

# Palo Alto Networks SD-WAN Virtual Instant-On Network (vION)

Software Version: 6.1.2

FIPS 140-3 Non-Proprietary Security Policy

**Documentation Version: 1.4** 

Last Update: June 11, 2024

Palo Alto Networks, Inc. www.paloaltonetworks.com © 2024 Palo Alto Networks, Inc. Palo Alto Networks is a registered trademark of Palo Alto Networks. A list of our trademarks can be found at <u>https://www.paloaltonetworks.com/company/trademarks.html</u>. All other marks mentioned herein may be trademarks of their respective companies. Revision Date: June 11, 2024 Document Version: 1.4

# **Table of Contents**

| 1. General                             | 3  |
|----------------------------------------|----|
| 2. Cryptographic Module Specification  | 3  |
| 3. Cryptographic Module Interfaces     | 8  |
| 4. Roles, Services, and Authentication | 9  |
| 5. Software/Firmware Security          | 12 |
| 6. Operational Environment             | 12 |
| 7. Physical Security                   | 12 |
| 8. Non-Invasive Security               | 12 |
| 9. Sensitive Security Parameters       | 13 |
| 10. Self-Tests                         | 15 |
| 11. Life-Cycle Assurance               | 18 |
| 12. Mitigation of Other Attacks        | 19 |
|                                        |    |

© 2024 Palo Alto Networks, Inc.

### 1. General

The table below provides the security levels of the various sections of FIPS 140-3 in relation to the Palo Alto Networks SD-WAN Virtual Instant-On Network (vION), hereinafter referred to as the Module or vION module.

The Palo Alto Networks SD-WAN Virtual Instant-On Network (vION) enables the integration of a diverse set of wide area network (WAN) connection types, improves application performance and visibility, enhances security and compliance, and reduces the overall cost and complexity of a WAN. Built with the intent to reduce remote infrastructure, Palo Alto Networks SD-WAN vION enables the cloud-delivered branch. The vION module software version is 6.1.2.

| ISO/IEC 24759 Section 6.<br>[Number Below] | FIPS 140-3 Section Title                | Security Level |
|--------------------------------------------|-----------------------------------------|----------------|
| 1                                          | General                                 | 1              |
| 2                                          | Cryptographic module specification      | 1              |
| 3                                          | Cryptographic module interfaces         | 1              |
| 4                                          | Roles, services, and authentication     | 1              |
| 5                                          | Software/Firmware security              | 1              |
| 6                                          | Operational environment                 | 1              |
| 7                                          | Physical security                       | N/A            |
| 8                                          | Non-invasive security                   | N/A            |
| 9                                          | Sensitive security parameter management | 1              |
| 10                                         | Self-tests                              | 1              |
| 11                                         | Life-cycle assurance                    | 1              |
| 12                                         | Mitigation of other attacks             | N/A            |

Table 1 - Security Levels

The module is designed to meet an overall security level 1.

# 2. Cryptographic Module Specification

The module is a multi-chip standalone software module running on a general-purpose computing platform. FIPS 140-3 conformance testing was performed at Security Level 1 with the configurations noted in the table 2 below.

| # | Operating System    | Hardware Platform      | Processor            | PAA/Acceleration |
|---|---------------------|------------------------|----------------------|------------------|
| 1 | KVM on Ubuntu 20.04 | Supermicro SYS-2049-TR | Intel Xeon Gold 6230 | with PAA         |
| 2 | KVM on Ubuntu 20.04 | Supermicro SYS-2049-TR | Intel Xeon Gold 6230 | without PAA      |

| # | Operating System | Hardware Platform         |  |
|---|------------------|---------------------------|--|
| 1 | AWS              | Dependent on Provider     |  |
| 2 | Azure            | Dependent on Provider     |  |
| 3 | Google Cloud     | Dependent on Provider     |  |
| 4 | OCI using KVM    | Dependent on Provider     |  |
| 5 | VMware ESXi      | Dependent on Provider/GPC |  |
| 6 | ION 7108V        | GPC                       |  |
| 7 | ION 3108V        | GPC                       |  |

© 2024 Palo Alto Networks, Inc.

### Table 3 - Vendor Affirmed Operational Environments

Note: The vION comes in either ION 3108V or ION 7108V, which is the same functionality just with differences such as throughput.

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed on the validation certificate.

### Modes of Operation

The module has one approved mode of operation and is always in approved mode of operation after initial operations are performed (See Section 11). The module does not claim implementation of a degraded mode of operation. Section 4 provides details on the service indicator implemented by the module.

The tables below list all Approved or Vendor-affirmed security functions of the module, including specific key size(s) (in bits unless noted otherwise) employed for Approved services, and implemented modes of operation. There are some algorithm modes that were tested but not implemented by the module. Only the algorithms, modes, and key sizes that are implemented by the module are shown in these tables.

| CAVP  | Algorithm and                           | Mode/Method                                                    | Description/Key Size(s) /                                                                                                    | Use / Function                            |
|-------|-----------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Cert  | Standard                                |                                                                | Key Strength(s)                                                                                                              |                                           |
| A3566 | AES:<br>• FIPS 197<br>• SP 800-38D      | ECB                                                            | 128, 192, and 256 bits                                                                                                       | Data Encryption/Decryption                |
| A3566 | AES:<br>• FIPS 197<br>• SP 800-38A      | CBC                                                            | 128, 192, and 256 bits                                                                                                       | Data Encryption/Decryption                |
| A3566 | AES:<br>• FIPS 197<br>• SP 800-38A      | CTR                                                            | 128, 192, and 256 bits                                                                                                       | Data Encryption/Decryption                |
| A3566 | AES:<br>• FIPS 197<br>• SP 800-38D      | GCM                                                            | 128, 192, and 256 bits                                                                                                       | Data Encryption/Decryption                |
| A3566 | KDF SSH:<br>• SP 800-135rev1<br>(CVL)   | KDF SSH                                                        | N/A                                                                                                                          | SP800-135rev1 compliant Key<br>Derivation |
| A3566 | KDF TLS:<br>• SP 800-135rev1<br>(CVL)   | KDF TLS                                                        | N/A                                                                                                                          | SP800-135rev1 compliant Key<br>Derivation |
| A3566 | KDF IKEv2:<br>• SP 800-135rev1<br>(CVL) | KDF IKEv2                                                      | N/A                                                                                                                          | SP800-135rev1 compliant Key<br>Derivation |
| A3566 | KDF SNMP:<br>• SP 800-135rev1<br>(CVL)  | KDF SNMP                                                       | N/A                                                                                                                          | SP800-135rev1 compliant Key<br>Derivation |
| A3566 | DRBG:<br>• SP 800-90Arev1               | CTR_DRBG (AES-256 bits)<br>Derivation Function<br>Enabled: Yes | N/A                                                                                                                          | Deterministic Random Bit Generation       |
| A3566 | KAS-SSC<br>• SP 800-56Arev3             | KAS-ECC-SSC<br>Ephemeral Unified                               | Curves: P-256, P-384, P-521;<br>key establishment methodology<br>provides between 128 and 256<br>bits of encryption strength | KAS-ECC Shared Secret Computation         |

### 4 Palo Alto Networks SD-WAN Virtual Instant-On Network (vION)

© 2024 Palo Alto Networks, Inc.

