

This document may be freely distributed in its entirety without modification.

Google LLC.

Android Kernel Cryptographic Module

Software Version: 5.10.66-android12-9-00072-g143ac63130f0-ab7955824

FIPS 140-3 Non-Proprietary Security Policy

Document Version: 0.4

Last Update Date: 6-27-2024

Table of Contents

1. General ... 1

2. Cryptographic module specification .. 1

3. Cryptographic module interfaces ... 4

4. Roles, services, and authentication... 5

5. Software security .. 7

6. Operational environment .. 7

7. Physical security ... 7

8. Non-invasive security ... 7

9. Sensitive security parameters management .. 8

10. Self-tests ... 9

11. Life-cycle assurance ... 11

12. Mitigation of other attacks ... 12

1

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

1. General

This document is the non-proprietary FIPS 140-3 Security Policy for the Android Kernel Cryptographic

Module from Google LLC. It contains a specification of the rules under which the module must operate and

describes how this module meets the requirements as specified in FIPS PUB 140-3 (Federal Information

Processing Standards Publication 140-3) for a Security Level 1 Software cryptographic module. This security

policy is for the validation of the Android Kernel Cryptographic Module.

In this document, the terms “Android Kernel Cryptographic Module”, “AKC”, “cryptographic module” or

“module” are used interchangeably to refer to the module’s software version 5.10.66-android12-9-00072-

g143ac63130f0-ab7955824.

Below is a table indicating the individual clause levels.

ISO/IEC 24759 Section 6
[Number Below]

FIPS 140-3 Section Title
Security

Level

1 General 1

2 Cryptographic module specification 1

3 Cryptographic module interfaces 1

4 Roles, services, and authentication 1

5 Software/Firmware security 1

6 Operational environment 1

7 Physical security N/A

8 Non-invasive security N/A

9 Sensitive security parameter management 1

10 Self-tests 1

11 Life-cycle assurance 1

12 Mitigation of other attacks N/A
Table 1 - Security Levels

The module is designed to meet an overall security level of 1.

2. Cryptographic module specification

The Android Kernel Cryptographic Module is a multi-chip standalone software only module designed to

provide encryption services for the Linux kernel of the device. The module is implemented as a self-

contained Linux Kernel Module (LKM).

The module has been tested on the following platforms:

Operating System Hardware Platform Processor PAA/Acceleration

1 Linux kernel 5.10 Google Pixel 6 Google Tensor processor with PAA

2 Linux kernel 5.10 Google Pixel 6 Google Tensor processor without PAA
Table 2 - Tested Operational Environments

The CMVP makes no statement as to the correct operation of the module or the security strengths of the

generated keys when ported to an operational environment which is not listed on the validation certificate.

2

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

Mode of operation

When the module starts up successfully, after passing the pre-operational self-test and the cryptographic

algorithms self-tests (CASTs), the module is operating in the approved mode of operation by default and

can only be transitioned into the non-approved mode by calling one of the non-approved services listed in

Table 9. Section 4 provides details on the service indicator is implemented by the module. The service

indicator identifies when an approved service is called. The Crypto Officer shall not configure the use of

non-approved algorithms while the module is operating in an approved mode. If a non-Approved algorithm

is used, then the module is operating in a non-Approved mode. Prior to using any of the non-approved

services, the Crypto Officer shall zeroize all CSPs which places the module into the non-approved mode of

operation.

Table 3 below lists all Approved or Vendor-affirmed security functions of the module, including specific key

size(s) -in bits unless otherwise noted- employed for approved services, and implemented modes of

operation. There are algorithms, modes, and key moduli sizes that have been CAVP-tested but are not

used by any approved services of the module. Only the algorithms, modes/methods, and key

lengths/curves/moduli shown in the tables below are used by an approved service of the module.

