

ISO/IEC 19790 and FIPS 140-3

Non-Proprietary Security Policy for IOS Common Cryptographic Module (IC2M) Firmware Version: Rel5b

Last Updated: August 6, 2024 Version 1.4

Americas Headquarters: Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA © 2024 Cisco Systems, Inc.. All rights reserved.

Table of Contents

1	General	4	
2	Cryptographic module specification	5	
3	Cryptographic module interfaces	9	
4	Roles, services, and authentication	.10	
5	Software/Firmware security	.14	
6	Operational environment	.14	
7	Physical security	.14	
8	Non-invasive security	.14	
9	Sensitive security parameters management	.15	
10	Self-tests	.19	
11	Life-cycle assurance	.20	
12	Mitigation of other attacks	.21	
Арр	Appendix A – Acronyms and Terms22		

List of Figures

List of Tables

TABLE 1 - SECURITY LEVELS	4
Table 2 – Tested Operational Environments	5
TABLE 3 - VENDOR AFFIRMED OPERATIONAL ENVIRONMENTS	5
TABLE 4 - APPROVED ALGORITHMS	6
TABLE 5 – NON-APPROVED ALGORITHMS NOT ALLOWED IN THE APPROVED MODE OF OPERATION	9
TABLE 6 – PORTS AND INTERFACES	
TABLE 7 – ROLES, SERVICE COMMANDS, INPUT AND OUTPUT	
TABLE 8 - APPROVED SERVICES	
TABLE 9 - NON-APPROVED SERVICES	
TABLE 10 - SSPs	
TABLE 11 - NON-DETERMINISTIC RANDOM NUMBER GENERATION SPECIFICATION	
TABLE 12 - ACRONYMS AND TERMS	

1 General

This document is Cisco's non-proprietary security policy for the IOS Common Cryptographic Module (IC2M) with firmware version Rel5b (herein referred to as "IC2Mrel5b" or the "module"). The following details how this module meets the security requirements of FIPS¹ 140-3, NIST² SP³ 800-140, and ISO⁴/IEC⁵ 19790 for a Security Level 1 Firmware cryptographic module.

The security requirements cover areas related to the design and implementation of a cryptographic module. Table 1 below indicates the security level for each area of the module.

ISO/IEC 24759:2017 Section 6	FIPS 140-3 Section Title	Security Level
1	General	1
2	Cryptographic module specification	1
3	Cryptographic module interfaces	1
4	Roles, services, and authentication	1
5	Software/Firmware security	1
6	Operational environment	1
7	Physical security	1
8	Non-invasive security	N/A
9	Sensitive security parameter management	1
10	Self-tests	1
11	Life-cycle assurance	1
12	Mitigation of other attacks	N/A

Table 1 - Security Levels

The overall security level of the module is 1.

¹ FIPS – Federal Information Processing Standards

² NIST – National Institute of Standards and Technology

³ SP – Special Publication

⁴ ISO – International Organization of Standardization

⁵ IEC – International Electrotechnical Commission

[©] Cisco Systems, Inc.

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

2 Cryptographic module specification

IC2Mrel5b is a single binary object file (sub_crypto_ic2m_k9.0) and is classified as a multi-chip standalone firmware module.

IC2Mrel5b is a cryptographic library that supports cryptographic operations executed by a calling application. The calling application leverages the module's well-defined API⁶ to initialize the module and call cryptographic algorithms for encryption/decryption, key generation, signature generation/verification, and hashing. The cryptographic library does not implement any protocols, but does provide the cryptographic primitives for IPsec⁷/IKE⁸v2, SNMP⁹v3, SRTP¹⁰, SSH¹¹v2, and TLS¹² v1.2/v1.3. No SSP¹³s are stored within the cryptographic boundary of the module.

The module is intended for use on any Cisco device that runs the IOS-XE OS¹⁴, so the physical perimeter of the module is the testing platform. The module's operational environment is non-modifiable.

Table 2 below lists the tested operational environments.

#	Operating Systems	Hardware Platform	Processor (Acceleration)	PAA/Acceleration
1	IOS-XE 17.12	Cisco Aggregated Services Router	Intel Xeon E3-1125C v2	N/A ¹⁵
		(ASR) 1001-HX		

 Table 2 – Tested Operational Environments

Table 3 below lists vendor affirmed operational environments.

#	Operating System	Hardware Platform
1	IOS-XE 17.12	Catalyst 9200 Series Switches
2	IOS-XE 17.12	Catalyst 9300 Series Switches
3	IOS-XE 17.12	Catalyst 9400 Series Switches
4	IOS-XE 17.12	Catalyst 9500 Series Switches
5	IOS-XE 17.12	Catalyst 9600 Series Switches
6	IOS-XE 17.12	Cisco Embedded Services 3300 Series Switch
7	IOS-XE 17.12	Cisco Embedded Services 9300 Series Switch
8	IOS-XE 17.12	Cisco Catalyst Industrial Ethernet 3000 Series Switch
9	IOS-XE 17.12	Cisco Catalyst Industrial Ethernet 9300 Series Switch
10	IOS-XE 17.12	Cisco C8500, C8500L Series Edge Platforms
11	IOS-XE 17.12	Cisco C8200, C8200L, C8300 Series Edge Platforms
12	IOS-XE 17.12	Cisco Aggregation Services Router (ASR) 1000 series
13	IOS-XE 17.12	Cisco Integrated Services Router (ISR) 4000 series
14	IOS-XE 17.12	Cisco Integrated Services Router (ISR) 1000 series
15	IOS-XE 17.12	Cisco C8000V Edge Software Router
16	IOS-XE 17.12	Cisco IR 1100, 1800, 8100, 8300 Series Industrial Routers

Table 3 - Vendor Affirmed Operational Environments

⁶ APIs – Application Programming Interface

⁷ IPsec – IP Security

⁸ IKE – Internet Key Exchange

⁹ SNMP – Simple Network Management Protocol

¹⁰ SRTP – Secure Real-time Transport Protocol

¹¹ SSH – Secure Shell

¹² TLS – Transport Layer Security

¹³ SSP – Sensitive Security Parameters

¹⁴ OS – Operating System

¹⁵ N/A – Not Applicable

© Cisco Systems, Inc.

