfc/rfc3394.txt
RFC5649	Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm
	September 2009
	http://www.ietf.org/rfc/rfc5649.txt
SP 800-38A	NIST Special Publication 800-38A - Recommendation for Block Cipher Modes of
	Operation Methods and Techniques
	December 2001
	http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
SP 800-38C	NIST Special Publication 800-38C - Recommendation for Block Cipher Modes of
	Operation: the CCM Mode for Authentication and Confidentiality
	May 2004 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
	http://hvipubs.hist.gov/histpubs/Legacy/sr/histspecialpublication600-56c.pur
SP 800-38D	NIST Special Publication 800-38D - Recommendation for Block Cipher Modes of
	Operation: Galois/Counter Mode (GCM) and GMAC
	November 2007 http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
	http://csrc.hist.gov/publications/histpubs/000/30D/51/000/30D.put
SP 800-38E	NIST Special Publication 800-38E - Recommendation for Block Cipher Modes of
	Operation: The XTS AES Mode for Confidentiality on Storage Devices
	January 2010 http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
SP 800-38F	NIST Special Publication 800-38F - Recommendation for Block Cipher Modes of
	Operation: Methods for Key Wrapping
	December 2012 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf

SP 800-56Cr2	Recommendation for Key-Derivation Methods in Key-Establishment Schemes August 2020 <u>https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf</u>
SP 800-57	NIST Special Publication 800-57 Part 1 Revision 5 - Recommendation for Key Management Part 1: General May 2020 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
SP 800-67r1	NIST Special Publication 800-67 Revision 1 - Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher January 2012 http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf
SP 800-90Ar1	NIST Special Publication 800-90A - Revision 1 - Recommendation for Random Number Generation Using Deterministic Random Bit Generators June 2015 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
SP 800-90B	NIST Special Publication 800-90B - Recommendation for the Entropy Sources Used for Random Bit Generation January 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
SP 800-108	NIST Special Publication 800-108 - Recommendation for Key Derivation Using Pseudorandom Functions (Revised) October 2009 http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
SP 800-131Ar2	NIST Special Publication 800-131A - Transitioning the Use of Cryptographic Algorithms and Key Lengths March 2019 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
SP 800-132	NIST Special Publication 800-132 - Recommendation for Password-Based Key Derivation - Part 1: Storage Applications December 2010 http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
SP 800-133r2	Recommendation for Cryptographic Key Generation June 2020 <u>https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133r2.pdf</u>
SP 800-135r1	NIST Special Publication 800-135 Revision 1 - Recommendation for Existing Application-Specific Key Derivation Functions December 2011 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf

MACOS macOS Technical Overview https://developer.apple.com/macos/ SEC Apple Platform Security Guide https://support.apple.com/guide/security/welcome/web

macOS Product security certifications for macOS https://support.apple.com/HT201159