| CAVP               | Algorithm and           | Mode/Method                                                                    | Description/Key Size(s) /                                                                                                                  | Use / Function                                                                                                                                                                                                                                                                                                                 |
|--------------------|-------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cert               | Standard                |                                                                                | Key Strength(s)                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |
| A3566              | KAS<br>• SP 800-56Arev3 | KAS (ECC)<br>Scheme:<br>ephemeralUnified:<br>KAS Role: initiator,<br>responder | KAS (ECC):<br>Curves: P-256, P-384, P-521;<br>Key establishment methodology<br>provides between 128 and 256<br>bits of encryption strength | Key Agreement Scheme per SP800-<br>56Arev3 with key derivation function<br>(SP800-135rev1)<br>Note: The module's KAS (ECC)<br>implementation is FIPS140-3 IG D.F                                                                                                                                                               |
| A3566              | ECDSA<br>• FIPS 186-4   | ECDSA KeyGen                                                                   | Curves: P-224, P-256, P-384, P-<br>521                                                                                                     | Scenario X1 (path 2) compliant<br>ECDSA Key Generation                                                                                                                                                                                                                                                                         |
| A3566              | ECDSA<br>• FIPS 186-4   | ECDSA SigGen                                                                   | Curves: P-224, P-256, P-384, P-<br>521                                                                                                     | ECDSA Digital Signature Generation                                                                                                                                                                                                                                                                                             |
| A3566              | ECDSA<br>• FIPS 186-4   | ECDSA SigVer                                                                   | Curves: P-224, P-256, P-384, P-<br>521                                                                                                     | ECDSA Digital Signature Verification                                                                                                                                                                                                                                                                                           |
| A3566              | HMAC<br>• FIPS 198-1    | HMAC-SHA-1                                                                     | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                                                                                                                                                         |
| A3566              | HMAC<br>• FIPS 198-1    | HMAC-SHA2-224                                                                  | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                                                                                                                                                         |
| A3566              | HMAC<br>• FIPS 198-1    | HMAC-SHA2-256                                                                  | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                                                                                                                                                         |
| A3566              | HMAC<br>• FIPS 198-1    | HMAC-SHA2-384                                                                  | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                                                                                                                                                         |
| A3566              | HMAC<br>• FIPS 198-1    | HMAC-SHA2-512                                                                  | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                                                                                                                                                         |
| A3566              | KTS<br>• SP800-38F      | KTS (AES Cert. #A3566)                                                         | 128, 192, and 256 bits<br>Key establishment methodology<br>provides between 128 and 256<br>bits of encryption strength                     | Key Transport using AES-GCM                                                                                                                                                                                                                                                                                                    |
| A3566              | KTS<br>• SP800-38F      | KTS (AES Cert. #A3566<br>and HMAC Cert. #A3566)                                | 128, 192, and 256 bits<br>Key establishment methodology<br>provides between 128 and 256<br>bits of encryption strength                     | Key Transport using AES and HMAC                                                                                                                                                                                                                                                                                               |
| A3566              | RSA<br>• FIPS 186-4     | RSA KeyGen<br>(PKCS#1 v1.5)                                                    | Modulus: 2048 and 3072 bits                                                                                                                | RSA Key Generation                                                                                                                                                                                                                                                                                                             |
| A3566              | RSA<br>• FIPS 186-4     | RSA SigGen<br>(PKCS#1 v1.5)                                                    | Modulus: 2048 and 3072 bits                                                                                                                | RSA Digital Signature Generation                                                                                                                                                                                                                                                                                               |
| A3566              | RSA<br>• FIPS 186-4     | RSA SigVer<br>(PKCS#1 v1.5)                                                    | Modulus: 2048 and 3072 bits                                                                                                                | RSA Digital Signature Verification                                                                                                                                                                                                                                                                                             |
| A3566              | SHS<br>• FIPS 180-4     | SHA-1                                                                          | N/A                                                                                                                                        | Hashing<br>Note: SHA-1 is not used for digital<br>signature generation                                                                                                                                                                                                                                                         |
| A3566              | SHS<br>• FIPS 180-4     | SHA2-224                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                                                                                                                                                        |
| A3566              | SHS<br>• FIPS 180-4     | SHA2-256                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                                                                                                                                                        |
| A3566              | SHS<br>• FIPS 180-4     | SHA2-384                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                                                                                                                                                        |
| A3566              | SHS<br>• FIPS 180-4     | SHA2-512                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                                                                                                                                                        |
| Vendor<br>Affirmed | CKG<br>(SP 800-133rev2) | Section 5                                                                      | Cryptographic Key<br>Generation; SP 800-<br>133rev2 and IG D.H.                                                                            | Key Generation<br>Note: The cryptographic module<br>performs Cryptographic Key<br>Generation (CKG) for asymmetric keys<br>as per section 5 in SP800-133rev2<br>(vendor affirmed). A seed (i.e., the<br>random value) used in asymmetric key<br>generation is a direct output from<br>SP800-90Arev1 DRBG (DRBG Cert.<br>#A3566) |

© 2024 Palo Alto Networks, Inc.

# Palo Alto Networks SD-WAN Virtual Instant-On Network (vION) 5

| CAVP               | Algorithm and                         | Mode/Method                                                                    | Description/Key Size(s) /                                                                                                                  | Use / Function                                                                                                                                                                                     |
|--------------------|---------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cert               | Standard                              |                                                                                | Key Strength(s)                                                                                                                            |                                                                                                                                                                                                    |
| A3572              | AES:<br>• FIPS 197<br>• SP 800-38A    | CBC                                                                            | 128 or 256 bits                                                                                                                            | Data Encryption/Decryption                                                                                                                                                                         |
| A3572              | AES:<br>• FIPS 197<br>• SP 800-38D    | GCM                                                                            | 128 or 256 bits                                                                                                                            | Data Encryption/Decryption                                                                                                                                                                         |
| A3572              | KDF TLS:<br>• SP 800-135rev1<br>(CVL) | KDF TLS                                                                        | N/A                                                                                                                                        | SP800-135rev1 compliant Key<br>Derivation                                                                                                                                                          |
| A3572              | DRBG:<br>• SP 800-90Arev1             | DRBG with HMAC-<br>SHA2-512                                                    | N/A                                                                                                                                        | Deterministic Random Bit Generation                                                                                                                                                                |
| A3572              | KAS-SSC<br>• SP 800-56Arev3           | KAS-ECC-SSC<br>Ephemeral Unified                                               | KAS-ECC-SSC with P-256, P-384,<br>P-521;<br>Key establishment methodology<br>provides between 128 256 bits of<br>encryption strength       | KAS-ECC Shared Secret Computation                                                                                                                                                                  |
| A3572              | KAS<br>• SP 800-56Arev3               | KAS (ECC)<br>Scheme:<br>ephemeralUnified:<br>KAS Role: initiator,<br>responder | KAS (ECC):<br>Curves: P-256, P-384, P-521; Key<br>establishment methodology<br>provides between 128 and 256<br>bits of encryption strength | Key Agreement Scheme per SP800-<br>56Arev3 with key derivation function<br>(SP800-135rev1)<br>Note: The module's KAS (ECC)<br>implementation is FIPS140-3 IG D.F<br>Scenario X1 (path 2) compliant |
| A3572              | ECDSA<br>• FIPS 186-4                 | ECDSA KeyGen                                                                   | Curves: P-224, P-256, P-384, P-<br>521                                                                                                     | ECDSA Key Generation                                                                                                                                                                               |
| A3572              | HMAC<br>• FIPS 198-1                  | HMAC-SHA2-256                                                                  | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                             |
| A3572              | HMAC<br>• FIPS 198-1                  | HMAC-SHA2-384                                                                  | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                             |
| A3572              | HMAC<br>• FIPS 198-1                  | HMAC-SHA2-512                                                                  | At least 160 bits                                                                                                                          | Message Authentication                                                                                                                                                                             |
| A3572              | KTS<br>• SP800-38F                    | KTS (AES Cert. #A3572)                                                         | 128 or 256 bits                                                                                                                            | Key Transport using AES-GCM;<br>Key establishment methodology<br>provides 128 or 256 bits of<br>encryption strength                                                                                |
| A3572              | KTS<br>● SP800-38F                    | KTS (AES Cert. #A3572<br>and HMAC Cert. #A3572)                                | 128 or 256 bits<br>Key establishment methodology<br>provides 128 or 256 bits of<br>encryption strength                                     | Key Transport using AES and HMAC;                                                                                                                                                                  |
| A3572              | RSA<br>• FIPS 186-4                   | RSA SigVer<br>(PKCS#1 v1.5)                                                    | Modulus: 2048 bits                                                                                                                         | Digital Signature Verification                                                                                                                                                                     |
| A3572              | SHS<br>• FIPS 180-4                   | SHA2-224                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                            |
| A3572              | SHS<br>• FIPS 180-4                   | SHA2-256                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                            |
| A3572              | SHS<br>• FIPS 180-4                   | SHA2-384                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                            |
| A3572              | SHS<br>• FIPS 180-4                   | SHA2-512                                                                       | N/A                                                                                                                                        | Hashing                                                                                                                                                                                            |
| Vendor<br>Affirmed | CKG<br>(SP 800-133rev2)               | Section 5.1, Section 5.2                                                       | Cryptographic Key<br>Generation; SP 800-<br>133rev2 and IG D.H.                                                                            | Key Generation<br>Note: The cryptographic module<br>performs Cryptographic Key                                                                                                                     |