The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys when ported to an operational environment which is not listed on the validation certificate.

Modes of operation

The module supports both approved and non-approved mode of operation. The module will be in approved mode when all pre-operational self-tests have completed successfully and only approved algorithms/services are invoked. Table 4 and Table 7 below for a list of the supported approved/allowed algorithms/services. The non-approved mode is entered when a non-approved algorithm/non-approved service is invoked. See Table 5 and Table 9 below for a list of non-approved algorithms/non-approved services. The Approved mode of operation can only be transitioned into the non-Approved mode by calling one of the non-Approved services listed in Table 9 - Non-Approved Services.

The following tables list all Approved or Vendor-affirmed security functions of the module, including specific key size(s) -in bits otherwise noted- employed for approved services, and implemented modes of operation.

CAVP <u>16</u> Cert	Algorithm/Standard	Mode/Method	Description/Key Size(s)/Key strength(s)	Use/Function
A4354	AES ¹⁷	AES-CBC ¹⁹ ;	Key Length: 128, 192, 256	Symmetric encryption
	[FIPS PUB ¹⁰ 197] [NIST SP 800-38A]		DITS	and decryption
A4354	AES	AES-CFB ²⁰ 128;	Key Length: 128, 192, 256	Symmetric encryption
	[FIPS PUB 197] [NIST SP 800-38A]		bits	and decryption
A4354	AES	AES-ECB ²¹	Key Length: 128, 192, 256	Symmetric encryption
	[FIPS PUB 197] [NIST SP 800-38A]		bits	and decryption
A4354	AES	AES-CMAC ²²	Key Length: 128, 256 bits	Authenticated
	[FIPS PUB 197] [NIST SP 800-38B]			symmetric encryption and decryption
A4354	AES	AES-GCM ²³	Key Length: 128, 192, 256	Authenticated
	[FIPS PUB 197] [NIST SP 800-38D]		bits	symmetric encryption and decryption
A4354	AES	AES-GMAC ²⁴	Key Length: 128 bits	Authenticated
	[FIPS PUB 197] [NIST SP 800-38D]			symmetric encryption and decryption
A4354	AES	AES-KW ²⁵	Key Length: 128, 192, 256	Symmetric encryption
	[NIST SP 800-38F]	(encrypt/decrypt)	bits	and decryption
A4354	ECDSA	ECDSA KeyGen	Curves: P-256, P-384, P-	ECDSA keypair
	[FIPS PUB 186-4]		521	generation

Table 4 - Approved Algorithms

¹⁶ CAVP – Cryptographic Algorithm Validation Program

¹⁷ AES – Advanced Encryption Standard

- ¹⁹ CBC Cipher-Block Chaining
- ²⁰ CFB Cipher Feedback
- ²¹ ECB Electronic Codebook
- ²² CMAC Cipher-based Message Authentication Code
- ²³ GCM Galois Counter Mode
- ²⁴ GMAC Galois Message Authentication Code
- ²⁵ KW Key Wrap
- © Cisco Systems, Inc.

¹⁸ PUB - Publication

CAVP <u>16</u> Cert	Algorithm/Standard	Mode/Method	Description/Key Size(s)/Key strength(s)	Use/Function
A4354	ECDSA	ECDSA KeyVer	Curves: P-256, P-384, P-	ECDSA keypair
1.1251	[FIPS PUB 186-4]		521	verification
A4354	ECDSA [FIPS PUB 186-4]	ECDSA SigGen	Curves: P-256, P-384, P- 521	generation
A4354	ECDSA	ECDSA SigVer	Curves: P-256, P-384, P-	ECDSA signature
	[FIPS PUB 186-4]		521	verification
A4354	RSA ²⁰ [FIPS PUB 186-4]	RSA KeyGen: - Mode: B.3.4 - 2048/3072 bits with SHA2-256	Modulus: 2048, 3072, 4096	RSA keypair generation
A4354	RSA	RSA SigGen:	Modulus:	RSA signature
	[FIPS PUB 186-4]	- PKCSv1.5 - 2048/3072 bits with SHA2-256/384/512	2048, 3072, 4096	generation
A4354	RSA	RSA SigVer:	Modulus:	RSA signature
	[FIPS PUB 186-4]	- PKCSv1.5	2048, 3072, 4096	verification
		- 2048/30/2 bits with SHA2-256/384/512		
A4354	KAS ²⁷ -ECC-SSC ²⁸	KAS-ECC29-SSC	Curves: P-256, P-384, P-	Key establishment
		0.1	521	methodology provides
	[NIST SP 800-56Arev3]	dhEphem:		between 128 and 256
		KAS Role: initiator,		strength
		responder		_
A4354	KAS-FFC-SSC	KAS-FFC ³⁰ -SSC	MODP-2048, MODP-3072,	Key establishment
	[NIST SP 800-56Arev3]	Scheme:	MODP-4096	between 112 and 152
		dhEphem:		bits of encryption
		KAS Role: initiator,		strength
1 1 2 5 4		responder	NODD 2040 NODD 2072	VAC FEC V
A4354	Safe Primes Key Generation	(CKG using	MODP-2048, MODP-3072, MODP-4096	domain parameters
		method in Sections 4		generation
		and 5.1 of SP 800-		
A 4254		133rev2)	NT/A	
A4354	KDF IKEV2 [NIST SP800-135rev1]	KDF IKEV2	N/A	Key derivation function used in IKEy2
	(CVL)			
A4354	KDF SNMP	KDF SNMP	N/A	Key derivation function
	[NIST SP800-135rev1]			used in SNMPv3
A4354	KDF SRTP	KDF SRTP	N/A	Key derivation function
	[NIST SP800-135rev1]			used in SRTP
A 4254	(CVL)			
A4354	KDF SSH [NIST SP800_135rev1]	KDF SSH	N/A	Key derivation function used in SSHv2
	(CVL)			

