
FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 1 of 73

SafeLogic Inc.

CryptoComply for Java 140-3

FIPS 140-3 Non-Proprietary Security Policy

Software Version 2.0.0

Document Version 1.0

October 10, 2024

SafeLogic Inc.

530 Lytton Ave, Suite 200
Palo Alto, CA 94301
www.safelogic.com

http://www.safelogic.com/

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 2 of 73

Table of Contents

1 General Information .. 5
1.1 Overview .. 5
1.2 Security Levels .. 6

2 Cryptographic Module Specification .. 7
2.1 Description ... 7
2.2 Tested and Vendor Affirmed Module Version and Identification ... 8
2.3 Excluded Components .. 12
2.4 Modes of Operation ... 12
2.5 Algorithms .. 13
2.6 Algorithm Specific Information .. 22
2.7 RBG and Entropy .. 25
2.8 Key Generation ... 26
2.9 Key Establishment .. 27
2.10 Industry Protocols .. 27

3 Cryptographic Module Ports and Interfaces .. 28
3.1 Ports and Interfaces ... 28
3.2 Additional Information ... 28

4 Roles, Services, and Authentication ... 29
4.1 Authentication Methods .. 29
4.2 Roles ... 29
4.3 Approved Services .. 30
4.4 Non-Approved Services .. 43

5 Software/Firmware Security ... 43
5.1 Integrity Techniques ... 43
5.2 Initiate on Demand ... 44

6 Operational Environment .. 45
6.1 Configuration Settings and Restrictions ... 45

7 Physical Security .. 46

8 Non-Invasive Security .. 47

9 Sensitive Security Parameter Management ... 48
9.1 SSPs .. 49

10 Self-Tests ... 60
10.1 Pre-Operational Self-Tests .. 60
10.2 Conditional Self-Tests ... 60
10.3 Error States ... 62
10.4 Operator Initiation of Self-Tests ... 62

11 Life-Cycle Assurance .. 63
11.1 Installation, Initialization, and Startup Procedures .. 63

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 3 of 73

11.2 Basic Guidance ... 63
11.3 Use of the JVM with a Java SecurityManager .. 63
11.4 Design and Rules .. 66
11.5 Vulnerabilities .. 68

12 Mitigation of Other Attacks ... 69

Appendix: References and Acronyms ... 70

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 4 of 73

List of Tables

Table 1 - Security Levels .. 6

Table 2 - Executable Code Sets .. 8

Table 3 - Tested Operational Environments – Software/Firmware/Hybrid .. 9

Table 4 - Vendor Affirmed Operational Environments – Software/Firmware/Hybrid .. 10

Table 5 - Modes of Operation .. 12

Table 6 - Approved Algorithms, CAVP Tested .. 13

Table 7 - Vendor Affirmed Algorithms ... 19

Table 8 - Non-Approved, Allowed Algorithms with No Security Claimed.. 20

Table 9 - Non-Approved, Not Allowed Algorithms .. 20

Table 10 - SP 800-38G Format-Preserving Encryption Constraints ... 24

Table 11 – Non-Deterministic Random Number Generation Specification ... 25

Table 12 – Ports and Interfaces ... 28

Table 13 - Roles.. 29

Table 14 – Approved Services .. 31

Table 15 - Non-Approved Services... 43

Table 16 - Sensitive Security Parameters (SSPs) Key Table ... 49

Table 17 – Conditional Algorithm Self-Tests .. 60

Table 18 – Pairwise Consistency Tests ... 61

Table 19 - Available Java Permissions for SecurityManager .. 64

Table 20 - References .. 70

Table 21 - Acronyms .. 72

List of Figures

Figure 1 - Module Block Diagram .. 8

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 5 of 73

1 General Information

1.1 Overview

This document provides a non-proprietary FIPS 140-3 Security Policy for CryptoComply for Java 140-3.

SafeLogic Inc.'s CryptoComply for Java 140-3 is designed to provide FIPS 140-3 validated cryptographic

functionality and is available for licensing. For more information, visit www.safelogic.com/cryptocomply.

1.1.1 About FIPS 140

Federal Information Processing Standards Publication 140-3, Security Requirements for Cryptographic

Modules, (FIPS 140-3) specifies the latest requirements for cryptographic modules utilized to protect

sensitive but unclassified information. The National Institute of Standards and Technology (NIST) and

Canadian Centre for Cyber Security (CCCS) collaborate to run the Cryptographic Module Validation

Program (CMVP), which assesses conformance to FIPS 140. NIST (through NVLAP) accredits independent

testing labs to perform FIPS 140 testing. The CMVP reviews and validates modules tested against FIPS

140 criteria. Validated is the term given to a module that has successfully gone through this FIPS 140

validation process. Validated modules receive a validation certificate that is posted on the CMVP’s

website.

More information is available on the CMVP website at:

https://csrc.nist.gov/projects/cryptographic-module-validation-program.

1.1.2 About this Document

This non-proprietary cryptographic module Security Policy for CryptoComply for Java 140-3 from

SafeLogic Inc. (SafeLogic) provides an overview of the product and a high-level description of how it

meets the security requirements of FIPS 140-3. This document includes details on the module’s

cryptographic capabilities, services, sensitive security parameters, and self-tests. This Security Policy also

includes guidance on operating the module while maintaining compliance with FIPS 140-3.

CryptoComply for Java 140-3 may also be referred to as “the module” in this document.

1.1.3 External Resources

The SafeLogic website (www.safelogic.com) contains information on SafeLogic services and products.

The CMVP website maintains all FIPS 140 certificates for SafeLogic’s FIPS 140 validations. These

certificates also include SafeLogic contact information.

1.1.4 Notices

This document may be freely reproduced and distributed, but only in its entirety and without

modification.

https://www.safelogic.com/cryptocomply
https://csrc.nist.gov/projects/cryptographic-module-validation-program
http://www.safelogic.com/

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 6 of 73

1.2 Security Levels

Table 1 lists the module’s level of validation for each area in FIPS 140-3.

Table 1 - Security Levels

Section Security Level

Overall Security Level 1

Section 1 – General Information 1

Section 2 – Cryptographic Module Specification 1

Section 3 – Cryptographic Module Interfaces 1

Section 4 – Roles, Services, and Authentication 1

Section 5 – Software/Firmware Security 1

Section 6 – Operational Environment 1

Section 7 – Physical Security N/A

Section 8 – Non-Invasive Security N/A

Section 9 – Sensitive Security Parameter Management 1

Section 10 – Self-Tests 1

Section 11 – Life-Cycle Assurance 1

Section 12 – Mitigation of Other Attacks 1

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 7 of 73

2 Cryptographic Module Specification

2.1 Description

Purpose and Use:

CryptoComply for Java 140-3 is a standards-based “Drop-in Compliance™” cryptographic module for

Java environments.

The module delivers cryptographic services to host applications through a Java language Application

Programming Interface (API).

Module Type: Software

Module Embodiment: Multi-Chip Stand Alone

Cryptographic Boundary:

The cryptographic boundary is the Java Archive (JAR) file, bc-fips-2.0.0.jar.

The module is the only component within the cryptographic boundary and the only component that

carries out cryptographic functions covered by FIPS 140-3. The module classes are executed on the Java

Virtual Machine (JVM) using the classes of the Java Runtime Environment (JRE). The JVM is the interface

to the computer’s Operating System (OS), which is the interface to the various physical components of

the general purpose computer (GPC).

As a software cryptographic module, the module operates within the Tested Operational Environment’s

Physical Perimeter (TOEPP). The TOEPP physical perimeter is the physical perimeter of the GPC that the

module operates on. The TOEPP includes the JVM/JRE, OS, and the GPC. The TOEPP includes the

Operational Environment (OE) that the module operates in, the module itself, and all other applications

that operate within the OE, including the host application for the module. The external entropy source

used by the module is also within the TOEPP.

The module’s block diagram is provided in Figure 1, which shows the cryptographic boundary and the

logical relationship of the cryptographic module to the other software and hardware components of the

TOEPP. The module’s logical interfaces are defined by its API.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 8 of 73

Figure 1 - Module Block Diagram

2.2 Tested and Vendor Affirmed Module Version and Identification

Tested Module Identification – Software, Firmware, Hybrid (Executable Code Sets):

Table 2 - Executable Code Sets

Package/File
Names

Software/ Firmware
Version

Integrity Test
Implemented

bc-fips-2.0.0.jar 2.0.0 HMAC-SHA-256

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 9 of 73

Confirming the Module Checksum, Functionality, and Versioning

The module checksum, functionality, and versioning can be confirmed by executing the command:

java -cp bc-fips-2.0.0.jar org.bouncycastle.util.DumpInfo

which should display:

Version Info: BouncyCastle Security Provider (FIPS edition) v2.0.0

FIPS Ready Status: READY

Module SHA-256 HMAC:

164c8ae41945cb85fdc65666fc4de7301a65d29659ecd455ee5199c7d42d107e

This display indicates that the JAR represents the software release bc-fips-2.0.0, that it has successfully

passed all its startup tests, and that the software release is confirmed to have the HMAC listed above.

Tested Operational Environments - Software, Firmware, Hybrid:

The module operates in a modifiable operational environment under the FIPS 140-3 definitions. The

cryptographic module was tested on the following operational environments on the GPC platforms

detailed in Table 3.

Table 3 - Tested Operational Environments – Software/Firmware/Hybrid

Operating System
Hardware
Platform

Processor(s) PAA/PAI Version(s)

VMware Photon OS 4.0 with JRE 8 on
VMware ESXi 8.0

Dell PowerEdge
R650

Intel Xeon Gold
6330

No 2.0.0

VMware Photon OS 4.0 with JRE 11 on
VMware ESXi 8.0

Dell PowerEdge
R650

Intel Xeon Gold
6330

No 2.0.0

VMware Photon OS 4.0 with JRE 17 on
VMware ESXi 8.0

Dell PowerEdge
R650

Intel Xeon Gold
6330

No 2.0.0

VMware Photon OS 5.0 with JRE 21 on
VMware ESXi 8.0

Dell PowerEdge
R650

Intel Xeon Gold
6330

No 2.0.0

Vendor-Affirmed Operational Environments - Software, Firmware, Hybrid:

Porting guidance is defined in the FIPS 140-3 CMVP Management Manual Section 7.9. The cryptographic

module will remain compliant with the FIPS 140-3 validation when operating on any GPC provided that:

• No source code modifications were made

• The module operates on any general-purpose platform/processor that supports the specified

operating system as listed on the validation entry. Or the module uses another compatible

platform, such as one of the Java SE Runtime Environments listed in the table below (Table 4).

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 10 of 73

The CMVP makes no statement as to the correct operation of the module or the security strengths of
the generated keys when so ported if the specific operational environment is not listed on the validation
certificate.