CAVP
Cert

Algorithm and
Standard

Mode/Method Description / Key Size(s)
/ Key Strength(s)

Use / Function

#A2268 AES
[FIPS 197,
SP 800 38A]

AES-CBC 128, 192, 256 bits Data encryption/decryption

#A2268 AES
[FIPS 197,
SP 800 38A]

AES-ECB 128, 192, 256 bits Data encryption/decryption

#A2268 AES
[FIPS 197,
SP 800 38A]

AES-CBC-CS3 128, 192, 256 bits Data encryption/decryption

#A2268 AES
[FIPS 197,
SP 800 38A]

AES-CTR 128, 192, 256 bits Data encryption/decryption

#A2268 AES
[FIPS 197,
SP 800 38A]

AES-XTS 128, 192, 256 bits Data encryption/decryption

#A2268 AES
[FIPS 197,
SP 800 38B]

AES-CMAC 128, 192, 256 bits MAC generation and
verification

N/A ENT (NP)
[SP800-90B]

N/A N/A Non-physical entropy source
used for seeding DRBG

#A2268 DRBG
[SP800-90Ar1]

HMAC-DRBG
(HMAC-SHA-1)

N/A Random number generation

#A2268 DRBG
[SP800-90Ar1]

HMAC-DRBG
(HMAC-SHA2-256)

N/A Random number generation

#A2268 DRBG
[SP800-90Ar1]

HMAC-DRBG
(HMAC-SHA2-384)

N/A Random number generation

#A2268 DRBG
[SP800-90Ar1]

HMAC-DRBG
(HMAC-SHA2-512)

N/A Random number generation

#A2268 HMAC
[FIPS 198-1]

HMAC-SHA-1 112 bits or greater Message authentication

3

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

CAVP
Cert

Algorithm and
Standard

Mode/Method Description / Key Size(s)
/ Key Strength(s)

Use / Function

#A2268 HMAC
[FIPS 198-1]

HMAC-SHA2-224 112 bits or greater Message authentication

#A2268 HMAC
[FIPS 198-1]

HMAC-SHA2-256 112 bits or greater Message authentication

#A2268 HMAC
[FIPS 198-1]

HMAC-SHA2-384 112 bits or greater Message authentication

#A2268 HMAC
[FIPS 198-1]

HMAC-SHA2-512 112 bits or greater Message authentication

#A2268 SHS
[FIPS 180-4]

SHA-1
Message Length:
0-65528
Increment 8

N/A

Message Digest
Note: SHA-1 is not used for
digital signature generation

#A2268 SHS
[FIPS 180-4]

SHA2-224
Message Length:
0-65528
Increment 8

N/A Message digest

#A2268 SHS
[FIPS 180-4]

SHA2-256
Message Length:
0-65528
Increment 8

N/A Message digest

#A2268 SHS
[FIPS 180-4]

SHA2-384
Message Length:
0-65528
Increment 8

N/A Message digest

#A2268 SHS
[FIPS 180-4]

SHA2-512
Message Length:
0-65528
Increment 8

N/A Message digest

Table 3 - Approved Algorithms

Table 4 below lists all non-Approved algorithms not allowed in the approved mode of operation

implemented by the module.

Algorithm/Function Use/Function

AES-GCM Authenticated Encryption/Decryption

AES-XCBC Message Authentication Code

AES-CBC-MAC Message Authentication Code

ESSIV-CBC-AES Salt Generation
Table 4 - Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

In addition, the module does not implement Non-Approved Algorithms Allowed in Approved Mode of

Operation and Non-Approved Algorithms Allowed in Approved Mode of Operation with No Security

Claimed.

Cryptographic boundary

Figure 1 below depicts the module’s Block Diagram. Please note that the bold RED rectangle in the block
diagram represents the Tested Operational Environment’s Physical Perimeter (TOEPP) containing the
Module (the thin RED rectangle).

4

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

Figure 1 - Cryptographic Boundary

The module is a single object module (fips140.ko) which is implemented as a Linux Kernel Module and

bundled into the tested device’s boot image (vendor_boot.img).

3. Cryptographic module interfaces

Physical port Logical interface Data that passes over port/interface

N/A Data Input Interface Arguments for an API call that provide the data to be used or
processed by the module

N/A Data Output Interface Output data returned to calling function

N/A Control Input Interface Arguments for an API call used to control and configure
module operation

N/A Status Output Interface Return values from the Module’s API used to obtain
information on the status of the module. The Status Output
Interface also includes the log file where the module
messages are output

N/A Control Output Interface N/A
Table 5 - Ports and Interfaces

Tested Operational Environment’s Physical Perimeter (TOEPP)

Operating

System

Android Kernel Cryptographic Module (5.10.66-android12-9-

00072-g143ac63130f0-ab7955824)

Calling

Application

5

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

4. Roles, services, and authentication

Role Service Input Output

Crypto
Officer (CO)

Initialization Command to start the
initialization

Module initialization
status

Crypto
Officer (CO)