# 6 Palo Alto Networks SD-WAN Virtual Instant-On Network (vION)

### © 2024 Palo Alto Networks, Inc.

| CAVP<br>Cert | Algorithm and<br>Standard | Mode/Method | Description/Key Size(s) /<br>Key Strength(s) | Use / Function                                                                                                                                                                                                                                |
|--------------|---------------------------|-------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                           |             |                                              | Generation (CKG) for asymmetric<br>keys as per section 5 in SP800-<br>133rev2 (vendor affirmed). A seed<br>(i.e., the random value) used in<br>asymmetric key generation is a direct<br>output from SP800-90Arev1 DRBG<br>(DRBG Cert. #A3572) |

Table 5 - Approved Algorithms (Crypto Library – II)

### Notes:

- The module's AES-GCM implementation conforms to FIPS 140-3 IG C.H scenario #1 following RFC 5288 for TLS. The module is compatible with TLSv1.2 and provides support for the acceptable GCM cipher suites from SP 800-52 Rev1, Section 3.3.1. The operations of one of the two parties involved in the TLS key establishment scheme were performed entirely within the cryptographic boundary of the module being validated. The counter portion of the IV is set by the module within its cryptographic boundary. When the IV exhausts the maximum number of possible values for a given session key, the first party, client or server, to encounter this condition will trigger a handshake to establish a new encryption key. In case the module's power is lost and then restored, a new key for use with the AES GCM encryption/decryption shall be established.
- No parts of the SSH, TLS, SNMP and IPSec/IKE protocols, other than the KDFs, have been tested by the CAVP and CMVP.

As the module can only be operated in the Approved mode of operation with Approved algorithms noted in Tables 4 - 5 above, the following options defined in SP 800-140B are not applicable to this document:

- Non-Approved Algorithms Allowed in Approved Mode of Operation
- Non-Approved Algorithms Allowed in Approved Mode of Operation with No Security Claimed
- Non-Approved Algorithms Not Allowed in Approved Mode of Operation

| Vendor Name        | Certificate Number |
|--------------------|--------------------|
| Palo Alto Networks | E69                |

Table 6 - Entropy Certificates

### **Cryptographic Boundary**

Figure 1 below depicts the cryptographic boundary (orange color area) and physical perimeter (light blue color area). The cryptographic boundary includes all of the software components of the cryptographic libraries. The physical perimeter is the Tested Operational Environment's Physical Perimeter (TOEPP) on which the module runs.

© 2024 Palo Alto Networks, Inc.

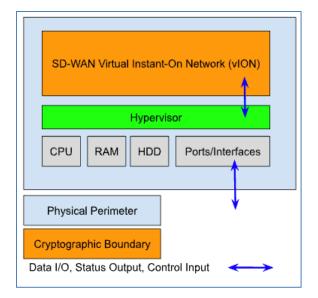



Figure 1 - Block Diagram

# 3. Cryptographic Module Interfaces

The module is a software only module that operates on a general purpose computing (GPC) platform. The physical ports and logical interfaces are consistent with a GPC operating environment. The module supports the following FIPS 140-3 logical interfaces.

| Physical Port | Logical Interface        | Data that passes over port/interface |
|---------------|--------------------------|--------------------------------------|
| N/A           | Data Input Interface     | API input parameters for data        |
| N/A           | Data Output Interface    | API output parameters for data       |
| N/A           | Control Input Interface  | API function calls                   |
| N/A           | Control Output Interface | N/A                                  |
| N/A           | Status Output Interface  | Return values, and or log messages   |

Table 7 - Ports and Interfaces

# 4. Roles, Services, and Authentication

The module supports role-based authentication, and provides a Crypto Officer role. The Crypto Officer role has the ability to perform all tasks and administrative actions.

| Role           | Service           | Input                                      | Output                                                    |
|----------------|-------------------|--------------------------------------------|-----------------------------------------------------------|
| Crypto Officer | Self-Test         | Command to trigger Self-Test               | Status of the self-tests results                          |
| Crypto Officer | Zeroize           | Command to initiate the SSPs zeroization   | Status of the SSPs zeroization                            |
| Crypto Officer | Show Version      | Command to show version                    | Module's name/ID and versions                             |
| Crypto Officer | Show Status       | Command to show status                     | Module's status information                               |
| Crypto Officer | Software Update   | Command to upload a new validated software | Status of the updated software installation               |
| Crypto Officer | Configure Network | Commands to configure the module           | Status of the completion of network related configuration |

# 8 Palo Alto Networks SD-WAN Virtual Instant-On Network (vION)

© 2024 Palo Alto Networks, Inc.

| Crypto Officer | Configure SSHv2<br>Function       | Commands to configure SSHv2                     | Status of the completion of SSHv2 configuration       |
|----------------|-----------------------------------|-------------------------------------------------|-------------------------------------------------------|
| Crypto Officer | Configure TLSv1.2<br>Function     | Commands to configure TLSv1.2                   | Status of the completion of TLSv1.2 configuration     |
| Crypto Officer | Configure SNMPv3<br>Function      | Commands to configure SNMPv3                    | Status of the completion of SNMPv3 configuration      |
| Crypto Officer | Configure IPsec/IKEv2<br>Function | Commands to configure<br>IPSec/IKEv2            | Status of the completion of IPSec/IKEv2 configuration |
| Crypto Officer | Run SSHv2 Function                | Initiate SSHv2 tunnel establishment request     | Status of SSHv2 tunnel establishment                  |
| Crypto Officer | Run TLSv1.2 Function              | Initiate TLSv1.2 tunnel establishment request   | Status of TLSv1.2 tunnel establishment                |
| Crypto Officer | Run SNMPv3 Function               | Initiate SNMPv3 tunnel<br>establishment request | Status of SNMPv3 tunnel establishment                 |
| Crypto Officer | Run IPSec/IKEv2<br>Function       | Initiate of IPSec/IKEv2 tunnel<br>establishment | Status of IPSec/IKEv2 tunnel establishment            |

Table 8 – Roles, Services Commands, Input and Output

| Service                     | Description                                                   | Approved Security<br>Functions                                                                                                                                                   | Keys and/or SSPs                                                                                                                                                                                                                                                                           | Roles             | Access rights<br>to Keys and /<br>or SSPs | Indicator                                                   |
|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------|-------------------------------------------------------------|
| Self-Test                   | Initiate and run the<br>pre-operational self-<br>tests        | HMAC-SHA2-256                                                                                                                                                                    | Software Integrity Test Key<br>(Non-SSP)                                                                                                                                                                                                                                                   | Crypto<br>Officer | N/A                                       | None                                                        |
| Zeroize                     | Zeroize all<br>unprotected SSPs<br>stored in the<br>module    | N/A                                                                                                                                                                              | All                                                                                                                                                                                                                                                                                        | Crypto<br>Officer | Z                                         | None                                                        |
| Show Version                | Provides the<br>module's name/ID<br>and versions              | N/A                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                        | Crypto<br>Officer | N/A                                       | None                                                        |
| Show Status                 | Provides the<br>module's current<br>status and<br>information | N/A                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                        | Crypto<br>Officer | N/A                                       | None                                                        |
| Software Update             | The module's<br>software is updated<br>to a new version       | RSA Signature<br>Verification                                                                                                                                                    | Software Load Test Key (PSP)                                                                                                                                                                                                                                                               | Crypto<br>Officer | E                                         | Software<br>update<br>completion<br>message                 |
| Configure<br>Network        | Perform the<br>Module's Network<br>Configuration              | RSA Signature<br>Verification                                                                                                                                                    | TLS RSA Public Key                                                                                                                                                                                                                                                                         | Crypto<br>Officer | G/R/W/E                                   | Global<br>indicator and<br>Configuration<br>logs            |
| Configure SSHv2<br>Function | Create a secure<br>SSHv2 channel                              | AES-CTR;<br>CKG;<br>CTR_DRBG;<br>ECDSA KeyGen;<br>ECDSA SigGen;<br>ECDSA SigVer;<br>HMAC-SHA-1;<br>HMAC-SHA2-256;<br>HMAC-SHA2-2512;<br>KAS-SSC (ECC);<br>KAS (ECC);<br>KDF SSH; | DRBG Entropy Input (CSP);<br>DRBG Seed (CSP);<br>DRBG Internal State V Value<br>(CSP);<br>DRBG Key (CSP);<br>SSH ECDHE Private Key<br>(CSP);<br>SSH ECDHE Public Key (PSP);<br>Peer SSH ECDHE Public Key<br>(PSP);<br>SSH ECDHE Shared Secret<br>(CSP);<br>SSH ECDSA Private Key<br>(CSP); | Crypto<br>Officer | G/R/W/E                                   | Global<br>indicator and<br>SSH<br>connection log<br>message |