Table 4 - Vendor Affirmed Operational Environments – Software/Firmware/Hybrid

Operating System Hardware Platform

1. Java SE Runtime Environment v8 (1.8) with HP-UX Generic Hardware Platform

2. Java SE Runtime Environment v11 (1.11) with HP-UX Generic Hardware Platform

3. Java SE Runtime Environment v17 (1.17) with HP-UX Generic Hardware Platform

4. Java SE Runtime Environment v21 (21) with HP-UX Generic Hardware Platform

5. Java SE Runtime Environment v8 (1.8) with Linux CentOS Generic Hardware Platform

6. Java SE Runtime Environment v11 (1.11) with Linux CentOS Generic Hardware Platform

7. Java SE Runtime Environment v17 (1.17) with Linux CentOS Generic Hardware Platform

8. Java SE Runtime Environment v21 (21) with Linux CentOS Generic Hardware Platform

9. Java SE Runtime Environment v8 (1.8) with Red Hat Enterprise
Linux

Generic Hardware Platform

10. Java SE Runtime Environment v11 (1.11) with Red Hat Enterprise
Linux

Generic Hardware Platform

11. Java SE Runtime Environment v17 (1.17) with Red Hat Enterprise
Linux

Generic Hardware Platform

12. Java SE Runtime Environment v21 (21) with Red Hat Enterprise
Linux

Generic Hardware Platform

13. Java SE Runtime Environment v8 (1.8) with Linux Debian Generic Hardware Platform

14. Java SE Runtime Environment v11 (1.11) with Linux Debian Generic Hardware Platform

15. Java SE Runtime Environment v17 (1.17) with Linux Debian Generic Hardware Platform

16. Java SE Runtime Environment v21 (21) with Linux Debian Generic Hardware Platform

17. Java SE Runtime Environment v8 (1.8) with Linux Fedora Generic Hardware Platform

18. Java SE Runtime Environment v11 (1.11) with Linux Fedora Generic Hardware Platform

19. Java SE Runtime Environment v17 (1.17) with Linux Fedora Generic Hardware Platform

20. Java SE Runtime Environment v21 (21) with Linux Fedora Generic Hardware Platform

21. Java SE Runtime Environment v8 (1.8) with Linux Oracle RHC Generic Hardware Platform

22. Java SE Runtime Environment v11 (1.11) with Linux Oracle RHC Generic Hardware Platform

23. Java SE Runtime Environment v17 (1.17) with Linux Oracle RHC Generic Hardware Platform

24. Java SE Runtime Environment v21 (21) with Linux Oracle RHC Generic Hardware Platform

25. Java SE Runtime Environment v8 (1.8) with Linux Oracle UEK Generic Hardware Platform

26. Java SE Runtime Environment v11 (1.11) with Linux Oracle UEK Generic Hardware Platform

27. Java SE Runtime Environment v17 (1.17) with Linux Oracle UEK Generic Hardware Platform

28. Java SE Runtime Environment v21 (21) with Linux Oracle UEK Generic Hardware Platform

29. Java SE Runtime Environment v17 (1.8) with Linux Photon Generic Hardware Platform

30. Java SE Runtime Environment v11 (1.11) with Linux Photon Generic Hardware Platform

31. Java SE Runtime Environment v17 (1.17) with Linux Photon Generic Hardware Platform

32. Java SE Runtime Environment v21 (21) with Linux Photon Generic Hardware Platform

33. Java SE Runtime Environment v8 (1.8) with Linux SUSE Generic Hardware Platform

34. Java SE Runtime Environment v11 (1.11) with Linux SUSE Generic Hardware Platform

35. Java SE Runtime Environment v17 (1.17) with Linux SUSE Generic Hardware Platform

36. Java SE Runtime Environment v21 (21) with Linux SUSE Generic Hardware Platform

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 11 of 73

Operating System Hardware Platform

37. Java SE Runtime Environment v8 (1.8) with Linux Ubuntu Generic Hardware Platform

38. Java SE Runtime Environment v11 (1.11) with Linux Ubuntu Generic Hardware Platform

39. Java SE Runtime Environment v17 (1.17) with Linux Ubuntu Generic Hardware Platform

40. Java SE Runtime Environment v21 (21) with Linux Ubuntu Generic Hardware Platform

41. Java SE Runtime Environment v8 (1.8) with Mac OS X Generic Hardware Platform

42. Java SE Runtime Environment v11 (1.11) with Mac OS X Generic Hardware Platform

43. Java SE Runtime Environment v8 (1.8) with Microsoft Windows Generic Hardware Platform

44. Java SE Runtime Environment v11 (1.11) with Microsoft Windows Generic Hardware Platform

45. Java SE Runtime Environment v17 (1.17) with Microsoft Windows Generic Hardware Platform

46. Java SE Runtime Environment v21 (21) with Microsoft Windows Generic Hardware Platform

47. Java SE Runtime Environment v8 (1.8) with Microsoft Windows
Server

Generic Hardware Platform

48. Java SE Runtime Environment v11 (1.11) with Microsoft Windows
Server

Generic Hardware Platform

49. Java SE Runtime Environment v17 (1.17) with Microsoft Windows
Server

Generic Hardware Platform

50. Java SE Runtime Environment v21 (21) with Microsoft Windows
Server

Generic Hardware Platform

51. Java SE Runtime Environment v8 (1.8) with Microsoft Windows XP Generic Hardware Platform

52. Java SE Runtime Environment v11 (1.11) with Microsoft Windows
XP

Generic Hardware Platform

53. Java SE Runtime Environment v17 (1.17) with Microsoft Windows
XP

Generic Hardware Platform

54. Java SE Runtime Environment v21 (21) with Microsoft Windows XP Generic Hardware Platform

55. Java SE Runtime Environment v8 (1.8) with Solaris Generic Hardware Platform

56. Java SE Runtime Environment v11 (1.11) with Solaris Generic Hardware Platform

57. Java SE Runtime Environment v17 (1.17) with Solaris Generic Hardware Platform

58. Java SE Runtime Environment v21 (21) with Solaris Generic Hardware Platform

59. Java SE Runtime Environment v8 (1.8) with AIX Generic Hardware Platform

60. Java SE Runtime Environment v11 (1.11) with AIX Generic Hardware Platform

61. Java SE Runtime Environment v17 (1.17) with AIX Generic Hardware Platform

62. Java SE Runtime Environment v21 (21) with AIX Generic Hardware Platform

63. Java SE Runtime Environment v17 (1.17) with Red Hat Enterprise
Linux

Generic Hardware Platform
with Intel Cascade Lakes

64. Java SE Runtime Environment v21 (21) with Red Hat Enterprise
Linux

Generic Hardware Platform
with Intel Cascade Lakes

65. Java SE Runtime Environment v17 (1.17) with Red Hat Enterprise
Linux

Generic Hardware Platform
with Intel Sapphire Rapids

66. Java SE Runtime Environment v21 (21) with Red Hat Enterprise
Linux

Generic Hardware Platform
with Intel Sapphire Rapids

67. Java SE Runtime Environment v17 (1.17) with Ubuntu Generic Hardware Platform
with Intel Cascade Lakes

68. Java SE Runtime Environment v21 (21) with Ubuntu Generic Hardware Platform
with Intel Cascade Lakes

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 12 of 73

Operating System Hardware Platform

69. Java SE Runtime Environment v17 (1.17) with Ubuntu Generic Hardware Platform
with Intel Sapphire Rapids

70. Java SE Runtime Environment v21 (21) with Ubuntu Generic Hardware Platform
with Intel Sapphire Rapids

71. Java SE Runtime Environment v17 (1.17) with ClevOS Generic Hardware Platform
with Intel Cascade Lake

72. Java SE Runtime Environment v21 (21) with ClevOS Generic Hardware Platform
with Intel Cascade Lakes

73. Java SE Runtime Environment v17 (1.17) with ClevOS Generic Hardware Platform
with Intel Sapphire Rapids

74. Java SE Runtime Environment v21 (21) with ClevOS Generic Hardware Platform
with Intel Sapphire Rapids

75. Java SE Runtime Environment v17 (1.17) with ClevOS Generic Hardware Platform
with Intel Haswell

76. Java SE Runtime Environment v21 (21) with ClevOS Generic Hardware Platform
with Intel Haswell

77. Java SE Runtime Environment v17 (1.17) with ClevOS Generic Hardware Platform
with Intel Broadwell

78. Java SE Runtime Environment v21 (21) with ClevOS Generic Hardware Platform
with Intel Broadwell

2.3 Excluded Components

Not applicable.

2.4 Modes of Operation

Modes List and Description:

Table 5 - Modes of Operation

Name Description Type Status Indicator

Approved
mode

Only supports
approved operations

Approved CryptoServicesRegistrar.IsInApprovedOnlyMode()
can be called to determine the mode of
operation. This method will return true for
approved mode.

Non-
approved
mode

Permits operations
that are not
approved

Non-
Approved

CryptoServicesRegistrar.IsInApprovedOnlyMode()
can be called to determine the mode of
operation. This method will return false for non-
approved mode.

Mode Change Instructions and Status:

In default operation the module will start with all algorithms and services enabled.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 13 of 73

If the module detects that the system property org.bouncycastle.fips.approved_only is set to true the

module will start in approved mode and non-approved mode functionality will not be available.

The module optionally uses the Java SecurityManager. If the underlying JVM is running with a Java

SecurityManager installed the module starts in approved mode by default with secret and private key

export disabled. When the module is not used within the context of the Java SecurityManager, it will

start by default in the non-approved mode. Refer to Security Policy Section 11.3 for additional

information about the Java SecurityManager.

Refer to Security Policy Section 11.4.1 for additional information on the module’s mode of operation

rules.

2.5 Algorithms

The module implements the algorithms specified in the tables below. The module supports both an

Approved mode and a Non-approved mode of operation. Please see Security Policy Section 2.4 for

additional details on the modes of operation and the configuration of the Approved mode of operation.

Please see Security Policy Section 11.1 for Initialization steps.

2.5.1 Approved Algorithms

The module implements the following approved algorithms that have been tested by the Cryptographic

Algorithm Validation Program (CAVP). There are algorithms, modes, and keys that have been CAVP

tested but not used by the module. Only the algorithms, modes/methods, and key

lengths/curves/moduli shown in this table are used by the module.

