

Kaspersky Cryptographic Module (Kernel Mode)

Version 3.0.1.25

FIPS 140-2 Level 1 Security Policy

Version Number: 4.1 Date: October 10, 2016

Table of Contents

1.	Mo	odule Overview	3
2.	Mo	odes of Operation	4
2	2.1	Approved and Allowed Cryptographic Functions	4
2	2.2	All other algorithms	6
3.	Ро	orts and interfaces	6
4.	Ro	bles and Services	6
5.	Cr	yptographic Keys and CSPs	7
6.	Se	elf-tests	8

1. Module Overview

Kaspersky Cryptographic Module (Kernel Mode) is a Windows kernel driver that provides cryptographic services for various Kaspersky Lab applications.

The cryptographic module is a software module that is executing in a modifiable operational environment by a general purpose computer.

This software module contains a single component:

• cm_km.sys (32-bit or 64-bit)

FIPS 140-2 conformance testing was performed at Security Level 1. The following configurations were tested by the lab.

Table 1.1: Configurations tested by the lab.

Software Component	Operating System	Processor(s)	AES NI: Yes/No
cm_km.sys (32-bit)	Windows 7 Professional 32-bit	Intel(R) Core(TM)2 Duo P9600 @ 2.53GHz	No
cm_km.sys (64-bit)	Windows 8.1 Enterprise 64-bit	Intel(R) Core(TM) i7-3770S CPU @ 3.10GHz	Yes
	Windows 7 Enterprise 64-bit	Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz	Yes
	Windows 10 Enterprise 64 bit	Intel [®] Core™ i7-4600U CPU @ 2.10GHz	Yes

Table 1.2: Module Security Level Statement.

FIPS Security Area	Security Level
Cryptographic Module Specification	1
Module Ports and Interfaces	1
Roles, Services and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self-tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

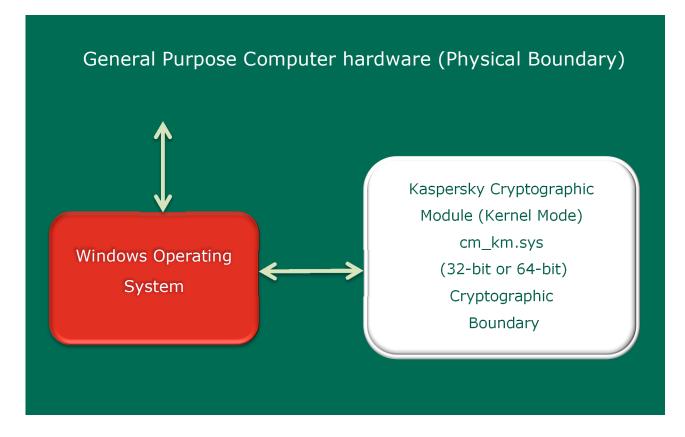


Figure 1: Block Diagram for Kaspersky Cryptographic Module (Kernel Mode)

2. Modes of Operation

In the FIPS approved mode of operation the operator must only use FIPS-approved and allowed security functions listed in the Section 2.1.

In the non-FIPS mode of operation the module performs non-approved functions listed in the Section "2.2 All Other Algorithms" of this security policy. These functions shall not be used in FIPS approved mode of operation.

2.1 Approved and Allowed Cryptographic Functions

The following approved cryptographic algorithms are used in FIPS approved mode of operation.

Table 2.1: Approved Cryptographic Functions.

Algorithm	CAVP Certificate
AES (ECB, CBC, CFB8, CFB128 and XTS) using 128 and 256-bit keys	2956, 2957
Note: AES-XTS mode is only Approved for storage applications	
SP 800-90A DRBG (Hash, HMAC and CTR)	557, 558, 892
HMAC (SHA1, SHA224, SHA256, SHA384, SHA512)	1875, 1876
SHS (SHA1, SHA224, SHA256, SHA384, SHA512)	2488, 2489
SHA3 (224/256/384/512)	vendor affirmed
RSA (FIPS 186-4) SigGen using RSA with keys = 2048 bits/SHA512 and SigVer using 1024/2048/3072 RSA keys for ANSIX9.31, RSASSA- PKCS1_V1_5 and RSASSA-PSS	1555, 1556
PBKDF	vendor affirmed
	Note: keys derived from
	passwords, as shown in SP 800-
	132, may only be used in storage
	applications. The cryptographic
	module complies with SP 800-132
	Option 2a. The operator must
	only use 256-bit or stronger random passwords. The upper
	bound for the probability of
	having this parameter guessed at
	random is $1/2^{256}$.

The following non-FIPS approved but allowed cryptographic algorithms are used in FIPS approved mode of operation.

Table 2.2: Non-FIPS Approved But Allowed Cryptographic Functions.