© 2024 Palo Alto Networks, Inc.

| Service                              | Description                                            | Approved Security<br>Functions                                                                                                                                                               | Keys and/or SSPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Roles             | Access rights<br>to Keys and / | Indicator                                                   |
|--------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|-------------------------------------------------------------|
|                                      |                                                        |                                                                                                                                                                                              | SSH ECDSA Public Key (PSP);<br>SSH Session Encryption Key<br>(CSP);<br>SSH Session Authentication<br>Key (CSP);                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | or SSPs                        |                                                             |
| Configure<br>TLSv1.2 Function        | Create a secure<br>TLSv1.2 channel                     | AES-CBC;<br>AES-GCM;<br>CKG;<br>CTR_DRBG;<br>HMAC_DRBG;<br>HMAC-SHA2-256;<br>HMAC-SHA2-384;<br>KAS-SSC (ECC);<br>KAS (ECC);<br>KTS;<br>RSA KeyGen;<br>RSA SigGen;<br>RSA SigVer;<br>KDF TLS; | DRBG Entropy Input (CSP);<br>DRBG Seed (CSP);<br>DRBG Internal State V Value<br>(CSP);<br>DRBG Key (CSP);<br>TLS RSA Private Key (CSP);<br>TLS RSA Public Key (PSP);<br>TLS ECDHE Private Key<br>(CSP);<br>TLS ECDHE Public Key (PSP);<br>Peer TLS ECDHE Public Key<br>(PSP);<br>TLS ECDHE Shared Secret<br>(CSP);<br>TLS Pre-Master Secret (CSP);<br>TLS Master Secret (CSP);<br>TLS Master Secret (CSP);<br>TLS Session Authentication<br>Key (CSP);                                                                                            | Crypto<br>Officer | G/R/W/E                        | Global<br>indicator and<br>TLS success<br>log message       |
| Configure<br>SNMPv3<br>Function      | Create a secure<br>SNMPv3 channel                      | AES-CBC;<br>HMAC-SHA-1;<br>KDF SNMP;                                                                                                                                                         | SNMPv3 Authentication<br>Secret (CSP);<br>SNMPv3 Session Encryption<br>Key (CSP);<br>SNMPv3 Session<br>Authentication Key (CSP);                                                                                                                                                                                                                                                                                                                                                                                                                  | Crypto<br>Officer | G/R/W/E                        | Global<br>indicator and<br>SNMPv3<br>success log<br>message |
| Configure<br>IPsec/IKEv2<br>Function | Create IPSec/IKEv2<br>tunnel                           | AES-CBC;<br>CKG;<br>CTR_DRBG;<br>HMAC-SHA-1;<br>HMAC-SHA2-256;<br>HMAC-SHA2-384;<br>HMAC-SHA2-512;<br>KAS-SSC (ECC);<br>KAS (ECC);<br>RSA KeyGen;<br>RSA SigGen;<br>RSA SigVer;<br>KDF IKEV2 | DRBG Entropy Input (CSP);<br>DRBG Seed (CSP);<br>DRBG Internal State V Value<br>(CSP);<br>DRBG Key (CSP);<br>IPSec/IKE Pre-Shared Secret<br>(CSP);<br>IPSec/IKE RSA Private Key<br>(CSP);<br>IPSec/IKE RSA Public Key<br>(PSP);<br>IPSec/IKE ECDHE Private<br>Key (CSP);<br>IPSec/IKE ECDHE Public Key<br>(PSP);<br>IPSec/IKE ECDHE Public Key<br>(PSP);<br>IPSec/IKE ECDHE Shared<br>Secret (CSP);<br>IPSec/IKE Session Encryption<br>Key (CSP);<br>IPSec/IKE Session Encryption<br>Key (CSP);<br>IPSec/IKE Session<br>Authentication Key (CSP); | Crypto<br>Officer | G/R/W/E                        | Global<br>indicator and<br>IPSec success<br>log message     |
| Run SSHv2<br>Function                | Negotiation and<br>encrypted data<br>transport via SSH | AES-CTR;<br>CKG;<br>CTR_DRBG;<br>ECDSA KeyGen;<br>ECDSA SigGen;<br>ECDSA SigVer;<br>HMAC-SHA-1;<br>HMAC-SHA2-256;<br>HMAC-SHA2-512;<br>KAS-SSC (ECC);                                        | DRBG Entropy Input (CSP);<br>DRBG Seed (CSP);<br>DRBG Internal State V Value<br>(CSP);<br>DRBG Key (CSP);<br>SSH ECDHE Private Key<br>(CSP);<br>SSH ECDHE Public Key (PSP);<br>Peer SSH ECDHE Public Key<br>(PSP);                                                                                                                                                                                                                                                                                                                                | Crypto<br>Officer | G/R/W/E                        | Global<br>indicator and<br>SSH<br>connection log<br>message |

# **10** Palo Alto Networks SD-WAN Virtual Instant-On Network (vION)

© 2024 Palo Alto Networks, Inc.

| Service                     | Description                                                  | Approved Security                                                                                                                                                                            | Keys and/or SSPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Roles             | Access rights            | Indicator                                                        |
|-----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|------------------------------------------------------------------|
|                             |                                                              | Functions                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | to Keys and /<br>or SSPs |                                                                  |
|                             |                                                              | KAS (ECC);<br>KDF SSH                                                                                                                                                                        | SSH ECDHE Shared Secret<br>(CSP);<br>SSH ECDSA Private Key<br>(CSP);<br>SSH ECDSA Public Key (PSP);<br>SSH Session Encryption Key<br>(CSP);<br>SSH Session Authentication<br>Key (CSP);                                                                                                                                                                                                                                                                                                             |                   | or ssps                  |                                                                  |
| Run TLSv1.2<br>Function     | Negotiation and<br>encrypted data<br>transport via TLS       | AES-CBC;<br>AES-GCM;<br>CKG;<br>CTR_DRBG;<br>HMAC_DRBG;<br>HMAC-SHA2-256;<br>HMAC-SHA2-384;<br>KAS-SSC (ECC);<br>KAS (ECC);<br>KTS;<br>RSA KeyGen;<br>RSA SigGen;<br>RSA SigGen;<br>KDF TLS; | DRBG Entropy Input (CSP);<br>DRBG Seed (CSP);<br>DRBG Internal State V Value<br>(CSP);<br>DRBG Key (CSP);<br>TLS RSA Private Key (CSP);<br>TLS RSA Public Key (PSP);<br>TLS ECDHE Private Key<br>(CSP);<br>TLS ECDHE Public Key (PSP);<br>Peer TLS ECDHE Public Key<br>(PSP);<br>TLS ECDHE Shared Secret<br>(CSP);<br>TLS Pre-Master Secret (CSP);<br>TLS Master Secret (CSP);<br>TLS Master Secret (CSP);<br>TLS Session Encryption Key (CSP);<br>TLS Session Authentication<br>Key (CSP);         | Crypto<br>Officer | G/R/W/E                  | Global<br>indicator and<br>TLS success<br>log message            |
| Run SNMPv3<br>Function      | Negotiation and<br>encrypted data<br>transport via<br>SNMPv3 | AES-CBC;<br>HMAC-SHA-1;<br>KDF SNMP;                                                                                                                                                         | SNMPv3 Authentication<br>Secret (CSP);<br>SNMPv3 Session Encryption<br>Key (CSP);<br>SNMPv3 Session<br>Authentication Key (CSP);                                                                                                                                                                                                                                                                                                                                                                    | Crypto<br>Officer | G/R/W/E                  | Global<br>indicator and<br>SNMPv3<br>success log<br>message      |
| Run IPSec/IKEv2<br>Function | Negotiation and<br>encrypted data<br>transport via IPSec     | AES-CBC;<br>CKG;<br>CTR_DRBG;<br>HMAC-SHA-1;<br>HMAC-SHA2-256;<br>HMAC-SHA2-384;<br>HMAC-SHA2-512;<br>KAS-SSC (ECC);<br>KAS (ECC);<br>RSA KeyGen;<br>RSA SigGen;<br>RSA SigGen;<br>KDF IKEV2 | DRBG Entropy Input (CSP);<br>DRBG Seed (CSP);<br>DRBG Internal State V Value<br>(CSP);<br>DRBG Key (CSP);<br>IPSec/IKE Pre-Shared Secret<br>(CSP);<br>IPSec/IKE RSA Private Key<br>(CSP);<br>IPSec/IKE RSA Public Key<br>(PSP);<br>IPSec/IKE ECDHE Private<br>Key (CSP);<br>IPSec/IKE ECDHE Public Key<br>(PSP);<br>IPSec/IKE ECDHE Public Key<br>(PSP);<br>IPSec/IKE ECDHE Shared<br>Secret (CSP);<br>IPSec/IKE Session Encryption<br>Key (CSP);<br>IPSec/IKE Session<br>Authentication Key (CSP); | Crypto<br>Officer | G/R/W/E                  | Global<br>indicator and<br>IPSec/IKEv2<br>success log<br>message |

Table 9 – Approved Services

*G* = *Generate*: The module generates or derives the SSP.