²⁶ RSA – Rivest, Shamir, and Adleman

²⁷ KAS – Key Agreement Scheme
 ²⁸ SSC – Shared Secret Computation
 ²⁹ ECC – Elliptic Curve Cryptography
 ³⁰ FFC – Finite Field Cryptography

³¹ DH – Diffie-Hellman

© Cisco Systems, Inc.

CAVP <u>16</u> Cert	Algorithm/Standard	Mode/Method	Description/Key Size(s)/Key strength(s)	Use/Function
A4354	TLSv1.2 KDF RFC7627 (CVL)	TLSv1.2 KDF RFC7627	N/A	Key derivation in TLSv1.2 with RFC 7627 KDF with Extended Master Secret
A4354	TLS v1.3 KDF [RFC 8446] (CVL)	TLSv1.3 KDF	N/A	Key derivation function used in TLSv1.3
A4354	HMAC [FIPS 198-1]	HMAC-SHA-1	Key Length: 112-bits or greater	Keyed hash
A4354	HMAC [FIPS 198-1]	HMAC-SHA2-256	Key Length: 112-bits or greater	Keyed hash
A4354	HMAC [FIPS 198-1]	HMAC-SHA2-384	Key Length: 112-bits or greater	Keyed hash
A4354	HMAC [FIPS 198-1]	HMAC-SHA2-512	Key Length: 112-bits or greater	Keyed hash
A4354	SHS [FIPS PUB 180-4]	SHA-1	N/A	Message digest Note: SHA-1 is not used for digital signature generation
A4354	SHS [FIPS PUB 180-4]	SHA2-256	N/A	Message digest
A4354	SHS [FIPS PUB 180-4]	SHA2-384	N/A	Message digest
A4354	SHS [FIPS PUB 180-4]	SHA2-512	N/A	Message digest
A4354	DRBG ³² [NIST SP 800-90Arev1]	CTR ³³ _DRBG (AES- 256) Derivation Function Enabled: Yes	256 bits	Random number generation
Vendor Affirmed	CKG [SP 800-133rev2]	N/A	N/A	Symmetric and asymmetric key generation (Please refer to section "SSP Generation" in this document for more information)

NOTES:

- There are algorithms, modes, and key moduli sizes that have been CAVP-tested but are not used by any approved services of the module. Only the algorithms, modes/methods, and key lengths/curves/moduli shown in the tables above are used by an approved service of the module.
- The module supports generation of ECDSA, RSA, ECDH³⁴, and DH asymmetric key pairs in accordance with NIST SP 800-133r2, section 5. The module supports generation of AES and HMAC symmetric keys in accordance with NIST SP 800-133r2, section 6.

I

```
© Cisco Systems, Inc.
```

³² DRBG – Deterministic Random Bit Generator

³³ CTR - Counter

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

• No parts of IPsec/IKEv2, SNMPv3, SRTP SSH, and TLS protocols, other than the KDFs, have been tested by the CAVP and CMVP.

Table 5 below lists all non-Approved algorithms not allowed in the approved mode of operation implemented by the module.

Algorithm/Function	Use/Function
RSA	Key establishment with PKCS1-v1.5 padding
MD5	Message digest
Triple-DES	Encryption/decryption

 Table 5 – Non-Approved Algorithms Not Allowed in the Approved Mode of Operation

In addition, the module does not implement Non-Approved Algorithms Allowed in Approved Mode of Operation and Non-Approved Algorithms Allowed in Approved Mode of Operation with No Security Claimed.

Cryptographic Boundary

Figure 1 below depicts the cryptographic boundary (red dashed line) and physical perimeter (solid red line). The cryptographic boundary is defined as the cryptographic library. The physical perimeter is the Tested Operational Environment's Physical Perimeter (TOEPP) on which the module runs.

Figure 1 – Module's boundary

3 Cryptographic module interfaces

The module's physical perimeter encompasses the case of the tested platform mentioned in section 2 above. No data passes in or out of these physical ports. The module provides logical interfaces via well-defined APIs. The logical interfaces provided by the module are mapped to the following FIPS 140-3 interfaces:

- Data input
- Data output
- Control input
- Control output
- Status output

Table 6 below provides a description of data that passes through each logical interface.

Physical Port	Logical Interface	Data that passes over port/interface	
N/A	Data Input	API input parameters – plaintext and/or ciphertext data	
N/A	Data Output	API output parameters – plaintext and/or ciphertext data	
N/A	Control Input	API input parameters – function calls, or input arguments that specify commands	
		and control data used to control the operation of the module	
N/A	Control Output	Not applicable	
N/A	Status Output	API return codes- function return codes, error codes, or output arguments that	
	_	receive status information used to indicate the status of the module	
N/A	Power	Not applicable	

Table 6 – Ports and Interfaces

4 Roles, services, and authentication

The module supports the CO^{35} role. The module does not provide any authentication methods. The module does not allow concurrent operators. The CO role is implicitly assumed based on the service requested. The module provides the services in Table 8 below to the CO.