Table 6 - Approved Algorithms, CAVP Tested

Algorithm Name
(Implementation)

CAVP Cert
Name

Algorithm Properties Reference Use/Function

AES A4399

Modes: CBC, CFB8, CFB128,
CTR, ECB, FF1, OFB

Key sizes: 128, 192, 256 bits

AES [FIPS 197,
SP 800-38A],
AES FF1 Format
Preserving
Encryption [SP
800-38G]

Encryption,
Decryption

AES CBC
Ciphertext
Stealing (CS)

A4399 Modes: CBC-CS1, CBC-CS2,
CBC-CS3

Key sizes: 128, 192, 256 bits

[Addendum to
SP 800-38A,
Oct 2010]

Encryption,
Decryption

AES CCM A4399 Key sizes: 128, 192, 256 bits [SP 800-38C] Generation,
Authentication

AES CMAC A4399 Key sizes: 128, 192, 256 bits [SP 800-38B] Generation,
Authentication

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 14 of 73

Algorithm Name
(Implementation)

CAVP Cert
Name

Algorithm Properties Reference Use/Function

AES GCM/GMAC1 A4399 Key sizes: 128, 192, 256 bits [SP 800-38D] Generation,
Authentication

AES KW, KWP
(KTS: Key
Wrapping Using
AES2)

A4399 Modes: AES KW, KWP

Key sizes: 128, 192, 256 bits

(key establishment

methodology providing 128,

192 or 256 bits of encryption

strength)

[SP 800-38F] Key Wrapping

DRBG, Counter
DRBG

A4399 AES 128, AES 192, AES 256 [SP 800-90Ar1] Random Bit
Generation

DRBG, Hash DRBG A4399 SHA sizes: SHA-1, SHA-224,

SHA-256, SHA-384, SHA2-512,

SHA-512/224, SHA2-512/256

[SP 800-90Ar1] Random Bit
Generation

DRBG, HMAC
DRBG

A4399 SHA sizes: SHA-1, SHA-224,

SHA-256, SHA-384, SHA2-512,

SHA-512/224, SHA2-512/256

[SP 800-90Ar1] Random Bit
Generation

DSA3 A4399 Key sizes: 10244, 2048, 3072

bits

[FIPS 186-4] Key Pair
Generation,
PQG
Generation,
PQG
Verification,
Signature
Generation,
Signature
Verification

ECDSA A4399 Curves/Key sizes: P-192, P-224,
P-256, P-384, P-521, K-163, K-
233, K-283, K-409, K-571, B-
163, B-233, B-283, B-409, B-
5715

[FIPS 186-4] Key
Generation,
Key
Verification,
Signature
Generation,
Signature
Verification

1 GCM encryption with an internally generated IV, see Security Policy Section 2.6.1 concerning external IVs. IV
generation is compliant with IG C.H.
2 Keys are not established directly into the module using key agreement or key transport algorithms.
3 DSA signature generation with SHA-1 is only for use with protocols.
4 Key size only used for Signature Verification
5 Curves P-192, K-163, and B-163 only used for Signature Verification and Key Verification

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 15 of 73

Algorithm Name
(Implementation)

CAVP Cert
Name

Algorithm Properties Reference Use/Function

HMAC A4399 SHA sizes: SHA-1, SHA-224,
SHA-256, SHA-384, SHA-512,
SHA-512/224, SHA-512/256,
SHA3-224, SHA3-256, SHA3-
384, SHA3-512

[FIPS 198-1] Generation,
Authentication

KAS-ECC6 A4399 Domain Parameter Generation
Methods/Schemes:

P-224, P-256, P-384, P-521, K-
233, K-283, K-409, K-571, B-
233, B-283, B-409, B-571

ephemeralUnified, fullMqv,
fullUnified, onePassDh,
onePassMqv, onePassUnified,
staticUnified

Curves specified above
providing between 112 and 256
bits of encryption strength

[SP 800-56Ar3] Key Agreement

KAS-FFC6 A4399 Domain Parameter Generation
Methods/Schemes:

ffdhe2048, ffdhe3072,
ffdhe4096, ffdhe6144,
ffdhe8192, MODP-2048,
MODP-3072, MODP-4096,
MODP-6144, MODP-8192

dhHybrid1, MQV2, dhEphem,
dhHybrid, OneFlow, MQV1,
dhOneFlow, dhStatic

Groups specified above
providing between 112 and 200
bits of encryption strength

[SP 800-56Ar3] Key Agreement

KAS-IFC A4399 RSASVE with, and without, key
confirmation.

Key sizes: 2048, 3072, 4096
providing between 112 and 152
bits of encryption strength

[SP 800-56Br2,
Section 7.2.1]

Key Agreement

6 Keys are not established directly into the module using key agreement or key transport algorithms.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 16 of 73

Algorithm Name
(Implementation)

CAVP Cert
Name

Algorithm Properties Reference Use/Function

KDA, HKDF A4399 PRFs: HMAC-SHA-1, HMAC
SHA-224, HMAC-SHA-256,
HMAC-SHA-384, HMAC-SHA-
512, HMAC-SHA-512/224,
HMAC-SHA-512/256, HMAC-
SHA3-224, HMAC-SHA3-256,
HMAC-SHA3-384, HMAC-SHA3-
512

[SP 800-56Cr2] Key Derivation

KDA, One Step A4399 PRFs: SHA-1, SHA-224, SHA-
256, SHA-384, SHA-512, SHA-
512/224, SHA-512/256, SHA3-
224, SHA3-256, SHA3-384,
SHA3-512, HMAC-SHA-1,
HMAC-SHA-224, HMAC-SHA-
256, HMAC-SHA-384, HMAC-
SHA-512, HMAC-SHA-512/224,
HMAC-SHA-512/256, HMAC-
SHA3-224, HMAC-SHA3-256,
HMAC-SHA3-384, HMAC-SHA3-
512, KMAC-128, KMAC-256

[SP 800-56Cr2] Key Derivation

KDA, Two Step A4399 PRFs: HMAC-SHA-1, HMAC-
SHA-224, HMAC-SHA-256,
HMAC-SHA-384, HMAC-SHA-
512, HMAC-SHA-512/224,
HMAC-SHA-512/256, HMAC-
SHA3-224, HMAC-SHA3-256,
HMAC-SHA3-384, HMAC-SHA3-
512, CMAC-AES128, CMAC-
AES192, CMAC-AES256

[SP 800-56Cr2] Key Derivation

KDF, using
Pseudorandom
Functions7

A4399 Modes: Counter Mode,
Feedback Mode, Double-
Pipeline Iteration Mode

Types:

CMAC-based KBKDF with AES
(128, 192, 256)

HMAC-based KBKDF with SHA-
1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA3-224, SHA3-256,
SHA3-384, SHA3-512

[SP 800-108] Key Derivation

7 Note: CAVP testing is not provided for use of the PRFs SHA-512/224 and SHA-512/256. These must not be used in
approved mode.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 17 of 73

Algorithm Name
(Implementation)

CAVP Cert
Name

Algorithm Properties Reference Use/Function

KDF, Existing
Application-
Specific8

CVL
A4399

TLS v1.0/1.1 KDF

SHA sizes: SHA2-256, SHA2-
384, SHA2-512

[SP 800-135r1] Key Derivation

KDF, Existing
Application-
Specific8

CVL
A4399

TLS 1.2 KDF

SHA sizes: SHA2-256, SHA2-
384, SHA2-512

[SP 800-135r1] Key Derivation

KDF, Existing
Application-
Specific8

CVL
A4399

SNMP KDF

Password Length: 64, 8192

[SP 800-135r1] Key Derivation

KDF, Existing
Application-
Specific8

CVL
A4399

SSH KDF
AES: 128

SHA sizes: SHA2-224

[SP 800-135r1] Key Derivation

KDF, Existing
Application-
Specific8

CVL
A4399

X9.63 KDF

SHA sizes: SHA2-224, SHA2-
256, SHA2-384, SHA2-512

[SP 800-135r1] Key Derivation
Can be used
along with KAS-
SSC

KDF, Existing
Application-
Specific8

CVL
A4399

IKEv2 KDF

SHA sizes: SHA-1, SHA-224,
SHA-256, SHA-384, SHA-512

[SP 800-135r1] Key Derivation

KDF, Existing
Application-
Specific8

CVL
A4399

SRTP KDF

AES: 128, 192, 256

[SP 800-135r1] Key Derivation

KTS-IFC A4399 RSA-OAEP with, and without,
key confirmation.

Key sizes: 2048, 3072, 4096
providing between 112 and 152
bits of encryption strength

Key Generation Method:
rsakpg2-crt

[SP 800-56Br2,
Section 7.2.2]

Key Transport

PBKDF, Password-
based

A4399 Options: PBKDF with Option 1a

Types: HMAC-based KDF using
SHA-1, SHA-224, SHA-256, SHA-
384, SHA-512

[SP 800-132] Key Derivation

RSA A4399 Key sizes: 2048, 3072, 4096 [FIPS 186-4,
ANSI X9.31-
1998 and PKCS
#1 v2.1 (PSS
and PKCS1.5)]

Key Pair
Generation

8 No parts of the protocols (TLS, SNMPv3, SSHv2, X9.63, IKEv2, SRTP), other than the approved cryptographic
algorithms and the KDFs, have been reviewed or tested by the CAVP and CMVP

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 18 of 73

Algorithm Name
(Implementation)

CAVP Cert
Name

Algorithm Properties Reference Use/Function

RSA A4399 Key sizes: 2048, 3072, 4096 [FIPS 186-4,
ANSI X9.31-
1998 and PKCS
#1 v2.1 (PSS
and PKCS1.5)]

Signature
Generation

RSA A4399 Key sizes: 1024, 2048, 3072,
4096

[FIPS 186-4,
ANSI X9.31-
1998 and PKCS
#1 v2.1 (PSS
and PKCS1.5)]

Signature
Verification

RSA A4399 Key sizes: 1024, 1536, 2048,
3072, 4096

[FIPS 186-2,
ANSI X9.31-
1998 and PKCS
#1 v2.1 (PSS
and PKCS1.5)]

Signature
Verification

RSA Decryption
Primitive

CVL
A4399

Key size: 2048 [SP 800-56Br2] Component
Test

RSA Signature
Primitive

CVL
A4399

Key size: 2048 [FIPS 186-4] Component
Test

Safe Primes A4399 Parameter sets: ffdhe2048,

ffdhe3072, ffdhe4096,

ffdhe6144, ffdhe8192, MODP-

2048, MODP-3072, MODP-

4096, MODP-6144, MODP-

8192

[SP 800-56Ar3] Key
Generation,
Key
Verification

SHA-3, SHAKE A4399 SHA3-224, SHA3-256, SHA3-

384, SHA3-512, SHAKE128,

SHAKE256

[FIPS 202] Digital
Signature
Generation,
Digital
Signature
Verification,
non-Digital
Signature
Applications

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 19 of 73

Algorithm Name
(Implementation)

CAVP Cert
Name

Algorithm Properties Reference Use/Function

SHA-3 Derived

Functions

A4399 Types: cSHAKE-128, cSHAKE-

256, KMAC-128, KMAC-256,

ParallelHash-128, ParallelHash-

256, TupleHash-128,

TupleHash-256

[SP 800-185] Digital
Signature
Generation,
Digital
Signature
Verification,
non-Digital
Signature
Applications

SHS A4399 SHA sizes: SHA-1, SHA-224,

SHA-256, SHA-384, SHA-512,

SHA-512/224, SHA-512/256

[FIPS 180-4] Digital
Signature
Generation,
Digital
Signature
Verification,
non-Digital
Signature
Applications

2.5.2 Vendor Affirmed Algorithms

Vendor-Affirmed Algorithms:

Table 7 - Vendor Affirmed Algorithms

Algorithm
Name

Algorithm
Properties

Implementation Reference

CKG Used for the
generation of
symmetric keys and
asymmetric seeds

Other
Cryptographic key
generation

[SP 800-133r2]

CKG using output from DRBG,
Vendor Affirmed per IG D.H.
The resulting key or a generated
seed is an unmodified output from a
DRBG:

• Section 5.1 (Asymmetric
seeds from DRBG)

• Section 6.1 (Direct
Generation of Symmetric
keys from DRBG)

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 20 of 73

2.5.3 Non-Approved, Allowed Algorithms

Non-Approved, Allowed Algorithms:

Not applicable.