AlgorithmRSA (key wrapping; key establishment methodology provides between 112 and 256 bits of encryption
strength) using RSA with keys ≥ 2048 bits

2.2 All other algorithms

In the FIPS approved mode of operation the operator must not use the functions listed in the Table 2.3. These functions are available in the User role.

Table 2.3: Non-Approved Cryptographic Functions

Algorithm
(FIPS 186-2) RSA KeyGen
RSA (key wrapping; non-compliant) using RSA with keys < 2048 bits
RSA SigVer using RSA with keys < 1024 bits
RSA SigGen using RSA with keys ≠ 2048 bits or SHA1/SHA224/SHA256/SHA384

3. Ports and interfaces

The logical interfaces of the module are implemented via an Application Programming Interface (API). The following table describes each logical interface.

Table 3: FIPS 140-2 Logical Interfaces.

Logical Interface	Description	
Data Input Input parameters that are supplied to the API commands		
Data Output	Output parameters that are returned by the API commands	
Control Input API commands		
Status Output	Return status provided by API commands	

4. Roles and Services

The module supports a Crypto Officer role and a User Role. The Crypto Officer installs, initializes and deinitializes the module. The Crypto Officer also uses the services provided by the module. The User uses the cryptographic services provided by the module. The module provides the following services.

Table 4: Roles and Services

Service	Corresponding Roles	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
Initialization/ de- initialization	Crypto Officer	N/A
Installation	Crypto Officer	N/A

Service	Corresponding Roles	Types of Access to Cryptographic Keys and CSPs R – Read or Execute W – Write or Create Z – Zeroize
Self-test	User Crypto Officer	N/A
Show status	User Crypto Officer	N/A
Zeroization	User Crypto Officer	All: Z
Random number generation	User Crypto Officer	DRBG CSPs: R, W
Asymmetric key generation	User Crypto Officer	RSA keys: W
Symmetric encryption/decryption	User Crypto Officer	AES key: R
Message digest generation	User Crypto Officer	N/A
Keyed Hash (Generating or verifying data integrity with HMAC)	User Crypto Officer	HMAC key: R
Asymmetric encryption/decryption	User Crypto Officer	RSA keys: R
Digital Signature Generation/Verification	User Crypto Officer	RSA keys: R
PBKDF key derivation	User Crypto Officer	AES key: W HMAC key: W Password: R

Table 4: Roles and Services

Non-Approved cryptographic services are implementations of Non-Approved algorithms. They are listed in the Section 2.2.

5. Cryptographic Keys and CSPs

The table below describes cryptographic keys and CSPs used by the module.

Table 5: Cryptographic Keys and CSPs

Кеу	Description/Usage	Origin	Zeroization
AES Key	Used during AES encryption and decryption	Generated using DRBG, derived using PBKDF, or provided by user	Zeroized during power cycle or reboot

Кеу	Description/Usage	Origin	Zeroization
HMAC Key	Used during calculation of HMAC	Generated using DRBG, derived using PBKDF, or provided by user	Zeroized during power cycle or reboot
RSA Key Pairs	Used for signature generation and verification and key wrapping	Provided by user	Zeroized during power cycle or reboot
DRBG CSPs	Used during generation of random numbers (length of entropy input depends on security strength required by the calling application)	Provided by user	Zeroized during power cycle or reboot
Password	Used to derive key using PBKDF	Provided by user	Zeroized during power cycle or reboot

The Keys and CSPs are stored in plaintext within the module. Keys and CSPs used in the FIPS Approved mode of operation shall not be used while in the non-FIPS mode of operation. CSPs shall not be established while in the non-FIPS mode of operation.

6. Self-tests

The module performs the following power-up and conditional self-tests. Upon failure of a power-up self-test the module halts its operation.

Table 6: Self-Tests

Algorithm	Test
Software integrity	HMAC-SHA256 KAT
НМАС	HMAC: SHA-1, SHA-224, SHA-256, SHA- 384, SHA-512 KATs
AES	KAT(encryption/decryption):
	AES-XTS (128 and 256)
	AES-ECB (128 and 256)
	AES-CBC (128 and 256)
	AES-CFB8(128 and 256)
	AES-CFB128(128 and 256)
RSA	KAT: RSA2048 SHA512 PSS

Algorithm	Test
DRBG	KATs:
	HASH_DRBG: SHA1, SHA224, SHA256, SHA384, SHA512
	HMAC_DRBG: SHA1, SHA224, SHA256, SHA384, SHA512
	CTR_DRBG: AES128, AES256
	Continuous Random Number Generator test for DRBGs
	DRBG Health Test
	Continuous Random Number Generator test for entropy source
SHA3	SHA3-224, 256, 384, and 512 KATs
PBKDF	PBKDF2 with HMAC-SHA512 KAT
SHS	KATs: SHA1, SHA224, SHA256, SHA384, SHA512

The module performs all power-up self-tests listed above without operator intervention using driver entry-point mechanism.