TippingPoint Crypto Core FIPS Object Module for OpenSSL Non-proprietary FIPS 140-2 Security Policy by Trend Micro Inc. Versions 2.0.8 and 2.0.13 Document Version: 1.6 October 16, 2019 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 2 Acknowledgments Trend Micro Inc. acknowledges that this document was derived from the OpenSSL FIPS 140-2 Security Policy document from the CMVP FIPS validation certificate #1747. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 3 Modification History Date Modifications 2019-10-16 Disallowed FIPS 186-2 RSA KeyGen and SigGen. 2019-2-27 Added new platform. CentOS 5.6 running on an Intel Xeon E5-2620v4. Updated module name to better fit OEM preferences. 2017-11-14 Revised the RSA listings. 2017-08-31 Added new platforms. Linux 4.4 on 440T running on an Intel Core i3-3220, Linux 4.4 on 2200T running on an Intel Xeon E5-2620, Linux 4.4 on 8200TX running on an Intel Xeon E5-2648L v3, Linux 4.4 on 8400TX running on an Intel Xeon E5-2648L v3, Linux 4.4 on ESXi 6.5 running on an Intel Xeon E5-2698 v3. Added vendor affirmed configurations. 2015-03-04 Added new platforms. CentOS 5.6 on Intel Xeon E5-2620v3 and CentOS 5.6 on Intel Xeon E5- 2690v3 References Reference Full Specification Name [ANS X9.31] Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA) [FIPS 140-2] Security Requirements for Cryptographic modules, May 25, 2001 [FIPS 180-4] Secure Hash Standard [FIPS 186-4] Digital Signature Standard [FIPS 197] Advanced Encryption Standard [FIPS 198-1] The Keyed-Hash Message Authentication Code (HMAC) [SP 800-38B] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication [SP 800-38C] Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality [SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC [SP 800-56A] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography [SP 800-67R1] Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher [SP 800-89] Recommendation for Obtaining Assurances for Digital Signature Applications [SP 800-90A] Recommendation for Random Number Generation Using Deterministic Random Bit Generators [SP 800-131A] Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 4 Table of Contents Acknowledgments........................................................................................................................................................2 Modification History ...................................................................................................................................................3 Table of Contents...........................................................................................................................................................4 1. Introduction...........................................................................................................................................................5 2. Tested Configurations...........................................................................................................................................7 2.1 Vendor Affirmed Configurations...............................................................................................................10 3. Ports and Interfaces.............................................................................................................................................11 4. Modes of Operation and Cryptographic Functionality .......................................................................................12 4.1 Critical Security Parameters and Public Keys............................................................................................19 5. Roles, Authentication and Services ....................................................................................................................23 6. Self-Test..............................................................................................................................................................26 7. Operational Environment....................................................................................................................................28 8. Mitigation of other Attacks.................................................................................................................................29 Appendix A Installation and Usage Guidance.......................................................................................................30 Appendix B Controlled Distribution File Fingerprint............................................................................................33 Appendix C Compilers ..........................................................................................................................................34 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 5 1. Introduction This document is the non-proprietary security policy for the TippingPoint Crypto Core FIPS Object Module for OpenSSL Versions 2.0.8 and 2.0.13 hereafter referred to as the Module. The Module is a software library providing a C-language application program interface (API) for use by other processes that require cryptographic functionality. The Module is classified by FIPS 140-2 as a software module, multi-chip standalone module embodiment. The physical cryptographic boundary is the general purpose computer on which the module is installed. The logical cryptographic boundary of the Module is the fipscanister object module, a single object module file named fipscanister.o (Linux®1 /Unix®2 and Vxworks®3 ) or fipscanister.lib (Microsoft Windows®4 ). The Module performs no communications other than with the calling application (the process that invokes the Module services). Note that this Module is a rebranded Module based on OEM OpenSSL (Certs. #1747). The