Symmetric Encryption
and Decryption

Command to conduct the
encryption and decryption
operation

Encrypted or
Decrypted message

Crypto
Officer (CO)

Message Authentication
Code (MAC)

Command to conduct the HMAC
or AES-CMAC operation

MAC value

Crypto
Officer (CO)

Message Digest Command to conduct the
Message Digest operation

Hashed message

Crypto
Officer (CO)

Random Number
Generation

Command to conduct the
HMAC_DRBG generation

Random value

Crypto
Officer (CO)

Perform Self-Test (Pre-
operational Self-Tests and
Conditional Self-Tests)

Command to conduct the self-
tests

Status of self-tests

Crypto
Officer (CO)

Show Status Command to check the status Module’s current
status

Crypto
Officer (CO)

Show Version Command to get module’s
software version

Module’s name/ID
and versions

Crypto
Officer (CO)

Zeroization Command to zeroize all SSPs Status of zeroization
completion

Table 6 - Roles, Service Commands, Input and Output

No authentication is required at security level 1 and the assumption of the role is implicit by the service

being performed.

Role Authentication Method Authentication Strength

Crypto Officer (CO) N/A N/A
Table 7 - Roles and Authentication

Service Description Approved
Security Functions

Keys
and/or
SSPs

Roles Access rights
to Keys
and/or SSPs

Indicator

Initialization Conduct
module’s
initialization

N/A N/A Crypto
Officer
(CO)

N/A N/A

Symmetric
Encryption and
Decryption

Conduct
Symmetric
Encryption and
Decryption

AES-CBC;
AES-ECB;
AES-CBC-CS3;
AES-CTR;
AES-XTS

AES Key Crypto
Officer
(CO)

R, W, E Approved
service
execution
return value
“true”

Message
authentication
code
(MAC)

Conduct Key
Hash operation

AES-CMAC;
HMAC-SHA-1;
HMAC-SHA2-224;
HMAC-SHA2-256;
HMAC-SHA2-384;
HMAC-SHA2-512

AES Key;
HMAC
Key

Crypto
Officer
(CO)

R, W, E Approved
service
execution
return value
“true”

Message
Digest

Conduct
Message

SHA-1;
SHA2-224;
SHA2-256;

N/A Crypto
Officer
(CO)

N/A Approved
service
execution

6

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

Service Description Approved
Security Functions

Keys
and/or
SSPs

Roles Access rights
to Keys
and/or SSPs

Indicator

digest
operation

SHA2-384;
SHA2-512

return value
“true”

Random
Number
Generation

Conduct
HMAC_DRBG
generation

HMAC_DRBG

Entropy
Input;
DRBG
Seed;
DRBG V;
DRBG Key

Crypto
Officer
(CO)

R, W, E Approved
service
execution
return value
“true”

Self-Test (Pre-
operational
Self-Tests and
Conditional
Self-Tests)

Run Pre-
operational
Self-Test and
Conditional
Algorithm Self-
Tests

AES-CBC;
AES-ECB;
AES-CBC-CS3;
AES-CTR;
AES-XTS;
AES-CMAC;
DRBG;
HMAC-SHA-1;
HMAC-SHA2-224;
HMAC-SHA2-256;
HMAC-SHA2-384;
HMAC-SHA2-512
SHA-1;
SHA2-224;
SHA2-256;
SHA2-384;
SHA2-512

Software
Integrity
Key (non-
SSP)

Crypto
Officer
(CO)

R, E Self-test
completion
message

Show Status Provides the
module’s
current status

N/A N/A Crypto
Officer
(CO)

N/A N/A

Show Version Provides the
module’s
name/ID and
versions

N/A N/A Crypto
Officer
(CO)

N/A N/A

Zeroization Zeroize the
SSPs stored in
the module

N/A All SSPs Crypto
Officer
(CO)

Z Zeroize
completion
message

Table 8 – Approved Services

G = Generate: The module generates or derives the SSP.

R = Read: The SSP is read from the module (e.g. the SSP is output).

W = Write: The SSP is updated, imported, or written to the module.

E = Execute: The module uses the SSP in performing a cryptographic operation.

Z = Zeroize: The module zeroizes the SSP.

