
© 2024 Red Hat, Inc./ atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 Red Hat Enterprise Linux 9 gnutls

version 3.7.6-66803fa128d6a6e5

FIPS 140-3 Non-Proprietary Security Policy

 document version 1.1

 Last update: 2024-08-09

Prepared by:

atsec information security corporation

4516 Seton Center Parkway, Suite 250

Austin, TX 78759

www.atsec.com

http://www.atsec.com/

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 2 of 45

Table of Contents
1 General ... 4

1.1 Overview .. 4
1.2 Security Levels ... 4

2 Cryptographic Module Specification ... 5
2.1 Description ... 5
2.2 Version Information .. 5
2.3 Operational Environments ... 5
2.4 Modes of Operations .. 6
2.5 Approved Algorithms ... 6
2.6 Non-Approved Algorithms .. 9
2.7 Module Design and Components ... 10

3 Cryptographic Module Ports and Interfaces .. 12
4 Roles, services, and authentication .. 13

4.1 Roles .. 13
4.2 Authentication ... 14
4.3 Services ... 14

5 Software/Firmware security ... 20
5.1 Integrity Techniques .. 20
5.2 On-Demand Integrity Test .. 20
5.3 Executable Code .. 20

6 Operational Environment ... 21
6.1 Applicability ... 21
6.2 Tested operational Environments .. 21
6.3 Policy and Requirements ... 21

7 Physical Security ... 22
8 Non-invasive Security .. 23
9 Sensitive Security Parameters Management ... 24

9.1 Random bit Generator ... 30
9.2 SSP generation ... 30
9.3 SSP entry and output ... 31
9.4 SSP establishment ... 31
9.5 SSP storage .. 32
9.6 SSP Zeroization .. 32

10 Self-tests .. 33
10.1 Pre-operational Software Integrity Test ... 33
10.2 Conditional Self-Tests .. 33

10.2.1 Conditional Cryptographic algorithm tests ... 33
10.2.2 Conditional Pairwise Consistency Test ... 34
10.2.3 Periodic/On-Demand Self-Test .. 34

10.3 Error States .. 34
11 Life-cycle assurance .. 36

11.1 Delivery and Operation .. 36
11.1.1 End of Life Procedure ... 36

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 3 of 45

11.2 Crypto Officer Guidance ... 36
11.2.1 TLS ... 36
11.2.2 AES XTS .. 37
11.2.3 AES GCM IV .. 37
11.2.4 Key Derivation using SP 800-132 PBKDF .. 37
11.2.5 Compliance to SP 800-56ARev3 assurances .. 38

12 Mitigation of other attacks .. 39

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 4 of 45

1 General

1.1 Overview
This document is the non-proprietary FIPS 140-3 Security Policy for version 3.7.6-66803fa128d6a6e5
of the Red Hat Enterprise Linux 9 gnutls cryptographic module. It has a one-to-one mapping to the
[SP 800-140B] starting with section B.2.1 named “General” that maps to section 1 in this document
and ending with section B.2.12 named “Mitigation of other attacks” that maps to section 12 in this
document. It contains the security rules under which the module must operate and describes how
this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information Processing
Standards Publication 140-3) for an Overall Security Level 1 module.

1.2 Security Levels
ISO/IEC 24759

Section 6. [Number
Below]

FIPS 140-3 Section Title Security Level

1 General 1

2 Cryptographic Module Specification 1

3 Cryptographic Module Interfaces 1

4 Roles, Services, and Authentication 1

5 Software/Firmware Security 1

6 Operational Environment 1

7 Physical Security Not Applicable

8 Non-invasive Security Not Applicable

9 Sensitive Security Parameter Management 1

10 Self-tests 1

11 Life-cycle Assurance 1

12 Mitigation of Other Attacks 1

Overall 1

Table 1 - Security Levels

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 5 of 45

2 Cryptographic Module Specification

2.1 Description
The Red Hat Enterprise Linux 9 gnutls cryptographic module (hereafter referred to as “the module”)
is a software library. The module is an open-source, general-purpose set of libraries designed to
support cross-platform development of security-enabled client and server applications. The module
is a multiple-chip standalone cryptographic module.

2.2 Version Information
The module version is 3.7.6-66803fa128d6a6e5 of the Red Hat Enterprise Linux 9 gnutls
cryptographic module.

2.3 Operational Environments
The module has been tested on the following platforms with the corresponding module variants and
configuration options with and without PAA:

Operating
System

Hardware Platform Processor PAA/
Acceleration

1 Red Hat Enterprise
Linux 9

Dell PowerEdge R440 Intel® Xeon® Silver
4216

AES-NI, SHA
Extensions

2 Red Hat Enterprise
Linux 9

IBM z16 3931-A01 IBM z16 CPACF

3 Red Hat Enterprise
Linux 9 with
PowerVM
FW1040.00 with
VIOS 3.1.3.00

IBM 9080-HEX IBM POWER10 ISA

Table 2 - Tested Operational Environments
In addition to the configurations tested by the atsec CST laboratory, vendor-affirmed testing was
performed on the following platforms for the module by F5, Inc.

Operating System Hardware Platform
1 Red Hat Enterprise Linux 9 Intel® Xeon® E5

Table 3 - Vendor Affirmed Operation Environments
Note: The CMVP makes no statement as to the correct operation of the module or the security
strengths of the generated keys when so ported if the specific operational environment is not listed
on the validation certificate.

Component Description
/usr/lib64/libgnutls.so.30
Note: libgmp is statically linked to libgnutls

Provides the API for the calling applications to request cryptographic
services, and implements the TLS protocol, DRBG, RSA Key
Generation, Diffie-Hellman and EC Diffie-Hellman.

/usr/lib64/libnettle.so.8 Provides the cryptographic algorithm implementations, including AES,
SHA, HMAC, RSA Digital Signature, DSA and ECDSA.

/usr/lib64/libhogweed.so.6 Provides primitives used by libgnutls and libnettle to support the
asymmetric cryptographic operations.

/usr/lib64/.libgnutls.so.30.hmac The .hmac file contain the HMAC-SHA2-256 values of the libraries for
integrity check during the power-up.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 6 of 45

Table 4 – Cryptographic Module Components

2.4 Modes of Operations
When the module starts up successfully, after passing all the pre-operational and conditional
cryptographic algorithms self-tests (CASTs), the module is operating in the approved mode of
operation by default and can only be transitioned into the non-Approved mode by calling one of the
non-Approved services listed in Table 10. Please see section 4 for the details on service indicator
provided by the module that identifies when an approved service is called.

2.5 Approved Algorithms
The table below lists all security functions of the module, including specific key size(s) employed for
approved or vendor-affirmed security functions, and implemented modes of operation.

CAVP Cert Algorithm
and

Standard

Mode/Method Description/Key
Size(s)/Key
Strength(s)

Use/Function

Certs. #A3472,
#A3473,
#A3478,
#A3550, #A3551

AES
FIPS197, SP800-
38A

CBC 128, 192, 256-bit keys
with 128-256 bits key
strength

Symmetric encryption;
Symmetric decryption

Cert. #A3478 AES
FIPS197, SP800-
38A

ECB 128, 192, 256-bit keys
with 128-256 bits key
strength

Symmetric encryption;
Symmetric decryption

Certs. #A3472,
#A3550

AES
SP800-38C

CCM 128, 256-bit keys with
128 or 256 bits key
strength

Symmetric encryption;
Symmetric decryption;
Authenticated encryption;
Authenticated decryption

Certs. #A3475,
#A3476, #A3481

AES
FIPS197, SP800-
38A

CFB8 128, 192, 256-bit keys
with 128 or 256 bits key
strength

Symmetric encryption;
Symmetric decryption

Certs. #A3472,
#A3473,
#A3478, #A3550

AES
SP800-38B

CMAC 128, 256-bit keys with
128 or 256 bits key
strength

Message authentication
code (MAC)
Message authentication
code verification

Certs. #A3472,
#A3473,
#A3478,
#A3550, #A3551

AES
SP800-38D

GCM 128, 256-bit keys with
128 or 256 bits key
strength

Symmetric encryption and
decryption in the context of
the Transport Layer Security
(TLS) network protocol

Cert. #A3478 AES
SP800-38D

GMAC 128, 256-bit keys with
128 or 256 bits key
strength

Message authentication
code (MAC)
Message authentication
code verification

Cert. #A3479 AES
SP800-38E

XTS 256, 512-bit keys with
128 or 256 bits key
strength

Symmetric encryption (for
data storage);
Symmetric decryption (for
data storage)

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 7 of 45

CAVP Cert Algorithm
and

Standard

Mode/Method Description/Key
Size(s)/Key
Strength(s)

Use/Function

Vendor Affirmed CKG
SP800-133rev2

Key pair generation (FIPS-
186-4, SP800-56Arev3,
SP800-90Arev1)

RSA: 2048, 3072, 4096-
bit keys with 112-149
bits key strength
ECDSA/ECDH: P-256, P-
384,
P-521 elliptic curves with
128-256 bits key
strength
Safe Primes: 2048, 3072,
4096, 6144, 8192-bit
keys with 112-200 bits of
key strength

Key pair generation

Cert. #A3478 DRBG
SP800-90Arev1

CTR_DRBG:
AES-256 without DF,
without PR

256-bit keys with 256
bits key strength

Random number generation

Cert. #A3478 ECDSA
FIPS186-4

ECDSA KeyGen (B.4.2
Testing Candidates)