FIPS 140-2 security levels for the Module are as follows: Table 1: Security Level of Security Requirements Security Requirement Security Level Cryptographic Module Specification 1 Cryptographic Module Ports and Interfaces 1 Roles, Services, and Authentication 2 Finite State Model 1 Physical Security NA Operational Environment 1 Cryptographic Key Management 1 EMI/EMC 1 Self-Tests 1 Design Assurance 3 Mitigation of Other Attacks NA 1 Linux is the registered trademark of Linus Torvalds in the U.S. and other countries 2 UNIX is a registered trademark of The Open Group 3 Vxworks is a registered trademark owned by Wind River Systems, Inc 4 Windows is a registered trademark of Microsoft Corporation in the United States and other countries TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 6 Figure 1: Module Block Diagram TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 7 2. Tested Configurations Table 2: Tested Configurations (B = Build Method; EC = Elliptic Curve Support). The EC column indicates support for prime curve only (P), or all NIST defined B, K, and P curves (BKP). # Operational Environment Processor Optimizations (Target)- EC B 1. Android 2.2 (HTC Desire) Qualcomm QSD 8250 (ARMv7) NEON P U2 2. Android 2.2 (Dell Streak) Qualcomm QSD 8250 (ARMv7) None P U2 3. Microsoft Windows 7 32 bit Intel Celeron (x86) None BKP W2 4. uClinux 0.9.29 ARM 922T (ARMv4) None BKP U2 5. Fedora 14 Intel Core i5 (x86) AES-NI BKP U2 6. HP-UX 11i ( hpux-ia64-cc, 32 bit mode) Intel Itanium 2 (IA64) None BKP U1 7. HP-UX 11i ( hpux64-ia64-cc, 64 bit mode) Intel Itanium 2 (IA64) None BKP U1 8. Ubuntu 10.04 Intel Pentium T4200 (x86) None BKP U2 9. Android 3.0 NVIDIA Tegra 250 T20 (ARMv7) None P U2 10. Linux 2.6.27 PowerPC e300c3 (PPC) None BKP U2 11. Microsoft Windows 7 64 bit Intel Pentium 4 (x86) None BKP W2 12. Ubuntu 10.04 32 bit Intel Core i5 (x86) AES-NI BKP U2 13. Linux 2.6.33 PowerPC32 e300 (PPC) None BKP U2 14. Android 2.2 OMAP 3530 (ARMv7) NEON BKP U2 15. DSP Media Framework 1.4 TI C64x+ None BKP U2 16. VxWorks 6.8 TI TNETV1050 (MIPS) None BKP U2 17. Linux 2.6 Broadcom BCM11107 (ARMv6) None BKP U2 18. Linux 2.6 TI TMS320DM6446 (ARMv4) None BKP U2 19. Linux 2.6.32 TI AM3703CBP (ARMv7) None BKP U2 20. Solaris 10 32bit SPARC-T3 (SPARCv9) None BKP U2 21. Solaris 10 64bit SPARC-T3 (SPARCv9) None BKP U2 22. Solaris 11 32bit Intel Xeon 5675 (x86) None BKP U2 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 8 # Operational Environment Processor Optimizations (Target)- EC B 23. Solaris 11 64bit Intel Xeon 5675 (x86) None BKP U2 24. Solaris 11 32bit Intel Xeon 5675 (x86) AES-NI BKP U2 25. Solaris 11 64bit Intel Xeon 5675 (x86) AES-NI BKP U2 26. Oracle Linux 5 64bit Intel Xeon 5675 (x86) None BKP U2 27. CascadeOS 6.1 32bit Intel Pentium T4200 (x86) None BKP U2 28. CascadeOS 6.1 64bit Intel Pentium T4200 (x86) None BKP U2 29. Ubuntu 10.04 32bit Intel Pentium T4200 (x86) None BKP U1 30. Ubuntu 10.04 64bit Intel Pentium T4200 (x86) None BKP U1 31. Oracle Linux 5 Intel Xeon 5675 (x86) AES-NI BKP U2 32. Oracle Linux 6 Intel Xeon 5675 (x86) None BKP U2 33. Oracle Linux 6 Intel Xeon 5675 (x86) AES-NI BKP U2 34. Solaris 11 32bit SPARC-T3 (SPARCv9) None BKP U2 35. Solaris 11 64bit SPARC-T3 (SPARCv9) None BKP U2 36. Android 4.0 NVIDIA Tegra 250 T20 (ARMv7) None P U2 37. Linux 2.6 Freescale PowerPC-e500 None BKP U2 38. Apple iOS 5.1 ARMv7 None BKP U2 39. WinCE 6.0 ARMv5TEJ None BKP W2 40. WinCE 5.0 ARMv7 None BKP W2 41. Android 4.0 OMAP 3 NEON P U2 42. NetBSD 5.1 PowerPC-e500 None BKP U2 43. NetBSD 5.1 Intel Xeon 5500 (x86) None BKP U2 44. Windows 7 64-bit Intel Core i5-2430M (x86) AES-NI BKP W2 45. Android 4.1 TI DM3730 (ARMv7) None P U2 46. Android 4.1 TI DM3730 (ARMv7) NEON P U2 47. Android 4.2 Nvidia Tegra 3 (ARMv7) None P U2 48. Android 4.2 Nvidia Tegra 3 (ARMv7) NEON P U2 49. Windows Embedded Compact 7 Freescale i.MX53xA (ARMv7) NEON BKP W2 50. Windows Embedded Compact 7 Freescale i.MX53xD NEON BKP W2 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 9 # Operational Environment Processor Optimizations (Target)- EC B (ARMv7) 51. Android 4.0 Qualcomm Snapdragon APQ8060 (ARMv7) NEON BKP U2 52. Apple OS X 10.7 Intel Core i7-3615QM None BKP U2 53. Apple iOS 5.0 ARM Cortex A8 (ARMv7) NEON BKP U2 54. OpenWRT 2.6 MIPS 24Kc None BKP U2 55. QNX 6.4 Freescale i.MX25 (ARMv4) None BKP U2 56. Apple iOS 6.1 Apple A6X SoC (ARMv7s) None BKP U2 57. eCos 3 Freescale i.MX27 926ejs (ARMv5TEJ) None BKP U2 58. Ubuntu 13.04 AM335x Cortex-A8 (ARMv7) None BKP U2 59. Ubuntu 13.04 AM335x Cortex-A8 (ARMv7) NEON BKP U2 60. Linux 3.8 ARM926 (ARMv5TEJ) None BKP U2 61. Apple iOS 6.0 Apple A5 / ARM Cortex-A9 (ARMv7) None BKP U2 62. Apple iOS 6.0 Apple A5 / ARM Cortex-A9 (ARMv7) NEON BKP U2 63. Linux 2.6 Freescale e500v2 (PPC) None BKP U2 64. AcanOS 1.0 Intel Core i7-3612QE (x86) None BKP U2 65. AcanOS 1.0 Intel Core i7-3612QE (x86) AES-NI BKP U2 66. AcanOS 1.0 Feroceon 88FR131 (ARMv5) None BKP U2 67. FreeBSD 8.4 Intel Xeon E5440 (x86) None BKP U2 68. FreeBSD 9.1 Xeon E5-2430L (x86) None BKP U2 69. FreeBSD 9.1 Xeon E5-2430L (x86) AES-NI BKP U2 70. ArbOS 5.3 Xeon E5645 (x86) None BKP U2 71. ArbOS 5.3 Xeon E5645 (x86) AES-NI BKP U2 72. Linux ORACLESP 2.6 ASPEED AST-Series (ARMv5) None BKP U2 73. Linux ORACLESP 2.6 Emulex PILOT 3 (ARMv5) None BKP U2 74. FreeBSD 9.2 Xeon E5-2430L (x86) None BKP U2 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 10 # Operational Environment Processor Optimizations (Target)- EC B 75. FreeBSD 9.2 Xeon E5-2430L (x86) AES-NI BKP U2 76. FreeBSD 10.0 Xeon E5-2430L (x86) None BKP U2 77. FreeBSD 10.0 Xeon E5-2430L (x86) AES-NI BKP U2 78. FreeBSD 8.4 32-bit Xeon E5440 (x86) None BKP U2 79. VMware Horizon Workspace 2.1 x86 under vSphere ESXi 5.5 Intel Xeon E3-1220 None BKP U2 80. VMware Horizon Workspace 2.1 x86 under vSphere ESXi 5.5 Intel Xeon E3-1220 AES-NI BKP U2 81. QNX 6.5 on ARMv4 Freescale i.MX25 (ARMv4) None BKP U2 82. CentOS 5.6 Xeon E5-2620v3 None BKP U2 83. CentOS 5.6 Xeon E5-2690v3 None BKP U2 84. Linux 4.4 on 440T Intel Core i3-3220 SSE2 BKP U2 85. Linux 4.4 on 2200T Intel Xeon E5-2620 AES-NI BKP U2 86. Linux 4.4 on 8200TX Intel Xeon E5-2648L v3 AES-NI BKP U2 87. Linux 4.4 on 8400TX Intel Xeon E5-2648L v3 AES-NI BKP U2 88. Linux 4.4 on VMware ESXi 6.5 (VTPS) Intel Xeon E5-2698 v3 SSE2 BKP U2 89. CentOS 5.6 Intel Xeon E5-2620 v4 None BKP U2 See Appendix A for additional information on build method and optimizations. See Appendix C for a list of the specific compilers used to generate the Module for the respective operational environments. 