Table 7 below provides roles, service commands, input, and output for the module.

Role	Service	Input	Output
СО	Initialize module	None	Module loaded
CO	Show status	API command	Module's current status
СО	Perform self-test	API command	Output display on each algorithm running self-test and pass/fail indicator
СО	Show version information	API command	Displays the module's name/ID and versioning information
СО	Symmetric cipher operation	API commands, key, and plaintext/ciphertext data	Plaintext or ciphertext
СО	Asymmetric cipher operation	API commands, keys, and ciphertext/plaintext data	Signature and plaintext/ciphertext
CO	Key exchange/agreement component (NIST SP 800-56Arev3)	API commands, asymmetric keys	Asymmetric key or key agreement component
CO	Key wrapping (KW)	API commands, wrapping key, key	Wrapped key
CO	Key derivation function	IKEv2 (existing application specific): IKEv2 parameters	KDF shared secret data
		SNMPv3 (existing application specific): SNMPv3 parameters	KDF shared secret data
		SRTP (existing application specific): SRTP parameters	KDF shared secret data

³⁵ CO – Crypto Officer

Role	Service	Input	Output
		SSH (existing application specific):	KDF shared secret data
		SSH parameters	
		TLS (KDF, existing application	KDF shared secret data
		specific): TLS parameters	
CO	Keyed hashing function	API commands, HMAC key, plaintext	MAC value
CO	Message digest	API commands, plaintext	Hash value
CO	Random number generation	API commands	Random bits
CO	Zeroization	API command	None

Table 8 below lists all approved services that can be used in the approved mode of operation. The abbreviations of the access rights to keys and SSPs have the following interpretation:

- **G** = **Generate**: The module generates or derives the SSP.
- **R** = **Read**: The SSP is read from the module.
- **W** = **Write**: The SSP is updated, imported, or written to the module.
- **E** = **Execute**: The module uses the SSP in performing a cryptographic operation.
- **Z** = **Zeroize**: The module zeroizes the SSP.
- N/A = The service does not access any SSP during its operation.

Table 8 - Approved Services

Service	Description	Approved Security Function	Keys and/or SSPs	Roles	Access Rights	Indicator
Initialize module	Initialization occurs when the module is loaded	None	None	СО	R	N/A
Show status	Display running status of the module	N/A	None	СО	N/A	N/A
Perform self-test	Perform Self-Tests (Pre- operational self-tests and Conditional Self-Tests)	AES-CBC; AES-CMAC; AES-GCM; CTR-DRBG; ECDSA SigGen; ECDSA SigVer; HMAC-SHA2-256; KAS-FFC-SSC; KAS-ECC-SSC; RSA SigGen; RSA SigVer; SHA-1; SHA2-256; SHA2-512; KDF IKEv2; KDF SNMP; KDF SNMP; KDF SSH; TLS v1.2 KDF with RFC7627; TLS v1.3 KDF	Firmware integrity key (non-SSP)	CO	R	API return value
Show version information	Provide module's name and version information	N/A	None	СО	N/A	N/A
Symmetric cipher operation	Perform encryption/decryption of data	CKG; DRBG; AES-CBC; AES-CFB128; AES-ECB:	DRBG entropy input; DRBG seed;	СО	G, R, W, E	API return value

Service	Description	Approved Security	Keys and/or	Roles	Access	Indicator
		Function	SSPs		Rights	
		AES-CMAC;	DRBG			
		AES-GMAC;	internal			
		AES-GCM	state V			
			value;			
			DRBG key;			
A	Deuferme eine eterne	CVC	AES EDK	CO	C D	A DI matanen
Asymmetric cipner	perform signature	CKU;	DRBG	CO	G, K, W E	API return
operation	key generation	DKDU, BSA KeyGen:	input:		W, E	value
	key generation	RSA SigGen:	DRBG seed			
		RSA SigVer	DRBG			
		ECDSA KeyGen	internal			
		ECDSA KeyVer	state V			
		ECDSA SigGen	value:			
		ECDSA SigVer	DRBG kev:			
			RSA SGK:			
			RSA SVK;			
			ECDSA			
			SGK;			
			ECDSA			
			SVK			
Key	Perform key agreement	CKG;	DRBG	CO	G, R,	API return
exchange/agreement	primitives on behalf of the	DRBG;	entropy		W , E	value
component	calling application (does not	KAS-ECC-SSC;	input;			
	establish keys into the	KAS-FFC-SSC;	DRBG seed;			
	module)	Safe Primes Key	DRBG			
		Generation	internal			
			state V			
			value;			
			DRBG key;			
			bii public			
			DH private			
			kev:			
			ECDH			
			public key:			
			ECDH			
			private key			
Key wrapping (KW)	Encrypt a key value on	CKG;	DRBG	CO	G, R,	API return
	behalf of the calling	DRBG;	entropy		W, E	value
	application	AES-KW	input;			
			DRBG seed;			
			DRBG			
			internal			
			state V			
			value;			
			DKBG key;			
KDE IKE ₁ 2	Derive keys for IKEy?	KDE IKEv?	AES NWK	CO	GP	A DI roture
function	protocol		Secret		U, K, W. E	value
KDF SNMPv3	Derive keys for SNMPv3	KDF SNMP	SNMP KDF	СО	G, R.	API return
function	protocol		secret		W, E	value
KDF SRTP function	Derive keys for SRTP	KDF SRTP	SRTP KDF	СО	G, R,	API return
	protocol		secret		W, E	value

© Cisco Systems, Inc.