P-256, P-384,
P-521 elliptic curves with
128-256 bits key
strength

Key pair generation

ECDSA KeyVer P-256, P-384,
P-521 elliptic curves with
128-256 bits key
strength

Public key verification

SHA-224, SHA-256, SHA-
384, SHA-512

P-256, P-384, P-521
elliptic curves with 128-
256 bits key strength

Digital signature generation

SHA-1, SHA-224,
SHA-256, SHA-384, SHA-
512

P-256, P-384, P-521
elliptic curves with 128-
256 bits key strength

Digital signature verification

Certs. #A3473,
#A3478, #A3552

HMAC
FIPS198-1

SHA-1, SHA-224,
SHA-256, SHA-384, SHA-
512

112-524288 bit keys with
112-256 key strength

Message authentication
code (MAC)
Message authentication
code verification

Cert. #A3478 KAS-ECC-SSC
SP800-56Arev3

ECC
Ephemeral Unified
Scheme

P-256, P-384, P-521
elliptic curves keys with
128-256 bits key
strength

EC Diffie-Hellman shared
secret computation;
Transport Layer Security
(TLS) network protocol

Cert. #A3478 KAS-FFC-SSC
SP800-56Arev3

Safe Prime Groups:
ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192,
MODP-2048,
MODP-3072,
MODP-4096,
MODP-6144,
MODP-8192

2048, 3072, 4096, 6144,
8192-bit keys with 112-
200 bits key strength

Diffie-Hellman shared secret
computation;
Transport Layer Security
(TLS) network protocol

Cert. #A3477 KDA HKDF
SP800-56Crev1

SHA-224, SHA-256, SHA-
384, SHA-512

Derived key with 112 to
256 bits of key strength

HKDF key derivation;
Transport Layer Security
(TLS) network protocol

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 8 of 45

CAVP Cert Algorithm
and

Standard

Mode/Method Description/Key
Size(s)/Key
Strength(s)

Use/Function

Cert. #A3478 TLS v1.2 KDF
RFC7627
SP800-135rev1
(CVL)

TLS v1.2 with SHA-256,
SHA-384

Derived key with 112 to
256 bits of key strength

TLS key derivation

Certs. #A3472,
#A3550

AES CCM SP800-
38C

KTS per IG D.G 128, 256-bit keys with
128 or 256 bits of key
strength

Key wrapping;
Key unwrapping
(as part of the cipher suites
in the TLS protocol)
 Certs. #A3472,

#A3473,
#A3478,
#A3550, #A3551

AES GCM SP800-
38D

KTS per IG D.G 128, 256-bit keys with
128 or 256 bits of key
strength

AES
Certs. #A3472,
#A3473,
#A3478,
#A3550, #A3551

HMAC
Certs. #A3473,
#A3478, #A3552

AES CBC and
HMAC
SP800-38A,
FIPS198-1

KTS per IG D.G 128, 256-bit keys with
128 or 256 bits of key
strength

Cert. #A3478 PBKDF
SP800-132

HMAC-SHA-1, HMAC-SHA-
224, HMAC-SHA-256,
HMAC-SHA-384, HMAC-
SHA-512

112-256 bits
14-128 characters with
password strength
between 1014 and 10128

Password-based key
derivation

Cert. #A3478 RSA
FIPS186-4
FIPS 140-3 IG C.F

RSA KeyGen (B.3.2
Random Provable Primes)

2048, 3072, 4096-bit
keys with 112-149 bits
key strength

Key pair generation

RSA SigGen PKCS#1v1.5:
SHA-224, SHA-256, SHA-
384, SHA-512

2048, 3072, 4096-bit
keys with 112-149 bits
key strength

Digital signature generation

RSA SigGen
PSS: SHA-256, SHA-384,
SHA-512

2048, 3072, 4096-bit
keys with 112-149 bits
key strength

RSA SigVer PKCS#1v1.5:
SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512

2048, 3072, 4096-bit
keys with 112-149 bits
key strength

Digital signature verification

RSA SigVer
PSS: SHA-256, SHA-384,
SHA-512

2048, 3072, 4096-bit
keys with 112-149 bits
key strength

Cert. #A3478 Safe Primes Key
Generation
SP800-56Arev3

Safe Prime Groups:
ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192

2048, 3072, 4096, 6144,
8192-bit keys with 112-
200 bits key strength

Key pair generation

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 9 of 45

CAVP Cert Algorithm
and

Standard

Mode/Method Description/Key
Size(s)/Key
Strength(s)

Use/Function

Certs. #A3474,
#A3480

SHA-3
FIPS202
FIPS 140-3 IG C.C

SHA3-224, SHA3-256,
SHA3-384, SHA3-512

N/A Message digest

Certs. #A3473,
#A3478, #A3552

SHA
FIPS180-4

SHA-1, SHA-224,
SHA-256, SHA-384, SHA-
512

N/A Message digest

Table 5 - Approved Algorithms

2.6 Non-Approved Algorithms
Non-Approved Algorithms Allowed in the Approved Mode of Operation:
The module does not implement any Non-Approved Algorithms Allowed in the Approved Mode of
Operation.
Non-Approved Algorithms Allowed in the Approved Mode of Operation with No Security Claimed:
The module does not implement any non-Approved but Allowed algorithm in Approved mode of
operation with no security claimed.
Non-Approved Algorithms Not Allowed in the Approved Mode of Operation:
The table below lists Non-Approved security functions that are not Allowed in the Approved Mode of
Operation.

Algorithm/Functions Use/Function

AES GCM not in the context of the TLS protocol Symmetric encryption; Symmetric decryption

Blowfish Symmetric encryption; Symmetric decryption

Camellia Symmetric encryption; Symmetric decryption

CAST Symmetric encryption; Symmetric decryption

ChaCha20 Symmetric encryption; Symmetric decryption

Chacha20 and Poly1305 Authenticated encryption; Authenticated decryption

DES Symmetric encryption; Symmetric decryption

Diffie-Hellman with keys generated with domain
parameters other than safe primes

Key agreement; Diffie-Hellman shared secret computation

DSA Key pair generation; Domain parameter generation; Digital
signature generation; Digital signature verification

ECDSA with curves not listed in Table 5 Key pair generation; Public key verification; Digital signature
generation; Digital signature verification

EC Diffie-Hellman with curves not listed in Table 5 Key agreement; EC Diffie-Hellman shared secret computation

GOST Symmetric encryption; Symmetric decryption; Message digest

HMAC with keys smaller than 112-bit Message authentication code (MAC)

HMAC with GOST Message authentication code (MAC)

MD2, MD4, MD5 Message digest; Message authentication code (MAC)

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 10 of 45

Algorithm/Functions Use/Function

PBKDF with non-approved message digest algorithms Password-based key derivation

RC2, RC4 Symmetric encryption; Symmetric decryption

RMD160 Message digest; Message authentication code (MAC)

RSA with keys smaller than 2048 bits or greater than
4096 bits.

Key pair generation; Digital signature generation

RSA with keys smaller than 1024 bits or greater than
4096 bits.

Digital signature verification

RSA encryption and decryption with any key sizes. Key encapsulation; Key un-encapsulation

Salsa20 Symmetric encryption; Symmetric decryption

SM3 Message digest

Serpent Symmetric encryption; Symmetric decryption

SHA-1 Digital signature generation

STREEBOG Message digest; Message authentication code (MAC)

Triple-DES Symmetric encryption; Symmetric decryption

Twofish Symmetric encryption; Symmetric decryption

UMAC Message authentication code (MAC)

Yarrow Random number generation

Table 6 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

2.7 Module Design and Components
The software block diagram below shows the module, its interfaces with the operational
environment and the delimitation of its cryptographic boundary.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 11 of 45

Figure 1 – Cryptographic Boundary

The module is implemented as a shared library. The cryptographic module boundary consists of 5
components:

• libgnutls
• libnettle
• libhogweed
• libgmp – statically linked
• gnutls hmac file

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 12 of 45

3 Cryptographic Module Ports and Interfaces
The logical interfaces are the API through which the applications request services. The following
table summarizes the logical interfaces:

Physical Port Logical Interface1 Data that passes over port/interface
As a software-only module, the module
does not have physical ports. Physical
Ports are interpreted to be the physical
ports of the hardware platform on which it
runs.

Data Input API input parameters
Data Output API output parameters
Control Input API function calls for control
Status Output API return codes, status parameters

Table 7 - Ports and Interfaces
The module does not output any control data to another cryptographic module.

1 The module does not implement Control Output interface.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 13 of 45

4 Roles, services, and authentication
The module supports the Crypto Officer role only. This sole role is implicitly assumed
by the operator of the module when performing a service. The module does not support
authentication.

4.1 Roles
Table below describes the authorized role(s) in which the service can be performed with specification
of the service input parameters and associated service output parameters.

Role Service Input Output

Crypto
Officer
(CO)

Authenticated encryption Key, Plaintext, IV Ciphertext, MAC tag

Authenticated decryption Key, Ciphertext, IV, MAC tag Plaintext

Diffie-Hellman shared secret computation Private key, public key from peer Shared secret

Digital signature generation Message, hash algorithm, private
key

Digital signature

Digital signature verification Message, signature, hash
algorithm, public key

Verification result

Domain parameter generation Domain parameters input Generated domain
parameters

EC Diffie-Hellman shared secret
computation

Private key, public key from peer Shared secret

HKDF key derivation Shared secret HKDF derived key

Key pair generation RSA key size, Diffie-Hellman Safe
Prime or Elliptic Curve, enabled-
curve2

Key pair

Key agreement Private key, public key from peer Derived key

Key encapsulation Key to be encapsulated, Key
encapsulating key

Encapsulated key

Key un-encapsulation Encapsulated key, Key
encapsulating key

Unencapsulated key

Key wrapping Key to be wrapped, Key wrapping
key

Wrapped key

Key unwrapping Wrapped key, Key unwrapping key Unwrapped key

Message authentication code (MAC) HMAC key or AES key, message MAC tag

Message authentication code verification HMAC key or AES key, message,
MAC tag

Pass/fail

Message digest Message Digest of the message

Password-based key derivation Password or passphrase, salt,
iteration count

PBKDF Derived key

Public key verification Key pair Return codes/log messages

Random number generation Number of bits Random number

2 The enabled-curve input parameter can be adjusted relying on the crypto-policies package provided as part of the RHEL
OS. The usage of crypto-policies is discouraged by the vendor. Further info can be found at the vendor's documentation.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 14 of 45

Role Service Input Output

Self-tests N/A Result of self-test (pass/fail)

Symmetric decryption Key, Ciphertext Plaintext

Symmetric encryption Key, Plaintext Ciphertext

Show module name and version N/A Name and version
information

Show status N/A Return codes and/or log
messages

TLS key derivation TLS Pre-master secret Derived key

Transport Layer Security (TLS) network
protocol

Cipher-suites, Digital Certificate,
Public and Private Keys, Application
Data

Return codes and/or log
messages, Application data

Zeroization Context containing SSPs N/A

Table 8 - Roles, Service Commands, Input and Output

4.2 Authentication
FIPS 140-3 does not require an authentication mechanism for level 1 modules. Therefore, the module
does not implement an authentication mechanism for Crypto Officer. The Crypto Officer role is
authorized to access all services provided by the module (see Table - Approved Services and Table
- Non-Approved Services below).