*R* = Read: The SSP is read from the module (e.g. the SSP is output).

```
© 2024 Palo Alto Networks, Inc.
```

Palo Alto Networks SD-WAN Virtual Instant-On Network (vION) 11

- W = Write: The SSP is updated, imported, or written to the module.
- *E* = Execute: The module uses the SSP in performing a cryptographic operation.
- *Z* = Zeroise: The module zeroizes the SSP.

### **Unauthenticated Services**

Unauthenticated Users can run the self-test service by power-cycling the module by removing the power and re-applying.

### 5. Software/Firmware Security

### **Integrity Techniques**

The module performs the Software Integrity test by using HMAC-SHA2-256 (HMAC Cert. #A3566) during the Pre-Operational Self-Test. A Software Integrity Test Key (non-SSP) was preloaded to the module's binary at the factory and used for software integrity test only at the pre-operational self-test. At Module's initialization, the integrity of the runtime executable is verified using an HMAC-SHA2-256 digest which is compared to a value computed at build time. If at the load time the MAC does not match the stored, known MAC value, the module would enter an Error state with all crypto functionality inhibited.

The module also supports the software load test by using RSA 2048 bits with SHA2-256 (RSA Cert. #A3566) for the new validated software to be uploaded into the module. A Software Load Test Key was preloaded to the module's binary at the factory and used for software load test. In order to load new software, the Crypto Officer must authenticate into the module before loading any software. This ensures that unauthorized access and use of the module is not performed. The module will load the new update upon reboot. The update attempt will be rejected if the verification fails

### **Integrity Test On-Demand**

Integrity test is performed as part of the Pre-Operational Self-Tests. It is automatically executed at power-on. The operator can power-cycle or reboot the module to initiate the software integrity test on-demand. This automatically performs the integrity test of all software components included within the boundary of the module.

### 6. Operational Environment

The module is a modifiable operational environment as per FIPS 140-3 Level 1 specifications. The operating system is restricted to a single operator mode of operation. The application that makes calls to the module is the single user of the modules even when the application is serving multiple clients. See Table 2 for details regarding what platforms the module was tested on.

The software module provides a Software Update service. The module's validation to FIPS 140-3 is no longer valid once a non-validated software is loaded.

### 7. Physical Security

As the module is a software only module, the physical security requirements are not applicable.

## 8. Non-Invasive Security

No approved non-invasive attack mitigation test metrics are defined at this time.

# 9. Sensitive Security Parameters

| Key/SSP<br>Name/Typ<br>e                   | Strength                                                     | Security<br>Function and<br>Cert. Number                                   | Generation                                                                                                                                                                                                                    | Import/Export                                                      | Establish-<br>ment | Storage                                                                                                                                       | Zeroization                                                                                                                  | Use & Related<br>Keys                        |
|--------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| DRBG<br>Entropy Input<br>(CSP)             | 256 bits                                                     | N/A                                                                        | Obtained from the Entropy<br>Source within TOEPP (GPS<br>INT Pathways)                                                                                                                                                        | Import to the<br>module via<br>Module's API<br>Export: No          | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                     | Zeroized when<br>the tested<br>platform is<br>powered down                                                                   | Used to seed the<br>DRBG                     |
| DRBG Seed<br>(CSP)                         | 256 bits                                                     | N/A                                                                        | Internally Derived from<br>entropy input string as<br>defined by SP800-90Arev1<br>DRBG                                                                                                                                        | Import: No<br>Export: No                                           | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                     | Zeroized when<br>the tested<br>platform is<br>powered down                                                                   | Random number<br>generation                  |
| DRBG<br>Internal State<br>V value<br>(CSP) | 256 bits                                                     | N/A                                                                        | Internally Derived from<br>entropy input string as<br>defined by SP800-90Arev1<br>DRBG                                                                                                                                        | Import: No<br>Export: No                                           | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                     | Zeroized when<br>the tested<br>platform is<br>powered down                                                                   | Random number<br>generation                  |
| DRBG Key<br>(CSP)                          | 256 bits                                                     | N/A                                                                        | Internally Derived from<br>entropy input string as<br>defined by SP800-90Arev1<br>DRBG                                                                                                                                        | Import: No<br>Export: No                                           | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                     | Zeroized when<br>the tested<br>platform is<br>powered down                                                                   | Random number<br>generation                  |
| Software<br>Load Test<br>Key<br>(PSP)      | 112 bits<br>(Modulus:<br>2048 bits)                          | RSA Sig Ver<br>Cert. #A3566                                                | Pre-loaded at the build time<br>(in the module's binary)                                                                                                                                                                      | Import: No<br>Export: No                                           | N/A                | HDD (plaintext)<br>Embedded in the<br>module's executable<br>binary.<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | N/A<br>(Note: This key is<br>only used for<br>Software Load<br>Test and not<br>subject to the<br>zeroization<br>requirement) | Used for Software<br>Load Test               |
| TLS RSA<br>Private Key<br>(CSP)            | 112-128<br>bits<br>(Modulus:<br>2048, 3072<br>bits)          | CKG;<br>DRBG;<br>RSA KeyGen;<br>RSA SigGen;<br>Certs. #A3566<br>and #A3572 | Internally generated<br>conformant to SP800-<br>133r2 (CKG) using FIPS<br>186-4 RSA key generation<br>method, and the random<br>value used in key<br>generation is generated<br>using SP800-90Arev1<br>DRBG                   | Import: No<br>Export: No                                           | N/A                | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                      | Zeroized by<br>SSP/CSP/PSP<br>Zeroization<br>Command                                                                         | Used for TLS peer<br>authentication          |
| TLS RSA<br>Public Key<br>(PSP)             | 112-128<br>bits<br>(Modulus:<br>2048, 3072<br>bits)          | RSA KeyGen;<br>RSA SigVer;<br>Certs. #A3566<br>and #A3572                  | Internally derived per the<br>FIPS 186-4 RSA key<br>generation method                                                                                                                                                         | Import: No<br>Export: Yes, to<br>the TLS peer                      | N/A                | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                      | Zeroized by<br>SSP/CSP/PSP<br>Zeroization<br>Command                                                                         | Used for TLS peer<br>authentication          |
| TLS ECDHE<br>Private Key<br>(CSP)          | 128 - 256<br>bits<br>(Curves: P-<br>256,<br>P-384,<br>P-521) | CKG;<br>DRBG;<br>KAS-ECC-SSC;<br>Certs. #A3566<br>and #A3572               | Internally generated<br>conformant to SP800-<br>133r2 (CKG) using SP800-<br>56Arev3 EC Diffie-Hellman<br>key generation method, and<br>the random value used in<br>key generation is generated<br>using SP800-90Arev1<br>DRBG | Import: No<br>Export: No                                           | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                     | Zeroized when<br>the tested<br>platform is<br>powered down                                                                   | Used to derive TLS<br>ECDHE Shared<br>Secret |
| TLS ECDHE<br>Public Key<br>(PSP)           | 128 - 256<br>bits<br>(Curves: P-<br>256,<br>P-384,<br>P-521) | KAS-ECC-SSC;<br>Certs. #A3566<br>and #A3572                                | Internally derived internally<br>per the EC Diffie-Hellman<br>key agreement<br>(SP800-56Arev3)                                                                                                                                | Import: No<br>Export: Yes, to<br>the TLS peer                      | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                     | Zeroized when<br>the tested<br>platform is<br>powered down                                                                   | Used to derive TLS<br>ECDHE Shared<br>Secret |
| Peer TLS<br>ECDHE<br>Public Key<br>(PSP)   | Curves: P-<br>256,<br>P-384,<br>P-521                        | N/A                                                                        | N/A                                                                                                                                                                                                                           | Import: Enter<br>into the Module<br>via Module's API<br>Export: No | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                                                     | Zeroized when<br>the tested<br>platform is<br>powered down                                                                   | Used to derive TLS<br>ECDHE Shared<br>Secret |

© 2024 Palo Alto Networks, Inc.