Service	Description	Approved Security	Keys and/or	Roles	Access	Indicator
KDE SSU ₂ 2	Derive keye for SSHu2		SSI VDE	CO	Kights	A DI roturn
function	protocol	KDF 55H	SSE KDF	CO	U, K, W F	value
KDFTISv12	Derive keys for TLS v1 2	TL Sv1 2 KDF REC	TIS v1 2	CO	G R	ΔPI return
function	protocol	7627	KDF	co	W F	value
runction	protocol	1021	extended		, L	value
			master			
			secret			
KDF TLS v1.3	Derive keys for TLS v1.3	TLSv1.3 KDF	TLS v1.3	CO	G, R,	API return
function	protocol		KDF secret		W, E	value
Keyed hashing	Generate keyed hash	CKG;	DRBG	CO	G, R,	API return
function		DRBG;	entropy		W, E	value
		HMAC-SHA-1;	input;			
		HMAC-SHA2-256;	DRBG seed;			
		HMAC-SHA2-384;	DRBG			
		HMAC-SHA2-512;	internal			
			state V			
			value;			
			DRBG key;			
			HMAC key	<i></i>	<i>a</i>	
Message digest	Generate message digest	SHA-1;	None	CO	G, R,	API return
	(secure hashing function)	SHA2-256;			W, E	value
		SHA2-384; SUA2 512:				
Pandom numbar	Provide rendom data for kay	CTP DPBC	DPRC	CO	G P	A DI roturn
generation	generation	CIK-DKDO	DKDG	CO	U, K, W F	value
generation	generation		input:		W, L	value
			DRBG seed			
			DRBG			
			internal			
			state V			
			value;			
			DRBG key			
Zeroization	Zeroize all SSPs stored in	None	All SSPs	CO	Ζ	N/A
	allocated memory. Cleanup					
	is the responsibility of the					
	calling application.					

Table 9 below lists non-Approved services supported by the module.

Service	Description	Algorithm Accessed	Role	Indicator
Message digest	Generate message digest	MD5	СО	API return value
Asymmetric cipher operation	Perform signature generation/verification	RSA (PKCS1-v1.5 padding)	СО	API return value
Symmetric cipher operation	Perform decryption of ciphertext data	Triple-DES	СО	API return value

 Table 9 - Non-Approved Services

5 Software/Firmware security

Integrity techniques

The IC2Mrel5b cryptographic module is a binary file (sub_crypto_ic2m_k9.o) statically linked within the IOS-XE OS. To ensure firmware security, the module is protected by an HMAC-SHA2-256 (HMAC Cert. #A4354) algorithm. The firmware integrity test key (non-SSP) was preloaded to the module's binary at the factory and used only for the pre-operational firmware integrity self-test. During initialization of the module, the integrity of the runtime executable is verified using an HMAC-SHA2-256 which is compared to a value computed at build time. If at load time the MAC does not match the stored, known MAC value, the module enters a critical error state where all crypto functionality inhibited. The module must be reloaded to attempt the integrity test again.

Integrity test on-demand

The integrity test is performed as part of the Pre-Operational Self-Tests. It is automatically executed at power-on. The operator can power-cycle or reboot the tested platform to initiate the integrity test on-demand.

6 Operational environment

The module is operated in a non-modifiable operational environment per ISO/IEC 19790, section 7.6, level 1 specifications. The module is delivered as part of the IOS-XE OS. The OS is restricted to a single operator mode of operation (i.e., concurrent operators are explicitly excluded). The application that makes calls to the module is the single user of the module. The module's firmware version running on each tested platform is Rel5b.

7 Physical security

Per ISO/IEC 19790, section 7.7, the module is defined as a multi-chip standalone firmware cryptographic module. The module runs on a host appliance made of production-grade components with standard passivation techniques.

8 Non-invasive security

At the time of publication of this Security Policy, non-invasive security is not required for FIPS 140-3 certification (see NIST SP 800-140F). The requirements of this area are not applicable to the module.

9 Sensitive security parameters management

Table 10 below provides information for the SSPs that are used by the cryptographic services implemented in the module.

Keys/ SSP Name/Type	Strength	Security Function and Cert Number	Generation	Import/ Export	Establish- ment	Storage	Zeroization	Use and released keys
AES EDK (CSP)	128-256 bits	CKG; DRBG; AES-CBC; AES-CFB128; AES-CCB; AES-CMAC; AES-GCM; AES-GMAC; Cert: A4354	Internally generated conformant to NIST SP 800-133r2 (CKG), section 6 for Symmetric Key Generation method, and the random value used in key generation is generated using SP 800-90Arev1 DRBG.	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Symmetric encryption/ decryption
AES KWK (CSP)	128-256 bits	CKG; DRBG; AES-KW Cert: A4354	Internally generated conformant to NIST SP 800-133r2 (CKG), section 6 for Symmetric Key Generation method, and the random value used in key generation is generated using SP 800-90Arev1 DRBG.	Import: No Export: No	N/A	Stored outside the module in the host OS	Zeroized via API command outside the module; Power cycle	Key wrapping
RSA SGK (CSP)	112-152 bits	CKG; DRBG; RSA KeyGen; RSA SigVer Cert: A4354	Internally generated conformant to NIST SP 800-133r2 (CKG) using FIPS 186-4 RSA key generation method, and the random value used in the key generation is generated using SP 800- 90Arev1 DRBG.	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Digital signature generation
RSA SVK (PSP ³⁶)	112-152 bits	RSA SigVer; Cert: A4354	Internally derived conformant to FIPS 186-4 RSA key generation method	Import: No Export: Via module API	MD/EE	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Digital signature verification
ECDSA SGK (CSP)	128-192 bits	CKG; DRBG; ECDSA KeyGen; ECDSA KeyVer; ECDSA SigGen; Cert: A4354	Internally generated conformant to NIST SP 800-133r2 (CKG) using FIPS 186- 4 ECDSA key generation method, and the random value used in key generation is generated using SP 800- 90Arev1 DRBG	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Digital signature generation
ECDSA SVK (PSP)	128-192 bits	ECDSA SigVer; Cert: A4354	Internally derived conformant to FIPS 186-4 ECDSA key generation method	Import: No Export: Via module API	MD/EE	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Digital signature verification
DH public key (PSP)	112-152 bits	KAS-FFC-SSC; Cert: A4354	Internally derived conformant to SP 800- 56A rev3 DH key generation method	Import: No Export: No	N/A	N/A: The module does not provide persistent	Automatic zeroization when the tested platform is powered down	Key agreement