2.1 Vendor Affirmed Configurations The module can execute in additional operational environments, each composed from a combination of the following hardware platforms and hypervisors. The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment that is not listed on the validation certificate. The following hardware platforms are Vendor affirmed:  Any Intel Xeon based server hardware platforms supported by the below mentioned hypervisors The following hypervisors are Vendor affirmed: TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 11  KVM – Redhat Enterprise Linux  VMWare ESXi 3. Ports and Interfaces The physical ports of the Module are the same as the computer system on which it is executing. The logical interface is a C-language application program interface (API). Table 3: Logical interfaces Logical Interface Type Description Control input API entry point and corresponding stack parameters Data input API entry point data input stack parameters Status output API entry point return values and status stack parameters Data output API entry point data output stack parameters As a software module, control of the physical ports is outside module scope. However, when the module is performing self-tests, or is in an error state, all output on the logical data output interface is inhibited. The module is single-threaded and in error scenarios returns only an error value (no data output is returned). TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 12 4. Modes of Operation and Cryptographic Functionality The Module supports only a FIPS 140-2 Approved mode. Tables 4a and 4b list the Approved and Non-approved but Allowed algorithms, respectively. Table 4a: FIPS Approved Cryptographic Functions Function Algorithm Options Cert # Random Number Generation; Symmetric key generation [SP 800-90A] DRBG5 Prediction resistance supported for all variations Hash DRBG HMAC DRBG, no reseed CTR DRBG (AES), with and without derivation function 157, 229, 264, 292, 316, 342, 485 540, 739, 1601, C 418 Encryption, Decryption and CMAC [SP 800-67] 3-Key Triple-DES TECB, TCBC, TCFB, TOFB; CMAC generate and verify 1223, 1346, 1398 1465, 1492 1522 1695 1742 1868, 2495, C 418 [FIPS 197] AES 128/256 XTS; 128/ 192/256 ECB, CBC, OFB, CFB 1884, 5 5 For all DRBGs the "supported security strengths" is just the highest supported security strength per [SP800- 90A] and [SP800-57]. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 13 Function Algorithm Options Cert # [SP 800-38B] CMAC [SP 800-38C] CCM [SP 800-38D] GCM [SP 800-38E] XTS 1, CFB 8, CFB 128, CTR; CCM; GCM; CMAC generate and verify 2116, 2234, 2342, 2394, 2484, 2824, 2929, 3281, 4703, C 418 Message Digests [FIPS 180-4] SHA-1, SHA-2 (224, 256, 384, 512) 1655, 1840, 1923, 2019, 2056, 2102, 2368, 2465, 2719, 3850, C 418 Keyed Hash [FIPS 198] HMAC SHA-1, SHA-2 (224, 256, 384, 512) 1126, 1288, 1363, 1451, 1485, 1526, 1768, 1856, 2078, 3115, C 418 Digital Signature and Asymmetric Key [FIPS 186-2] RSA SigVer9.31(1024/1536/2048/3072/4096 with all SHA-2 sizes except SHA-224), SigVerPKCS1.5 (1024/1536/2048/3072/4096 with all with all SHA-2 960, 1086, TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 14 Function Algorithm Options Cert # Generation sizes), SigVerPSS (1024/1536/2048/3072/4096 with all with all SHA-2 sizes) Note: Users of this library should keep DRBG as the random function when using these RSA options. 1145, 1205, 1237, 1273, 1477, 1535, 1678, 2563, C 418 [FIPS 186-4] RSA SigGen9.31 (2048 SHA( 256 , 384 , 512 )) (3072 SHA ( 256 , 384 , 512 )), SigGenPKCS1.5 (2048 SHA (224 , 256 , 384, 512)) (3072 SHA( 224 , 256 , 384 , 512 )), SigGenPSS (2048 SHA (224, 256, 384, 512)) (3072 SHA (224), 256, 384, 512)) SigVer9.31 (1024/2048/3072 with all SHA-2 sizes except SHA-224), SigVerPKCS1.5 (1024/2048/3072 with all SHA-2 sizes), SigVerPSS (1024/2048/3072 with all SHA-2 sizes) 1535, 1678, 2563, C 418 [FIPS 186-4] DSA PQG Gen, Key Pair Gen, Sig Gen (2048/3072 with all SHA-2 sizes) PQG Ver, Sig Ver (1024/2048/3072 with all SHA sizes] 589, 661, 693, 734, 748, 764, 853, 870, 938, 1245, C 418 [FIPS 186-2] ECDSA PKG: CURVES( P-224 P-384 P-521 K-233 K- 283 K-409 K-571 B-233 B-283 B-409 B-571 ) PKV: CURVES( P-192 P-224 P-256 P-384 P-521 K-163 K-233 K-283 K-409 K-571 B-163 B-233 B-283 B- 409 B-571 ) 270, 315, 347, 383, 394, 413, 496 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 15 Function Algorithm Options Cert # PKG: CURVES( P-224 P-384 P-521 ) PKV: CURVES( P-192 P-224 P-256 P-384 P-521) 264, 378 [FIPS 186-4] ECDSA PKG: CURVES( P-224 P-256 P-384 P-521 K- 224 K-256 K-384 K-521 B-224 B-256 B-384 B- 521 ExtraRandomBits TestingCandidates ) PKV: CURVES( ALL-P ALL-K ALL-B ) SigGen: CURVES( P-224: (SHA-224, 256, 384, 512) P-256: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-521: (SHA-224, 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-283: (SHA-224, 256, 384, 512) K-409: (SHA- 224, 256, 384, 512) K-571: (SHA-224, 256, 384, 