4.3 Services
The table below lists all approved services that can be used in the approved mode of operation.
The following convention is used to specify access rights to an SSP:

• G = Generate: The module generates or derives the SSP.
• R = Read: The SSP is read from the module (e.g., the SSP is output).
• W = Write: The SSP is updated, imported, or written to the module.
• E = Execute: The module uses the SSP in performing a cryptographic operation.
• Z = Zeroize: The module zeroizes the SSP.
• N/A: the calling application does not access any SSP or key during its operation.

The service indicator is invoked by calling the function "gnutls_fips140_get_operation_state()" and
it returns "GNUTLS_FIPS140_OP_APPROVED" depending on whether the API invoked corresponds to
an approved algorithm.

Service Description Approved
Security

Functions

Keys and/or
SSPs

Roles Access rights
to Keys

and/or SSPs

Indicator

Cryptographic Services

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 15 of 45

Service Description Approved
Security

Functions

Keys and/or
SSPs

Roles Access rights
to Keys

and/or SSPs

Indicator

Symmetric
encryption

Perform AES
encryption

AES-CBC
AES-ECB
AES-CCM
AES-CFB8
AES-CMAC
AES-GMAC
AES-XTS

AES key CO W, E GNUTLS_FIPS140
_OP_APPROVED

Symmetric
decryption

Perform AES
decryption

AES-CBC
AES-ECB
AES-CCM
AES-GCM
AES-CFB8
AES-CMAC
AES-GMAC
AES-XTS

AES key W, E GNUTLS_FIPS140
_OP_APPROVED

Authenticated
encryption

Encrypt a plaintext AES-CCM AES key W, E GNUTLS_FIPS140
_OP_APPROVED

Authenticated
decryption

Decrypt a
ciphertext

AES-CCM AES key W, E GNUTLS_FIPS140
_OP_APPROVED

Key wrapping Key wrapping (as
part of the cipher
suites in the TLS
protocol)

AES-CCM
AES-GCM

AES key W, E GNUTLS_FIPS140
_OP_APPROVED

AES-CBC,
HMAC

AES key, HMAC
key

W, E

Key unwrapping Key unwrapping
(as part of the
cipher suites in the
TLS protocol)

AES-CCM
AES-GCM

AES key W, E GNUTLS_FIPS140
_OP_APPROVED

AES-CBC,
HMAC

AES key, HMAC
key

W, E

Key pair
generation

Generate RSA,
ECDSA/ECDH and
DH key pairs

CKG
DRBG
ECDSA
RSA
Safe Primes Key
generation

Module-generated
RSA public key,
Module generated
RSA private key

G, E, R GNUTLS_FIPS140
_OP_APPROVED

Module-generated
ECDSA public key,
Module generated
ECDSA private
key

G, E, R

Module-generated
Diffie-Hellman
public key,
Module-generated
Diffie-Hellman
private keys

G, E, R

Module-generated
EC Diffie-Hellman
public key,
Module-generated
EC Diffie-Hellman
private keys

G, E, R

DRBG internal
state (V value,
key)

W, E

“enabled-curve”
parameter

W, E

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 16 of 45

Service Description Approved
Security

Functions

Keys and/or
SSPs

Roles Access rights
to Keys

and/or SSPs

Indicator

Digital signature
generation

Generate RSA and
ECDSA signature
See Table 5 for
SHA sizes

DRBG
ECDSA
SHA
RSA

DRBG internal
state (V value,
key)

W, E GNUTLS_FIPS140
_OP_APPROVED

RSA private key
ECDSA private
key

Digital signature
verification

Verify RSA, and
ECDSA signature
See Table 5 for
SHA sizes

RSA
ECDSA
SHA

RSA public key W, E GNUTLS_FIPS140
_OP_APPROVED ECDSA public key

Public key
verification

Verify ECDSA
public key

ECDSA ECDSA public key W, E GNUTLS_FIPS140
_OP_APPROVED

Random number
generation

Generate random
bitstrings

DRBG Entropy input W, E GNUTLS_FIPS140
_OP_APPROVED

DRBG internal
state (V value,
key)

E, G GNUTLS_FIPS140
_OP_APPROVED

DRBG seed E, G GNUTLS_FIPS140
_OP_APPROVED

Message digest Compute SHA
hashes

SHA None N/A GNUTLS_FIPS140
_OP_APPROVED

Message
authentication
code (MAC)

Compute HMAC Compute HMAC HMAC key W, E GNUTLS_FIPS140
_OP_APPROVED

Compute AES-
based CMAC

CMAC with AES AES key

Compute AES-
based GMAC

GMAC with AES AES key

Message
authentication
code verification

Verify MAC tag HMAC or
GMAC with AES or
CMAC with AES

AES key or HMAC
key

W, E GNUTLS_FIPS140
_OP_APPROVED

Diffie-Hellman
shared secret
computation

Compute a shared
secret

KAS-FFC-SSC Diffie-Hellman
public key, Diffie-
Hellman private
key

W, E GNUTLS_FIPS140
_OP_APPROVED

Diffie-Hellman
Shared secret

G, R

EC Diffie-Hellman
shared secret
computation

Compute a shared
secret

KAS-ECC-SSC EC Diffie-Hellman
public key, EC
Diffie-Hellman
private key

W, E GNUTLS_FIPS140
_OP_APPROVED

EC Diffie-Hellman
Shared secret

G, R

TLS key derivation Perform TLS key
derivation

TLS v1.2 KDF
RFC7627

TLS pre-master
secret

W, E GNUTLS_FIPS140
_OP_APPROVED

TLS master
secret

E, G

TLS derived key G, R
HKDF key
derivation

Perform key
derivation using
HKDF (in the
context of TLS 1.3)

KDA HKDF Diffie-Hellman
shared secret or
EC Diffie-Hellman
shared secret

W, E GNUTLS_FIPS140
_OP_APPROVED

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 17 of 45

Service Description Approved
Security

Functions

Keys and/or
SSPs

Roles Access rights
to Keys

and/or SSPs

Indicator

HKDF derived key G, R
Password-based
key derivation

Perform password-
based key
derivation

PBKDF Password/passphr
ase

W, E GNUTLS_FIPS140
_OP_APPROVED

PBKDF derived
key

G, R

Network Protocol Service

Transport Layer
Security (TLS)
network protocol

Establish TLS
session

Supported cipher
suites in FIPS-
validated
configuration (see
Appendix A for the
complete list of
valid cipher suites)

RSA public key,
RSA private key,
ECDSA public key,
ECDSA private
key

CO W, E GNUTLS_FIPS140
_OP_APPROVED

TLS pre-master
secret, TLS
master secret,
Diffie Hellman
private key,
Diffie-Hellman
public key, EC
Diffie Hellman
public key, EC
Diffie-Hellman
private key, TLS
derived key,
HKDF derived key

W, E, G

Other FIPS-Related Services

Show status Show module
status

N/A None CO N/A N/A

Self-tests Perform self-tests AES, Diffie-
Hellman, EC Diffie-
Hellman, ECDSA,
DRBG, HMAC, RSA,
SHS, HKDF, PBKDF,
TLS v1.2 KDF
RFC7627

None N/A N/A

Show module
name and version

Show module
name and version

N/A None N/A N/A

Zeroization Zeroize SSPs N/A Any SSPs All SSPs: Z N/A

Table 9 - Approved Services
The table below lists all non-Approved services that can only be used in the non-Approved mode of
operation.