# Palo Alto Networks SD-WAN Virtual Instant-On Network (vION) 13

| Key/SSP<br>Name/Typ                            | Strength                                                     | Security<br>Function and                                                                   | Generation                                                                                                                                                                                                                    | Import/Export                                                         | Establish-<br>ment | Storage                                                                                   | Zeroization                                                | Use & Related<br>Keys                                                                          |
|------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| e<br>TLS ECDHE<br>Shared Secret<br>(CSP)       | 128 - 256<br>bits<br>(Curves: P-<br>256,<br>P-384,<br>P-521) | Cert. Number<br>KAS-ECC-SSC;<br>KAS (ECC);<br>Certs. #A3566<br>and #A3572                  | Internally derived<br>using<br>SP800-56A rev3<br>EC Diffie-Hellman shared<br>secret<br>computation                                                                                                                            | Import: No<br>Export: No                                              | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive TLS<br>Session Encryption<br>Keys, TLS Session<br>Authentication<br>Keys        |
| TLS Pre-<br>Master Secret<br>(CSP)             | 384 bits                                                     | N/A                                                                                        | Internally derived via key<br>derivation function defined<br>in SP800-135rev1 KDF<br>(TLSv1.2)                                                                                                                                | Import: No<br>Export: No                                              | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive TLS<br>Master Secret                                                            |
| TLS Master<br>Secret<br>(CSP)                  | 384 bits                                                     | N/A                                                                                        | Internally derived via key<br>derivation function defined<br>in SP800-135rev1 KDF<br>(TLSv1.2)                                                                                                                                | Import: No<br>Export: No                                              | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive TLS<br>Encryption Keys,<br>TLS Authentication<br>Keys.                          |
| TLS Session<br>Encryption<br>Key<br>(CSP)      | 128 or 256<br>bits                                           | AES-CBC;<br>AES-GCM;<br>KDF TLS<br>KTS;<br>Certs. #A3566<br>and #A3572                     | Internally derived via key<br>derivation function defined<br>in SP 800-135rev1 KDF<br>(TLSv1.2)                                                                                                                               | Import: No<br>Export: No                                              | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to secure TLS<br>session<br>confidentiality                                               |
| TLS Session<br>Authenticatio<br>n Key<br>(CSP) | At least 112<br>bits                                         | HMAC-SHA2-<br>256;<br>HMAC-SHA2-<br>384;<br>KDF TLS<br>KTS;<br>Certs. #A3566<br>and #A3572 | Internally derived via key<br>derivation function defined<br>in SP800-135 rev1 KDF<br>TLS                                                                                                                                     | Import: No<br>Export: No                                              | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to secure the<br>TLS session<br>integrity                                                 |
| IPSec/IKE<br>Pre-Shared<br>Secret<br>(CSP)     | 2048 bits<br>characters                                      | N/A                                                                                        | N/A                                                                                                                                                                                                                           | Import:<br>Encrypted by<br>using TLS/SSH<br>session key<br>Export: No | MD/EE              | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage  | Zeroized by<br>SSP/CSP/PSP<br>Zeroization<br>Command       | Used for IPSec/IKE<br>peer authentication                                                      |
| IPSec/IKE<br>RSA Private<br>Key<br>(CSP)       | 112 or 128<br>bits<br>(Modulus:<br>2048, 3072<br>bits)       | CKG;<br>DRBG;<br>RSA SigGen;<br>Cert# A3566                                                | Internally generated<br>conformant to SP800-<br>133r2 (CKG) using FIPS<br>186-4 RSA key generation<br>method, and the random<br>value used in key<br>generation is generated<br>using SP800-90Arev1<br>DRBG                   | Import: No<br>Export: No                                              | N/A                | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage  | Zeroized by<br>SSP/CSP/PSP<br>Zeroization<br>Command       | Used for IPSec/IKE<br>peer authentication                                                      |
| IPSec/IKE<br>RSA Public<br>Key<br>(PSP)        | 112 or 128<br>bits<br>(Modulus:<br>2048, 3072<br>bits)       | RSA SigVer;<br>Cert. #A3566                                                                | Internally derived per the<br>FIPS 186-4 RSA key<br>generation method                                                                                                                                                         | Import: No<br>Export: to the<br>IKE Peer<br>application               | N/A                | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage  | Zeroized by<br>SSP/CSP/PSP<br>Zeroization<br>Command       | Used for IPSec/IKE<br>peer authentication                                                      |
| IPSec/IKE<br>ECDHE<br>Private Key<br>(CSP)     | 128 or 192<br>bits<br>(Curves: P-<br>256 or<br>P-384)        | CKG;<br>DRBG;<br>KAS-ECC-SSC;<br>Cert. #A3566                                              | Internally generated<br>conformant to SP800-<br>133r2 (CKG) using SP800-<br>56Arev3 EC Diffie-Hellman<br>key generation method, and<br>the random value used in<br>key generation is generated<br>using SP800-90Arev1<br>DRBG | Import: No<br>Export: No                                              | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive<br>IPSec/IKE ECDHE<br>Shared Secret                                             |
| IPSec/IKE<br>ECDHE<br>Public Key<br>(PSP)      | 128 or 192<br>bits<br>(Curves: P-<br>256 or<br>P-384)        | KAS-ECC-SSC;<br>Cert. #A3566                                                               | Internally derived internally<br>per the EC Diffie-Hellman<br>key agreement<br>(SP800-56Arev3)                                                                                                                                | Import: No<br>Export: to the<br>IKE Peer<br>application               | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive<br>IPSec/IKE ECDHE<br>Shared Secret                                             |
| IPSec/IKE<br>ECDHE<br>Shared Secret<br>(CSP)   | 128 or 192<br>bits<br>(Curves: P-<br>256 or<br>P-384)        | KAS-ECC-SSC;<br>Cert. #A3566                                                               | Internally derived<br>using<br>SP800-56A rev3<br>EC Diffie-Hellman shared<br>secret computation                                                                                                                               | Import: No<br>Export: No                                              | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive<br>IPSec/IKE Session<br>Encryption Keys,<br>IPSec/IKE<br>Authentication<br>Keys |

# **14** Palo Alto Networks SD-WAN Virtual Instant-On Network (vION)

© 2024 Palo Alto Networks, Inc.