512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) ) SigVer: CURVES( P-192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P- 256: (SHA-1, 224, 256, 384, 512) P-384: (SHA- 1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K- 233: (SHA-1, 224, 256, 384, 512) K-283: (SHA- 1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512 B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA- 1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA- 1, 224, 256, 384, 512) ) 270, 315, 347, 383, 394, 413, 496, 528, 634, 1161, C 418 PKG: CURVES( P-224 P-256 P-384 P-521 ) PKV: CURVES( ALL-P ) SigGen: CURVES( P-224: (SHA-224, 256, 384, 512) P-256: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-521: (SHA-224, 256, 384, 512) ) SigVer: CURVES( P- 192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P- 256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256,384, 512) ) 264, 378 ECC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST defined B, K and P curves except sizes 163 and 192 12, 24, 36, 53, 71, 85, 260, 331, 464, TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 16 Function Algorithm Options Cert # 1346, C 418 All NIST defined P curves except size 192. 10, 49 The Module supports only NIST defined curves for use with ECDSA and ECC CDH. The Module supports two operational environment configurations for elliptic curve; NIST prime curve only (listed in Table 2 with the EC column marked "P") and all NIST defined curves (listed in Table 2 with the EC column marked "BKP"). TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 17 Table 4b: Non-FIPS Approved But Allowed Cryptographic Functions Category Algorithm Description Key Agreement EC Diffie- Hellman Legacy (untested) Diffie-Hellman scheme using elliptic curve, supporting all NIST defined B, K and P curves. Key Encryption, Decryption RSA The RSA algorithm may be used by the calling application for encryption or decryption of keys. No claim is made for SP 800-56B compliance, and no CSPs are established into or exported out of the module using these services. The Module implements the following services which are Non-Approved per the SP 800-131A transition: Table 4c: FIPS-Non-Approved Cryptographic Functions Function Algorithm Options Cert # Random Number Generation; Symmetric key generation [SP 800-90] DRBG Dual EC DRBG 157, 229, 264, 292, 316, 342, 485 Random Number Generation; Symmetric key generation [ANS X9.31] RNG AES 128/192/256 985, 1087, 1119, 1166, 1186, 1202, 1278, 1292, 1314, 1351 Digital Signature and Asymmetric Key Generation [FIPS 186-2] RSA KeyGen, SigGen9.31, SigGenPKCS1.5, SigGenPSS (All key sizes and SHA sizes) 960, 1086, 1145, 1205, TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 18 Function Algorithm Options Cert # 1237, 1273, 1477, 1535, 1678, 2563 [FIPS 186-2] DSA PQG Gen, Key Pair Gen, Sig Gen (1024 with all SHA sizes, 2048/3072 with SHA-1) 589, 661, 693, 734, 748, 764 [FIPS 186-4] DSA PQG Gen, Key Pair Gen, Sig Gen (1024 with all SHA sizes, 2048/3072 with SHA-1) 589, 661, 693, 734, 748, 764 [FIPS 186-2] ECDSA PKG: CURVES( P-192 K-163 B-163 P-224 P-384 P-521 K- 233 K- 283 K-409 K-571 B- 233 B-283 B-409 B-571) SIG(gen): CURVES( P-192 P- 224 P-256 P-384 P-521 K-163 K-233 K-283 K-409 K-571 B- 163 B-233 B-283 B-409 B-571 ) 270, 315, 347, 383, 394, 413, 496 264, 378 [FIPS 186-4] ECDSA PKG: CURVES( P-192 K-163 B-163 ) SigGen: CURVES( P- 192: (SHA-1, 224, 256, 384, 512) P-224:(SHA-1) P- 256:(SHA-1) P-384: (SHA-1) P-521:(SHA-1) K-163: (SHA- 1, 224, 256, 384, 512) K- 233:(SHA-1) K-283:(SHA-1) K-409:(SHA-1) K-571:(SHA- 1) B-163: (SHA-1, 224, 256, 270, 315, 347, 383, 394, 413 264, TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 19 Function Algorithm Options Cert # 384, 512) B 233:(SHA-1) B- 283: (SHA-1) B-409:(SHA-1) B-571:(SHA-1) ) 378 ECC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves sizes 163 and 192 12, 24, 36, 53, 71, 85 10, 49 These algorithms shall not be used when operating in the FIPS Approved mode of operation. EC Diffie-Hellman Key Agreement provides a maximum of 256 bits of security strength. RSA Key Wrapping provides a maximum of 256 bits of security strength. The Module requires an initialization sequence (see IG 9.5): the calling application invokes FIPS_mode_set()6 , which returns a “1” for success and “0” for failure. If FIPS_mode_set() fails then all cryptographic services fail from then on. The application can test to see if FIPS mode has been successfully performed. The Module is a cryptographic engine library, which can be used only in conjunction with additional software. Aside from the Module use of the NIST defined elliptic curves as trusted third party domain parameters, all other FIPS 186-3 assurances are outside the scope of the Module, and are the responsibility of the calling process. 4.1 Critical Security Parameters and Public Keys All CSPs used by the Module are described in this section. All access to these CSPs by Module services are described in Section 4. The CSP names are generic, corresponding to API parameter data structures. Table 4.1a: Critical Security Parameters CSP Name Description RSA SGK RSA (2048 to 16384 bits) signature generation key 6 The function call in the Module is FIPS_module_mode_set() which is typically used by an application via the FIPS_mode_set() wrapper function TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 20 CSP Name Description RSA KDK RSA (2048 to 16384 bits) key decryption (private key transport) key DSA SGK [FIPS 186-4] DSA (2048/3072) signature generation key ECDSA SGK ECDSA (All NIST defined B, K, and P curves except sizes 163 and 192) signature generation key EC Diffie-Hellman Private EC Diffie-Hellman (All NIST defined B, K, and P curves except sizes 163 and 192) private key agreement