Service Description Algorithms Accessed Role

Cryptographic Services

Symmetric
encryption

Compute the cipher for
encryption

AES GCM not in the context of the TLS protocol
Blowfish
Camellia
CAST
ChaCha20
DES
GOST

CO

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 18 of 45

Service Description Algorithms Accessed Role

Cryptographic Services

RC2, RC4
Salsa20
Serpent
Triple-DES
Twofish

Symmetric
decryption

Compute the cipher for
decryption

AES GCM not in the context of the TLS protocol
Blowfish
Camellia
CAST
ChaCha20
DES
GOST
RC2, RC4
Salsa20
Serpent
Triple-DES
Twofish

Key pair generation Generate RSA, DSA, and
ECDSA key pairs

DSA
ECDSA with curves not listed in Table 5
RSA with keys smaller than 2048 bits or greater than 4096
bits

Digital signature
generation

Sign RSA, DSA, and
ECDSA signatures

DSA
ECDSA with curves not listed in Table 5
RSA with keys smaller than 2048 bits or greater than 4096
bits

Digital signature
verification

Verify RSA, DSA, and
ECDSA signatures

DSA
ECDSA with curves not listed in Table 5
RSA with keys smaller than 1024 bits or greater than 4096
bits

Domain parameter
generation

Generate domain
parameter

DSA

Message digest Compute message digest GOST
MD2, MD4, MD5
RMD160
SM3
STREEBOG

Message
authentication code
(MAC)

Compute HMAC HMAC with keys smaller than 112-bit
HMAC with GOST
MD2, MD4, MD5
RMD160
STREEBOG
UMAC

Key agreement Perform key agreement Diffie-Hellman with keys generated with domain
parameters other than safe primes
EC Diffie-Hellman with curves not listed in Table 5

Key encapsulation Perform RSA key
encapsulation

RSA encryption and decryption with any key sizes

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 19 of 45

Service Description Algorithms Accessed Role

Cryptographic Services

Key un-
encapsulation

Perform RSA key un-
encapsulation

RSA encryption and decryption with any key sizes

Diffie-Hellman
shared secret
computation

Perform DH shared secret
computation

Diffie-Hellman with keys generated with domain
parameters other than safe primes

EC Diffie-Hellman
shared secret
computation

Perform ECDH shared
secret computation

EC Diffie-Hellman with curves not listed in Table 5

Password-based key
derivation

Perform password-based
key derivation

PBKDF using non-approved message digest algorithms

Public key
verification

Verify ECDSA public key ECDSA with curves not listed in Table 5

Transport Layer
Security (TLS)
network protocol

Establish non-supported
TLS channel

Non-supported cipher suite (see Appendix A for the
complete list of valid cipher)

Table 10 - Non-Approved Services

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 20 of 45

5 Software/Firmware security

5.1 Integrity Techniques
The integrity of the module is verified by comparing an HMAC-SHA2-256 value calculated at run
time with the HMAC value stored in the .hmac file that was computed at build time for each
software component of the module listed in section 2. The .hmac file has HMAC value for libgnutls,
libnettle and libhogweed listed in section 2. If the HMAC values do not match, the test
fails, and the module enters the error state.
Integrity tests are performed as part of the Pre-Operational Self-Tests.

5.2 On-Demand Integrity Test
The module provides the Self-Test service to perform self-tests on demand which includes the pre-
operational test (i.e., integrity test) and the cryptographic algorithm self-tests (CASTs). The Self-
Tests service can be called on demand by invoking the gnutls_fips140_run_self_tests() function
which will perform integrity tests and the cryptographic algorithms self-tests. Additionally, the Self-
Test service can be invoked by powering-off and reloading the module. During the execution of the
on-demand self-tests, services are not available, and no data output is possible.

5.3 Executable Code
The module consists of executable code in the form of libgnutls, libnettle, libgmp and libhogweed
shared libraries as stated in section 2.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 21 of 45

6 Operational Environment

6.1 Applicability
The module operates in a modifiable operational environment per FIPS 140-3 level 1 specification:
the module executes on a general-purpose operating system (Red Hat Enterprise Linux 9), which
allows modification, loading, and execution of software that is not part of the validated module.

6.2 Tested operational Environments
See Section 2.3.
The Red Hat Enterprise Linux operating system is used as the basis of other products which include
but are not limited to:

• Red Hat Enterprise Linux CoreOS
• Red Hat Ansible Automation Platform
• Red Hat OpenStack Platform
• Red Hat OpenShift
• Red Hat Gluster Storage
• Red Hat Satellite

Compliance is maintained for these products whenever the binaries are found unchanged.

6.3 Policy and Requirements
The module shall be installed as stated in Section 11. If properly installed, the operating system
provides process isolation and memory protection mechanisms that ensure appropriate separation
for memory access among the processes on the system. Each process has control over its own data
and uncontrolled access to the data of other processes is prevented.
There are no concurrent operators.
The module does not have the capability of loading software or firmware from an external source.
Instrumentation tools like the ptrace system call, gdb and strace, userspace live patching, as well
as other tracing mechanisms offered by the Linux environment such as ftrace or systemtap, shall
not be used in the operational environment. The use of any of these tools implies that the
cryptographic module is running in a non-validated operational environment.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 22 of 45

7 Physical Security
The module is comprised of software only and therefore this section is Not Applicable (N/A).

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 23 of 45

8 Non-invasive Security
This module does not implement any non-invasive security mechanism and therefore this section is
Not Applicable (N/A).

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 24 of 45

9 Sensitive Security Parameters Management
Table 11 summarizes the SSPs that are used by the cryptographic services implemented in the
module.

Key / SSP
Name /
Type

Strength Security
Function and
Cert. Number

Generation Import/Export Establis
hment

Storag
e

Zeroization Use & related
keys

AES key AES-XTS:
128, 256
bits;
Other
modes:
128, 192,
256 bits

AES-CBC, AES-
CCM, AES-
CFB8, AES-
CMAC,
AES-ECB AES-
GCM, AES-
GMAC, AES-
XTS,
Certs. #A3472,
#A3473,
#A3475,
#A3476,
#A3478,
#A3479,
#A3481,
#A3550,
#A3551

N/A MD/EE

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

N/A RAM gnutls_cipher_
deinit()
gnutls_aead_ci
pher_deinit()

Use: Symmetric
encryption;
Symmetric
decryption;
Message
authentication
code (MAC);
Message
authentication
code verification;
Authenticated
encryption;
Authenticated
decryption; Key
wrapping; Key
unwrapping
Related SSPs:
N/A

HMAC key 112–256
bits

HMAC
Certs. #A3473,
#A3478,
#A3552

N/A MD/EE

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

N/A RAM gnutls_hmac_
deinit()

Use: Message
Authentication
Code (MAC);
Message
authentication
code verification;
Key wrapping;
Key unwrapping
Related SSPs:
N/A

Module-
generated
RSA public
key

112 to 256
bits

DRBG, RSA:
Cert. #A3478

Generated
using the FIPS
186-4 key
generation
method; the
random value
used in key
generation is
obtained from
the SP800-
90Arev1
DRBG.

MD/EE

Import: None
Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

N/A RAM gnutls_privkey
_deinit()
gnutls_x509_p
rivkey_deinit()
gnutls_rsa_par
ams_deinit()

Use: Key pair
generation
Related SSPs:
DRBG internal
state (V value,
key); Module-
generated RSA
private key

Module-
generated
RSA private
key

112 to 256
bits

DRBG, RSA:
Cert. #A3478

Generated
using the FIPS
186-4 key
generation
method; the
random value
used in key
generation is
obtained from
the SP800-
90Arev1
DRBG.

MD/EE

Import: None
Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

N/A RAM gnutls_privkey
_deinit()
gnutls_x509_p
rivkey_deinit()
gnutls_rsa_par
ams_deinit()

Use: Key pair
generation
Related SSPs:
DRBG internal
state (V value,
key); Module-
generated RSA
public key

RSA public
key

112 to 256
bits

RSA
Cert. #A3478

N/A MD/EE

N/A RAM gnutls_privkey
_deinit()

Use: Digital
signature
verification;

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 25 of 45

Key / SSP
Name /
Type

Strength Security
Function and
Cert. Number

Generation Import/Export Establis
hment

Storag
e

Zeroization Use & related
keys

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

gnutls_x509_p
rivkey_deinit()
gnutls_rsa_par
ams_deinit()

Transport Layer
Security (TLS)
network protocol
Related SSPs:
RSA private key

RSA private
key

112 to 256
bits

RSA
Cert. #A3478

N/A MD/EE

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

N/A RAM gnutls_privkey
_deinit()
gnutls_x509_p
rivkey_deinit()
gnutls_rsa_par
ams_deinit()

Use: Digital
signature
generation;
Transport Layer
Security (TLS)
network protocol
Related SSPs:
RSA public key

Module-
generated
ECDSA
public key

112, 192,
256 bits

DRBG, ECDSA:
Cert. #A3478

Generated
using the FIPS
186-4 key
generation
method; the
random value
used in key
generation is
obtained from
the SP800-
90Arev1
DRBG.

MD/EE

Import: None
Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

N/A RAM gnutls_privkey
_deinit()
gnutls_x509_p
rivkey_deinit()
gnutls_rsa_par
ams_deinit()

Use: Key pair
generation
Related SSPs:
DRBG internal
state (V value,
key); Module-
generated ECDSA
private key

Module-
generated
ECDSA
private key

112, 192,
256 bits

DRBG, ECDSA:
Cert. #A3478

Generated
using the FIPS
186-4 key
generation
method; the
random value
used in key
generation is
obtained from
the SP800-
90Arev1
DRBG.

MD/EE

Import: None
Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

N/A RAM gnutls_privkey
_deinit()
gnutls_x509_p
rivkey_deinit()
gnutls_rsa_par
ams_deinit()

Use: Key pair
generation
Related SSPs:
DRBG internal
state (V value,
key); Module-
generated ECDSA
public key

ECDSA
public key

128, 192,
256 bits

ECDSA
Cert. #A3478

N/A MD/EE

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

N/A RAM gnutls_privkey
_deinit()
gnutls_x509_p
rivkey_deinit()
gnutls_rsa_par
ams_deinit()

Use: Digital
signature
verification;
Public key
verification;
Transport Layer
Security (TLS)
network protocol
Related SSPs:
DRBG internal
state (V value,
key); ECDSA
private key

ECDSA
private key

128, 192,
256 bits

ECDSA
Cert. #A3478

N/A MD/EE

N/A RAM gnutls_privkey
_deinit()
gnutls_x509_p
rivkey_deinit()

Use: Digital
signature
generation;
Public key

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 26 of 45

Key / SSP
Name /
Type

Strength Security
Function and
Cert. Number

Generation Import/Export Establis
hment

Storag
e

Zeroization Use & related
keys

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

gnutls_rsa_par
ams_deinit()

verification;
Transport Layer
Security (TLS)
network protocol
Related SSPs:
DRBG internal
state (V value,
key); ECDSA
public key

Module-
generated
Diffie-
Hellman
public key

112-200
bits

KAS-FFC-SSC
DRBG
Cert. #A3478

Generated
using the SP
800-56Arev3
Safe Primes
key generation
method;
random values
are obtained
from the
SP800-
90Arev1
DRBG.