7

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

Service Description Algorithms
Accessed

Role Indicator

Authenticated
Encryption/Dec
ryption

Conduct Authenticated
Encryption/Decryption

AES-GCM N/A
Non-approved service execution
return value “false”

Message Digest
using AES-
XCBC,

Conduct Message
digest operation

AES-XCBC N/A
Non-approved service execution
return value “false”

Message Digest
using AES-CBC-
MAC

Conduct Message
digest operation

AES-CBC-MAC N/A
Non-approved service execution
return value “false”

Salt Generation
Conduct Salt
Generation operation

ESSIV-CBC-
SHA256

N/A
Non-approved service execution
return value “false”

Table 9 – Non-Approved Services

5. Software security

Integrity techniques

The module is software-only and performs self-tests during the loading of the module to ensure the
integrity of the module and its services. To ensure software security, the module is protected by an HMAC-
SHA2-256 (HMAC Cert. #A2268) algorithm. The software integrity test key (non-SSP) was preloaded to the
module’s binary at the factory and used only for the pre-operational software integrity self-test. During
initialization of the module, the integrity of the runtime executable is verified using an HMAC-SHA2-256
which is compared to a value computed at build time. If at load time the MAC does not match the stored,
known MAC value, the module enters a critical error state where all crypto functionality is inhibited. The
module must be reloaded to attempt the integrity test again.

Integrity test on-demand

The integrity test is performed as part of the Pre-Operational Self-Tests. It is automatically executed at
power-on. The operator can power-cycle or reboot the tested platform to initiate the integrity test on-
demand.

6. Operational environment

The module is operated in a modifiable operational environment per the definition in FIPS 140-3. The

operation system shall be restricted to a single operator mode of operation (i.e., concurrent operators are

explicitly excluded). The external application calling the module is a single user of the cryptographic

module, even when the application is serving multiple clients.

7. Physical security

The module is software-only and so does not claim any physical security.

8. Non-invasive security

The module claims no non-invasive security techniques.

8

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

9. Sensitive security parameters management

Key/
SSP
Name/
Type

Strength Security

Function

and Cert.

Generation Import
/Export

Establish

-ment

Storage Zero-
isation

Use &

related

keys

AES Key 128, 192

or 256

bits

AES Cert.

A2268
N/A Import:

Electronic

Entry (EE)

via the API;

Export:

No

MD/EE Stored in

RAM

memory

of the

tested

platform

Automatic

zeroization

when the

tested

platform is

powered

down

Used for

Symmetric

Encryption,

Decryption,

and AES-

CMAC

generation

and

verification
HMAC

Key
112 or

greater
HMAC

Cert. #

A2268

N/A Import:

Electronic

Entry (EE)

via the API;

Export:

No

MD/EE Stored in

RAM

memory

of the

tested

platform

Automatic

zeroization

when the

tested

platform is

powered

down

Used for

HMAC

generation

and

verification

Entropy

Input
At least

256 bits of

security

strength

DRBG

Cert. #

A2268

N/A Import:

Electronic

Entry (EE)

via the

API;

Export:

No

MD/EE Stored in

RAM

memory

of the

tested

platform

Automatic

zeroization

when the

tested

platform is

powered

down

Used for

DRBG

Generation

DRBG

Seed

256 bits DRBG

Cert. #

A2268

N/A Import: No;

Export: No

N/A

Stored in

RAM

memory

of the

tested

platform

Automatic

zeroization

when the

tested

platform is

powered

down

Used for

DRBG

Generation

DRBG V 256 bits DRBG

Cert. #

A2268

N/A Import: No;

Export:

No

N/A Stored in

RAM

memory

of the

tested

platform

Automatic

zeroization

when the

tested

platform is

powered

down

Used for

DRBG

Generation

DRBG

Key
256 bits DRBG

Cert. #

A2268

N/A Import:

No;

Export:

No

N/A Stored in

RAM

memory

of the

tested

platform

Automatic

zeroization

when the

tested

platform is

powered

down

Used for

DRBG

Generation

Table 10 – SSPs

9

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

Random number generation

The module implements an Approved SP 800-90Ar1 DRBG (HMAC-DRBG Cert. #A2268), which shall be

called by the Application Client for key generation.

Key generation

The module does not provide any key generation service or perform key generation for any of its

Approved algorithms. Keys/CSPs are passed in from calling applications via the algorithm API

parameters.

Key entry and output

The module does not support manual key entry or key output. Keys/CSPs can only be exchanged

between the module and the calling application via the appropriate algorithm API calls within the

TOEPP.