2.5.4 Non-Approved, Allowed Algorithms with No Security Claimed

Non-Approved, Allowed Algorithms with No Security Claimed.

These algorithms are Allowed in Approved mode.

Table 8 - Non-Approved, Allowed Algorithms with No Security Claimed

Algorithm Caveat Use/Function

MD5 within TLS Allowed per IG 2.4.A, no security claimed MD5 used within a TLS handshake

2.5.5 Non-Approved, Not Allowed Algorithms

Non-Approved, Not Allowed Algorithms:

Table 9 - Non-Approved, Not Allowed Algorithms

Algorithm Use/Function

AES (non-compliant9) Non-approved modes for AES

ARC4 (RC4) ARC4/RC4 stream cipher

Blowfish Blowfish block cipher

Camellia Camellia block cipher

CAST5 CAST5 block cipher

ChaCha20 ChaCha20 stream cipher

ChaCha20-Poly1305 AEAD ChaCha20 using Poly1305 as the MAC

DES DES block cipher

Diffie-Hellman KAS (non-compliant10) non-compliant key agreement methods

DSA (non-compliant11) non-FIPS digest signatures using DSA

DSTU4145 DSTU4145 EC algorithm

ECDSA (non-compliant12) non-FIPS digest signatures using ECDSA

9 Support for additional modes of operation.
10 Support for additional key sizes and the establishment of keys of less than 112 bits of security strength.
11 Deterministic signature calculation, support for additional digests, and key sizes.
12 Deterministic signature calculation, support for additional digests, and key sizes.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 21 of 73

Algorithm Use/Function

EdDSA Ed25519 and Ed448 signature algorithms

ElGamal ElGamal key transport algorithm

FF3-1 Format Preserving Encryption – AES FF3-1

GOST28147 GOST-28147 block cipher

GOST3410-1994 GOST-3410-1994 algorithm

GOST3410-2001 GOST-3410-2001 EC algorithm

GOST3410-2012 GOST-3410-2012 EC algorithm

GOST3411 GOST-3411-1994 message digest

GOST3411-2012-256 GOST-3411-2012 256-bit message digest

GOST3411-2012-512 GOST-3411-2012 512-bit message digest

HMAC-GOST3411 GOST-3411 HMAC

HMAC-MD5 MD5 HMAC

HMAC-RIPEMD128 RIPEMD128 HMAC

HMAC-RIPEMD160 RIPEMD160 HMAC

HMAC-RIPEMD256 RIPEMD256HMAC

HMAC-RIPEMD320 RIPEMD320 HMAC

HMAC-TIGER TIGER HMAC

HMAC-WHIRLPOOL WHIRLPOOL HMAC

HSS HSS signature scheme (RFC 8708)

IDEA IDEA block cipher

KAS13 using SHA-512/224 or SHA-512/256
(non-compliant)

Key Agreement using SHA-512/224 and SHA-
512/256 based KDFs

KBKDF using SHA-512/224 or SHA-512/256
(non-compliant)

KBKDF2 using the PRFs SHA-512/224 and SHA-
512/256

LMS LMS signature scheme (RFC 8708)

MD5 MD5 message digest

OpenSSL PBKDF (non-compliant) OpenSSL PBE key derivation scheme

PKCS#12 PBKDF (non-compliant) PKCS#12 PBE key derivation scheme

PKCS#5 Scheme 1 PBKDF (non-compliant) PKCS#5 PBE key derivation scheme

Poly1305 Poly1305 message MAC

13 Keys are not directly established into the module using key agreement or transport techniques.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 22 of 73

Algorithm Use/Function

PRNG X9.31 X9.31 PRNG

RC2 RC2 block cipher

RIPEMD128 RIPEMD128 message digest

RIPEMD160 RIPEMD160 message digest

RIPEMD256 RIPEMD256 message digest

RIPEMD320 RIPEMD320 message digest

RSA (non-compliant14) Non-compliant RSA signature schemes

RSA KTS (non-compliant15) Non-compliant RSA key transport schemes

SCrypt (non-compliant) SCrypt using non-compliant PBKDF2

SEED SEED block cipher

Serpent Serpent block cipher

SipHash SipHash MAC

SHACAL-2 SHACAL2 block cipher

TIGER TIGER message digest

Triple-DES Triple-DES cipher

Twofish Twofish block cipher

WHIRLPOOL WHIRLPOOL message digest

XDH X25519 and X448 key agreement algorithms

2.6 Algorithm Specific Information

2.6.1 Enforcement and Guidance for GCM IVs (IG C.H conformance)

IVs for GCM can be generated randomly, or via a FipsNonceGenerator. IV generation is compliant with

IG C.H.

Where an IV is not generated within the module the module supports the importing of GCM IVs. In

approved mode, importing a GCM IV for encryption that originates from outside the module is non-

conformant.

In approved mode, when a GCM IV is generated randomly, the module enforces the use of an approved

DRBG in line with Section 8.2.2 of SP 800-38D.

14 Support for additional digests and signature formats, PKCS#1 1.5 key wrapping, support for additional key sizes.
15 Support for additional key sizes and the establishment of keys of less than 112 bits of security strength.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 23 of 73

In approved mode, when a GCM IV is generated using the FipsNonceGenerator, a counter is used as the

basis for the nonce and the IV is generated in accordance with TLS protocol. Rollover of the counter in

the FipsNonceGenerator will result in an IllegalStateException indicating the FipsNonceGenerator is

exhausted and (as per IG C.H) where used for TLS 1.2, rollover will terminate any TLS session in process

using the current key and the exception can only be recovered from by using a new handshake and

creating a new FipsNonceGenerator.

A service indicator for IV usage is provided in the module through Java logging. Setting the logging level

to Level.FINE for the named logger org.bouncycastle.jcajce.provider.BaseCipher will produce a log

message when an IV which may have been produced outside the module and/or not from a compliant

source is detected. The log message will be of the standard form including the detail:

FINE: Passed in GCM nonce detected: <IV value>

where <IV value> is a HEX representation of the IV in use.

Setting the logging level to Level.FINER will produce an additional log message for any GCM IV which is

used if the previous Level.FINE message is not activated. Log messages in this case will show the detail

as:

FINER: GCM nonce detected: <IV value>

where <IV value> is a HEX representation of the IV in use.

Per IG C.H, this Security Policy also states that in the event module power is lost and restored the

consuming application must ensure that any of its AES GCM keys used for encryption or decryption are

re-distributed.

The AES GCM mode falls under:

• IG C.H scenario 2: GCM IV is generated randomly, and the module uses an Approved DRBG that

is internal to the module’s boundary. The IV length is 96 bits.

• IG C.H scenario 1 for TLS v1.2 protocol: The module is compatible with the TLS v1.2 protocol and

supports acceptable AES GCM ciphersuites from Section 3.3.1 of the SP 800-52r2.

2.6.2 Enforcement and Guidance for Use of the Approved PBKDF (IG D.N conformance)

The PBKDF aligns with Option 1a in Section 5.4 of SP 800-132.

In line with the requirements for SP 800-132, keys generated using the approved PBKDF must only be

used for storage applications. Any other use of the approved PBKDF is non-conformant.

In approved mode the module enforces that any password used must encode to at least 14 bytes (112

bits) and that the salt is at least 16 bytes (128 bits) long. The iteration count associated with the PBKDF

should be as large as practical.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 24 of 73

As the module is a general purpose software module, it is not possible to anticipate all the levels of use

for the PBKDF, however a user of the module should also note that a password should at least contain

enough entropy to be unguessable and also contain enough entropy to reflect the security strength

required for the key being generated. In the event a password encoding is simply based on ASCII, a 14-

byte password is unlikely to contain sufficient entropy for most purposes. The standard set of printable

characters only allows for as much as 6 bits of entropy per byte. For a 14-byte password, this yields a key

that has been generated using 14 * 6 bits of entropy, giving only 84 bits of security, which is well below

what is required for a key with the same level of hardness as a 112-bit one. Users are referred to

Appendix A (Security Considerations) of SP 800-132 for further information on password, salt, and

iteration count selection.

The iteration count value is provided by the user and should be appropriate to the way the algorithm is

being used. (The memory hard augmentation of PBKDF provided by SCRYPT uses an iteration count of

1). For straight PBKDF with no memory hard support, the iteration count provided by the user should be

at point of maximum cost bearable by the user carrying out the key derivation in the normal course of

usage. To ensure sufficient whitening of the password in both cases, the module enforces a salt size of

128 bits in approved mode.

For users interested in introducing memory hardness as a layer on top of the PBKDF the SCrypt

augmentation to PBDKF based on HMAC-SHA-256 (as described in RFC 7914) is also available in non-

approved mode.

2.6.3 Rules for Setting the N and the S String in cSHAKE

To customize the output of the cSHAKE function, the cSHAKE algorithm permits the operator to input

strings for the Function-Name input (N) and the Customization String (S).

The Function-Name input (N) is reserved for values specified by NIST and should only be set to the

appropriate NIST specified value. Any other use of N is non-conformant.

The Customization String (S) is available to allow users to customize the cSHAKE function as they wish.

The length of S is limited to the available size of a byte array in the JVM running the module.

2.6.4 Guidance for the Use of Format-Preserving Encryption

The module supports both FF1 and, in non-approved mode, FF3-1 format preserving encryption. Both

are modes of AES. Table 10 shows the parameter constraints applicable to the module's

implementation, as required by IG C.J.

Table 10 - SP 800-38G Format-Preserving Encryption Constraints

 FF1 FF3-1

radix in range of 2 … 216 in range of 2 … 216

radixminlen ≥ 1,000,000 ≥ 1,000,000

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 25 of 73

 FF1 FF3-1

minlen ≥ 2 octets 2 octets

maxlen < 232 octets 2 * floor(logradix(296)) octets

maxTlen ≥ 0 octets 8 octets (fixed)

An attempt to use the FF1 or FF3-1 without meeting the radixminlen constraint or by exceeding maxlen

will result in an IllegalArgumentException. Note: only FF1 should be used in approved mode.

2.6.5 TLS 1.2 KDF (IG D.Q Conformance)

As indicated under CAVP certificate A4399, the module supports TLS 1.2 KDF per RFC 5246, i.e. without

using the extended master secret.

2.6.6 Truncated HMACs

Approved HMAC algorithms can produce truncated versions of the specified HMAC. The right-most bits

are truncated as per the NIST SP 800-107r1 (see also IG C.L and IG C.D).

2.7 RBG and Entropy

The module does not include an entropy source.

The module's use of an external Random Number Generator (RNG) is determined by the settings

described in the subsections below.

Table 11 – Non-Deterministic Random Number Generation Specification

Entropy
Sources

Minimum
number of bits

of entropy
Details

Passive
Entropy

128 As per FIPS 140-3 IG 9.3.A Section 2b, a minimum of 16 bytes (128
bits) is required from the source configured for seed generation for
the JVM. The entropy reader will block until the seed generator has
provided the minimum number of bytes.