MD/EE

Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.
Import: None

N/A RAM gnutls_dh_par
ams_deinit()
gnutls_pk_par
ams_clear()

Use: Key pair
generation;
Transport Layer
Security (TLS)
network protocol
Related SSPs:
Module-
generated Diffie-
Hellman private
key; DRBG
internal state (V
value, key); TLS
pre-master
secret

Module-
generated
Diffie-
Hellman
private key

112-200
bits

KAS-FFC-SSC
DRBG
Cert. #A3478

Generated
using the SP
800-56Arev3
Safe Primes
key generation
method;
random values
are obtained
from the
SP800-
90Arev1
DRBG.

MD/EE

Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.
Import: None

N/A RAM gnutls_dh_par
ams_deinit()
gnutls_pk_par
ams_clear()

Use: Key pair
generation;
Transport Layer
Security (TLS)
network protocol
Related SSPs:
Module-
generated Diffie-
Hellman public
key; DRBG
internal state (V
value, key); TLS
pre-master
secret

Diffie-
Hellman
public key

112-200
bits

KAS-FFC- SSC
Cert. #A3478

N/A MD/EE

Import: CM
from TOEPP
Path. Passed to
the module via
API parameters
in plaintext (P)
format.
Export: None

N/A RAM gnutls_dh_par
ams_deinit()
gnutls_pk_par
ams_clear()

Use: Diffie-
Hellman shared
secret
computation;
Transport Layer
Security (TLS)
network protocol
Related keys:
Diffie-Hellman
private key;
Diffie-Hellman
shared secret

Diffie-
Hellman
private key

112-200
bits

KAS-FFC- SSC
Cert. #A3478

N/A MD/EE

Import: CM
from TOEPP
Path. Passed to
the module via
API parameters
in plaintext (P)
format.
Export: None

N/A RAM gnutls_dh_par
ams_deinit()
gnutls_pk_par
ams_clear()

Use: Diffie-
Hellman shared
secret
computation;
Transport Layer
Security (TLS)
network protocol
Related keys:
Diffie-Hellman
public key; Diffie-
Hellman shared
secret

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 27 of 45

Key / SSP
Name /
Type

Strength Security
Function and
Cert. Number

Generation Import/Export Establis
hment

Storag
e

Zeroization Use & related
keys

Module-
generated
EC Diffie-
Hellman
public key

128, 192,
256 bits

KAS-ECC-SSC
DRBG
Cert. #A3478

Generated
internally by
the module
using the
ECDSA key
generation
method
compliant with
[FIPS186-4]
and [SP800-
56Arev3]; the
random value
used in key
generation is
obtained from
the SP800-
90Arev1 DRBG

MD/EE

Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.
Import: None

N/A RAM gnutls_pk_par
ams_clear()

Use: Key pair
generation;
Transport Layer
Security (TLS)
network protocol
Related keys:
Module-
generated EC
Diffie-Hellman
private key;
DRBG internal
state (V value,
key); TLS pre-
master secret

Module-
generated
EC Diffie-
Hellman
private key

128, 192,
256 bits

KAS-ECC-SSC
DRBG
Cert. #A3478

Generated
internally by
the module
using the
ECDSA key
generation
method
compliant with
[FIPS186-4]
and [SP800-
56Arev3]; the
random value
used in key
generation is
obtained from
the SP800-
90Arev1 DRBG

MD/EE

Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.
Import: None

N/A RAM gnutls_pk_par
ams_clear()

Use: Key pair
generation;
Transport Layer
Security (TLS)
network protocol
Related keys:
Module-
generated EC
Diffie-Hellman
public key; DRBG
internal state (V
value, key); TLS
pre-master
secret

EC Diffie-
Hellman
public key

128, 192,
256 bits

KAS-ECC-SSC
Cert. #A3478

N/A MD/EE

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

N/A RAM gnutls_pk_par
ams_clear()

Use: EC Diffie-
Hellman shared
secret
computation;
Transport Layer
Security (TLS)
network protocol
Related keys:
EC Diffie-Hellman
private key; EC
Diffie-Hellman
shared secret

EC Diffie-
Hellman
private key

128, 192,
256 bits

KAS-ECC-SSC
Cert. #A3478

N/A MD/EE

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

N/A RAM gnutls_pk_par
ams_clear()

Use: EC Diffie-
Hellman shared
secret
computation;
Transport Layer
Security (TLS)
network protocol
Related keys:
EC Diffie-Hellman
public key; EC
Diffie-Hellman
shared secret

Diffie-
Hellman
shared
secret

112 to 200
bits

KAS-FFC-SSC
Cert. #A3478

N/A MD/EE

Generate
d during
the
Diffie-

RAM zeroize_key() Use: Diffie-
Hellman shared
secret
computation;

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 28 of 45

Key / SSP
Name /
Type

Strength Security
Function and
Cert. Number

Generation Import/Export Establis
hment

Storag
e

Zeroization Use & related
keys

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

Hellman
key
agreeme
nt and
shared
secret
computat
ion per
SP800-
56Arev3.

HKDF key
derivation
Related keys:
Diffie-Hellman
public key; Diffie-
Hellman private
key

EC Diffie-
Hellman
shared
secret

112 to 256
bits

KAS-ECC-SSC
Cert. #A3478

N/A MD/EE

Import: CM
from TOEPP
Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: CM to
TOEPP Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

Generate
d during
the EC
Diffie-
Hellman
key
agreeme
nt and
shared
secret
computat
ion per
SP800-
56Arev3.

RAM zeroize_key() Use: EC Diffie-
Hellman shared
secret
computation;
HKDF key
derivation
Related keys:
EC Diffie-Hellman
public key; EC
Diffie-Hellman
private key

PBKDF
password or
passphrase

Password
strength
1014 -
10128

PBKDF
Cert. #A3478

N/A
(key material
is entered via
API
parameters)

MD/EE

Import: CM to
TOEPP Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

N/A RAM Internal
PBKDF state is
zeroized
automatically
when function
returns.

Use: Password-
based key
derivation
Related keys:
PBKDF derived
key

PBKDF
derived key

112-256
bits

PBKDF
Cert. #A3478

Derived during
the PBKDF

MD/EE

Import: None
Export: CM
from TOEPP
Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

N/A RAM zeroize_key() Use: Password-
based key
derivation
Related keys:
PBKDF password
or passphrase

HKDF
derived key

112 to 256
bits

KDA HKDF
Cert. #A3477

Derived (as
part of
TLSv1.3) with
KDA HKDF

MD/EE

Import: None
Export: CM
from TOEPP
Path.

N/A RAM gnutls_deinit() Use: HKDF key
derivation;
Transport Layer
Security (TLS)
network protocol

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 29 of 45

Key / SSP
Name /
Type

Strength Security
Function and
Cert. Number

Generation Import/Export Establis
hment

Storag
e

Zeroization Use & related
keys

Passed from the
module via API
parameters in
plaintext (P)
format.

Related keys:
Diffie-Hellman
shared secret, EC
Diffie-Hellman
shared secret

Entropy
input

IG D.L
compliant

112 to 337
bits

DRBG
Cert. #A3478

ESV
Cert. #E47

Obtained from
the SP 800-
90B compliant
Non-Physical
Entropy
Source

Import: None
Export: None
it remains within
the
cryptographic
boundary.

N/A RAM gnutls_global_
deinit()

Use: Random
number
generation
Related keys:
DRBG seed

DRBG
internal
state (V
value, key)

IG D.L
compliant

128 to 256
bits

DRBG
Cert. #A3478

Generated
from the DRBG
seed as
defined in
SP800-
90Arev1

Import: None
Export: None

N/A RAM gnutls_global_
deinit()

Use: Random
number
generation
Related keys:
DRBG seed,
Module-
generated ECDSA
public key,
Module-
generated ECDSA
private key,
Module-
generated RSA
public key,
Module-
generated RSA
private key,
Module-
generated Diffie-
Hellman public
key, Module-
generated Diffie-
Hellman private
key, Module-
generated EC
Diffie-Hellman
public key,
Module-
generated EC
Diffie-Hellman
private key

DRBG seed

IG D.L
compliant

128 to 256
bits

DRBG
Cert. #A3478

ESV
Cert. #E47

Derived from
entropy input
as defined in
SP800-
90Arev1

Import: None
Export: None
it remains within
the
cryptographic
boundary.

N/A RAM gnutls_global_
deinit()

Use: Random
number
generation
Related keys:
Entropy input;
DRBG internal
state (V value,
key)

TLS pre-
master
secret

DH 112 to
256 bits
ECDH 112
to 256 bits

TLS v1.2 KDF
RFC7627
Certs. #A3478

N/A MD/EE

Import: CM to
TOEPP Path.
Passed to the
module via API
parameters in
plaintext (P)
format.
Export: None

Key
agreeme
nt for
Diffie-
Hellman
or EC
Diffie-
Hellman
and
shared
secret
computat

RAM gnutls_deinit() Use: TLS key
derivation,
Transport Layer
Security (TLS)
network protocol
Related keys:
TLS master
secret

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 30 of 45

Key / SSP
Name /
Type

Strength Security
Function and
Cert. Number

Generation Import/Export Establis
hment

Storag
e

Zeroization Use & related
keys

ion per
SP800-
56Arev3

TLS master
secret

112 to 256
bits

TLS v1.2 KDF
RFC7627
Certs. #A3478

Derived from
TLS pre-
master secret
using TLS v1.2
KDF
RFC7627per
SP800-
135rev1.