Key storage

The SSPs are not stored inside the module. A pointer to a plaintext key is passed to the module through

the algorithm APIs. Intermediate key/CSP storage locations are immediately zeroized in memory after

use.

Key zeroization

The module is passed keys as part of a function call from a calling application and does not store keys

persistently. All SSPs can be zeroized by powering down the tested platform.

RBG entropy source

Entropy sources Minimum number

of bits of entropy

Details

CPU Jitter Random Number

Generator (Jitter Entropy

Library v2.2.0)

0.908 bits/sample bit CPU Jitter Random Number Generator (Jitter

Entropy Library v2.2.0) from Stephen Muller

provides at least 256 bits 256-bits of security

strength entropy. Please see

https://www.chronox.de/jent/doc/CPU-Jitter-

NPTRNG.pdf for more information.

The entropy source falls into IG 9.3.A, Scenario

#1(b): A software module that contains an

approved DRBG, that is seeded exclusively from

one or more known entropy sources, located

within the physical perimeter of the operational

environment.

Table 11- Non-Deterministic Random Number Generation Specification

10. Self-tests

When the module is loaded or instantiated (after being powered off, rebooted, etc.), the module runs pre-

operational self-tests. The operating system is responsible for the initialization process and loading of the

library. The module is designed with a default entry point (DEP) which ensures that the self-tests are

initiated automatically when the module is loaded. Prior to the module providing any data output via the

data output interface, the module would perform and pass the pre-operational self-tests. Following the

successful pre-operational self-tests, the module would execute the Conditional Cryptographic Algorithm

Self-tests (CASTs).

10

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

The self-test success or failure is output as a return value of the library load API call, which is functioning as

the self-test status indicator. If one of the self-tests fails, the module transitions into the error state (there

is only one error state if any one of self-tests fails) and outputs the error message via the module’s status

output interface. While the module is in the error state, all data through the data output interface and all

cryptographic operations are disabled. The error state can only be cleared by reloading the module. All

self-tests must be completed successfully before the module transitions to the operational state.

Below are the details of the self-tests conducted by the module.

Pre-operational self-test

• HMAC-SHA2-256 KAT

• Software Integrity Test (using HMAC-SHA256)

During the build-time the hash value is calculated over the module (the original code and read-only data of

the fips140.ko file). To calculate the hash of the loaded module, the segments of the code are

concatenated to each other with the relocations unapplied. The hash of this code is then calculated and

compared to the build-time hash value. If the value does not match the module will enter the error state.

Conditional algorithm self-tests

After the successful Pre-operational self-tests, the module will perform Conditional algorithm self-tests

(CASTs). The following Known Answer Tests (KATs) are performed, automatically and without any

intervention. Any failure of a KAT will result in the module entering the error state.

• AES-ECB Encryption KAT (128 bits), PAA and non-PAA tested separately

• AES-ECB Decryption KAT (128 bits), PAA and non-PAA tested separately

• AES-CCB Encryption KAT (128 bits), PAA and non-PAA tested separately

• AES-CBC Decryption KAT (128 bits), PAA and non-PAA tested separately

• AES-XTS Encryption KAT (128 bits), PAA and non-PAA tested separately

• AES-XTS Decryption KAT (128 bits), PAA and non-PAA tested separately

• AES-CMAC Encryption KAT (128 bits), PAA and non-PAA tested separately

• AES-CMAC Decryption KAT (128 bits), PAA and non-PAA tested separately

• DRBG Instantiate KAT, PAA and non-PAA tested separately

• DRBG Generate KAT, PAA and non-PAA tested separately

• DRBG Reseed KAT, PAA and non-PAA tested separately

• Note: DRBG Health Tests as specified in SP800-90Arev1 Section 11.3 are performed)

• HMAC-SHA-1 KAT, PAA and non-PAA tested separately

• HMAC-SHA2-256 KAT, PAA and non-PAA tested separately

• HMAC-SHA2-512 KAT, PAA and non-PAA tested separately

• SHA-1 KAT, PAA and non-PAA tested separately

• SHA2-256 KAT, PAA and non-PAA tested separately

• SHA2-512 KAT, PAA and non-PAA tested separately

In addition, the module’s entropy source also conducts the following entropy health tests:

Entropy source health tests

1. ENT (NP) SP800-90B start-up health tests:

• Repetition Count Test (RCT)

• Adaptive Proportion Test (APT)

Note: Please refer to SP800-90B, sections 4.4.1 and 4.4.2 for more information about the RCT and APT.