| Key/SSP<br>Name/Typ<br>e                                         | Strength                                                               | Security<br>Function and<br>Cert. Number                                                                    | Generation                                                                                                                                                                                                                    | Import/Export                                                             | Establish-<br>ment | Storage                                                                                                         | Zeroization                                                | Use & Related<br>Keys                                                                   |
|------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| IPSec/IKE<br>Session<br>Encryption<br>Key                        | 128-256<br>bits                                                        | AES-CBC;<br>KDF IKEv2;<br>Cert. #A3566                                                                      | Internally derived via key<br>derivation function defined<br>in SP800-135rev1 KDF<br>(IKEv2)                                                                                                                                  | Import: No<br>Export: No                                                  | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent                                             | Zeroized when<br>the tested<br>platform is<br>powered down | Used to secure<br>IPSec/IKEv2<br>session<br>confidentiality                             |
| (CSP)<br>IPSec/IKE<br>Session<br>Authenticatio<br>n Key<br>(CSP) | At least 112<br>bits                                                   | HMAC-SHA-1;<br>HMAC-SHA2-<br>256;<br>HMAC-SHA2-<br>384;<br>HMAC-SHA2-<br>512;<br>KDF IKEv2;<br>Cert. #A3566 | Internally derived via key<br>derivation function defined<br>in SP800-135rev1 KDF<br>(IKEv2)                                                                                                                                  | Import: No<br>Export: No                                                  | N/A                | keys/ SSPs storage<br>DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage | Zeroized when<br>the tested<br>platform is<br>powered down | Used to secure<br>IPSec/IKEv2<br>session integrity                                      |
| SNMPv3<br>Authenticatio<br>n Secret<br>(CSP)                     | 8 characters<br>minimum                                                | N/A                                                                                                         | N/A                                                                                                                                                                                                                           | Import:<br>Encrypted by<br>using TLS/SSH<br>session key<br>Export: No     | MD/EE              | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                        | Zeroized by<br>SSP/CSP/PSP<br>Zeroization<br>Command       | Used for SNMPv3<br>User authentication                                                  |
| SNMPv3<br>Session<br>Encryption<br>Key<br>(CSP)                  | 128 bits                                                               | AES-CFB;<br>KDF SNMP;<br>Cert. #A3566                                                                       | Internally derived via key<br>derivation function defined<br>in SP800-135rev1 KDF<br>(SNMPv3)                                                                                                                                 | Import: No<br>Export: No                                                  | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                       | Zeroized when<br>the tested<br>platform is<br>powered down | Used to secure<br>SNMPv3 session<br>confidentiality                                     |
| SNMPv3<br>Session<br>Authenticatio<br>n Key<br>(CSP)             | At least 112<br>bits                                                   | HMAC-SHA-1;<br>KDF SNMP;<br>Cert. #A3566                                                                    | Internally derived via key<br>derivation function defined<br>in SP800-135rev1 KDF<br>(SNMPv3)                                                                                                                                 | Import: No<br>Export: No                                                  | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                       | Zeroized when<br>the tested<br>platform is<br>powered down | Used to secure<br>SNMPv3 session<br>integrity                                           |
| SSH ECDHE<br>Private Key<br>(CSP)                                | 128-256<br>bits<br>(Curves: P-<br>256,<br>P-384, or P-<br>521)         | CKG;<br>DRBG;<br>KAS-ECC-SSC;<br>Cert. #A3566                                                               | Internally generated<br>conformant to SP800-<br>133r2 (CKG) using SP800-<br>56Arev3 EC Diffie-Hellman<br>key generation method, and<br>the random value used in<br>key generation is generated<br>using SP800-90Arev1<br>DRBG | Import: No<br>Export: No                                                  | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                       | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive the<br>SSH ECDHE Shared<br>Secret                                        |
| SSH ECDHE<br>Public Key<br>(PSP)                                 | 128-256<br>bits<br>(Curves: P-<br>256,<br>P-384, or P-<br>521)         | KAS-ECC-SSC;<br>Cert. #A3566                                                                                | Internally derived internally<br>per the EC Diffie-Hellman<br>key agreement<br>(SP800-56Arev3)                                                                                                                                | Import: No<br>Export: Yes, to<br>the SSH peer                             | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                       | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive the<br>SSH ECDHE Shared<br>Secret                                        |
| Peer SSH<br>ECDHE<br>Public Key<br>(PSP)                         | 128-256<br>bits<br>(Curves: P-<br>256,<br>P-384, or P-<br>521)         | KAS-ECC-SSC;<br>KAS-ECC;<br>Cert.#A3566                                                                     | N/A                                                                                                                                                                                                                           | Import: Enter<br>into the Module<br>via the Module's<br>API<br>Export: No | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                       | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive SSH<br>ECDHE Shared<br>Secret                                            |
| SSH ECDHE<br>Shared Secret<br>(CSP)                              | 321)<br>128-256<br>bits<br>(Curves: P-<br>256,<br>P-384, or P-<br>521) | KAS-ECC-SSC;<br>KAS-ECC;<br>Cert. #A3566                                                                    | Internally derived<br>using<br>SP800-56A rev3<br>EC Diffie-Hellman shared<br>secret computation                                                                                                                               | Import: No<br>Export: No                                                  | N/A                | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                       | Zeroized when<br>the tested<br>platform is<br>powered down | Used to derive SSH<br>Session Encryption<br>Keys, SSH Session<br>Authentication<br>Keys |
| SSH ECDSA<br>Private Key<br>(CSP)                                | 128-256<br>bits<br>(Curves: P-<br>256,<br>P-384, or P-<br>521)         | CKG;<br>DRBG;<br>ECDSA KeyGen;<br>ECDSA SigGen;<br>Cert. #A3566                                             | Internally generated<br>conformant to SP800-<br>133r2 (CKG) using FIPS<br>186-4 ECDSA Key<br>Generation method, and<br>the random value used in<br>key generation is generated<br>using SP800-90Arev1<br>DRBG                 | Import: No<br>Export: No                                                  | SSP<br>generation  | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                        | Zeroized by SSP<br>(CSP/PSP)<br>Zeroization<br>Command     | Used for SSH<br>session<br>authentication                                               |
| SSH ECDSA<br>Public Key<br>(PSP)                                 | 128-256<br>bits<br>(Curves: P-<br>256,<br>P-384, or P-<br>521)         | ECDSA KeyGen;<br>ECDSA SigVer;<br>Cert. #A3566                                                              | Internally derived per the<br>FIPS 186-4 ECDSA Keypair<br>generation method                                                                                                                                                   | Import: No<br>Export: Yes, to<br>the SSH peer                             | N/A                | HDD (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                        | Zeroized by<br>SSP/CSP/PSP<br>Zeroization<br>Command       | Used for SSH<br>session<br>authentication                                               |
| SSH Session<br>Encryption<br>Key<br>(CSP)                        | 128 - 256<br>bits                                                      | AES-CTR;<br>KDF SSH;<br>KTS;<br>Cert. #A3566                                                                | Internally derived via key<br>derivation function defined<br>in SP 800-135rev1 KDF<br>(SSHv2)                                                                                                                                 | Import: No<br>Export: No                                                  | Key<br>derivation  | DRAM (plaintext)<br>Note: The module does<br>not provide persistent<br>keys/ SSPs storage                       | Zeroized when<br>the tested<br>platform is<br>powered down | Used for SSH<br>session<br>confidentiality<br>protection                                |

### $\ensuremath{\mathbb{C}}$ 2024 Palo Alto Networks, Inc.

### Palo Alto Networks SD-WAN Virtual Instant-On Network (vION) 15

| Authenticatio<br>n Key<br>(CSP)     bits     KTS;<br>HMAC-SHA-1;<br>HMAC-SHA-1;<br>BMAC-SHA2-     derivation function defined<br>in SP 800-135rev1 KDF<br>(SSHv2)     the tested<br>Export: No     Note: The module does<br>not provide persistent<br>keys/ SSPs storage     the tested<br>plafform is<br>powered down     session inte<br>protection | Key/SSP<br>Name/Typ<br>e | Strength | Security<br>Function and<br>Cert. Number                        | Generation                                           | Import/Export | Establish-<br>ment | Storage                                         | Zeroization               | Use & Related<br>Keys                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|-----------------------------------------------------------------|------------------------------------------------------|---------------|--------------------|-------------------------------------------------|---------------------------|-------------------------------------------------|
| 512;<br>Cert. #A3566                                                                                                                                                                                                                                                                                                                                  | Authenticatio<br>n Key   |          | KTS;<br>HMAC-SHA-1;<br>HMAC-SHA2-<br>256;<br>HMAC-SHA2-<br>512; | derivation function defined<br>in SP 800-135rev1 KDF |               | '                  | Note: The module does<br>not provide persistent | the tested<br>platform is | Used for SSH<br>session integrity<br>protection |

Table 10 - SSPs

| Entropy Source(s)                      | Minimum Number of Bits of Entropy | Details                        |
|----------------------------------------|-----------------------------------|--------------------------------|
| Palo Alto Networks DRNG Entropy Source | 0.6 bits entropy per sample with  | Please refer to ESV Cert. #E69 |
|                                        | sample bit: 1 bit                 |                                |

 Table 11 - Non-Deterministic Random Number Generation Specification

### 10. Self-Tests

The module performs the following self-tests, including the pre-operational self-tests and Conditional self-tests.

### **Pre-Operational Self-Tests**

| Algorithm          | Self-Test Details        |
|--------------------|--------------------------|
| SHS                | KAT using SHA2-256       |
| HMAC               | KAT using HMAC- SHA2-256 |
| Software integrity | Using HMAC-SHA2-256      |

Table 12 - Pre-Operational Self-Tests

The module performs the following Cryptographic Algorithm Self-Tests (CASTs). These CASTs can be initiated by rebooting the module. All CASTs run without operator intervention automatically on reboot.