Table 10 - SSPs

³⁶ PSP – Public Security Parameter

Keys/ SSP Name/Type	Strength	Security Function and Cert Number	Generation	Import/ Export	Establish- ment	Storage	Zeroization	Use and released keys
						keys/SSPs storage		
DH private key (CSP)	112-152 bits	CKG; DRBG; KAS-FFC-SSC Cert: A4354	Internally generated conformant to NIST SP 800-133r2 (CKG) using SP 800-56Arev3 DH key generation method, and the random value used in the key generation is generated using SP 800-90Arev1 DRBG	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Key agreement
ECDH public key (PSP)	128-256 bits	KAS-ECC- SSC; Cert: A4354	Internally derived conformant to SP 800- 56A rev3 EC Diffie- Hellman key generation method	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Key agreement
ECDH private key (CSP)	128-256 bits	CKG; DRBG; KAS-ECC- SSC; Cert: A4354	Internally generated conformant to NIST SP 800-133r2 (CKG) using SP 800-56Arev3 ECDH key generation method, and the random value used in the key generation is generated using SP 800-90Arev1 DRBG	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Key agreement
HMAC key (CSP)	112 bits or greater	CKG; DRBG; HMAC-SHA-1; HMAC-SHA2- 256; HMAC-SHA2- 384 Cert: A4354	Internally generated conformant to NIST SP 800-133r2 (CKG), section 6 for Symmetric Key Generation method, and the random value used in key generation is generated using SP 800-90Arev1 DRBG	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	MAC generation
DRBG entropy input (CSP)	112 bits or greater	N/A	Obtained from the Entropy Source within TOEPP (GPS INT Pathways	Import: Via module API Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Random number generation
DRBG seed, (CSP)	384 bits	CTR_DRBG Cert: A4354	Internally Derived from entropy input string as defined by NIST SP 800-90Arev1	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Random number generation
DRBG internal state V value, (CSP)	384 bits	CTR_DRBG Cert: A4354	Internally Derived from entropy input string as defined by NIST SP 800-90Arev1	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Random number generation
DRBG key (CSP)	384 bits	CTR_DRBG Cert: A4354	Internally Derived from entropy input string as defined by NIST SP 800-90Arev1	Import: No Export: No	N/A	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Random number generation
IKEv2 KDF secret (CSP)	112-256 bits	KDF IKEv2 Cert: A4354	Internally derived per the KDF defined in NIST SP 800-135 KDF (IKEv2)	Import: No Export:	MD/EE	N/A: The module does not provide persistent	Automatic zeroization when the tested platform is powered down	Keying material used to derive other IPSec/IKEv2 keys

© Cisco Systems, Inc.

Keys/ SSP Name/Type	Strength	Security Function and	Generation	Import/ Export	Establish- ment	Storage	Zeroization	Use and released keys
		Cert Number		As part of agreement scheme		keys/SSPs storage		
SNMPv3 KDF secret (CSP)	112-256 bits	KDF SNMP Cert: A4354	Internally derived per the KDF defined in NIST SP 800-135 KDF (SNMPv3)	Import: No Export: As part of agreement scheme	MD/EE	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Keying material used to derive other SNMPv3 keys
SRTP KDF secret (CSP)	112-256 bits	KDF SRTP Cert: A4354	Internally derived per the KDF defined in NIST SP 800-135 KDF (SRTP)	Import: No Export: As part of agreement scheme	MD/EE	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Keying material used to derive other SRTP keys
SSH KDF secret (CSP)	112-256 bits	KDF SSH Cert: A4354	Internally derived per the KDF defined in NIST SP 800-135 KDF (SSHv2)	Import: No Export: As part of agreement scheme	MD/EE	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Keying material used to derive other SSHv2 keys
TLSv1.2 KDF extended master secret (CSP)	112-256 bits	TLSv1.2 KDF with RFC 7627 Cert: A4354	Internally derived per the KDF defined in NIST SP 800-135 KDF (TLSv1.2 with RFC 7627)	Import: No Export: As part of agreement scheme	MD/EE	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Keying material used to derive other TLSv1.2 keys
TLSv1.3 KDF secret (CSP)	112-256 bits	KDF TLSv1.3 Cert: A4354	Internally derived per the KDF defined in NIST SP 800-135 KDF (TLSv1.3 with RFC 8446)	Import: No Export: As part of agreement scheme	MD/EE	N/A: The module does not provide persistent keys/SSPs storage	Automatic zeroization when the tested platform is powered down	Keying material used to derive other TLSv1.3 keys

RBG entropy source

Table 11 below specifies the modules entropy sources.