MD/EE

Import: None
Export: None

N/A RAM gnutls_deinit() Use: TLS key
derivation,
Transport Layer
Security (TLS)
network protocol
Related keys:
TLS pre-master
secret, TLS
derived key

TLS derived
key

112 to 256
bits

TLS v1.2 KDF
RFC7627
Certs. #A3478

Derived from
TLS master
secret using
TLS v1.2 KDF
RFC7627 per
SP800-
135rev1.

MD/EE

Import: None
Export: CM
from TOEPP
Path.
Passed from the
module via API
parameters in
plaintext (P)
format.

N/A RAM gnutls_deinit() Use: TLS key
derivation,
Transport Layer
Security (TLS)
network protocol
Related keys:
TLS pre-master
secret, TLS
master secret

Table 11 - SSPs

9.1 Random bit Generator
The module employs a Deterministic Random Bit Generator (DRBG) based on [SP800-90ARev1] for
the generation of random value used in asymmetric keys, and for providing a RNG service to calling
applications. The approved DRBG provided by the module is the CTR_DRBG with AES-256. The DRBG
does not employ prediction resistance or a derivation function. The module uses an SP800-90B-
compliant Entropy Source specified in the table below to seed the DRBG.

Entropy Source Minimum number
of bits of entropy

Details

SP 800-90B
compliant Non-
Physical Entropy
Source
(ESV cert. E47)

225 bits of entropy
in the 256-bit
output

Userspace CPU Jitter 2.2.0 entropy source with
LFSR as the non-vetted conditioning component is
located within the physical perimeter of the
module but outside the cryptographic boundary of
the module.

Table 12 - Non-Deterministic Random Number Generation Specification
The module generates SSPs (e.g., keys) whose strengths are modified by available entropy.

9.2 SSP generation
In accordance with FIPS 140-3 IG D.H, the cryptographic module performs Cryptographic Key
Generation (CKG) for asymmetric keys according to section 5.1 and 5.2 of [SP800-133rev2]
according to section 6.1 of [SP800-133rev2] (vendor affirmed) by obtaining a random bit string
directly from an approved [SP800-90Arev1] DRBG and that can support the required security
strength requested by the caller (without any V, as described in Additional Comments 2 of IG D.H).

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 31 of 45

• For generating RSA and ECDSA keys, the module implements asymmetric cryptographic
key generation (CKG) services compliant with [FIPS186-4].

• The public and private keys used in the EC Diffie-Hellman key agreement schemes are
generated internally by the module using the ECDSA key generation method compliant with
[FIPS186-4] and [SP800-56Arev3].

• The public and private keys used in the Diffie-Hellman key agreement scheme are also
compliant with [SP800-56Arev3]. The module generates keys using safe primes defined in
RFC7919 and RFC3526, as described in the next section.

The module provides the following SSP generation methods with associated SSP sizes and
strengths:

• RSA [FIPS186-4] B.3.2 Random Provable Primes - 2048, 3072, 4096-bit keys with 112-149
bits of key strength

• ECDH/ECDSA [FIPS186-4] B.4.2 Testing Candidates - P-256, P-384, P-521 elliptic curves with
128-256 bits of key strength

• Safe Primes Key Generation [SP800-56Arev3] - 2048, 3072, 4096, 6144, 8192-bit keys with
112-200 bits of key strength

The module supports the following key derivation methods according to [SP800-135rev1]:
• KDF for the TLS protocol, used as pseudo-random functions (PRF) for TLSv1.2 (RFC7627)

The module supports the following key derivation methods according to [SP800-56Cr1]:
• HKDF for the TLS protocol TLSv1.3.

The module also supports password-based key derivation (PBKDF). The implementation is
compliant with option 1a of [SP800-132]. Keys derived from passwords or passphrases using this
method can only be used in storage applications
Intermediate key generation values are not output from the module and are explicitly zeroized
after processing the service.

9.3 SSP entry and output
SSPs are provided to the module via API input parameters in plaintext form and output via API
output parameters in plaintext form within the physical perimeter of the operational environment.
This is allowed by [FIPS140-3_IG] IG 9.5.A, according to the “CM Software to/from App via TOEPP
Path” entry on the Key Establishment Table. The module does not support entry or output of
cryptographically protected SSPs.

9.4 SSP establishment
The module provides Diffie-Hellman and EC Diffie-Hellman shared secret computation compliant
with SP800- 56Arev3, in accordance with scenario 2 (1) of IG D.F and used as part of the TLS
protocol key exchange in accordance with scenario 2 (2) of IG D.F; that is, the shared secret
computation (KAS-FFC-SSC and KAS-ECC-SSC) followed by the derivation of the keying material
using SP800-135rev1 KDF and SP800-56Crev1 KDF.
For Diffie-Hellman, the module supports the use of safe primes from RFC7919 for domain
parameters and key generation, which are used in the TLS key agreement implemented by the
module.

• TLS (RFC7919)
◦ ffdhe2048 (ID = 256)
◦ ffdhe3072 (ID = 257)

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 32 of 45

◦ ffdhe4096 (ID = 258)
◦ ffdhe6144 (ID = 259)
◦ ffdhe8192 (ID = 260)

The module also supports the use of safe primes from RFC3526, which are part of the Modular
Exponential (MODP) Diffie-Hellman groups that can be used for Internet Key
Exchange (IKE). Note that the module only implements key generation and verification, and
shared secret computation using safe primes, but no part of the IKE protocol.

• IKEv2 (RFC3526)
◦ MODP-2048 (ID=14)
◦ MODP-3072 (ID=15)
◦ MODP-4096 (ID=16)
◦ MODP-6144 (ID=17)
◦ MODP-8192 (ID=18)

The module also provides the following key transport mechanisms:
• Key wrapping using AES-CCM, AES-GCM, and AES-CBC with HMAC, used in the context of

the TLS protocol cipher suites (in compliance with IG D.G).
According to Table 2: Comparable strengths in [SP 800-57rev5], the key sizes of AES, Diffie-
Hellman and EC Diffie-Hellman provides the following security strength in Approved mode of
operation:

• AES key wrapping using AES-CCM, AES-GCM, and AES in CBC mode and HMAC, provides
between 128 or 256 bits of encryption strength.

• Diffie-Hellman shared secret computation provides between 112 and 200 bits of security
strength.

• EC Diffie-Hellman shared secret computation provides between 128 and 256 bits of security
strength.

9.5 SSP storage
Symmetric keys, public and private keys are provided to the module by the calling application via
API input parameters and are destroyed by the module when invoking the appropriate API function
calls.
The module does not perform persistent storage of SSPs. The SSPs are temporarily stored in the
RAM in plaintext form. SSPs are provided to the module by the calling process and are destroyed
when released by the appropriate zeroization function calls.

9.6 SSP Zeroization
The memory occupied by SSPs is allocated by regular memory allocation operating system calls.
The application that is acting as the CO is responsible for calling the appropriate zeroization
functions provided in the module's API and listed in Table 11. Calling the gnutls_deinit() will zeroize
the SSPs stored in the TLS protocol internal state and also invoke the corresponding API functions
listed in Table 11 to zeroize SSPs. The zeroization functions overwrite the memory occupied by
SSPs with “zeros” and deallocate the memory with the regular memory deallocation operating
system call. The completion of a zeroization routine(s) will indicate that a zeroization procedure
succeeded. All data output is inhibited during zeroization.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 33 of 45

10 Self-tests
The module performs the pre-operational self-test and CASTs automatically when the module is
loaded into memory. Pre-operational self-test ensure that the module is not corrupted, and the
CASTs ensure that the cryptographic algorithms work as expected. While the module is executing
the self-tests, the module services are not available, and input and output are inhibited. The module
is not available for use by the calling application until the pre-operational self-test and the CASTs
are completed successfully. After the pre-operational test and the CASTs succeed, the module
becomes operational. If any of the pre-operational test or any of the CASTs fail an error message is
returned, and the module transitions to the error state.

10.1 Pre-operational Software Integrity Test
The module performs the following pre-operational tests: the integrity test of the shared libraries
that comprise the module using HMAC-SHA2-256. The details of integrity test are provided in section
5.1. Prior the first use, a CAST is executed for the algorithms used in the Pre-operational Self-Tests.

10.2 Conditional Self-Tests
The following sub-sections describe the conditional self-tests supported by the module. If one of the
conditional self-tests fail, the module transitions to the ‘Error’ state and a corresponding error
indication is given.
The entropy source performs its required self-tests; those are not listed here, as the entropy source
is not part of the cryptographic boundary of the module.

10.2.1 Conditional Cryptographic algorithm tests
The module performs cryptographic algorithm self-tests (CASTs) on all approved cryptographic
algorithms. The CASTs consist of Known Answer Tests for all the approved cryptographic algorithms.

Algorithm Test

AES KAT AES CBC mode with 128-bit and 256-bit keys, encryption and decryption (separately
tested)
KAT AES CFB8 mode with 256-bit key, encryption and decryption (separately tested)
KAT AES GCM mode with 256-bit key, encryption and decryption (separately tested)
KAT AES XTS mode with 256-bit keys, encryption and decryption (separately tested)
KAT AES-CMAC with 256-bit key size MAC generation

Diffie-Hellman Primitive “Z” Computation KAT with ffdhe3072

DRBG KAT CTR_DRBG with AES with 256-bit keys without DF, without PR
DRBG Health tests according to section 11.3 of [SP800-90Arev1]

EC Diffie-Hellman Primitive “Z” Computation KAT with P-256 curve

ECDSA KAT ECDSA with P-256 using SHA-256, P-384 using SHA-384, and P-521 using SHA-512,
signature generation and verification (separately tested)

HKDF KDA KAT with SHA-256

HMAC KAT HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512

PBKDF KDF KAT with SHA-256 with 4096 iterations and 288-bit salt

RSA KAT RSA PKCS#1 v1.5 with 2048-bit key using SHA-256, signature generation and
verification (separately tested)

SHA-3 KAT SHA3-224, SHA3-256, SHA3-384, SHA3-512

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 34 of 45

Algorithm Test

TLS v1.2 KDF RFC7627 KAT with SHA-256

Table 13 - Conditional Cryptographic Algorithm Self-Tests

10.2.2 Conditional Pairwise Consistency Test
The module performs the Pair-wise Consistency Tests (PCT) shown in the following table. If any of
the tests fails, the module returns an error code and enters the Error state. When the module is in
the Error state, no data is output, and cryptographic operations are not allowed.