11

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

2. ENT (NP) SP800-90B continuous health tests:

• Repetition Count Test (RCT)

• Adaptive Proportion Test (APT)

Periodic/on-demand self-test
The module performs on-demand self-tests initiated by the operator, by power cycling or rebooting the
tested platform. The full suite of self-tests is then executed. The same procedure may be employed by the
operator to perform periodic self-tests.

It is recommended that the User perform periodic testing of the module’s on-demand self-tests every 60
days to ensure all components are functioning correctly.

Error handling
If any one of the above-mentioned self-tests fails, including pre-operational self-test, CASTs, entropy source
health tests, the module enters the Error state (there is only one error state). In the case of the module
entering the Error State, the module sends a kernel panic signal to the kernel causing a reboot, preventing
access to any non cryptographic services or data output from the module. The only method to recover
from the error state is to reboot the module (triggered automatically by the kernel panic), and then pass
the self-tests, including the pre-operational software integrity test and the conditional CASTs again. The
module will only enter into the operational state after successfully passing the pre-operational software
integrity test and the conditional CASTs.

11. Life-cycle assurance

Secure initialization and startup

The module is initialized during the loading of the module before any cryptographic functionality is

available. The operating system is responsible for the initialization and loading processes of the module.

The module is designed with constructor (default entry point of the module) which ensures that the

Cryptographic Algorithm Self-Tests (CASTs) and Pre-operational Self-Test are initiated automatically

when the module is loaded.

Secure operation

The module is provided directly to solution developers and is not intended for direct download by the

general public. The module is installed on an operating system (Linux kernel) specified in Section 2.

Additional Rules of Operation:

1. The writable memory areas of the module (data and stack segments) are accessible only by the
kernel itself so that the operating system is in "single user" mode. The module does not support
concurrent operators.

2. The operating system is responsible for multitasking operations so that other processes cannot
access the address space of the process containing the module.

3. Only the approved services defined in Section 4 above shall be used in approved mode of operation.

4. The length of a single data unit encrypted or decrypted with the AES-XTS shall not exceed 2²⁰ AES
blocks; that is, 16 MB of data per AES-XTS instance. An XTS instance is defined in section 4 of NIST
SP 800-38E.

5. The AES-XTS mode shall only be used for the cryptographic protection of data on storage devices.
The AES-XTS shall not be used for other purposes, such as the encryption of data in transit. The
module implements the check to ensure that the two AES keys used in the XTS-AES algorithm are
not identical

12

©2024 Google, LLC. This document can be reproduced and distributed only whole and intact, including this copyright notice.

The module is not distributed as a standalone library as an Android developer must integrate the

module into the Android system image.

The end user of the operating system is also responsible for zeroizing SSPs via powering down the

tested platform that the module executes on to zeroize all SSPs used by the module.

Configuration management

The source code for the module is maintained in a git repository. While in process work on the code is

maintained internally, code is eventually released to https://ci.android.com where it can be accessed

by anyone. The source code manifest includes a build configuration providing a list of the specific tools

needed to reproduce the module. The version number is generated by git based on the commit

automatically.

Documentation related to the module is maintained in Google Docs. All documents (whether

spreadsheets, documents, presentations or anything else) are automatically version tracked along with

the owner. Like git, Docs uses access control lists to control access to the design documentation for the

module.

Delivery and operation

The module is released as source code for other users to utilize as needed, but the module is only

tested on the specific devices listed in section 2. Google follows the same build steps to produce the

binary version of the module as laid out in the configuration management solution when creating the

software that will be installed on the device. The build process is strictly controlled within Google,

including access controls on the generation and certification of the builds to be used on a device for

production.

The module is a built-in component of the overall Linux kernel image that is installed on the devices

under test. The binary image produced from the build process is then installed onto the mobile devices

at the factory, or updated via the device update process (OTA, or Over-the-Air updates). OTA updates

follow the same build requirements as a factory installed image (which includes the module), but can

be delivered after the device is purchased and in customer hands. All builds are signed and checked by

the device (using checks burned into one-time fuses in the processor) to ensure that unauthorized

binaries cannot be installed.

12. Mitigation of other attacks

The module does not claim mitigation of other attacks.

https://ci.android.com/