Table 11 - Non-Deterministic Random Number Generation Specification

Entropy sources	Minimum number of bits of entropy	Details
The OS passively loads entropy within the TOEPP into the module to seed the NIST SP 800-90Arev1 DRBG	At least 112 bits	While in the approved mode of operation, the entropy and seeding material for the NIST SP 800-90Arev1 DRBG are provided by the external calling application (and not by the module) which is outside the module's cryptographic boundary but contained within the module's physical perimeter. The module receives a LOAD command with entropy obtained from the entropy source inside the TOEPP. The minimum effective strength of the NIST SP 800-90Arev1 DRBG seed is required to be at least 112-bits when used in an approved mode of operation; therefore the minimum number of bits of entropy requested when the Module makes a call to the NIST SP 800-90Arev1 DRBG is at least 112-bits. Per the IG 9.3.A Entropy Caveats, the following caveat applies: <i>No assurance of the minimum strength of generated SSPs (e.g., keys)</i> .

Random Number Generation

The Approved DRBG for random number generation is a NIST SP 800-90Arev1 CTR_DRBG using AES-256 with derivation function and without prediction resistance. The numbers used for key generation are all generated by the CTR_DRBG within the module. Per NIST SP 800-90Arev1, section 10.2.1.1, the internal state is the values of *V* and *Key*. Refer to Table 4 above for the CAVP certificate of the validated DRBG algorithm.

SSP Generation

The module generates RSA, ECDSA, ECDH, and DH asymmetric key pairs compliant with FIPS 186-4, using a NIST SP 800-90Arev1 CTR_DRBG for random number generation. In accordance with FIPS 140-3 IG D.H, the cryptographic module performs CKG for asymmetric keys as per section 5 of NIST SP 800-133rev2 (vendor affirmed) by obtaining a random bit string directly from an approved DRBG. The random bit string supports the required security strength requested by the calling application (without any V, as described in Additional Comments 2 of IG D.H.).

The module generates AES symmetric keys compliant with FIPS PUB 197 and HMAC key compliant with FIPS PUB 198. All symmetric key generation is performed using a NIST SP 800-90Arev1 CRT_DRBG for rando number generation. In accordance with FIPS 140-3 IG D.H, the cryptographic module performs CKG for symmetric keys as per section 6 of NIST SP 800-133rev2.

SSP Entry and Output

The module does not support manual SSP entry or intermediate key generation output. SSPs are not output through physical ports on the TOEPP. SSPs are input in plaintext form via API from the calling application to the module. SSPs are output in plaintext form from the module to the calling application within TOEPP.

Per ISO/IEC 19790, section 7.9.5, the module performs two independent internal actions to prevent the inadvertent output of sensitive information:

- 1. The module internally requests the random number generation service, confirming it executes successfully.
- 2. Once keys are generated, the module performs the PCT to verify the keys are correctly generated.

Once both actions are successfully completed, the module outputs the SSP to the calling application via the output API.

SSP Storage

The module does not provide persistent storage of SSPs. SSP storage is performed by the tested platform.

Zeroization

The module does not possess persistent storage of SSPs. The SSP value only exists in volatile memory of the host appliance and that value vanishes when the module is powered off. The procedure for secure sanitization of the module at the end of life is simply to power off the tested platform.

```
© Cisco Systems, Inc.
```

10 Self-tests

The module performs Pre-Operational Self-Tests and CASTs³⁷ before entering an approved mode of operation. The module is single threaded and will not return to the calling application until all self-tests are complete. If any of the pre-operational self-tests or conditional cryptographic algorithm self-tests fail, the module enters a critical error state and sends an error to the OS. The module supports two Error states, critical error state and soft error state. Following is an example of the error message displayed on the console of the host appliance in a critical error state:

%CRYPTO-0-SELF_TEST_FAILURE: Encryption self-test failed (<failing test description>)

In a critical error state no cryptographic operations are performed and data output is prohibited. The CO can clear the error state by restarting the module.

If a PCT fails, the module enters a soft error state, deletes the key, logs an error, and returns to the approved mode of operation. In the approved mode of operation the service may be retried or a new service may be performed. Following is an example of the error message displayed on the console of the host appliance in a soft error state:

%CRYPTO-3-RSA_SELFTEST_FAILED: Generated RSA key failed self test

If the module fails to retrieve enough entropy, the module enters a soft error state. The module deletes the DRBG value, then reseeds and reinitializes the DRBG.

Pre-operational self-tests:

Pre-operational firmware integrity test:

- HMAC-SHA2-256 KAT³⁸
- Firmware integrity test (using HMAC-SHA2-256)

Conditional self-tests:

Conditional cryptographic algorithm tests (CASTs):

- AES ECB (128-bit) Encrypt KAT
- AES ECB (128-bit) Decrypt KAT
- AES-GCM (256-bit) Encrypt KAT
- AES-GCM (256-bit) Decrypt KAT
- AES GMAC (256-bit) KAT
- CTR_DRBG Instantiate KAT
- CTR_DRBG Generate KAT
- CTR_DRBG Reseed KAT Note: DRBG Health Tests as specified in NIST SP 800-90Arev1 Section 11.3 are performed.
- HMAC-SHA2-256 KAT
- SHA-1 KAT
- SHA2-256 KAT
- SHA2-512 KAT

³⁷ CAST - Cryptographic Algorithm Self-Tests

³⁸ KAT – Known Answer Test

[©] Cisco Systems, Inc.