### **Conditional Self-Tests**

| Algorithm | Self-Test Details                                                                                                                                         |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| AES       | AES-ECB 256 bits Encryption KAT                                                                                                                           |
| AES       | AES-ECB 256 bits Decryption KAT                                                                                                                           |
| AES       | AES-CBC 256 bits Encryption KAT                                                                                                                           |
| AES       | AES-CBC 256 bits Decryption KAT                                                                                                                           |
| AES       | AES-GCM 256 bits Encryption KAT                                                                                                                           |
| AES       | AES-GCM 256 bits Decryption KAT                                                                                                                           |
| DRBG      | CTR_DRBG<br>KAT: Instantiate<br>KAT: Generate<br>KAT: Reseed<br>Note: DRBG Health Tests as specified in SP800-90Arev1 DRBG Section 11.3 are<br>performed) |
| ECDSA     | KAT using P-224 with SHA2-256 (ECDSA Signature Generation)                                                                                                |
| ECDSA     | KAT using P-224 with SHA2-256 (ECDSA Signature Verification)                                                                                              |
| НМАС      | KAT using HMAC-SHA-1                                                                                                                                      |

### **Cryptographic Algorithm Self-Tests (CASTs)**

**16** Palo Alto Networks SD-WAN Virtual Instant-On Network (vION)

© 2024 Palo Alto Networks, Inc.

| Algorithm   | Self-Test Details                                                      |
|-------------|------------------------------------------------------------------------|
| НМАС        | KAT using HMAC-SHA2-224                                                |
| НМАС        | KAT using HMAC-SHA2-256                                                |
| НМАС        | KAT using HMAC-SHA2-384                                                |
| НМАС        | KAT using HMAC-SHA2-512                                                |
| KAS-ECC-SSC | KAT for KAS-ECC-SSC (Shared Secret Computation) primitive Z value      |
| KDF IKEv2   | KAT for IKEv2 KDF                                                      |
| KDF SNMP    | KAT for SNMPv3 KDF                                                     |
| KDF SSH     | KAT for SSHv2 KDF                                                      |
| KDF TLS     | KAT for TLSv1.2 KDF                                                    |
| RSA         | KAT using 2048 bits modulus with SHA2-256 (RSA Signature Generation)   |
| RSA         | KAT using 2048 bits modulus with SHA2-256 (RSA Signature Verification) |
| SHS         | KAT using SHA-1                                                        |

Table 13 – CASTs (Crypto Library I)

| Algorithm   | Self-Test Details                                                                                                                                       |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AES         | AES-CBC 256 bits Encryption KAT                                                                                                                         |  |
| AES         | AES-CBC 256 bits Decryption KAT                                                                                                                         |  |
| AES         | AES-GCM 256 bits Encryption KAT                                                                                                                         |  |
| AES         | AES-GCM 256 bits Encryption KAT                                                                                                                         |  |
| ECDSA       | KAT using P-224 with SHA2-256 (ECDSA Signature Generation)                                                                                              |  |
| ECDSA       | KAT using P-224 with SHA2-256 (ECDSA Signature Verification)                                                                                            |  |
| DRBG        | HMAC_DRBG<br>KAT: Instantiate<br>KAT: Generate<br>KAT: Reseed<br>Note: DRBG Health Tests as specified in SP800-90Arev1 DRBG Section 11.3 are performed) |  |
| HMAC        | KAT using SHA2-256                                                                                                                                      |  |
| HMAC        | KAT using SHA2-384                                                                                                                                      |  |
| HMAC        | KAT using SHA2-512                                                                                                                                      |  |
| KAS-ECC-SSC | KAT for KAS-ECC-SSC (Shared Secret Computation) primitive Z value                                                                                       |  |
| KDF TLS     | KAT for TLSv1.2 KDF                                                                                                                                     |  |
| RSA         | KAT using 2048 bits modulus with SHA2-256 (RSA Signature Generation)                                                                                    |  |
| RSA         | KAT using 2048 bits modulus with SHA2-256 (RSA Signature Verification)                                                                                  |  |

Table 14 – CASTs (Crypto Library II)

| Algorithm               | Self-Test Details                                                                                                                                                                                                                                    |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SP 800-90B Health Tests | The module's entropy source implements Start-up and Continuous health tests defined in SP800-90B, section 4.2. The entropy source utilizes Developer-Defined Alternatives to the Continuous Health Tests which is defined in SP 800-90B section 4.5. |

### Table 15 - Entropy Source Health Tests

### **Conditional Pair-Wise Consistency Tests**

| Conditional Self-Tests Algorithm | Self-Test Details                   |
|----------------------------------|-------------------------------------|
| RSA                              | RSA Pairwise consistency test (PCT) |
| ECDSA                            | ECDSA PCT                           |
| KAS-ECC-SSC                      | SP800-56Ar3 KAS-ECC-SSC PCT         |

© 2024 Palo Alto Networks, Inc.

Palo Alto Networks SD-WAN Virtual Instant-On Network (vION) 17

### Table 16 - Conditional Pair-Wise Consistency Tests (Crypto Library I)

| Algorithm               | Self-Test Details                   |
|-------------------------|-------------------------------------|
| RSA                     | RSA Pairwise consistency test (PCT) |
| ECDSA                   | ECDSA PCT                           |
| SP800-56Ar3 KAS-ECC-SSC | SP800-56Ar3 KAS-ECC-SSC PCT         |

### Table 17 - Conditional Pair-Wise Consistency Tests (Crypto Library II)

### **Conditional Software Load Test**

| Conditional Self-Tests Algorithm | Self-Test Details                             |
|----------------------------------|-----------------------------------------------|
| Software Load Test               | RSA 2048 with SHA2-256 Signature Verification |
|                                  | Table 18 - Conditional Software Load Test     |

### **Periodic/On-Demand Self-Test**

The module performs on-demand self-tests initiated by the operator, by power cycling or rebooting the tested platform. The full suite of self-tests is then executed. The same procedure may be employed by the operator to perform periodic self-tests.

It is recommended that the Crypto Officer perform periodic testing of the module's on-demand self-tests every 60 days to ensure all components are functioning correctly.

#### **Error Handling**

If any of the above-mentioned self-tests fail, the module reports the cause of the error and enters an error state (there is only one error state). In the Error State, no cryptographic services are provided, and data output is prohibited. The only method to recover from the error state is to reboot the module and perform the self-tests, including the pre-operational software integrity test and the conditional CASTs. The module will only enter into the operational state after successfully passing the pre-operational software integrity test and the status indicators reported.

| Cause of Error                                 | Error State Indicator                                                                    |
|------------------------------------------------|------------------------------------------------------------------------------------------|
| Failed Pre-Operational Software Integrity Test | Integrity check failed at <location></location>                                          |
| Failed Conditional CAST                        | <crypto library="">: FIPS Self-test failed for <algorithm> Entering</algorithm></crypto> |
|                                                | error state                                                                              |
| Failed Conditional PCT                         | Key verification failed                                                                  |
| Failed Software Load Test                      | Verification Failure                                                                     |
| SP 800-90B Entropy Source                      | No random numbers are generated and key generation is                                    |
| Start-up/Continuous health tests               | halted                                                                                   |

Table 19 - Error State Indicators

### 11. Life-Cycle Assurance

The module is designed to handle the various stages of a module's life-cycle. The sections below highlight the details for each stage.

### **Secure Delivery Procedures**

Software is available on Palo Alto Networks' support site, which uses TLS 1.2 during the download process. The support site also provides a SHA2-256 checksum that Crypto Officers can use to verify the integrity of the module once it has been transferred/downloaded.

#### **Secure Operation**

The module meets all the Level 1 requirements for FIPS 140-3. Follow the secure operations provided below to place the module in the Approved mode.

The software version is 6.1.2, which is the only allowable software image for this current approved mode of operation. The module is initiated into the Approved mode of operation via the following procedure:

- 1. Install the vION on the platform
- 2. Using the Controller, navigate to the device that is to be initiated
- 3. Select "FIPS"
  - a. Click "proceed" to begin initialization procedure
- 4. The module will begin initialization that includes the following:
  - Zeroization of any sensitive information or data a.
  - b. Power cycle of the device followed by running all self-tests
- 5. Once initialization is complete, the module provides the following status output:
  - a. Device Mode: "fips"
  - b. Self-tests: "Power-up self test successful"

Once the module has completed initialization into the Approved mode of operation, any non-Approved configurations/algorithms are rejected automatically by the module and an error message is output.

### End of Life / Sanitization

End of life dates for software and hardware modules are announced publicly via Palo Alto Networks' services website. Crypto Officers should follow the procedure below for the secure destruction of their module:

Note: This process will cause the module to no longer function after it has wiped all configurations and keys.

- 1. Access the module as Crypto Officer
- 2. Execute command: "disable system" a. Confirm command
- 3. Module will begin zeroization process and wipe all security parameters and configurations

### 12. Mitigation of Other Attacks

This module is not designed to mitigate against any other attacks outside of the FIPS 140-3 scope.

© 2024 Palo Alto Networks, Inc.

Palo Alto Networks SD-WAN Virtual Instant-On Network (vION) 19