Algorithm Test

ECDSA key generation PCT using SHA-256, signature generation and verification.

RSA key generation PCT using PKCS#1 v1.5 with SHA-256, signature generation and verification

Diffie-Hellman key generation PCT according to section 5.6.2.1.4 of [SP800-56Arev3]

EC Diffie-Hellman key generation Covered by ECDSA PCT as allowed by IG 10.3.A additional comment 1

Table 14 - Pairwise Consistency Test

10.2.3 Periodic/On-Demand Self-Test
The module provides the Self-Test service to perform self-tests on demand which includes the pre-
operational test (i.e., integrity test) and the cryptographic algorithm self-tests (CASTs). The Self-
Tests service can be called on demand by invoking the gnutls_fips140_run_self_tests() function
which will perform integrity tests and the cryptographic algorithms self-tests. Additionally, the Self-
Test service can be invoked by powering-off and reloading the module. During the execution of the
on-demand self-tests, services are not available, and no data output is possible.

10.3 Error States
When the module fails any pre-operational self-test or conditional test, the module will return an
error code to indicate the error and enters error state. Any further cryptographic operations and the
data output via the data output interface are inhibited. The calling application can obtain the module
state by calling the gnutls_fips140_get_operation_state() API function. The function returns
GNUTLS_FIPS140_OP_ERROR if the module is in the Error state.
The following table shows the error codes and the corresponding condition:

Error
State

Cause of Error Status Indicator

Error State

When the integrity tests or KAT fail at power-up. GNUTLS_E_SELF_TEST_ERROR (-400)
When the KAT of DRBG fails during pre-operational
tests

GNUTLS_E_RANDOM_FAILED (-206)

When the new generated key pair fails the PCT GNUTLS_E_PK_GENERATION_ERROR (-403)
When the module is in error state and caller requests
cryptographic operations

GNUTLS_E_LIB_IN_ERROR_STATE (-402)

Table 15 - Error States
Self-test errors transition the module into an error state that keeps the module operational but
prevents any cryptographic related operations. The module must be restarted and perform the per-

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 35 of 45

operational self-test and the CASTs to recover from these errors. If failures persist, the module must
be re-installed.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 36 of 45

11 Life-cycle assurance

11.1 Delivery and Operation
The module is distributed as a part of the Red Hat Enterprise Linux 9 (RHEL 9) package in the form
of the gnutls-3.7.6-19.el9_0.x86_64 RPM package for x86 systems or gnutls-3.7.6-19.el9_0.s390x
RPM package for s390 systems or gnutls-3.7.6-19.el9_0.ppc64le RPM package for ppc64le systems.

11.1.1 End of Life Procedure
For secure sanitization of the cryptographic module, the module needs first to be powered off, which
will zeroize all keys and CSPs in volatile memory. Then, for actual deprecation, the module shall be
upgraded to a newer version that is FIPS 140-3 validated.
The module does not possess persistent storage of SSPs, so further sanitization steps are not
needed.

11.2 Crypto Officer Guidance
The binaries of the 'Red Hat Enterprise Linux 9 gnutls version 3.7.6-66803fa128d6a6e5’ are
contained in the RPM packages for delivery listed below.
Before the 'Red Hat Enterprise Linux 9 gnutls’ RPM packages are installed, the RHEL 9 system must
operate in Approved mode. This can be achieved by:
• Starting the installation in Approved mode. Add the fips=1 option to the kernel command line

during the system installation. During the software selection stage, do not install any third-
party software. More information can be found at the vendor documentation.

• Switching the system into Approved mode after the installation. Execute the fips-mode-setup
--enable command. Restart the system. More information can be found at the vendor
documentation.

In both cases, the Crypto Officer must verify the RHEL 9 system operates in Approved mode by
executing the fips-mode-setup --check command, which should output “FIPS mode is enabled.”
The following RPM packages contain the FIPS validated module:

Processor Architecture RPM Packages

Intel 64-bit gnutls- 3.7.6-19.el9_0.x86_64.rpm
nettle- 3.8-3.el9_0.x86_64.rpm

z16 64-bit gnutls - 3.7.6-19.el9_0.s390x.rpm
nettle - 3.8-3.el9_0.s390x.rpm

POWER10 64-bit gnutls - 3.7.6-19.el9_0.ppc64le.rpm
nettle - 3.8-3.el9_0.ppc64le.rpm

Table 16 - RPM packages

11.2.1 TLS
The TLS protocol implementation provides both server and client sides. In order to operate in the
approved mode, digital certificates used for server and client authentication shall comply with the
restrictions of key size and message digest algorithms imposed by [SP800-131Arev2]. In addition,
as required also by [SP800-131Arev2], Diffie-Hellman with keys smaller than 2048 bits must not be
used.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_installing-the-system-in-fips-mode_security-hardening#proc_installing-the-system-with-fips-mode-enabled_assembly_installing-the-system-in-fips-mode
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 37 of 45

The TLS protocol lacks the support to negotiate the used Diffie-Hellman key sizes. To ensure full
support for all TLS protocol versions, the TLS client implementation of the module accepts Diffie-
Hellman key sizes smaller than 2048 bits offered by the TLS server.
For complying with the requirement to not allow Diffie-Hellman key sizes smaller than 2048 bits, the
Crypto Officer must ensure that:

• in case the module is used as a TLS server, the Diffie-Hellman parameters must be 2048
bits or larger;

• in case the module is used as a TLS client, the TLS server must be configured to only offer
Diffie-Hellman keys of 2048 bits or larger.

11.2.2 AES XTS
The AES algorithm in XTS mode can be only used for the cryptographic protection of data on storage
devices, as specified in [SP800-38E]. The length of a single data unit encrypted with the XTS-AES
shall not exceed 2²⁰ AES blocks, that is 16MB of data.
The module implements a check that ensures, before performing any cryptographic operation, that
the two AES keys used in AES XTS mode are not identical (in compliance with IG C.I) .
Note: AES-XTS shall be used with 128 and 256-bit keys only. AES-XTS with 192-bit keys is not an
Approved service.

11.2.3 AES GCM IV
The module implements AES GCM for being used in the TLS v1.2 and v1.3 protocols. AES GCM IV
generation is in compliance with [FIPS140-3_IG] IG C.H for both protocols as follows:

• For TLS v1.2, IV generation is in compliance with scenario 1.a of IG C.H and [RFC5288]. The
module supports acceptable AES-GCM ciphersuites from section 3.3.1 of [SP800-52rev2].

• For TLS v1.3, IV generation is in compliance with scenario 5 of IG C.H and [RFC8446]. The
module supports acceptable AES-GCM ciphersuites from section 3.3.1 of [SP800-52rev2].

The IV generated in both scenarios is only used within the context of the TLS protocol
implementation. The nonce_explicit part of the IV does not exhaust the maximum number of
possible values for a given session key. The design of the TLS protocol in this module implicitly
ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.
In case the module's power is lost and then restored, the key used for the AES GCM encryption or
decryption shall be redistributed.
The Crypto Officer can use the module’s API to perform AES GCM encryption using internal IV
generation. These IVs are always 96 bits and generated using the approved DRBG internal to the
module’s boundary. This is in compliance with Scenario 2 of FIPS 140-3 IG C.H.

11.2.4 Key Derivation using SP 800-132 PBKDF
The module provides password-based key derivation (PBKDF), compliant with SP800-132 and IG
D.N. The module supports option 1a from section 5.4 of [SP800-132], in which the Master Key (MK)
or a segment of it is used directly as the Data Protection Key (DPK).
In accordance with [SP800-132], the following requirements shall be met.

• Derived keys shall only be used in storage applications. The Master Key (MK) shall not be
used for other purposes. The length of the MK or DPK shall be of 112 bits or more (this is
verified by the module to determine the service is approved).

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 38 of 45

• A portion of the salt, with a length of at least 128 bits (this is verified by the module to
determine the service is approved), shall be generated randomly using the SP800-90Arev1
DRBG,

• The iteration count shall be selected as large as possible, as long as the time required to
generate the key using the entered password is acceptable for the users. The minimum
value shall be 1000 (this is verified by the module to determine the service is approved).

• Passwords or passphrases, used as an input for the PBKDF, shall not be used as
cryptographic keys.

• The length of the password or passphrase shall be of at least 14 characters (this is verified
by the module to determine the service is approved), and shall consist of lower-case, upper-
case and numeric characters. The probability of guessing the value is estimated to be 10-14
(assuming all digits)

The calling application shall also observe the rest of the requirements and recommendations
specified in [SP800-132].

11.2.5 Compliance to SP 800-56ARev3 assurances
To comply with the assurances listed in section 5.6.2 of SP 800-56ARev3, the module shall be used
together with an application that implements the "TLS protocol" and the following steps shall be
performed.

1. The entity using the module, must use the module's "Key pair generation" service for
generating DH/ECDH ephemeral keys. This meets the assurances required by key pair
owner defined in the section 5.6.2.1 of SP 800-56ARev3.

2. As part of the module's shared secret computation (SSC) service, the module internally
performs the public key validation on the peer's public key passed in as input to the SSC
function. This meets the public key validity assurance required by the sections
5.6.2.2.1/5.6.2.2.2 of SP 800-56ARev3.