key AES EDK AES (128/192/256) encrypt / decrypt key AES CMAC AES (128/192/256) CMAC generate / verify key AES GCM AES (128/192/256) encrypt / decrypt / generate / verify key AES XTS AES (256/512) XTS encrypt / decrypt key Triple-DES EDK Triple-DES (3-Key) encrypt / decrypt key Triple-DES CMAC Triple-DES (3-Key) CMAC generate / verify key HMAC Key Keyed hash key (160/224/256/384/512) Hash_DRBG CSPs V (440/888 bits) and C (440/888 bits), entropy input (length dependent on security strength) HMAC_DRBG CSPs V (160/224/256/384/512 bits) and Key (160/224/256/384/512 bits), entropy input(length dependent on security strength) CTR_DRBG CSPs V (128 bits) and Key (AES 128/192/256), entropy input (length dependent on security strength) CO-AD-Digest Pre-calculated HMAC-SHA-1 digest used for Crypto Officer role authentication User-AD-Digest Pre-calculated HMAC-SHA-1 digest used for User role authentication Authentication data is loaded into the module during the module build process, performed by an authorized operator (Crypto Officer), and otherwise cannot be accessed. The module does not output intermediate key generation values. Table 4.1b: Public Keys CSP Name Description RSA SVK RSA (1024 to 16384 bits) signature verification public key RSA KEK RSA (2048 to 16384 bits) key encryption (public key transport) key TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 21 CSP Name Description DSA SVK [FIPS 186-4] DSA (1024/2048/3072) signature verification key or [FIPS 186-2] DSA(1024) signature verification key ECDSA SVK ECDSA (All NIST defined B, K and P curves) signature verification key EC Diffie-Hellman Public EC Diffie-Hellman (All NIST defined B, K and P curves) public key agreement key For all CSPs and Public Keys: Storage: RAM, associated to entities by memory location. The Module stores DRBG state values for the lifetime of the DRBG instance. The module uses CSPs passed in by the calling application on the stack. The Module does not store any CSP persistently (beyond the lifetime of an API call), with the exception of DRBG state values used for the Modules' default key generation service. Generation: The Module implements SP 800-90A compliant DRBG services for creation of symmetric keys, and for generation of DSA, elliptic curve, and RSA keys as shown in Table 4a. The calling application is responsible for storage of generated keys returned by the module. Entry: All CSPs enter the Module’s logical boundary in plaintext as API parameters, associated by memory location. However, none cross the physical boundary. Output: The Module does not output CSPs, other than as explicit results of key generation services. However, none cross the physical boundary. Destruction: Zeroization of sensitive data is performed automatically by API function calls for temporarily stored CSPs. In addition, the module provides functions to explicitly destroy CSPs related to random number generation services. The calling application is responsible for parameters passed in and out of the module. Private and secret keys as well as seeds and entropy input are provided to the Module by the calling application, and are destroyed when released by the appropriate API function calls. Keys residing in internally allocated data structures (during the lifetime of an API call) can only be accessed using the Module defined API. The operating system protects memory and process space from unauthorized access. Only the calling application that creates or imports keys can use or export such keys. All API functions are executed by the invoking calling application in a non-overlapping sequence such that no two API functions will execute concurrently. An authorized application as user (Crypto-Officer and User) has access to all key data generated during the operation of the Module. In the event Module power is lost and restored the calling application must ensure that any AES-GCM keys used for encryption or decryption are re-distributed. Module users (the calling applications) shall use entropy sources that meet the security strength required for the random number generation mechanism: 128 bits for the SP800-90A DRBG as shown in Table 2 (Hash_DRBG, HMAC_DRBG) and Table 3 (CTR_DRBG). This entropy is TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 22 supplied by means of callback functions. Those functions must return an error if the minimum entropy strength cannot be met. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 23 5. Roles, Authentication and Services The Module implements the required User and Crypto Officer roles and requires authentication for those roles. Only one role may be active at a time and the Module does not allow concurrent operators. The User or Crypto Officer role is assumed by passing the appropriate password to the FIPS_module_mode_set() function. The password values may be specified at build time and must have a minimum length of 16 characters. Any attempt to authenticate with an invalid password will result in an immediate and permanent failure condition rendering the Module unable to enter the FIPS mode of operation, even with subsequent use of a correct password. Authentication data is loaded into the Module during the Module build process, performed by the Crypto Officer, and otherwise cannot be accessed. Since minimum password length is 16 characters, the probability of a random successful authentication attempt in one try is a maximum of 1/25616 , or less than 1/1038 . The Module permanently disables further authentication attempts after a single failure, so this probability is independent of time. Both roles have access to all of the services provided by the Module. • User Role (User): Loading the Module and calling any of the API functions. • Crypto Officer Role (CO): Installation of the Module on the host computer system and calling of any API functions. All services implemented by the Module are listed below, along with a description of service CSP access. Table 5: Services and CSP Access Service Role Description Initialize User, CO Module initialization. Does not access CSPs. Self-test User, CO Perform self tests (FIPS_selftest). Does not access CSPs. Show status User, CO Functions that provide module status information: Version (as unsigned long or const char *) FIPS Mode (Boolean) Does not access CSPs. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 24 Service Role Description Zeroize User, CO Functions that destroy CSPs: fips_drbg_uninstantiate: for a given DRBG context, overwrites DRBG CSPs (Hash_DRBGCSPs,HMAC_DRBGCSPs,CTR_DRBGCSPs) All other services automatically overwrite CSPs stored in allocated memory. Stack cleanup is the responsibility of the calling application. Random number generation User, CO Used for random number and symmetric key generation. Seed or reseed an DRBG instance Determine security strength of DRBG instance Obtain random data Uses and updates Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs. Asymmetric key generation User, CO Used to generate DSA and ECDSA keys: DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK There is one supported entropy strength for each mechanism and algorithm type, the maximum specified in SP800-90A Symmetric encrypt/decrypt User, CO Used to encrypt or decrypt data. Executes using AES EDK, Triple-DES EDK (passed in by the calling process). Symmetric digest User, CO Used to generate or verify data integrity with CMAC. Executes using AES CMAC, Triple-DES, CMAC (passed in by the calling process). Message digest User, CO Used to generate a SHA-1 or SHA-2 message digest. Does not access CSPs. Keyed Hash User, CO Used to generate or verify data integrity with HMAC. Executes using HMAC Key (passed in by the calling process). Key transport7 User, CO Used to encrypt or decrypt a key value on behalf of the calling process (does not establish keys into the module). Executes using RSA KDK, RSA KEK (passed in by the calling process). Key agreement User, CO Used to perform key agreement primitives on behalf of the calling process (does not establish keys into the module). Executes using EC Diffie-Hellman Private, EC Diffie- 7 "Key transport" can refer to a) moving keys in and out of the module or b) the use of keys by an external application. The latter definition is the one that applies to the TippingPoint Crypto Core OpenSSL. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 25 Service Role Description Hellman Public (passed in by the calling process). Digital signature User, CO Used to generate or verify RSA, DSA or ECDSA digital signatures. Executes using RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK (passed in by the calling process). Utility User, CO Miscellaneous helper functions. Does not access CSPs TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 26 6. Self-Test The Module performs the self-tests listed below on invocation of Initialize or Self-test. Table 6a: Power On Self Tests (KAT = Known answer test; PCT = Pairwise consistency test Table 6a: Power On Self Tests (KAT = Known answer test; PCT = Pairwise consistency test) Algorithm Type Test Attributes Software integrity KAT HMAC-SHA1 HMAC KAT One KAT per SHA1, SHA224, SHA256, SHA384 and SHA512 Per IG 9.3, this testing covers SHA POST requirements. AES KAT Separate encrypt and decrypt, ECB mode, 128 bit key length AES CCM KAT Separate encrypt and decrypt, 192 key length AES GCM KAT Separate encrypt and decrypt, 256 key length XTS-AES KAT 128, 256 bit key sizes to support either the 256-bit key size (for XTS-AES- 128) or the 512-bit key size (for XTS-AES-256) AES CMAC KAT Sign and verify CBC mode, 128, 192, 256 key lengths Triple-DES KAT Separate encrypt and decrypt, ECB mode, 3-Key Triple-DES CMAC KAT CMAC generate and verify, CBC mode, 3-Key RSA KAT Sign and verify using 2048 bit key, SHA-256, PKCS#1 DSA PCT Sign and verify using 2048 bit key, SHA-384 DRBG KAT CTR_DRBG: AES, 256 bit with and without derivation function HASH_DRBG: SHA256 HMAC_DRBG: SHA256 ECDSA PCT Keygen, sign, verify using P-224, K-233 and SHA512. The K-233 self-test is not performed for operational environments that support prime curve only (see Table 2). ECC CDH KAT Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6 X9.31 RNG KAT 128, 192, 256 bit AES keys Note: This KAT is not performed in version 2.0.13 of the module. In version 2.0.8, although the module performs a self test for X9.31 RNG, this algorithm cannot be used in FIPS mode. The Module is installed using one of the set of instructions in Appendix A, as appropriate for the target system. The HMAC-SHA-1 of the Module distribution file as tested by the CMT Laboratory and listed in Appendix A is verified during installation of the Module file as described in Appendix A. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 27 The FIPS_mode_set()8 function performs all power-up self-tests listed above with no operator intervention required, returning a “1” if all power-up self-tests succeed, and a “0” otherwise. If any component of the power-up self-test fails an internal flag is set to prevent subsequent invocation of any cryptographic function calls. The module will only enter the FIPS Approved mode if the module is reloaded and the call to FIPS_mode_set()9 succeeds. The power-up self-tests may also be performed on-demand by calling FIPS_selftest(), which returns a “1” for success and “0” for failure. Interpretation of this return code is the responsibility of the calling application. The Module also implements the following conditional tests: Table 6b: Conditional Tests Algorithm Test DRBG Tested as required by [SP800-90A] Section 11 DRBG FIPS 140-2 continuous test for stuck fault DSA Pairwise consistency test on each generation of a key pair ECDSA Pairwise consistency test on each generation of a key pair RSA Pairwise consistency test on each generation of a key pair Note: FIPS 186-2 RSA KeyGen is disallowed. In the event of a DRBG self-test failure the calling application must uninstantiate and re- instantiate the DRBG per the requirements of [SP 800-90A]; this is not something the Module can do itself. Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and Encrypt/Decrypt. The Module supports two operational environment configurations for elliptic curve: NIST prime curves only (listed in Table 2 with the EC column marked "P") and all NIST defined curves (listed in Table 2 with the EC column marked "BKP"). 8 FIPS_mode_set() calls Module function FIPS_module_mode_set() 9 FIPS_mode_set() calls Module function FIPS_module_mode_set() TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 28 7. Operational Environment The tested operating systems segregate user processes into separate process spaces. Each process space is logically separated from all other processes by the operating system software and hardware. The Module functions entirely within the process space of the calling application, and implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 29 8. Mitigation of other Attacks The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140- 2. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 30 Appendix A Installation and Usage Guidance The test platforms represent different combinations of installation instructions. For each platform there is a build system, the host providing the build environment in which the installation instructions are executed, and a target system on which the generated object code is executed. The build and target systems may be the same type of system or even the same device, or may be different systems – the Module supports cross-compilation environments. Please note, the following instructions are not applicable to the 2.0.13 version of the Module as the FIPS Object Module is preinstalled in the Trend Micro Inc. operational environments. Each of these command sets are relative to the top of the directory containing the uncompressed and expanded contents of the distribution files openssl-fips-2.0.8.tar.gz (all NIST defined curves as listed in Table 2 with the EC column marked "BKP") or openssl-fips-ecp-2.0.8.tar.gz (NIST prime curves only as listed in Table 2 with the EC column marked "P"). The command sets are: U1: ./config no-asm make make install U2: ./config make make install W1: ms\do_fips no-asm W2: ms\do_fips Installation instructions 1. Download and copy the distribution file to the build system. These files can be downloaded from http://www.openssl.org/source /. 2. Verify the HMAC-SHA-1 digest of the distribution file; see Appendix B. An independently acquired FIPS 140-2 validated implementation of SHA-1 HMAC must be used for this digest verification. Note that this verification can be performed on any convenient system and not necessarily on the specific build or target system. Alternatively, a copy of the distribution on physical media can be obtained from OSF10 . Unpack the distribution 10 For some prospective users the acquisition, installation, and configuration of a suitable FIPS 140-2 validated product may not be convenient. OSF will on request mail a CD containing the source code distribution, via USPS or international post. A distribution file received by that means need not be verified by a FIPS 140-2 validated implementation of HMAC-SHA-1. For instructions on requesting this CD see http://opensslfoundation.com/fips/verify.html. TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 31 gunzip -c openssl-fips-2.0.8.tar.gz | tar xf - cd openssl-fips-2.0.8 or gunzip -c openssl-fips-ecp-2.0.8.tar.gz | tar xf - cd openssl-fips-ecp-2.0.8 4. Execute one of the installation command sets U1, W1, U2, W2 as shown above. No other command sets shall be used. 5. The resulting fipscanister.o or fipscanister.lib file is now available for use. 6. The calling application enables FIPS mode by calling the FIPS_mode_set() 11 function. Note that failure to use one of the specified commands sets exactly as shown will result in a module that cannot be considered compliant with FIPS 140-2. Linking the Runtime Executable Application Note that applications interfacing with the FIPS Object Module are outside of the cryptographic boundary. When linking the application with the FIPS Object Module two steps are necessary: 1. The HMAC-SHA-1 digest of the FIPS Object Module file must be calculated and verified against the installed digest to ensure the integrity of the FIPS object module. 2. A HMAC-SHA1 digest of the FIPS Object Module must be generated and embedded in the FIPS Object Module for use by the FIPS_mode_set() 11 function at runtime initialization. The fips_standalone_sha1 command can be used to perform the verification of the FIPS Object Module and to generate the new HMAC-SHA-1 digest for the runtime executable application. Failure to embed the digest in the executable object will prevent initialization of FIPS mode. At runtime the FIPS_mode_set()11 function compares the embedded HMAC-SHA-1 digest with a digest generated from the FIPS Object Module object code. This digest is the final link in the chain of validation from the original source to the runtime executable application file. Optimization The “asm” designation means that assembler language optimizations were enabled when the binary code was built, “no-asm” means that only C language code was compiled. 