2.7.1 Use of External RNG

The module makes use of the JVM's configured SecureRandom entropy source to provide entropy when

required. The module will request entropy as appropriate to the security strength and seeding

configuration for the DRBG that is using it and for the default DRBG will request a minimum of 256 bits

of entropy. In approved mode the minimum amount of entropy that can be requested by a DRBG is 112

bits. The module will wait until the SecureRandom.generateSeed() returns the requested amount of

entropy, blocking if necessary.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 26 of 73

The JVM’s entropy source can be configured through setting the security property

securerandom.strongAlgorithms in the JVM's java.security file.

2.7.2 Guidance for the Use of DRBGs and Configuring the JVM's Entropy Source

A user can instantiate the default Approved DRBG for the module explicitly by using

SecureRandom.getInstance("DEFAULT", "BCFIPS"), or by using a BouncyCastleFipsProvider object

instead of the provider name as appropriate. This will seed the Approved DRBG from the live entropy

source of the JVM with a number of bits of entropy appropriate to the security level of the default

Approved DRBG configured for the module.

The JVM's entropy source is checked according to SP 800-90B, Section 4.4 using the suggested C values

for the Repetition Count Test (Section 4.4.1) and the Adaptive Proportion Test (Section 4.4.2) by default.

These values can also be configured using the security property org.bouncycastle.entropy.factors. This

property takes a comma separated list of C values: one for 4.4.1, one for 4.4.2, and a value of H. For the

default, the property would be set as:

 org.bouncycastle.entropy.factors: 4, 13, 8.0

in the java.security property file.

An additional option is available using the Approved Hash DRBG and the process outlined in SP 800-90A,

Section 8.6.5. This can be turned on by following the instructions in Section 2.3 of the User Guide. The

two DRBGs are instantiated in a chain as a "Source DRBG" to seed the "Target DRBG" in accordance with

Section 7 of Draft NIST SP 800-90C, where the Target DRBG is the default Approved DRBG used by the

module.

The initial seed and the subsequent reseeds for the DRBG chain come from the live entropy source

configured for the JVM. The DRBG chain will reseed automatically by pausing for 20 requests (which will

usually equate to 5120 bytes). An entropy gathering thread reseeds the DRBG chain when it has

gathered sufficient entropy (currently 256 bits) from the live entropy source. Once reseeded, the

request counter is reset and the reseed process begins again.

The “Source DRBG” in the chain is internal to the module and inaccessible to the user to ensure it is only

used for generating seeds for the default Approved DRBG of the module.

The user shall ensure that the entropy source is configured per Section 2.7.1 of this Security Policy and

will block, or fail, if it is unable to provide the amount of entropy requested.

2.8 Key Generation

The module performs Cryptographic Key Generation in conformance to FIPS 140-3 IG D.H. The CKG for

symmetric keys and seeds used for generating asymmetric keys is performed as per Section 4 of the SP

800-133r2 (using the output of a random bit generator) and is compliant with FIPS 186-4 and SP 800-

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 27 of 73

90Ar1 for DRBG. The seed used in asymmetric key generation is the direct output of SP 800-90Ar1

DRBG.

Refer to Section 9.1 of the Security Policy for SSP generation details.

2.9 Key Establishment

The module does not perform automatic SSP establishment, it only provides the components to the

calling application, which can be used in SSP establishment.

2.10 Industry Protocols

The module implements KDFs from SP 800-135r1 (Recommendation for Existing Application-Specific Key
Derivation Functions). These KDFs have been validated by the CAVP and received CVL certificates
(A4399). No parts of these protocols, other than the CAVP tested components, have been reviewed or
tested by the CAVP and CMVP.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 28 of 73

3 Cryptographic Module Ports and Interfaces

3.1 Ports and Interfaces

As a software cryptographic module, the module supports logical interfaces only and not physical ports.

All access to the module is through the module’s API. The API provides and defines the module’s logical

interfaces.

The module does not implement a control output interface. As a software module, the power interface

is also not applicable.

The mapping of the FIPS 140-3 logical interfaces to the module is described in Table 12.

Table 12 – Ports and Interfaces

Physical Port Logical Interface Data That Passes Over the Port/Interface

N/A Data Input API input parameters – plaintext and/or ciphertext data.

N/A Data Output API output parameters and return values – plaintext and/or
ciphertext data.

N/A Control Input API method calls – method calls or input parameters that
specify commands and/or control data used to control the
operation of the module.

N/A Control Output N/A, not implemented

N/A Status Output API output parameters and return/error codes that provide
status information used to indicate the state of the module.

N/A Power N/A for software modules

3.2 Additional Information

All interfaces are logically separated by the module’s API.

When the module performs self-tests, is in an error state, is generating keys, or performing zeroization,

the module prevents all output on the logical data output interface as only the thread performing the

operation has access to the data. The module is single-threaded, and in an error state, the module does

not return any output data, only an error value.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 29 of 73

4 Roles, Services, and Authentication

4.1 Authentication Methods

Not applicable.

The module does not support authentication.

4.2 Roles

The module supports two distinct operator roles, which are the User and Cryptographic Officer (CO).

The cryptographic module implicitly maps the two roles to the services.

An operator is considered the owner of the thread that instantiates the module and, therefore, only one

concurrent operator is allowed. The module does not support a maintenance role and/or bypass

capability.

Table 13 lists all operator roles supported by the module.

Table 13 - Roles

Name Type Operator Type Authentication Type Authentication Strength

CO Role CO N/A – Authentication not

required for Level 1

N/A

User Role User N/A – Authentication not

required for Level 1

N/A

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 30 of 73

4.3 Approved Services

Table 14 lists the module services and corresponding details. The modes of SSP access shown in the table are defined as:

• G = Generate: The module generates or derives the SSP.

• R = Read: The SSP is read from the module (e.g. the SSP is output).

• E = Execute: The module uses the SSP in performing a cryptographic operation.

• W = Write: The SSP is updated, imported or written to the module.

• Z = Zeroize: The module zeroizes the SSP.

Note: The module services are the same in the approved and non-approved modes of operation. The only difference is the function(s) used (i.e.

approved/allowed or non-approved/non-allowed).

Services in the module are accessed via the public APIs of the JAR file. The ability of a thread to invoke non-approved services depends on

whether it has been registered with the module as approved mode only. In approved mode, no non-approved services are accessible.

Refer also to Section 6.1 and 11.2 of this Security Policy for guidance.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 31 of 73

Table 14 – Approved Services

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

Initialize

Module and

Run Self-

Tests on

Demand

The JRE will call the static

constructor for self-tests

on module initialization

Flag N/A Exception

in case of

failure

N/A N/A CO /

User

N/A

Show Status A user can call

FipsStatus.IsReady() at any

time to determine if the

module is ready.

CryptoServicesRegistrar.IsI

nApprovedOnlyMode() can

be called to determine the

approved mode of

operation

Flag N/A Boolean N/A N/A CO /

User

N/A

Info Service A user can call

DumpInfo.main() at any

time to display the

module version,

checksum, and status

information

Flag N/A Module

name and

version,

checksum,

and status

N/A N/A CO /

User

N/A

Zeroize /

Power-off

The module uses the JVM

garbage collector on

thread termination

Flag N/A Shutdown

indication

N/A All SSPs CO /

User

Z

16Flag is accessed by calling the method CryptoServicesRegistrar.isInApprovedOnlyMode() - this method will return true if the thread is running in approved-only

mode, false otherwise. Refer also to Section 2.4 of this Security Policy.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 32 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

Data

Encryption

Used to encrypt data Flag Key,

Plaintext

Ciphertext AES CBC, AES

CFB8, AES

CFB128, AES

CTR, AES

ECB, AES FF1,

AES OFB,

AES CBC-CS1,

AES CBC-CS2,

AES CBC-CS3,

AES CCM,

AES GCM

AES Encryption Key CO /

User

E

Data

Decryption

Used to decrypt data Flag Key,

Ciphertext

Plaintext AES CBC, AES

CFB8, AES

CFB128, AES

CTR, AES

ECB, AES FF1,

AES OFB,

AES CBC-CS1,

AES CBC-CS2,

AES CBC-CS3,

AES CCM,

AES GCM

AES Decryption Key CO /

User

E

MAC

Calculation

Used to calculate data

integrity codes with

CMAC, GMAC

Flag Key,

Message

MAC AES CMAC,

AES GMAC

AES Authentication

Key

CO /

User

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 33 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

Signature

Generation

Used to generate digital

signatures

Flag Key,

Message

Signature DSA, ECDSA,

RSA

DSA Signing Key,

EC Signing Key,

RSA Signing Key

CO /

User

E

Signature

Verification

Used to verify digital

signatures

Flag Key,

Message

Signature

Boolean DSA, ECDSA,

RSA

DSA Verification

Key,

EC Verification Key,

RSA Verification

Key

CO /

User

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 34 of 73

DRBG (SP

800-90Ar1)

output

Used to generate random

numbers, IVs and keys

Flag N/A Data Counter

DRBG

Hash DRBG

HMAC DRBG

AES Encryption

Key,

AES Decryption

Key,

AES Authentication

Key,

AES Wrapping Key,

DH Agreement

Private Key,

DH Agreement

Public Key,

DRBG Seed,

Internal State V

and C value,

and DRBG Key,

DSA Signing Key,

EC Agreement

Private Key,

EC Agreement

Public Key,

EC Signing Key,

HMAC

Authentication Key,

KMAC

Authentication Key,

RSA Signing Key,

RSA Key Transport

Private Key,

RSA Key Transport

Public Key

CO /

User

CO /

User

G

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 35 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

DRBG Seed,

Internal State V

and C value,

and DRBG Key

Message

Hashing

Used to generate a

message digest, SHAKE

output

Flag Message Hash SHS, SHA-3,

SHAKE, SHA-

3 Derived

Functions

(cSHAKE,

TupleHash,

ParallelHash)

N/A CO /

User

N/A

Keyed

Message

Hashing

Used to calculate data

integrity codes with HMAC

and KMAC

Flag Key,

Message

Hash HMAC,

SHA-3

Derived

Functions

(KMAC)

HMAC

Authentication Key,

KMAC

Authentication Key

CO /

User

E

TLS Key

Derivation

Function

Used to calculate a value

suitable to be used for a

master secret in TLS

Flag TLS

Parameters

Data HKDF,

Existing

Application-

Specific (TLS

KDF)

TLS KDF Secret

Value

CO /

User

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 36 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

SP 800-

108r1 KDF

Used to calculate a value

suitable to be used for a

secret key

Flag KDF

Parameters

Data KBKDF using

Pseudorando

m

Functions

SP 800-108r1 KDF

Secret Value

CO /

User

E

SSH

Derivation

Function

Used to calculate a value

suitable to be used for a

secret key

Flag SSH

Parameters

Data Existing

Application-

Specific (SSH

KDF)

SSH KDF Secret

Value

CO /

User

E:

X9.63

Derivation

Function

Used to calculate a value

suitable to be used for a

secret key

Flag X9.63

Parameters

Data Existing

Application-

Specific

(X9.63 KDF)

DH Agreement

Private Key,

EC Agreement

Private Key,

RSA Signing Key

X9.63 KDF Secret

Value

CO /

User

CO /

User

G

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 37 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