- ECDSA P-256 with SHA2-256 SigGen KAT
- ECDSA P-256 with SHA2-256 SigVer KAT
- RSA 2048-bit modulus with SHA2-256 SigGen KAT
- RSA 2048-bit modulus with SHA2-256 SigVer KAT
- KAS-FFC-SSC (shared secret computation) using MODP-2048 Primitive 'Z' KAT
- KAS-ECC-SSC (shared secret computation) using P-256 Primitive 'Z' KAT
- KDF IKEv2 KAT
- KDF SNMP KAT
- KDF SRTP KAT
- KDF SSH KAT
- TLSv1.2 KDF with RFC7627 KAT
- TLSv1.3 KDF KAT

Conditional pair-wise consistency tests (PCT):

- ECDSA PCT
- RSA PCT

Periodic/Self-Tests On-Demand

In addition to the automatic execution of self-tests at cryptographic module initialization, the CO can manually initiate self-tests on demand by executing the "test crypto self-test" command through the console of the host appliance. This command calls the "crypto_engine_nist_run_self_tests() function". Self-tests can be executed on demand by power-cycling the module.

11 Life-cycle assurance

The module meets all the Level 1 requirements for FIPS 140-3. The module is completely and permanently embedded into Host Device IOS-XE OS. There are no installation considerations besides the loading of the IOS-XE OS. The module cannot be modified, replaced, or upgraded except by loading a new Host Device IOS-XE version in its entirety.

The module functions entirely within the process space of the process that invokes it, and thus satisfies the FIPS 140-3 requirement for a single user mode of operation.

During system start-up, the IOS-XE OS will call module's ic2m_init() function. The ic2m_init() function is the default entry point for the module. The ic2m_init() function initiates all self-tests and does not return to the IOS-XE OS until all self-tests are completed successfully and the module is in an approved mode of operation. No other tasks are executed while the self-tests are performed so no data is passed and all cryptographic operations are prohibited. If a self-test fails, the module enters a critical error state and must be reloaded to clear the error state and retry the self-tests.

AES-GCM IV:

The CO shall consider the following requirements and restrictions when using the module.

• The AES-GCM IV is constructed in compliance with IG C.H, scenario 1 (TLS v1.2), scenario 2 (IPsec-v3), and scenario 5 (TLS v1.3). Users should consult IG C.H specific scenarios for all the

requirements using AES-GCM mode. The TLS and IPsec/IKE protocols have not been reviewed or tested by the CAVP and CMVP.

- The AES-GCM IV generation follows RFC 5288 and shall only be used for the TLS protocol v1.2. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the TLS protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the TLS protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.
- The AES-GCM IV generation follows RFC 4106 and shall only be used for the IPsec-v3 protocol version 3. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the IPsec protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the IPsec protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.
- The AES-GCM IV generation follows RFC 8446 and shall only be used for the TLS protocol v1.3. The counter portion of the IV is set by the module within its cryptographic boundary. The module does not implement the TLS protocol. The module's implementation of AES-GCM is used together with an application that runs outside the module's cryptographic boundary. The design of the TLS protocol implicitly ensures that the nonce_explicit, or counter portion of the IV will not exhaust all of its possible values.
- In these protocols if the module's power is lost and then restored, the key used for the AES GCM encryption/decryption shall be re-distributed. This condition is not enforced by the module; however, it is met implicitly. The module does not retain any state when power is lost. The AES-GCM key/IVs are not persistently stored during power off: therefore, there is no re-connection possible when the power is restored with re-generation of the key used for AES-GCM. After restoration of the power, the user of the module (e.g., TLS, IKE) along with User application that implements the protocol, must perform a complete new key establishment operation using new random numbers (Entropy input string, DRBG seed, DRBG internal state V and Key, shared secret values that are not retained during power cycle) and subsequent KDF operations to establish a new AES-GCM key/IV pair on either side of the network communication channel.

12 Mitigation of other attacks

The module does not support mitigation of other attacks as defined under ISO/IEC 19790, section 7.12.

Appendix A – Acronyms and Terms

Table 12 below provides a list of acronyms and terms used throughout this Security Policy.

Term/Acronym	Definition
AES	Advanced Encryption Standard
API	Application Programming Interface
ASR	Aggregated Services Router
CAST	Cryptographic Algorithm Self-Tests
CAVP	Cryptographic Algorithm Validation Program
CBC	Cipher-Block Chaining
CFB	Cipher Feedback
СКС	Cryptographic Key Generation
CMAC	Cipher-based Message Authentication Code
CMVP	Cryptographic Module Validation Program
СО	Crypto Officer
CSP	Critical Security Parameter
CTR	Counter
CVL	Component Validation List
DH	Diffie-Hellman
DRBG	Deterministic Random Bit Generator
ECB	Electronic Codebook
ECC	Elliptic Curve Cryptography
ECDH	Elliptic Curve Diffie-Hellman
ECDSA	Elliptic Curve Digital Signature Algorithm
FFC	Finite Field Cryptography
FIPS	Federal Information Processing Standards
GCM	Galois Counter Mode
GMAC	Galois Message Authentication Code
HMAC	(keyed)-Hashed Message Authentication Code
IEC	International Electrotechnical Commission
IG	Implementation Guidance
IKE	Internet Key Exchange
IPsec	IP Security
ISO	International Organization of Standardization
KAS	Key Agreement Scheme
KAT	Known Answer Test
KDF	Key Derivation Function
N/A	Not Applicable
NIST	National Institute of Standards and Technology
OS	Operating System
РСТ	Pairwise Consistency Test
PSP	Public Security Parameter
PUB	Publication
RFC	Request for Comment
RSA	Rivest, Shamir, and Adleman
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SSC	Shared Secret Computation
SSH	Secure Shell
SNMP	Simple Network Transfer Protocol
SP	Special

Table 12 - Acronyms and Terms

Term/Acronym	Definition
SRTP	Secure Real-time Protocol
SSP	Sensitive Security Parameters
TLS	Transport Layer Security
TOEPP	Tested Operational Environment's Physical Perimeter