11 FIPS_mode_set() calls the Module function FIPS_module_mode_set() TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 32 For OpenSSL with x86 there are three possible optimization levels: 1. No optimization (plain C) 2. SSE2 optimization 3. AES-NI+PCLMULQDQ+SSSE3 optimization Other theoretically possible combinations (e.g. AES-NI only, or SSE3 only) are not addressed individually, so that a processor which does not support all three of AES-NI, PCLMULQDQ, and SSSE3 will fall back to SSE2 optimization. For more information, see: • http://www.intel.com/support/processors/sb/CS-030123.htm?wapkw=sse2 • http://software.intel.com/en-us/articles/intel-advanced-encryption-standard- instructions- aes-ni/?wapkw=aes-ni For OpenSSL with ARM there are two possible optimization levels: 1. Without NEON 2. With NEON (ARM7 only) For more information, see http://www.arm.com/products/processors/technologies/neon.php TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 33 Appendix B Controlled Distribution File Fingerprint Please note, the following instructions are not applicable to the 2.0.13 version of the Module as the FIPS Object Module is preinstalled in the Trend Micro Inc. operational environments. The TippingPoint Crypto Core FIPS Object Module for OpenSSL v2.0.8 consists of the FIPS Object Module (the fipscanister.o or fipscanister.lib contiguous unit of binary object code) generated from the specific source files. For all NIST defined curves (listed in Table 2 with the EC column marked "BKP") the source files are in the specific special OpenSSL distribution openssl-fips-2.0.8.tar.gz with HMAC- SHA-1 digest of 7f486fbb598f3247ab9db10c1308f1c19f384671 Please contact Trend Micro Inc. for source distribution. The openssl command from a version of OpenSSL that incorporates a previously validated version of the module may be used: openssl sha1 -hmac etaonrishdlcupfm openssl-fips-2.0.8.tar.gz TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 34 Appendix C Compilers This appendix lists the specific compilers used to generate the Module for the respective Operational Environments. Note this list does not imply that use of the Module is restricted to only the listed compiler versions, only that the use of other versions has not been confirmed to produce a correct result. Table C: Compilers # Operational Environment Compiler 1. Android 2.2 (HTC Desire) gcc 4.4.0 2. Android 2.2 (Dell Streak) gcc 4.4.0 3. Microsoft Windows 7 32 bit Microsoft 32-bit C/C++ Optimizing Compiler Version 16.00 4. uClinux 0.9.29 gcc 4.2.1 5. Fedora 14 gcc 4.5.1 6. HP-UX 11i ( hpux-ia64-cc, 32 bit mode) HP C/aC++ B3910B 7. HP-UX 11i ( hpux64-ia64-cc, 64 bit mode) HP C/aC++ B3910B 8. Ubuntu 10.04 gcc 4.1.3 9. Android 3.0 gcc 4.4.0 10. Linux 2.6.27 gcc 4.2.4 11. Microsoft Windows 7 64 bit Microsoft C/C++ Optimizing Compiler Version 16.00 for x64 12. Ubuntu 10.04 32 bit gcc 4.1.3 13. Linux 2.6.33 gcc 4.1.0 14. Android 2.2 gcc 4.1.0 15. DSP Media Framework 1.4 TMS320C6x C/C++ Compiler v6.0.13 16. VxWorks 6.8 gcc 4.1.2 17. Linux 2.6 gcc 4.3.2 18. Linux 2.6 gcc 4.3.2 19. Linux 2.6.32 gcc 4.3.2 20. Solaris 10 32bit gcc 3.4.3 21. Solaris 10 64bit gcc 3.4.3 22. Solaris 11 32bit gcc 4.5.2 23. Solaris 11 64bit gcc 4.5.2 24. Solaris 11 32bit gcc 4.5.2 25. Solaris 11 64bit gcc 4.5.2 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 35 # Operational Environment Compiler 26. Oracle Linux 5 64bit gcc 4.1.2 27. CascadeOS 6.1 32bit gcc 4.4.5 28. CascadeOS 6.1 64bit gcc 4.4.5 29. Ubuntu 10.04 32bit gcc 4.1.3 30. Ubuntu 10.04 64bit gcc 4.1.3 31. Oracle Linux 5 gcc 4.1.2 32. Oracle Linux 6 gcc 4.4.6 33. Oracle Linux 6 gcc 4.4.6 34. Solaris 11 32bit Sun C 5.12 35. Solaris 11 64bit Sun C 5.12 36. Android 4.0 gcc 4.4.3 37. Linux 2.6 gcc 4.1.0 38. Apple iOS 5.1 gcc 4.2.1 39. WinCE 6.0 Microsoft C/C++ Optimizing Compiler Version 15.00 for ARM 40. WinCE 5.0 Microsoft C/C++ Optimizing Compiler Version 13.10 for ARM 41. Android 4.0 gcc 4.4.3 42. NetBSD 5.1 gcc 4.1.3 43. NetBSD 5.1 gcc 4.1.3 44. Windows 7 Microsoft (R) C/C++ Optimizing Compiler Version 16.00 for x64 45. Android 4.1 gcc 4.6 46. Android 4.1 gcc 4.6 47. Android 4.2 gcc 4.6 48. Android 4.2 gcc 4.6 49. Windows Embedded Compact 7 Microsoft C/C++ Optimizing Compiler Version 15.00.20720 for ARM 50. Windows Embedded Compact 7 Microsoft C/C++ Optimizing Compiler Version 15.00.20720 for ARM 51. Android 4.0 gcc 4.4.3 52. Apple OS X 10.7 Apple LLVM version 4.2 53. Apple iOS 5.0 gcc 4.2.1 54. OpenWRT 2.6 gcc 4.6.3 55. QNX 6.4 gcc 4.3.3 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 36 # Operational Environment Compiler 56. Apple iOS 6.1 gcc 4.2.1 57. eCos 3 gcc 4.3.2 58. Ubuntu 13.04 gcc 4.7.3 59. Ubuntu 13.04 gcc 4.7.3 60. Linux 3.8 gcc 4.7.3 61. Apple iOS 6.0 gcc 4.2.1 62. Apple iOS 6.0 gcc 4.2.1 63. Linux 2.6 gcc 4.4.1 64. AcanOS 1.0 gcc 4.6.2 65. AcanOS 1.0 gcc 4.6.2 66. AcanOS 1.0 gcc 4.5.3 67. FreeBSD 8.4 gcc 4.2.1 68. FreeBSD 9.1 gcc 4.2.1 69. FreeBSD 9.1 gcc 4.2.1 70. ArbOS 5.3 gcc 4.1.2 71. ArbOS 5.3 gcc 4.1.2 72. Linux ORACLESP 2.6 gcc 4.4.5 73. Linux ORACLESP 2.6 gcc 4.4.5 74. FreeBSD 9.2 gcc 4.2.1 75. FreeBSD 9.2 gcc 4.2.1 76. FreeBSD 10.0 clang 3.3 77. FreeBSD 10.0 clang 3.3 78. FreeBSD 8.4 gcc 4.2.1 79. VMware Horizon Workspace 2.1 x86 under vSphere gcc 4.5.1 80. VMware Horizon Workspace 2.1 x86 under vSphere gcc 4.5.1 81. QNX on ARMv4 gcc 4.3.3 82. CentOS 5.6 gcc 4.1.2 83. CentOS 5.6 gcc 4.1.2 84. Linux 4.4 on 440T gcc 5.3.0 85. Linux 4.4 on 2200T gcc 5.3.0 86. Linux 4.4 on 8200TX gcc 5.3.0 87. Linux 4.4 on 8400TX gcc 5.3.0 TippingPoint Crypto Core FIPS Object Module for OpenSSL FIPS 140-2 non-proprietary Security Policy 37 # Operational Environment Compiler 88. Linux 4.4 on VMware ESXi 6.5 (VTPS) gcc 5.3.0 89. CentOS 5.6 gcc 4.1.2