SP 800-

56Cr2

OneStep/

TwoStep

Key

Derivation

Function

(KDM)

Used to calculate a value

suitable to be used for a

secret key

Flag KDM

Parameters

Data HKDF, KDF

One Step,

KDF Two

Step

DH Agreement

Private Key,

EC Agreement

Private Key,

RSA Signing Key

SP 800-56Cr2

OneStep/TwoStep

KDF Secret Value

CO /

User

CO /

User

G

E

IKEv2

Derivation

Function

Used to calculate a value

suitable to be used for a

secret key

Flag IKEv2

Parameters

Data Existing

Application-

Specific

(IKEv2 KDF)

IKEv2 KDF Secret

Value

CO /

User

E

SRTP

Derivation

Function

Used to calculate a value

suitable to be used for a

secret key

Flag SRTP

Parameters

Data Existing

Application-

Specific

(SRTP KDF)

SRTP KDF Secret

Value

CO /

User

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 38 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

PBKDF Used to generate a key

using an encoding of a

password and a message

hash

Flag Password,

PBKDF

Parameters

Data KDF

Password-

Based

HMAC

Authentication Key,

KMAC

Authentication Key

HMAC

Authentication Key,

KMAC

Authentication Key,

PBKDF Secret Value

CO /

User

CO /

User

G

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 39 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

Key

Agreement

Schemes

Used to calculate key

agreement values

Flag Key

Agreement

keys,

Parameters

Data KAS-ECC,

KAS-FFC,

KAS-IFC,

Safe Primes

AES Encryption

Key,

AES Decryption

Key,

AES Authentication

Key,

AES Wrapping Key,

HMAC

Authentication Key,

KMAC

Authentication Key

DH Agreement

Private Key,

EC Agreement

Private Key,

RSA Key Transport

Private Key

CO /

User

CO /

User

G

E

Key

Wrapping

Used to encrypt a key

value

Flag Wrapping

key, Key

Wrapped

key

AES KW, AES

KWP, KTS-IFC

AES Wrapping Key,

HMAC

Authentication Key,

KMAC

Authentication Key,

RSA Key Transport

Private Key

CO /

User

E

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 40 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

Key

Unwrapping

Used to decrypt a key

value

Flag Unwrappin

g key,

Wrapped

key

Key AES KW, AES

KWP, KTS-IFC

AES Wrapping Key,

HMAC

Authentication Key,

KMAC

Authentication Key,

RSA Key Transport

Public Key

CO /

User

E

Key

Generation

Used to generate a key

pair

Flag Key

Generation

Parameters

Key Pair RSA KeyGen,

DSA KeyGen,

ECDSA

KeyGen, CKG

DRBG Output,

DSA Signing Key,

EC Signing Key,

RSA Signing Key,

DSA Verification

Key,

EC Verification Key,

RSA Verification

Key

CO /

User

E

Key

Verification

Used to verify a key pair Flag Key Pair Boolean ECDSA

KeyVer

EC Signing Key,

EC Verification Key

CO /

User

E

Entropy

Callback

Gathers entropy in a

passive manner from a

user-provided function

Flag N/A Random

bits

DRBG, CKG DRBG Seed,

Internal State V

and C value,

and DRBG Key

CO /

User

G

DRBG

Health Tests

Used to perform checks of

incoming entropy against

Section 4.4 of SP 800-90B

Flag N/A N/A DRBG N/A CO /

User

N/A

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 41 of 73

SSP Export

Operation

Returns a CSP as data that

can be used for later

output

Flag SSP Data N/A AES Encryption

Key,

AES Decryption

Key,

AES Authentication

Key,

AES Wrapping Key,

DH Agreement

Private Key,

DH Agreement

Public Key,

DSA Signing Key,

DSA Verification

Key,

EC Agreement

Private Key,

EC Agreement

Public Key,

EC Signing Key,

EC Verification Key,

HMAC

Authentication Key,

KMAC

Authentication Key,

RSA Signing Key,

RSA Key Transport

Private Key,

RSA Key Transport

Public Key

CO /

User

R

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 42 of 73

Name Description Indicator16 Input Output

Approved

Security

Functions

Keys / SSPs Roles
Keys/SSPs

Access

Utility Miscellaneous utility

functions, does not access

CSPs

Flag N/A N/A N/A N/A User N/A

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 43 of 73

4.4 Non-Approved Services

Table 15 - Non-Approved Services

Name Description Indicator17
Algorithms

Accessed
Roles

Data

Encryption

Used to encrypt data Flag Triple-DES CO / User

Data

Decryption

Used to decrypt data Flag Triple-DES CO / User

MAC

Calculation

Used to calculate data integrity codes

with CMAC

Flag Triple-DES CMAC CO / User

DRBG (SP

800-90Ar1)

output

Used to generate random numbers,

IVs and keys

Flag ctrDRBG-Triple-DES CO / User

Key

Agreement

Schemes

Used to calculate key agreement

values

Flag Triple-DES CO / User

Key

Wrapping

Used to encrypt a key value Flag Triple-DES KW CO / User

Key

Unwrapping

Used to decrypt a key value Flag Triple-DES KW CO / User

5 Software/Firmware Security

5.1 Integrity Techniques

The integrity technique used by the module is HMAC-SHA-256. The integrity technique has received

CAVP certificate A4399.

The integrity technique is implemented by the module itself. The HMAC of the module JAR file,

excluding directories and metadata, is calculated and compared to the expected value embedded within

the module’s properties. If the calculated value does not match the expected value, the module raises

an error and fails to load. The integrity test can be performed on demand by power cycling the host

platform.

17Flag is accessed by calling the method CryptoServicesRegistrar.isInApprovedOnlyMode() - this method will return

true if the thread is running in approved-only mode, false otherwise. Refer also to Section 2.4 of this Security
Policy.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 44 of 73

5.2 Initiate on Demand

Each time the module is powered up, it runs the pre-operational tests to ensure that the integrity of the

module has been maintained. Self-tests are available on demand by power cycling the module.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 45 of 73

6 Operational Environment

The module operates in a modifiable operational environment under the FIPS 140-3 definitions.

The module runs on a GPC running one of the operating systems specified in the approved operational

environment list (refer to Section 2.2 of this Security Policy). Each approved operating system manages

processes and threads in a logically separated manner. The module’s operator is considered the owner

of the calling application that instantiates the module within the process space of the Java Virtual

Machine.

6.1 Configuration Settings and Restrictions

The module must be installed as described in Security Policy Section 11.1.

No specific configuration options are required for the operational environments. No security rules,

settings, or restrictions to the configuration of the operational environment are needed for the module

to function in a FIPS-conformant manner.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 46 of 73

7 Physical Security

The requirements of this section are not applicable to the module. The module is a software

module and does not implement any physical security mechanisms.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 47 of 73

8 Non-Invasive Security

The requirements of this section are not applicable to the module.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 48 of 73

9 Sensitive Security Parameter Management

All Sensitive Security Parameters (SSPs) used by the module are described in this section in Table 16. All usage of these SSPs by the module

(including all SSP lifecycle states) is described in the services detailed in Section 4.3 - Approved Services. Please note that the module does not

perform automatic SSP establishment, it only provides the components to the calling application, which can be used in SSP establishment.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 49 of 73

9.1 SSPs

Table 16 - Sensitive Security Parameters (SSPs) Key Table

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

AES Encryption

Key

128, 192, 256

bits

AES CBC,

AES CFB8,

AES

CFB128,

AES CTR,

AES ECB,

AES FF1,

AES OFB,

AES CBC-

CS1, AES

CBC-CS2,

AES CBC-

CS3, AES

CCM, AES

GCM, CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

AES

encryption22

18The module does not provide persistent storage
19Key generator used in conjunction with an approved DRBG
20Import done via key constructor and/or factory (Electronic Entry)
21Export done via key recovery using getEncoded() method and followed by separate step to export key details as either plaintext or encrypted (Electronic Entry)

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 50 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

AES Decryption

Key

128, 192, 256

bits

AES CBC,

AES CFB8,

AES

CFB128,

AES CTR,

AES ECB,

AES FF1,

AES OFB,

AES CBC-

CS1, AES

CBC-CS2,

AES CBC-

CS3, AES

CCM, AES

GCM, CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

AES

decryption

AES

Authentication

Key

128, 192, 256

bits

AES CMAC,

AES GMAC,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

AES

CMAC/GMAC

22The AES GCM key and IV is generated randomly per IG C.H, and the Initialization Vector (IV) is a minimum of 96 bits. In the event module power is lost and
restored, the consuming application must ensure that any of its AES GCM keys used for encryption or decryption are re-distributed. Refer to Section 2.6.1 of the
Security Policy.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 51 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

AES Wrapping

Key

128, 192, 256

bits

AES KW,

AES KWP,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

AES

(128/192/256)

key wrapping

key for KTS

DH Agreement

Private Key

112, 128, 152,

176, 200 bits

KAS-FFC,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

Diffie-Hellman

(ffdhe and

MODP) key

agreement

May be paired

with DH

Agreement

Public Key

DH Agreement

Public Key

112, 128, 152,

176, 200 bits

KAS-FFC,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A Not zeroized,

public key value

known outside of

module

Diffie-Hellman

(ffdhe and

MODP) key

agreement

May be paired

with DH

Agreement

Private Key

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 52 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

DSA Signing

Key

112, 128 bits DSA

Signature

Generation,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

DSA signature

generation

May be paired

with DSA

Verification

Key

DSA

Verification

Key

80, 112, 128

bits

DSA

Signature

Verification,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A Not zeroized,

public key value

known outside of

module

DSA signature

verification

May be paired

with DSA

Signing Key

EC Agreement

Private Key

112, 128, 192,

256 bits

KAS-ECC,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

EC key

agreement

May be paired

with EC

Agreement

Public Key

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 53 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

EC Agreement

Public Key

112, 128, 192,

256 bits

KAS-ECC,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A Not zeroized,

public key value

known outside of

module

EC key

agreement

May be paired

with EC

Agreement

Private Key

EC Signing Key 112, 128, 192,

256 bits

ECDSA

Signature

Generation,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

ECDSA

signature

generation.

May be paired

with EC

Verification

Key

EC Verification

Key

112, 128, 192,

256 bits

ECDSA

Signature

Verification,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A Not zeroized,

public key value

known outside of

module

ECDSA

signature

verification.