The module does not support static keys therefore the "assurance of peer's possession of private
key" is not applicable.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 39 of 45

12 Mitigation of other attacks
RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA
decryption or signature operations, blinding is always used to protect the RSA operation from that
attack.
The internal API function of rsa_blind() and rsa_unblind() are called by the module for RSA
signature generation and RSA decryption operations. The module generates a random blinding
factor and include this random value in the RSA operations to prevent RSA timing attacks.

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 40 of 45

Appendix A. TLS Cipher Suites
The module supports the following cipher suites for the TLS protocol version 1.0, 1.1, 1.2 and 1.3,
compliant with section 3.3.1 of [SP800-52rev2]. Each cipher suite defines the key exchange
algorithm, the bulk encryption algorithm (including the symmetric key size) and the MAC algorithm.

Cipher Suite ID Reference

TLS_DH_RSA_WITH_AES_128_CBC_SHA { 0x00, 0x31 } RFC3268

TLS_DHE_RSA_WITH_AES_128_CBC_SHA { 0x00, 0x33 } RFC3268

TLS_DH_RSA_WITH_AES_256_CBC_SHA { 0x00, 0x37 } RFC3268

TLS_DHE_RSA_WITH_AES_256_CBC_SHA { 0x00, 0x39 } RFC3268

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 { 0x00,0x3F } RFC5246

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 { 0x00,0x67 } RFC5246

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 { 0x00,0x69 } RFC5246

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 { 0x00,0x6B } RFC5246

TLS_PSK_WITH_AES_128_CBC_SHA { 0x00, 0x8C } RFC4279

TLS_PSK_WITH_AES_256_CBC_SHA { 0x00, 0x8D } RFC4279

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 { 0x00, 0x9E } RFC5288

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 { 0x00, 0x9F } RFC5288

TLS_DH_RSA_WITH_AES_128_GCM_SHA256 { 0x00, 0xA0 } RFC5288

TLS_DH_RSA_WITH_AES_256_GCM_SHA384 { 0x00, 0xA1 } RFC5288

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA { 0xC0, 0x04 } RFC4492

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA { 0xC0, 0x05 } RFC4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA { 0xC0, 0x09 } RFC4492

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA { 0xC0, 0x0A } RFC4492

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA { 0xC0, 0x0E } RFC4492

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA { 0xC0, 0x0F } RFC4492

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA { 0xC0, 0x13 } RFC4492

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA { 0xC0, 0x14 } RFC4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 { 0xC0, 0x23 } RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 { 0xC0, 0x24 } RFC5289

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 { 0xC0, 0x25 } RFC5289

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 { 0xC0, 0x26 } RFC5289

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 { 0xC0, 0x27 } RFC5289

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 { 0xC0, 0x28 } RFC5289

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 41 of 45

Cipher Suite ID Reference

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 { 0xC0, 0x29 } RFC5289

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 { 0xC0, 0x2A } RFC5289

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 { 0xC0, 0x2B } RFC5289

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 { 0xC0, 0x2C } RFC5289

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 { 0xC0, 0x2D } RFC5289

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 { 0xC0, 0x2E } RFC5289

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 { 0xC0, 0x2F } RFC5289

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 { 0xC0, 0x30 } RFC5289

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 { 0xC0, 0x31 } RFC5289

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 { 0xC0, 0x32 } RFC5289

TLS_DHE_RSA_WITH_AES_128_CCM { 0xC0, 0x9E } RFC6655

TLS_DHE_RSA_WITH_AES_256_CCM { 0xC0, 0x9F } RFC6655

TLS_DHE_RSA_WITH_AES_128_CCM_8 { 0xC0, 0xA2 } RFC6655

TLS_DHE_RSA_WITH_AES_256_CCM_8 { 0xC0, 0xA3 } RFC6655

TLS_AES_128_GCM_SHA256 { 0x13, 0x01 } RFC8446

TLS_AES_256_GCM_SHA384 { 0x13, 0x02 } RFC8446

TLS_AES_128_CCM_SHA256 { 0x13, 0x04 } RFC8446

TLS_AES_128_CCM_8_SHA256 { 0x13, 0x05 } RFC8446

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 42 of 45

Appendix B. Glossary and Abbreviations
AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

CAVP Cryptographic Algorithm Validation Program

CBC Cipher Block Chaining

CCM Counter with Cipher Block Chaining-Message Authentication Code

CFB Cipher Feedback

CKG Cryptographic Key Generation

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CPACF CP Assist for Cryptographic Functions

CSP Critical Security Parameter

CTR Counter Mode

DES Data Encryption Standard

DF Derivation Function

DSA Digital Signature Algorithm

DRBG Deterministic Random Bit Generator

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

FFC Finite Field Cryptography

FIPS Federal Information Processing Standards Publication

GCM Galois Counter Mode

GMAC Galois Counter Mode Message Authentication Code

HMAC Hash Message Authentication Code

KAS Key Agreement Scheme

KAT Known Answer Test

KW AES Key Wrap

MAC Message Authentication Code

NIST National Institute of Science and Technology

PAA Processor Algorithm Acceleration

PAI Processor Algorithm Implementation

PBKDF2 Password-based Key Derivation Function v2

PKCS Public-Key Cryptography Standards

PCT Pairwise Consistency Test

PR Prediction Resistance

RNG Random Number Generator

RSA Rivest, Shamir, Addleman

SHA Secure Hash Algorithm

SHS Secure Hash Standard

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 43 of 45

Appendix C. References
FIPS140-3 FIPS PUB 140-3 - Security Requirements For Cryptographic Modules

March 2019
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

FIPS140-3_IG Implementation Guidance for FIPS PUB 140-3 and the Cryptographic
Module Validation Program
March 2024
https://csrc.nist.gov/csrc/media/Projects/cryptographic-module-validation-
program/documents/fips%20140-3/FIPS%20140-3%20IG.pdf

FIPS180-4 Secure Hash Standard (SHS)
August 2015
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS)
July 2013
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard
November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)
July 2008
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

FIPS202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions
August 2015
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1
February 2003
http://www.ietf.org/rfc/rfc3447.txt

SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher
Modes of Operation Methods and Techniques
December 2001
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

SP800-38B NIST Special Publication 800-38B - Recommendation for Block Cipher
Modes of Operation: The CMAC Mode for Authentication
May 2005
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf

SP800-38C NIST Special Publication 800-38C - Recommendation for Block Cipher
Modes of Operation: the CCM Mode for Authentication and
Confidentiality
July 2007
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf

SP800-38D NIST Special Publication 800-38D - Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC
November 2007
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://www.ietf.org/rfc/rfc3447.txt
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 44 of 45

SP800-38E NIST Special Publication 800-38E - Recommendation for Block Cipher
Modes of Operation: The XTS AES Mode for Confidentiality on Storage
Devices
January 2010
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf

SP800-52rev2 NIST Special Publication 800-52 Revision 2 - Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS)
Implementations
August 2019
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

SP800-
56ARev3

NIST Special Publication 800-56A Revision 3 - Recommendation for Pair
Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography
April 2018
https://doi.org/10.6028/NIST.SP.800-56Ar3

SP800-
56CRev2

Recommendation for Key Derivation through Extraction-then-Expansion
August 2020
https://doi.org/10.6028/NIST.SP.800-56Cr2

SP800-57rev5 NIST Special Publication 800-57 Part 1 Revision 5 - Recommendation for
Key Management Part 1: General
May 2020
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

SP800-
90ARev1

NIST Special Publication 800-90A - Revision 1 - Recommendation for
Random Number Generation Using Deterministic Random Bit
Generators
June 2015
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1

SP800-90B NIST Special Publication 800-90B - Recommendation for the Entropy
Sources Used for Random Bit Generation
January 2018
https://doi.org/10.6028/NIST.SP.800-90B

SP800-
131Arev2

NIST Special Publication 800-131 Revision 2 - Transitions:
Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths
March 2019
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

SP800-132 NIST Special Publication 800-132 - Recommendation for Password-
Based Key Derivation - Part 1: Storage Applications
December 2010
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf

SP800-
133Rev2

NIST Special Publication 800-133 - Recommendation for Cryptographic
Key Generation
June 2020
https://doi.org/10.6028/NIST.SP.800-133r2

SP800-135rev1 NIST Special Publication 800-135 Revision 1 - Recommendation for
Existing Application-Specific Key Derivation Functions
December 2011
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
http://dx.doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://doi.org/10.6028/NIST.SP.800-133r2
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf

Red Hat Enterprise Linux 9 gnutls FIPS 140-3 Non-Proprietary Security Policy

© 2024 Red Hat, Inc. / atsec information security.
This document can be reproduced and distributed only whole and intact, including this copyright notice.

 45 of 45

SP800-140B NIST Special Publication 800-140B - CMVP Security Policy Requirements
March 2020
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-140B.pdf

RFC8446 The Transport Layer Security (TLS) Protocol Version 1.3
August 2018
https://www.ietf.org/rfc/rfc8446.txt

RFC7919 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for
Transport Layer Security (TLS)
August 2016
https://www.ietf.org/rfc/rfc7919.txt

RFC3526 More Modular Exponential (MODP) Diffie-Hellman groups for Internet
Key Exchange (IKE)
May 2003
https://www.ietf.org/rfc/rfc3526.txt

RFC7627 Transport Layer Security (TLS) Session Hash and Extended Master
Secret Extension
September 2015
https://www.ietf.org/rfc/rfc7627.txt

https://www.ietf.org/rfc/rfc8446.txt
https://www.ietf.org/rfc/rfc7919.txt
https://www.ietf.org/rfc/rfc3526.txt
https://www.ietf.org/rfc/rfc7627.txt