May be paired

with EC

Signing Key

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 54 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

HMAC

Authentication

Key

112-256 bits HMAC-SHA-

1, HMAC-

SHA-2,

HMAC-SHA-

3, CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

Keyed-Hash

Calculation

KMAC

Authentication

Key

112-256 bits KMAC, CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

Keyed-Hash

Calculation

RSA Signing

Key

112, 128, 152

bits

RSA

Signature

Generation,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

RSA signature

generation

May be paired

with RSA

Verification

Key

RSA

Verification

Key

80, 112, 128,

152 bits

RSA

Signature

Verification,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A Not zeroized,

public key value

known outside of

module

RSA signature

verification

May be paired

with RSA

Signing Key

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 55 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

RSA Key

Transport

Private Key23

112, 128, 152

bits

KTS-IFC,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

RSA key

transport and

decryption

May be paired

with RSA

Public Key

Transport Key

RSA Key

Transport

Public Key23

112, 128, 152

bits

KTS-IFC,

CKG

A4399

DRBG19 Import20,

Export21

N/A N/A Not zeroized,

public key value

known outside of

module

RSA key

transport

May be paired

with RSA Key

Transport

Private Key

IKEv2 KDF

Secret Value

112, 128, 192,

256 bits

KDF IKEv2

A4399

Generated as

output of an

IKEv2

agreement

scheme

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

PBKDF Secret

Value

112-256 bits PBKDF

A4399

Generated as

output of a

PBE key and a

PRF

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

23RSA key transport using PKCS#1 1.5 padding is deprecated through 2023 and disallowed after 2023.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 56 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

SP 800-56Cr2

OneStep/

TwoStep KDF

Secret Value

112, 128, 192,

256 bits

KDA

OneStep SP

800-56Cr2,

KDA

TwoStep SP

800-56Cr2

A4399

Generated as

output of an

agreement

scheme

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

SP 800-108r1

KDF Secret

Value

112, 128, 192,

256 bits

KDF SP 800-

108

A4399

Generated as

output of an

agreement

scheme

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

SRTP KDF

Secret Value

128, 192, 256

bits

KDF SRTP

A4399

Generated as

output of an

SRTP

agreement

scheme

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

SSH KDF Secret

Value

80, 112, 128,

192, 256 bits

KDF SSH

A4399

Generated as

output of an

SSH

agreement

scheme

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 57 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

TLS Premaster

Secret Value

384 bits KDF TLS

A4399

Protocol

version (2

bytes) and 46

bytes from a

DRBG19

Import20,

Export21

N/A N/A destroy() service

call or host

platform power

cycle

Used to derive

keys using TLS

KDF

TLS KDF Secret

Value

112, 128, 192,

256 bits

KDF TLS

A4399

Generated as

output of TLS

agreement

scheme

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

X9.63 KDF

Secret Value

112, 128, 192,

256 bits

KDF ANS

9.63

A4399

Generated as

output of an

agreement

scheme

N/A N/A N/A destroy() service

call or host

platform power

cycle

Key Derivation

Entropy Input

String

>128 bits N/A N/A Obtained

from the

entropy

source

N/A N/A destroy() service

call or host

platform power

cycle

Random

Number

Generation

CTR DRBG Seed 128, 192, 256

bits

N/A N/A From

external

entropy

source

N/A N/A Immediately

after use or host

platform power

cycle

Internal use

CTR DRBG V

Value

128 bits N/A From seed

value

N/A N/A N/A reseed() service

call or host

platform power

cycle

Internal use

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 58 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

CTR DRBG Key 128, 192, 256

bits

N/A From DRBG V

value

N/A N/A N/A reseed() service

call or host

platform power

cycle

Internal use

Hash DRBG

Seed

112, 128, 192,

256 bits

N/A N/A From

external

entropy

source

N/A N/A Immediately

after use or host

platform power

cycle

Internal use

Hash DRBG V

Value

112, 128, 192,

256 bits

N/A From seed

value

N/A N/A N/A reseed() service

call or host

platform power

cycle

Internal use

Hash DRBG C

Value

112, 128, 192,

256 bits

N/A From DRBG V

value

N/A N/A N/A reseed() service

call or host

platform power

cycle

Internal use

HMAC DRBG

Seed

112, 128, 192,

256 bits

N/A N/A From

external

entropy

source

N/A N/A Immediately

after use or host

platform power

cycle

Internal use

HMAC DRBG V

Value

112, 128, 192,

256 bits

N/A From seed

value

N/A N/A N/A reseed() service

call or host

platform power

cycle

Internal use

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 59 of 73

SSP Name /

Type
Strength

Security

Function &

Cert.

Number

Generation
Import /

Export
Establishment Storage18 Zeroisation

Use & related

keys

HMAC DRBG

Key

112, 128, 192,

256 bits

N/A From DRBG V

value

N/A N/A N/A reseed() service

call or host

platform power

cycle

Internal use

DRBG Output 128, 192, 256

bits

N/A DRBG N/A N/A N/A destroy() service

call or host

platform power

cycle

Used as seed

for

asymmetric

key

generation or

for symmetric

key

generation

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 60 of 73

10 Self-Tests

Cryptographic Algorithm Self-Tests (CASTs) are performed prior to the first use of services related to the

test target. CASTs also run periodically on service invocation.

Pairwise Consistency Tests (PCTs) are performed on the corresponding key pairs.

10.1 Pre-Operational Self-Tests

Each time the module is powered up, it performs the pre-operational self-tests to confirm that sensitive

data has not been damaged.

The pre-operational tests include the software integrity test, which verifies the module using HMAC-

SHA-256. Pre-operational tests also include the HMAC and SHS CASTs that are run prior to the software

integrity test to ensure the correctness of the HMAC used. Pre-operational self-tests are available on

demand by power cycling the module.

10.2 Conditional Self-Tests

The module performs conditional self-tests when the conditions specified for cryptographic algorithm

self-test and pair-wise consistency tests occur. The self-tests implemented are specified below.

Table 17 – Conditional Algorithm Self-Tests

Test Target Description

AES ECB Encryption KAT (128 bits)

AES ECB Decryption KAT (128 bits)

AES CCM Encryption KAT (128 bits)

AES CCM Decryption KAT (128 bits)

AES CMAC Generation KAT (128 bits)

AES CMAC Verification KAT (128 bits)

AES GCM Encrypt KAT (128 bits)

AES GCM Decrypt KAT (128 bits)

HASH DRBG SHA2-256 KAT (Health Tests: Generate, Reseed, Instantiate

functions per Section 11.3 of SP 800-90Ar1)

HMAC DRBG HMAC-SHA2-256 KAT (Health Tests: Generate, Reseed, Instantiate

functions per Section 11.3 of SP 800-90Ar1)

CTR DRBG AES CTR 256 bits KAT (Health Tests: Generate, Reseed, Instantiate

functions per Section 11.3 of SP 800-90Ar1)

DSA Signature Generation KAT (2048 bits)

DSA Signature Verification KAT (2048 bits)

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 61 of 73

Test Target Description

ECDSA Signature Generation KAT (P-256)

ECDSA Signature Verification KAT (P-256)

HMAC-SHA2-256 HMAC-SHA2-256 KAT

HMAC-SHA2-512 HMAC-SHA2-512 KAT

HMAC-SHA3-256 HMAC-SHA3-256 KAT

KAS-ECC Primitive “Z” Computation KAT (P-256)

KAS-ECC Primitive “Z” Computation KAT (B-233)

KAS-FFC Primitive “Z” Computation KAT (ffdhe2048)

KBKDF KBKDF KAT (Counter, Feedback, Double Pipeline)

KDA OneStep KDA OneStep KAT

KDA TwoStep KDA TwoStep KAT

PBKDF PBKDF KAT (HMAC-SHA2-256)

RSA Signature Generation KAT (2048 bits)

RSA Signature Verification KAT (2048 bits)

RSA Encryption RSA Encryption KAT SP 800-56Br2 (2048 bits)

RSA Decryption RSA Decryption KAT SP 800-56Br2 (2048 bits)

SHA-1 SHA-1 KAT

SHA2-256 SHA2-256 KAT

SHA2-512 SHA2-512 KAT

SHA-3 SHA-3 KAT (cSHAKE-128)

SHAKE256 SHAKE256 KAT

ANS 9.63 KDF ANS 9.63 KDF KAT

IKEv2 KDF IKEv2 KDF KAT

SNMP KDF SNMP KDF KAT

SRTP KDF SRTP KDF KAT

SSH KDF SSH KDF KAT

TLS 1.0 KDF TLS 1.0 KDF KAT

TLS 1.1 KDF TLS 1.1 KDF KAT

TLS 1.2 KDF TLS 1.2 KDF KAT

Table 18 – Pairwise Consistency Tests

Test Target Description

DH DH Pairwise Consistency Test

DSA DSA Pairwise Consistency Test

EC DH EC DH Pairwise Consistency Test

ECDSA ECDSA Pairwise Consistency Test

RSA RSA Pairwise Consistency Test

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 62 of 73

10.3 Error States

If any of the above-mentioned self-tests fail, the module enters an error state called “Hard Error” state.

Upon entering the error state, the module outputs status by way of an exception. An example exception

for AES Encryption failure is:

“Failed self-test on encryption: AES”

The module can be recovered by power cycling, which results in execution of pre-operational self-tests

and conditional cryptographic algorithm self-tests. If the tests pass, then the module will be available for

use.

10.4 Operator Initiation of Self-Tests

Each time the module is powered up, it runs the pre-operational tests to ensure that the integrity of the

module has been maintained. Pre-operational self-tests are available on demand by power cycling the

module. Initial CAST self-tests are available on demand by power cycling the module and then invoking

the service related to the test target.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 63 of 73

11 Life-Cycle Assurance

11.1 Installation, Initialization, and Startup Procedures

The module exists as part of the running JVM, and as such:

• Secure installation of the module requires the use of the unchanged jar to be loaded into a JVM

via either the class-path or the module-path as appropriate to the JVM and its usage.

• Initialization of the module will occur on startup of the module by the JVM. The user can trigger

initialization by attempting to invoke any service in the module or simply calling

FipsStatus.isReady() which will only return true if the module has been successfully initialized.

• Once the JVM has loaded the module and the module has been initialized, the startup phase is

over, and the module is able to provide services.

• Operation of the module consists of calling the various APIs providing services. The module code

will make use of the current thread for performing any required CASTs and health tests and then

provide a service object to the user, capable of performing the requested service.

A User Guide is provided to operators of the module.

11.2 Basic Guidance

The JAR file representing the module needs to be installed in a JVM's class path in a manner appropriate

to its use in applications running on the JVM.

Functionality in the module is provided in two ways. At the lowest level there are distinct classes that

provide access to the approved and non-approved services provided by the module. A more abstract

level of access can also be gained by using strings providing operation names passed into the module's

Java cryptography provider through the APIs described in the Java Cryptography Architecture (JCA) and

the Java Cryptography Extension (JCE).

When the module is used in approved mode, classes providing implementations of algorithms that are

not approved or allowed are explicitly disabled.

SSPs such as private and secret keys implement the Destroyable interface. Where appropriate these

SSPs can be zeroized on demand by invoking the destroy() method. The return of the destroy() method

indicates that the zeroization is complete.

11.3 Use of the JVM with a Java SecurityManager

If the underlying JVM is running with a Java SecurityManager installed, the module will be running in

approved mode with secret and private key export disabled.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 64 of 73

11.3.1 Additional Enforcement with a Java SecurityManager

In the presence of a Java SecurityManager approved mode services specific to a context, such as DSA

and ECDSA for use in TLS, require specific policy permissions to be configured in the JVM configuration

by the Cryptographic Officer or User. The SecurityManager can also be used to restrict the ability of

particular code bases to examine CSPs.

In the absence of a Java SecurityManager specific services related to protocols such as TLS are available,

however must only be used in relation to those protocols.

11.3.2 Permissions for Java SecurityManager

Use of the module with a Java SecurityManager requires the setting of some basic permissions to allow

the module HMAC-SHA-256 software integrity test to take place as well as to allow the module itself to

examine secret and private keys. The basic permissions required for the module to operate correctly

with a Java SecurityManager are indicated by the Required column of Table 19.

Table 19 - Available Java Permissions for SecurityManager

Permission Settings Required Usage

RuntimePermission getProtectionDomain Yes Allows checksum to be carried out

on JAR.

RuntimePermission accessDeclaredMembers Yes Allows use of reflection API within

the provider.

PropertyPermission java.runtime.name,

read

No Only if configuration properties are

used.

SecurityPermission putProviderProperty.BCFIPS No Only if provider installed during

execution.

CryptoServicesPermission unapprovedModeEnabled No Only if non-approved mode

algorithms required.

CryptoServicesPermission changeToApprovedModeEnabled No Only if threads allowed to change

modes.

CryptoServicesPermission exportSecretKey No To allow export of secret keys only.

CryptoServicesPermission exportPrivateKey No To allow export of private keys only.

CryptoServicesPermission exportKeys Yes Required to be applied for the

module itself. Optional for any other

codebase.

CryptoServicesPermission tlsNullDigestEnabled No Only required for TLS digest

calculations.

CryptoServicesPermission tlsPKCS15KeyWrapEnabled No Only required if TLS is used with RSA

encryption.

CryptoServicesPermission tlsAlgorithmsEnabled No Enables both NullDigest and

PKCS15KeyWrap.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 65 of 73

Permission Settings Required Usage

CryptoServicesPermission defaultRandomConfig No Allows setting of default

SecureRandom.

CryptoServicesPermission threadLocalConfig No Required to set a thread local

property in the

CryptoServicesRegistrar.

CryptoServicesPermission globalConfig No Required to set a global property in

the CryptoServicesRegistrar.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 66 of 73

11.4 Design and Rules

The module design corresponds to the module security rules. This section documents the security rules

enforced by the cryptographic module to implement the security requirements of this FIPS 140-3 Level 1

module.

1. The module provides two distinct operator roles: User and Cryptographic Officer.

2. The module does not provide authentication.

3. The operator may command the module to perform the self-tests by cycling power or resetting

the module.

4. Self-tests do not require any operator action.

5. Data output is inhibited during self-tests, zeroization, and error states. Output related to keys

and their use is inhibited until the key concerned has been fully generated.

6. Status information does not contain CSPs or sensitive data that if misused could lead to a

compromise of the module.

7. There are no restrictions on which keys or CSPs are zeroized by the zeroization service.

8. The module does not support concurrent operators.

9. The module does not have any external input/output devices used for entry/output of data.

10. The module does not enter or output plaintext CSPs from the module’s physical boundary.

11. The module does not output intermediate key values.

11.4.1 Mode of Operation Rules

When the module is used within the context of Java Security Manager or the system/security property

org.bouncycastle.fips.approved_only is set to true, the module will start in approved mode and non-

approved services are not accessible in this mode. When the module is not used within the context of

Java Security Manager, the module will start in non-approved mode by default. Refer to Security Policy

Section 2.4 for additional details.

11.4.1.1 From Non-Approved Mode to Approved Mode

The transition from non-approved mode to approved mode is a combination of granted permission (a)

and request to change mode (b):

a) org.bouncycastle.crypto.CryptoServicesPermission “changeToApprovedModeEnabled”

b) CryptoServicesRegistrar.setApprovedMode(true)

The CSPs made available in non-approved mode will not be accessible once the thread transitions into

approved mode. The CSPs generated using the non-approved mode cannot be passed or shared with

algorithms operating in approved mode, and vice-versa. This is done by an indicator within the class

(object) instantiating the key that the key was created in an approved mode or non-approved mode.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 67 of 73

Any attempt by a thread within the module to use the key in an opposite mode will result in an

exception being generated by the module. For example, if an RSA private key has been created in either

approved or non-approved mode, then any request to access that key will first need to confirm if the

thread making the request is in the same mode.

11.4.1.2 From Approved Mode to Non-Approved Mode

The module cannot transition from approved mode to non-approved mode. To initiate the module in

non-approved mode, either it should not be used in the context of Java Security Manager, or the module

should have the permission org.bouncycastle.crypto.CryptoServicesPermission unapprovedModeEnabled

granted by the Java Security Manager

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 68 of 73

11.5 Vulnerabilities

Vulnerabilities found in the module will be reported on the National Vulnerability Database, located at

the following link: https://nvd.nist.gov/

Researchers and users are encouraged to report any security related concerns to

support@safelogic.com.

https://nvd.nist.gov/
mailto:support@safelogic.com

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 69 of 73

12 Mitigation of Other Attacks

The module implements basic protections to mitigate against timing-based attacks against its internal

implementations. There are two countermeasures used.

The first countermeasure is Constant Time Comparisons, which protect the digest and integrity

algorithms by strictly avoiding “fast fail” comparison of MACs, signatures, and digests so the time taken

to compare a MAC, signature, or digest is constant regardless of whether the comparison passes or fails.

The second countermeasure is made up of Numeric Blinding and decryption/signing verification which

both protect the RSA algorithm.

Numeric Blinding prevents timing attacks against RSA decryption and signing by providing a random

input into the operation which is subsequently eliminated when the result is produced. The random

input makes it impossible for a third party observing the private key operation to attempt a timing

attack on the operation as they do not have knowledge of the random input and consequently the time

taken for the operation tells them nothing about the private value of the RSA key.

Decryption/signing verification is carried out by calculating a primitive encryption or signature

verification operation after a corresponding decryption or signing operation before the result of the

decryption or signing operation is returned. The purpose of this is to protect against Lenstra's CRT attack

by verifying the correctness of the private key calculations involved. Lenstra's CRT attack takes

advantage of undetected errors in the use of RSA private keys with CRT values and, if exploitable, can be

used to discover the private value of the RSA key.

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 70 of 73

Appendix: References and Acronyms

The following standards are referred to in this Security Policy.

Table 20 - References

Abbreviation Full Specification Name

ANSI X9.31 X9.31-1998, Digital Signatures using Reversible Public Key Cryptography for the

Financial Services Industry (rDSA), September 9, 1998

FIPS 140-3 Security Requirements for Cryptographic modules, March 22, 2019

FIPS 180-4 Secure Hash Standard (SHS)

FIPS 186-2 Digital Signature Standard (DSS)

FIPS 186-4 Digital Signature Standard (DSS)

FIPS 197 Advanced Encryption Standard

FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC)

FIPS 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

IG Implementation Guidance for FIPS PUB 140-3 and the Cryptographic Module Validation

Program

PKCS#1 v2.1 RSA Cryptography Standard

PKCS#5 Password-Based Cryptography Standard

PKCS#12 Personal Information Exchange Syntax Standard -Recommendation for the Triple Data

Encryption Algorithm (TDEA) Block Cipher

SP 800-38A Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext

Stealing for CBC Mode

SP 800-38B Recommendation for Block Cipher Modes of Operation: The CMAC Mode for

Authentication

SP 800-38C Recommendation for Block Cipher Modes of Operation: The CCM Mode for

Authentication and Confidentiality

SP 800-38D Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)

and GMAC

SP 800-38F Recommendation for Block Cipher Modes of Operation: Methods for Key Wrapping

SP 800-38G Recommendation for Block Cipher Modes of Operation: Methods for Format-

Preserving Encryption

SP 800-56Ar3 Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography

SP 800-56Br2 Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization

Cryptography

SP 800-56Cr2 Recommendation for Key Derivation through Extraction-then-Expansion

SP 800-67r2 Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher

SP 800-89 Recommendation for Obtaining Assurances for Digital Signature Applications

SP 800-90A Recommendation for Random Number Generation Using Deterministic Random Bit

Generators

SP 800-90B Recommendation for the Entropy Sources Used for Random Bit Generation

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 71 of 73

Abbreviation Full Specification Name

SP 800-108r1 Recommendation for Key Derivation Using Pseudorandom Functions

SP 800-131A Transitioning the Use of Cryptographic Algorithms and Key Lengths

SP 800-132 Recommendation for Password-Based Key Derivation

SP 800-133r2 Recommendation for Cryptographic Key Generation

SP 800-135r1 Recommendation for Existing Application – Specific Key Derivation Functions

SP 800-185 SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 72 of 73

The following acronyms are used in this Security Policy.

Table 21 - Acronyms

Acronym Definition

AES Advanced Encryption Standard

API Application Programming Interface

CAST Cryptographic Algorithm Self-Test

CBC Cipher-Block Chaining

CCM Counter with CBC-MAC

CCCS Canadian Centre for Cyber Security

CDH Computational Diffie-Hellman

CFB Cipher Feedback Mode

CMAC Cipher-based Message Authentication Code

CMVP Cryptographic Module Validation Program

CO Cryptographic Officer

CPU Central Processing Unit

CS Ciphertext Stealing

CSP Critical Security Parameter

CTR Counter Mode

CVL Component Validation List

DES Data Encryption Standard

DH Diffie-Hellman

DRAM Dynamic Random Access Memory

DRBG Deterministic Random Bit Generator

DSA Digital Signature Algorithm

DSTU4145 Ukrainian DSTU-4145-2002 Elliptic Curve Scheme

EC Elliptic Curve

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards Curve DSA using Ed25519, Ed448

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

FIPS Federal Information Processing Standard

GCM Galois/Counter Mode

GMAC Galois Message Authentication Code

GOST Gosudarstvennyi Standard Soyuza SSR/Government Standard of the Union of Soviet Socialist

Republics

GPC General Purpose Computer

HMAC (Keyed) Hashed Message Authentication Code

IG Implementation Guidance, see References

IV Initialization Vector

JAR Java ARchive

FIPS 140-3 Non-Proprietary Security Policy: CryptoComply for Java 140-3

Document Version 1.0 © SafeLogic Inc. Page 73 of 73

Acronym Definition

JCA Java Cryptography Architecture

JCE Java Cryptography Extension

JDK Java Development Kit

JRE Java Runtime Environment

JVM Java Virtual Machine

KAS Key Agreement Scheme

KAT Known Answer Test

KDF Key Derivation Function

KW Key Wrap

KWP Key Wrap with Padding

KMAC KECCAK Message Authentication Code

MAC Message Authentication Code

MD5 Message Digest algorithm MD5

N/A Not Applicable

OCB Offset Codebook Mode

OFB Output Feedback

OS Operating System

PBKDF Password-Based Key Derivation Function

PKCS Public Key Cryptography Standards

PQG Diffie-Hellman Parameters P, Q and G

RC Rivest Cipher, Ron’s Code

RIPEMD RACE Integrity Primitives Evaluation Message Digest

RSA Rivest Shamir Adleman

SHA Secure Hash Algorithm

SSP Sensitive Security Parameter

TLS Transport Layer Security

USB Universal Serial Bus

XDH Edwards Curve Diffie-Hellman using X25519, X448

XOF Extendable-Output Function

